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A NEW LOOK AT NONNEGATIVITY ON CLOSED SETS AND

POLYNOMIAL OPTIMIZATION

JEAN B. LASSERRE

Abstract. We first show that a continuous function f is nonnegative on a
closed set K ⊆ R

n if and only if (countably many) moment matrices of some
signed measure dν = fdµ with suppµ = K, are all positive semidefinite (if
K is compact µ is an arbitrary finite Borel measure with suppµ = K). In
particular, we obtain a convergent explicit hierarchy of semidefinite (outer)
approximations with no lifting, of the cone of nonnegative polynomials of de-
gree at most d. Wen used in polynomial optimization on certain simple closed
sets K (like e.g., the whole space R

n, the positive orthant, a box, a simplex,
or the vertices of the hypercube), it provides a nonincreasing sequence of up-
per bounds which converges to the global minimum by solving a hierarchy of
semidefinite programs with only one variable. This convergent sequence of
upper bounds complements the convergent sequence of lower bounds obtained
by solving a hierarchy of semidefinite relaxations as in e.g. [7].

1. Introduction

This paper is concerned with a concrete characterization of continuous functions
that are nonnegative on a closed set K ⊆ R

n and its application for optimization
purposes. By concrete we mean a systematic procedure, e.g. a numerical test that
can be implemented by an algorithm, at least in some interesting cases. For polyno-
mials, Stengle’s Nichtnegativstellensatz [17] provides a certificate of nonnegativity
(or absence of nonnegativity) on a semi-algebraic set. Moreover, in principle, this
certificate can be obtained by solving a single semidefinite program (although the
size of this semidefinite program is far beyond the capabilities of today’s computers).
Similarly, for compact basic semi-algebraic sets, Schmüdgen’s and Putinar’s Posi-
tivstellensätze [15, 13] provide certificates of strict positivity that can be obtained
by solving finitely many semidefinite programs (of increasing size). Extensions of
those certificates to some algebras of non-polynomial functions have been recently
proposed in Lasserre and Putinar [9] and in Marshall and Netzer [11]. However, and
to the best of our knowledge, there is still no hierarchy of explicit (outer or inner)
semidefinite approximations (with or without lifting) of the cone of polynomials
nonnegative on a closed set K, even if K is compact and basic semi-algebraic.

Contribution: In this paper, we present a different approach based on a new
(at least to the best of our knowledge) and simple characterization of continuous
functions that are nonnegative on a closed set K ⊆ R

n. This characterization
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involves a single (but known) measure µ with suppµ = K, and sums of squares of
polynomials. Namely, our contribution is twofold:

(a) We first show that a continuous function f is nonnegative on a closed set
K ⊆ R

n if and only if
∫

h2fdµ is nonnegative for all polynomials h ∈ R[x], where
µ is a finite Borel measure with suppµ = K. The measure µ is arbitrary if K is
compact. If K is not compact, all moments of the signed measure fdµ must be
finite. For instance, if f is a polynomial one may choose µ to be the restriction to K

of the product of normal distributions (so that all polynomials are integrable) and
consider those closed sets K such that suppµ = K (for instance K is the closure of
some open set).

Equivalently, f is nonnegative on K if and only if every element of the countable
family T of moment matrices associated with the signed Borel measure fdµ, is pos-
itive semidefinite. The absence of nonnegativity on K can be certified by exhibiting
a polynomial h ∈ R[x] such that

∫

h2fdµ < 0, or equivalently, when some moment
matrix in the family T is not positive semidefinite. And so, interestingly, as for
nonnegativity or positivity, our certificate for absence of nonnegativity is also in
terms of sums of squares. When f is a polynomial, these moment matrices are eas-
ily obtained from the moments of µ and this criterion for absence of nonnegativity
complements Stengle’s Nichtnegativstellensatz [17] (which provides a certificate of
nonnegativity on a semi-algebraic set K) or Schmüdgen and Putinar’s Positivstel-
lensätze [15, 13] (for certificates of strict positivity on compact basic semi-algebraic
sets). At last but not least, we obtain a convergent explicit hierarchy of semidefinite
(outer) approximations with no lifting, of the cone Cd of nonnegative polynomials of
degree at most 2d. That is, we obtain a nested sequence C0

d ⊃ · · · Ck
d ⊃ · · · ⊃ Cd such

that each Ck
d is a spectrahedron defined solely in terms of the vector of coefficients of

the polynomial, with no additional variable (i.e., no projection is needed). Similar
explicit hierarchies can be obtained for the cone of polynomials nonnegative on a
closed set K, provided all moments of an appropriate measure µ can be obtained.
To the best of our knowledge, this is first result of this kind.

(b) As a potential application, we consider the problem of minimizing a polyno-
mial f on some unbounded closed sets (e.g.,K = R

n orK = R
n
+), or on any compact

set K for which one may compute all moments of a measure µ with suppµ = K.
Typical examples of such sets K are a box, a ball, a simplex, or the vertices of
the hypercube. We then provide a hierarchy of semidefinite programs (with only
one variable!) whose optimal values form a monotone sequence of upper bounds
which converges to the global minimum f∗. This is in contrast with the hierarchy
of semidefinite relaxations defined in Lasserre [7, 8] which provide a nondecreasing
sequence of lower bounds that also converges to f∗. Hence these two convergent
hierarchies of upper and lower bounds complement each other and permit to locate
the global minimum f∗ in smaller and smaller intervals. Notice that convergence
of the hierarchy of convex relaxations in [7] is guaranteed only for compact ba-
sic semi-algebraic sets, whereas for the new hierarchy of upper bounds, the only
requirement is to know all moments of a measure µ with suppµ = K. On the
other hand, computing such moments is possible only for relatively simple (but not
necessarily compact) sets.

When K = R
n, we also obtain a nonincreasing sequence of upper bounds that

converges to f∗ even if f∗ is not attained, an alternative and/or complement to the
hierarchy of convex relaxations provided in Schweighofer [16] (based on gradient
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tentacles) and in Hà and So’n [5] (based on the truncated tangency variety), which
both provide again a monotone sequence of lower bounds.

Finally, we also give a very simple interpretation of the hierarchy of dual semidefi-
nite programs, which provide some information on the location of global minimizers.

2. Notation and preliminary results

Let R[x] be the ring of polynomials in the variables x = (x1, . . . , xn). Denote
by R[x]d ⊂ R[x] the vector space of polynomials of degree at most d, which forms

a vector space of dimension s(d) =
(

n+d
d

)

, with e.g., the usual canonical basis (xα)
of monomials. Also, denote by Σ[x]d ⊂ R[x]2d the space of sums of squares (s.o.s.)
polynomials of degree at most 2d. If f ∈ R[x]d, write f(x) =

∑

α∈Nn fαx
α in the

canonical basis and denote by f = (fα) ∈ R
s(d) its vector of coefficients.

Moment matrix. With y = (yα) being a sequence indexed in the canonical basis
(xα) of R[x], let Ly : R[x] → R be the linear functional

f (=
∑

α

fα xα) 7→ Ly(f) =
∑

α

fα yα,

and let Md(y) be the symmetric matrix with rows and columns indexed in the
canonical basis (xα), and defined by:

(2.1) Md(y)(α, β) := Ly(x
α+β) = yα+β, α, β ∈ N

n
d

with N
n
d := {α ∈ N

n : |α| (=∑i αi) ≤ d}.
If y has a representing measure µ, i.e., if yα =

∫

xαdµ for every α ∈ N
n, then

〈f ,Md(y)f〉 =

∫

f(x)2 dµ(x) ≥ 0, ∀ f ∈ R[x]d,

and so Md(y) � 0, where for a real symmetric matrix A, the notation A � 0 (resp.
A ≻ 0) stands for A is positive semidefinite (resp. positive definite). A measure µ
is said to be moment determinate if there is no other measure with same moments.
In particular, and as an easy consequence of the Stone-Weierstrass theorem, every
measure with compact support is determinate.

Not every sequence y satisfying Md(y) � 0, d ∈ N, has a representing measure.
However:

Proposition 2.1 (Berg [2]). Let y = (yα) be such that Md(y) � 0, for every
d ∈ N. Then:

(a) The sequence y has a representing measure whose support is contained in the
ball [−a, a]n if there exists a, c > 0 such that |yα| ≤ c a|α| for every α ∈ N

n.
(b) The sequence y has a unique representing measure µ on R

n if

(2.2)

∞
∑

t=1

Ly(x
2t
i )−1/2t = +∞

In addition, the measure µ is moment determinate.

Condition (b) is an extension to the multivariate case of Carleman’s condition
in the univariate case and is due to Nussbaum [12]. For more details see e.g. Berg
[2] and/or Maserick and Berg [6].
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Localizing matrix. Similarly, with y = (yα) and f ∈ R[x] written

x 7→ f(x) =
∑

γ∈Nn

fγ x
γ ,

let Md(f y) be the symmetric matrix with rows and columns indexed in the canon-
ical basis (xα), and defined by:

(2.3) Md(f y)(α, β) := Ly

(

f(x)xα+β
)

=
∑

γ

fγ yα+β+γ , ∀α, β ∈ N
n
d .

If y has a representing measure µ, then 〈g,Md(f y)g〉 =
∫

g2fdµ, and so if µ is
supported on the set {x : f(x) ≥ 0}, then Md(f y) � 0 for all d = 0, 1, . . . because

(2.4) 〈g,Md(f y)g〉 =

∫

g(x)2f(x) dµ(x) ≥ 0, ∀ g ∈ R[x]d.

3. Nonnegativity on closed sets

Recall that if X is a separable metric space with Borel σ-field B, the support
suppµ of a Borel measure µ on X is the (unique) smallest closed set B ∈ B such
that µ(X \ B) = 0. Also, if f is a nonnegative measurable function, then the set
function B 7→ ν(B) :=

∫

B fdµ, B ∈ B, defines a measure (which is finite if f is
µ-integrable); see e.g. Royden [14, p. 276 and p. 408]. If f is not nonnegative then
setting B1 := {x : f(x) ≥ 0} and B2 := {x : f(x) < 0}, dν = fdµ is a signed
measure that can be written as the difference ν1 − ν2 of two (positive) measures
ν1, ν2, where:

ν1(B) =

∫

B1∩B

fdµ, ν2(B) = −
∫

B2∩B

fdµ, ∀B ∈ B.

We first provide the following auxiliary result which is also of self-interest.

Lemma 3.1. Let X be a separable metric space, K ⊆ X a closed set, and µ a Borel
measure on X with suppµ = K. A continuous function f : X → R is nonnegative
on K if and only if the signed Borel measure ν(B) =

∫

K∩B
fdµ, B ∈ B, is a positive

measure.

Proof. The only if part is straightforward. For the if part, if ν is a positive measure
then f is the Radon-Nikodym derivative of ν with respect to µ and f(x) ≥ 0 for
µ-almost all x ∈ K. That is, there is a Borel set G ⊂ K such that µ(G) = 0

and f(x) ≥ 0 on K \ G. Next, observe that K \G ⊂ K and µ(K \G) = µ(K).

Therefore K \G = K because suppµ (= K) is the unique smallest closed set such

that µ(X \K) = 0. Hence, let x ∈ K be fixed, arbitrary. As K = K \G, there is a
sequence (xk) ⊂ K \G, k ∈ N, with xk → x as k → ∞. But since f is continuous
and f(xk) ≥ 0 for every k ∈ N, we obtain the desired result f(x) ≥ 0. �

Lemma 3.1 itself (of which we have not been able to find a trace in the literature)
is a characterization of nonnegativity on K for a continuous function f on X.
However, one goal of this paper is to provide a more concrete characterization. To
do so we first consider the case of a compact set K ⊂ R

n.
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3.1. The compact case. Let K be a compact subset of Rn. For simplicity, and
with no loss of generality, we may and will assume that K ⊆ [−1, 1]n.

Theorem 3.2. Let K ⊆ [−1, 1]n be compact and let µ be an arbitrary, fixed, finite
Borel measure on K with suppµ = K. Let f be a continuous function on R

n.
Then:

(a) f is nonnegative on K if and only if

(3.1)

∫

K

g2 f dµ ≥ 0, ∀ g ∈ R[x],

or, equivalently, if and only if

(3.2) Md(z) � 0, d = 0, 1, . . .

where z = (zα), α ∈ N
n, with zα =

∫

xαf(x)dµ(x), and with Md(z) as in (2.1).
If in addition f ∈ R[x] then (3.2) reads Md(f y) � 0, d = 0, 1, . . ., where

Md(f y) is the localizing matrix defined in (2.3).

(b) If in addition to be continuous, f is also concave on K, then f is nonnegative
on co (K) if and only if (3.1) holds.

Proof. The only if part is straightforward. Indeed, if f ≥ 0 on K then K ⊆ {x :
f(x) ≥ 0} and so for any finite Borel measure µ on K,

∫

K
g2fdµ ≥ 0 for every

g ∈ R[x]. Next, if f is concave and f ≥ 0 on co (K) then f ≥ 0 on K and so the
“only if” part of (b) also follows.

If part. Let ν be the finite signed Borel measure ν(B) =
∫

B fdµ, B ∈ B, and let
z = (zα), α ∈ N

n, be the sequence defined by:

(3.3) zα :=

∫

K

xαdν(x) =

∫

K

xαf(x)dµ(x), ∀α ∈ N
n.

Then the condition
∫

K

g(x)2f(x) dµ(x) ≥ 0, ∀f ∈ R[x]d,

reads 〈g,Md(z)g〉 ≥ 0 for all g ∈ R
s(d), that is, Md(z) � 0, where Md(z) is the

moment matrix defined in (2.1). And so (3.1) implies Md(z) � 0 for every d ∈ N.
Moreover, as K ⊆ [−1, 1]n,

|zα| ≤ c :=

∫

K

|f |dµ, ∀α ∈ N
n.

Hence, by Proposition 2.1, z is the moment sequence of a finite (positive) Borel
measure ψ on [−1, 1]n, that is, as supp ν ⊆ K ⊆ [−1, 1]n,

(3.4)

∫

[−1,1]n
xα dν(x) =

∫

[−1,1]n
xα dψ(x), ∀α ∈ N

n.

Define the two Borel sets B1 := {x ∈ K : f(x) ≥ 0} and B2 := {x ∈ K : f(x) < 0}.
The signed Borel measure ν can be written as

ν(B) = ν1(B)− ν2(B), B ∈ B,
where the two positive measures ν1, ν2 are defined by

ν1(B) :=

∫

B1∩B

f(x)dµ(x) ; ν2(B) := −
∫

B2∩B

f(x)dµ(x), B ∈ B.
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But then (3.4) yields
∫

[−1,1]n
xα dν1(x) =

∫

[−1,1]n
xα d(ν2 + ψ)(x), ∀α ∈ N

n,

which in turn implies ν1 = ν2 + ψ because measures on a compact set are determi-
nate. Next, this implies 0 = ν1(B2) = ν2(B2) + ψ(B2) ≥ ν2(B2), and so ν = ν1,
that is, ν is a positive Borel measure on K. Hence by Lemma 3.1, f(x) ≥ 0 on K.

If in addition f ∈ R[x], the sequence z = (zα) is obtained as a linear combination
of (yα). Indeed if f(x) =

∑

β fβ x
β then

zα =
∑

β∈Nn

fβ yα+β , ∀α ∈ N
n,

and so in (3.2), Md(z) is nothing less than the localizing matrix Md(f y) associated
with y = (yα) and f ∈ R[x], defined in (2.3), and (3.2) reads Md(f y) � 0 for all
d = 0, 1, . . .

Finally, if f is concave then f ≥ 0 on K implies f ≥ 0 on co (K), and so the only
if part of (b) also follows. �

Therefore, to check whether a polynomial f ∈ R[x] is nonnegative on K, it
suffices to check if every element of the countable family of real symmetric matrices
(Md(f y)), d ∈ N, is positive semidefinite.

3.2. The non-compact case. We now consider the more delicate case where K

is a closed set of Rn, not necessarily compact.
Given a continuous function f : Rn → R, we need choose a measure µ on R

n

such that

• x 7→ xα f is µ-integrable, for all α ∈ N
n, and

• suppµ = K.

So consider measures µ of the form:

(3.5) µ(B) :=

∫

K∩B

dν1(x1), · · · dνn(xn), ∀B ∈ B,

where (νi), i = 1, . . . , n, is a family of finite Borel measures on R such that for every
i = 1, . . . , n, and every fixed s ∈ N, the measure ψs(B) =

∫

B
x2sdνi(x), B ∈ B(R),

satisfy Carleman’s condition (2.2). That is, if zi = (zik), k ∈ N, is the moment
sequence of νi, then

(3.6)

∞
∑

k=1

Lzi(x
2(k+s))−1/2k = +∞, i = 1, . . . , n.

For instance, if f is a polynomial and K ⊆ R
n is the closure of an open set,

then for every i = 1, . . . , n, one may choose the normal distribution νi(B) =

(2π)−1/2
∫

B
e−x2/2dx, B ∈ B(R), so that,

(3.7) µ(B) :=
1

(
√
2π)n

∫

K∩B

e−‖x‖2/2dx, ∀B ∈ B(Rn).

Notice that with such a µ, every polynomial is µ-integrable.

Theorem 3.3. Let f be a continuous function on R
n and let K ⊆ R

n be closed.
Choose a measure µ of the form(3.5) and such that (3.6) holds, suppµ = K, and
xα f is µ-integrable, for every α ∈ N

n. Then (a) and (b) of Theorem 3.2 hold.



NONNEGATIVITY ON CLOSED SETS AND OPTIMIZATION 7

Proof. The only if part is exactly the same as in the proof of Theorem 3.2. For the
if part, let ν and z = (zα) be the finite signed Borel measure and the sequence as in
(3.3). The sequence z is well defined because x 7→ xαf(x) is µ-integrable. The same
arguments show that Md(z) � 0 for every d ∈ N. Next by Lemma 6.1, the sequence
z satisfies the generalized Carleman’s condition (2.2) and so, by Proposition 2.1, z
is the moment sequence of a measure ψ on R

n and ψ is determinate. In addition
from the definition (3.3) of z we have

(3.8)

∫

Rn

xα dψ(x) = zα =

∫

K

xαdν(x), ∀α ∈ N
n.

Define the two Borel sets B1 := {x ∈ K : f(x) ≥ 0} and B2 := {x ∈ K : f(x) < 0}.
The signed Borel measure ν can be written as

ν(B) = ϕ1(B)− ϕ2(B), B ∈ B,
where the two positive measures ϕ1, ϕ2 on K are defined by

ϕ1(B) :=

∫

B1∩B

f(x)dµ(x) ; ϕ2(B) := −
∫

B2∩B

f(x)dµ(x), B ∈ B.

But then (3.8) reads

(3.9)

∫

Rn

xα d(ψ + ϕ2)(x) =

∫

K

xαdϕ1(x), ∀α ∈ N
n.

Let v = (vα), α ∈ N
n, be the sequence of moments associated with ϕ1. Of course,

Md(v) � 0 for all d ∈ N. Next, by inspection of its proof, one may see that
Lemma 6.1 also holds for the measure ϕ1, the sequence v and K = B1. Hence by
Proposition 2.1, ϕ1 is moment determinate, so that (3.9) yields ϕ1 = ψ + ϕ2. But
this implies

0 = ϕ1(B2) = ψ(B2) + ϕ2(B2) ≥ ϕ2(B2),

so that ϕ2(B2) = 0. But this in turn implies that ν = ϕ1 = ψ, and so ν is a positive
measure, which in turn implies that f is the Radon-Nikodym derivative of ν with
respect to µ. The rest of the proof is exactly the same as for proof of Theorem
3.2. �

3.3. The cone of nonnegative polynomials. The convex cone Cd ⊂ R[x]2d of
nonnegative polynomials of degree at most 2d (a nonnegative polynomial has nec-
essarily even degree) is much harder to characterize than its subcone Σ[x]d of sums
of squares. Indeed, while the latter has a simple semidefinite representation with
lifting (i.e. Σ[x]d is the projection in R

s(2d) of a spectrahedron1 in a higher di-
mensional space), so far there is no such simple representation for the former. In
addition, when d is fixed, Blekherman [3] has shown that after proper normaliza-
tion, the “gap” between Cd and Σ[x]d increases unboundedly with the number of
variables.

We next provide a convergent hierarchy of (outer) semidefinite approximations
(Ck

d ), k ∈ N, of Cd where each Ck
d has a semidefinite representation with no lift-

ing (i.e., no projection is needed and Ck
d is a spectrahedron). To the best of our

knowledge, this is the first result of this kind.
Recall that with every f ∈ R[x]d is associated its vector of coefficients f = (fα),

α ∈ N
n
d , in the canonical basis of monomials, and conversely, with every f ∈ R

s(d)

1A spectrahedron is the intersection of the cone of positive semidefinite matrices with an
affine-linear space. Its algebraic representation is called a Linear Matrix Inequality (LMI).
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is associated a polynomial f ∈ R[x]d with vector of coefficients f = (fα) in the
canonical basis. Recall that for every k = 1, . . .,

1√
2π

∫ ∞

−∞

x2k+1 e−x2/2 dx = 0;
1√
2π

∫ ∞

−∞

x2k e−x2/2 dx =
k
∏

j=1

(2j − 1).

Corollary 3.4. Let µ be the probability measure on R
n which is the n-times product

of the normal distribution on R, and so with moments y = (yα), α ∈ N
n,

(3.10) yα =

∫

Rn

xα dµ =
n
∏

i=1

(

1√
2π

∫ ∞

−∞

xαie−x2/2dx

)

, ∀α ∈ R
n.

For every k ∈ N, let Ck
d := {f ∈ R

s(2d) : Mk(f y) � 0}, where Mk(f y) is the
localizing matrix in (2.3) associated with y and f ∈ R[x]2d. Each Ck

d is a closed
convex cone and a spectrahedron.

Then C0
d ⊃ C1

d · · · ⊃ Ck
d · · · ⊃ Cd and f ∈ Cd if and only if its vector of coefficients

f ∈ R
s(2d) satisfies f ∈ Ck

d , for every k = 0, 1, . . ..

Proof. Following its definition (2.3), all entries of the localizing matrix Mk(f y) are
linear in f ∈ R

s(2d), and so Mk(f y) � 0 is an LMI. Therefore Ck
d is a spectrahedron

and a closed convex cone. Next, let K := R
n and let µ be as in Corollary 3.4 and

so of the form (3.5). In addition, the normal distribution on R satisfies Carleman’s
condition (3.6). Hence by Theorem 3.3 with K = R

n, f is nonnegative on K if and
only if (3.2) holds, which is equivalent to stating that Mk(f y) � 0, k = 0, 1, . . .,
which in turn is equivalent to stating that f ∈ Ck

d , k = 0, 1, . . . �

So the nested sequence of convex cones C0
d ⊃ Ck

d · · · ⊃ Cd defines arbitrary close
outer approximations of Cd. In fact ∩∞

k=0Ck
d is closed and Cd = ∩∞

k=0Ck
d . It is worth

emphasizing that each Ck
d is a spectrahedron with no lifting, that is, Ck

d is defined
solely in terms of the vector of coefficients f with no additional variable (i.e., no
projection is needed).

For instance, the first approximation C0
d is just the set {f ∈ R

s(2d) :
∫

fdµ ≥ 0},
which is a half-space of Rs(2d). And with n = 2,

C1
d =



























f ∈ R
s(d) :















∫

fdµ

∫

x1fdµ

∫

x2fdµ
∫

x1fdµ

∫

x21fdµ

∫

x1x2fdµ
∫

x2fdµ

∫

x1x2fdµ

∫

x22fdµ















� 0



























,

or, equivalently, C1
d is the convex basic semi-algebraic set:

{

f ∈ R
s(2d) :

∫

fdµ ≥ 0

(
∫

x2i fdµ

)(
∫

fdµ

)

≥
(
∫

xifdµ

)2

, i = 1, 2

(
∫

x21fdµ

)(
∫

x22fdµ

)

≥
(
∫

x1x2fdµ

)2

(
∫

fdµ

)

[

(
∫

x21fdµ

)(
∫

x22fdµ

)

−
(
∫

x1x2fdµ

)2
]

−
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(
∫

x1fdµ

)2(∫

x22fdµ

)

−
(
∫

x2fdµ

)2(∫

x21fdµ

)

+

2

(
∫

x1fdµ

)(
∫

x2fdµ

)(
∫

x1x2fdµ

)

≥ 0

}

,

where we have just expressed the nonnegativity of all principal minors of M1(f y).
A very similar result holds for the convex cone Cd(K) of polynomials of degree

at most d, nonnegative on a closed set K ⊂ R
n, where K has the property that the

product measure µ defined in (3.5) (and such that (3.6) holds), satisfies suppµ = K.

Corollary 3.5. Let K ⊂ R
n be a closed set such that the probability measure µ on

R
n defined in (3.5) (and such that (3.6) holds), satisfies suppµ = K.
For every k ∈ N, let Ck

d (K) := {f ∈ R
s(2d) : Mk(f y) � 0}, where Mk(f y) is

the localizing matrix in (2.3) associated with y and f ∈ R[x]d. Each Ck
d (K) is a

closed convex cone and a spectrahedron.
Then C0

d(K) ⊃ C1
d(K) · · · ⊃ Ck

d (K) · · · ⊃ Cd(K) and f ∈ Cd(K) if and only if its

vector of coefficients f ∈ R
s(d) satisfies f ∈ Ck

d (K), for every k = 0, 1, . . ..

The proof which mimicks that of Corollary 3.4 is omitted. Of course, for practical
computation, one is restricted to sets K where one may compute effectively the
moments of the measure µ. An example of such a set K is the positive orthant, in
which case one may choose as measure µ, the product of the exponential measure
on the half-line R+ for which all moments are explicitly available.

4. Application to polynomial optimization

Consider the polynomial optimization problem

(4.1) P : f∗ = inf
x
{ f(x) : x ∈ K },

where K ⊆ R
n is closed and f ∈ R[x].

Let µ be a probability measure µ with suppµ = K, whose sequence of moments
y = (yα) is known, and which satisfy (3.5) if K is not compact. Consider the
sequence of semidefinite programs:

(4.2) λd = sup
λ∈R

{λ : Md(fλ y) � 0 }

where fλ ∈ R[x] is the polynomial x 7→ f(x) − λ. Notice that (4.2) has only one
variable!

Theorem 4.1. Consider the hierarchy of semidefinite programs (4.2) indexed by
d ∈ N. Then:

(i) (4.2) has an optimal solution λd ≥ f∗ for every d ∈ N
n.

(ii) The sequence (λd), d ∈ N, is monotone nonincreasing and λd ↓ f∗ as d→ ∞.

Proof. (i) Since f − f∗ ≥ 0 on K, by Theorem 3.2, λ := f∗ is a feasible solution of
(4.2) for every d. Hence λd ≥ f∗ for every d ∈ N. Next, let d ∈ N be fixed, and let
λ be an arbitrary feasible solution of (4.2). From the condition Md(fλ y) � 0, the
diagonal entry Md(fλ y)(1, 1) must be nonnegative, i.e., λy0 ≤ ∑

α fα yα, and so,
as we maximize and y0 > 0, (4.2) must have an optimal solution λd.

(ii) Obviously λd ≤ λm whenever d ≥ m, because Md(fλ y) � 0 implies
Mm(fλ y) � 0. Therefore, the sequence (λd), d ∈ N, is monotone nonincreas-
ing and being bounded below by f∗, converges to λ∗ ≥ f∗. Next, suppose that
λ∗ > f∗; fix k ∈ N, arbitrary. The convergence λd ↓ λ∗ implies Mk(fλ∗ y) � 0.
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As k was arbitrary, we obtain that Md(fλ∗ y) � 0 for every d ∈ N. But then by
Theorem 3.2, f − λ∗ ≥ 0 on K, and so λ∗ ≤ f∗, in contradiction with λ∗ > f∗.
Therefore λ∗ = f∗. �

The semidefinite program (4.2) provides an upper bound on the optimal value f∗

only. We next show that the dual contains some information on global minimizers,
at least when d is sufficiently large.

Duality. Let Sd be the space of real symmetric s(d) × s(d) matrices. One may
write the semidefinite program (4.2) as

λd = sup
λ
{λ : λMd(y) � Md(f y)},

and so its dual is the semidefinite program

inf
X∈Sd

{ 〈X,Md(f y)〉 : 〈X,Md(y)〉 = 1; X � 0 },

or, equivalently,

(4.3) inf
σ

{
∫

K

f σ dµ :

∫

K

σ dµ = 1; σ ∈ Σ[x]d

}

.

So the dual problem (4.3) is to find a sum of squares polynomial σ of degree at
most 2d (normalized to satisfy

∫

σdµ = 1) that minimizes the integral
∫

σfdµ, and
a simple interpretation of (4.3) is as follows:

With M(K) being the space of Borel probability measures on K, we know that

f∗ = inf
ϕ∈M(K)

∫

K

fdϕ. Next, let Md(µ) ⊂ M(K) be the space of probability mea-

sures on K which have a density σ ∈ Σ[x]d with respect to µ. Then (4.3) reads

inf
ϕ∈Md(µ)

∫

K

fdϕ, which clearly shows why one obtains an upper bound on f∗. In-

deed, instead of searching in M(K) one searches in its subset Md(µ). What is not
obvious at all is whether the obtained upper bound obtained in (4.3) converges to
f∗ when the degree of σ ∈ Σ[x]d is allowed to increase!

Theorem 4.2. Suppose that f∗ > −∞ and K has nonempty interior. Then :
(a) There is no duality gap between (4.2) and (4.3) and (4.3) has an optimal

solution σ∗ ∈ Σ[x]d which satisfies

∫

K

(f(x) − λd)σ
∗(x)dµ(x) = 0.

(b) If K is convex and f is convex, let x∗
d :=

∫

xσ∗(x)dµ(x). Then x∗
d ∈ K

and f∗ ≤ f(x∗
d) ≤ λd, so that f(x∗

d) → f∗ as d → ∞. Moreover, if the set
{x ∈ K : f(x) ≤ f0} is compact for some f0 > f∗, then any accumulation point
x∗ ∈ K of the sequence (x∗

d), d ∈ N, is a minimizer of problem (4.1), that is,
f(x∗) = f∗.

Proof. (a) Any scalar λ < f∗ is a feasible solution of (4.2) and in addition, Md((f−
λ)y) ≻ 0 because since K has nonempty interior and f − λ > 0 on K,

〈g,Md((f − λ)y)g〉 =

∫

K

(f(x)− λ)g(x)2µ(dx) > 0, ∀g ∈ R[x]d.

But this means that Slater’s condition2 holds for (4.2) which in turn implies that
there is no duality gap and (4.3) has an optimal solution σ∗ ∈ Σ[x]d; see e.g. [18].

2For an optimization problem infx{f0(x) : fj(x) ≥ 0, j = 1, . . . ,m}, Slater’s condition states

that there exists x0 such that fj(x0) > 0 for every j = 1, . . . ,m.
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And so,
∫

K

(f(x)− λd)σ
∗(x) dµ(x) =

∫

K

f σ∗ dµ− λd = 0.

(b) Let ν be the Borel probability measure onK defined by ν(B) =
∫

B
σ∗dµ, B ∈ B.

As f is convex, by Jensen’s inequality (see e.g. McShane [10]),
∫

K

fσ∗dµ =

∫

K

fdν ≥ f

(
∫

K

x dν

)

= f(x∗
d).

In addition, if K is convex then x∗
d ∈ K and so, f(x∗

d) ≥ f∗. Finally if for some
f0 > f∗, the set H := {x ∈ K : f(x) ≤ f0} is compact, and since λd → f∗,
then f(x∗

d) ≤ f0 for d sufficiently large, i.e., x∗
d ∈ H for sufficienly large d. By

compactness there is a subsequence (dℓ), ℓ ∈ N, and a point x∗ ∈ K such that
x∗
dℓ

→ x∗ as ℓ → ∞. Continuity of f combined with the convergence f(x∗
d) → f∗

yields f(x∗
dℓ
) → f(x∗) = f∗ as ℓ → ∞. As the convergent subsequence (x∗

dℓ
) was

arbitrary, the proof is complete. �

So in case where f is a convex polynomial and K is a convex set, Theorem 4.2
provides a means of approximating not only the optimal value f∗, but also a global
minimizers x∗ ∈ K.

In the more subtle nonconvex case, one still can obtain some information on
global minimizers from an optimal solution σ∗ ∈ Σ[x]d of (4.3). Let ǫ > 0 be fixed,
and suppose that d is large enough so that f∗ ≤ λd ≤ f∗ + ǫ. Then, by Theorem
4.3(a),

∫

K

(f(x) − f∗)σ∗(x) dµ(x) = λd − f∗ < ǫ.

As f − f∗ ≥ 0 on K, necessarily the measure dν = σ∗dµ gives very small weight to
regions of K where f(x) is significantly larger than f∗. For instance, if ǫ = 10−2

and ∆ := {x ∈ K : f(x) ≥ f∗+1}, then ν(∆) ≤ 10−2, i.e., the set ∆ contributes to
less than 1% of the total mass of ν. So if µ is uniformly distributed on K (which is a
reasonable choice if one has to compute all moments of µ) then a simple inspection
of the values of σ∗(x) provides some rough indication on where (in K) f(x) is close
to f∗.

There are several interesting cases where the above described methodology can
apply, i.e., cases where y can be obtained either explicitly in closed form or numer-
ically. In particular, when K is either:

• A box B :=
∏n

i=1[ai, bi] ⊂ R
n, with µ being the normalized Lebesgue

measure on B. The sequence y is trivial to obtain in closed form.
• The discrete set {−1, 1}n with µ being uniformly distributed and normal-
ized. Again the sequence y is trivial to obtain in closed form. Notice that
in this case we obtain a new hierarchy of semidefiniote relaxations (with
only one variable) for the celebrated MAXCUT problem.

• The unit sphere S := {x : ‖x‖2 ≤ 1} with µ being the rotation invariant
probability measure on S, again y is easy to obtain. And similarly the
sphere S := {x : ‖x‖2 = 1}.

• A simplex ∆ ⊂ R
n, in which case if one takes µ as the Lebesgue measure

then all moments of µ can be computed numerically. In particular, with d
fixed, this computation can be done in time polynomial time. See e.g. the
recent work of [1].
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• The positive orthant Rn
+, in which case µ may be chosen to be the product

measure ⊗n
i=1νi with each νi being the exponential distribution νi(B) =

∫

R+∩B
e−xdx, B ∈ B.

• The whole space R
n in which case µ may be chosen to be the product

measure ⊗n
i=1νi with each νi being the normal distribution. Observe that

in this case one obtains a new hierarchy of semidefinite approximations
(upper bounds) for unconstrained global optimization. The corresponding
monotone sequence of upper bounds converges to f∗ no matter if the prob-
lem has a global minimizer or not. This may be an alternative and/or a
complement to the recent convex relaxations provided in Schweighofer [16]
and Hà and Vui [5] which also work when f∗ is not attained, and provide
a convergent sequence of lower bounds.

Example 1. Consider the global minimization on K = R
2
+ of the Motzkin-like

polynomial x 7→ x21x
2
2 (x

2
1+x

2
2−1) whose global minimum is f∗ = −1/27 ≈ −0.037.

Choose for µ the probability measure µ(B) :=
∫

B
e−x1−x2dx, B ∈ B(R2

+), for which
the sequence of moments z = (zij), i, j ∈ N, is easy to obtain. Namely zij = i!j! for
every i, j ∈ N. Then the semidefinite relaxations (4.2) yield λ0 = 92, λ1 = 15.60
and λ2 = 4.301 and λ3 = 1.5097, showing a significant and rapid decrease.

Example 2. Still on K = R
2
+, consider the global minimization of the polynomial

x 7→ x21 + (1 − x1x2)
2 whose global minimum f∗ = 0 is not attained. Again,

choose for µ the probability measure µ(B) :=
∫

B
e−x1−x2dx, B ∈ B(R2

+). Then the
semidefinite relaxations (4.2) yield λ0 = 5, λ1 = 1.9187 and λ2 = 0.227, showing
again a significant and rapid decrease.

The above two examples seem to indicate that even though one chooses a measure
µ uniformly distributed on K, one obtains a rapid decrease in the first iterations.
However, if on the one hand the convergence to f∗ is likely to be slow, on the other
hand, one has to solve semidefinite programs (4.2) with only one variable! (But
one has to remember that the choice is limited to measures µ with suppµ = K

and whose moments are easy to compute.) Analyzing how the convergence to f∗

depends on µ is beyond the scope of the present paper and is a topic of further
research.

Inverse problem from moments. Finally, observe that the above methodology
perfectly fits inverse problems from moments, where precisely some Borel measure
µ is known only from its moments (via some measurement device), and one wishes
to recover (or approximately recover) its support K from the known moments;
see e.g. the work of Cuyt et al. [4] and the many references therein. Hence if
f ∈ R[x] is fixed then by definition f − f∗ ≥ 0 (on K) provides a strong valid
(polynomial) inequality for the unknown set K. So computing an optimal solution
λd of (4.2) for d sufficiently large, will provide an almost-valid inequality f−λd ≥ 0
for K. One may even let f ∈ R[x]d be unknown and search for the “best” valid
inequality f(x) − f∗ ≥ 0 where f varies in some family (e.g. linear or quadratic
polynomials) and minimizes ome appropriate (linear or convex) objective function
of its coefficents f .

5. Conclusion

In this paper we have presented a new characterization of nonnegativity on a
closed set K which is based on a single finite Borel measure µ with suppµ = K. It
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permits to obtain a hierarchy of spectrahedra which provides a nested sequence of
outer approximations of the convex cone of polynomials nonnegative on K. When
used in polynomial optimization for certain “simple sets” K, one obtains a hi-
erarchy of semidefinite approximations (with only one variable) which provides a
nonincreasing sequence of upper bounds converging to the global optimum, hence a
complement to the sequence of upper bounds provided by the hierarchy of semidef-
inite relaxations defined in e.g. [7, 8]. A topic of further investigation is to analyze
the efficiency of such an approach on a sample of optimization problems on simple
closed sets like the whole space R

n, the positive orthant Rn
+, a box, a simplex, or

an ellipsoid, as well as for some inverse problems from moments.

6. appendix

Lemma 6.1. Let K ⊆ R
n and let µ be the measure defined in (3.5), and where the

measures νi, i = 1, . . . , n, satisfy (3.6).
Let z = (zα), α ∈ N

n, be the sequence defined by: zα :=
∫

K
xαf(x) dµ(x) for

every α ∈ N
n, and assume that Lz(x

2t
i ) ≥ 0 for every t ∈ N and every i = 1, . . . , n.

Then the generalized Carleman’s condition (2.2) holds.

Proof. We prove that (2.2) holds for i = 1 only because the same arguments hold

for i = 2, . . . , n. Write f(x) =
∑s

k=0 f̃k(x̃)x
k
1 , for some polynomials f̃k ∈ R[x̃] (=

R[x2, . . . , xn]), k = 0, . . . , s. Then,

Lz(x
2t
1 ) =

∫

K

x2t1 f(x) dµ(x) =

∫

K

(

s
∑

k=0

f̃k(x̃)x
2t+k
1

)

dµ(x)

≤
∫

K∩[−1,1]n

(

s
∑

k=0

|f̃k(x̃)|
)

dµ(x)

+

∫

K\[−1,1]n

(

s
∑

k=0

|f̃k(x̃)| |xk1 |
)

x2t1 dµ(x)

≤ A+

(
∫

R

x2(t+s) dν1(x)

)

B,

where

A =

∫

K∩[−1,1]n

(

s
∑

k=0

|f̃k(x̃)|
)

dµ(x); B =

∫

Rn

(

s
∑

k=0

|f̃k(x̃)|
)

dν2(x2) · · · dνn(xn).

Hence

Lz(x
2t
1 ) ≤ max(A,B)

(

1 + Lz1(x
2(t+s))

)

,

where z1 = (z1k), k ∈ N, is the moment sequence of the measure ν1 which satisfies
(3.6). Therefore,

Lz(x
2t
1 )−1/2t ≥ max(A,B)−1/2t

(

1 + Lz1(x
2(t+s)

)−1/2t

.

If Lz1(x
2(t+s)
1 ) ≤ 1 for infinitely many t ∈ I, then

∞
∑

t=1

Lz(x
2t
1 )−1/2t >

∑

t∈I

(2max(A,B) )
−1/2t

= +∞,
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otherwise, there is some t0 ∈ N such that,
∞
∑

t=1

Lz(x
2t
1 )−1/2t >

∑

t≥t0

(2max(A,B) )
−1/2t

(Lz1(x
2(t+s))−1/2t = +∞,

where we have used (3.6). And so we obtain the desired result
∞
∑

t=1

Lz(x
2t
1 )−1/2t = +∞.

�
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