
HAL Id: hal-00512508
https://hal.science/hal-00512508v1

Submitted on 30 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical exploration of a forward-backward diffusion
equation

Pauline Lafitte, Corrado Mascia

To cite this version:
Pauline Lafitte, Corrado Mascia. Numerical exploration of a forward-backward diffusion equa-
tion. Mathematical Models and Methods in Applied Sciences, 2012, 22 (06), pp.1250004.
�10.1142/S0218202512500042�. �hal-00512508�

https://hal.science/hal-00512508v1
https://hal.archives-ouvertes.fr


Numerical exploration of a
forward–backward diffusion equation

August 30, 2010

Pauline LAFITTE1, Corrado MASCIA2

Abstract. We analyze numerically a forward-backward diffusion equation with a cubic-
like diffusion function, –emerging in the framework of phase transitions modeling– and its
“entropy” formulation determined by considering it as the singular limit of a third-order
pseudo-parabolic equation. Precisely, we propose schemes for both the second and the
third order equations, we discuss the analytical properties of their semi-discrete counter-
parts and we compare the numerical results in the case of initial data of Riemann type,
showing strengths and flaws of the two approaches, the main emphasis being given to the
propagation of transition interfaces.

Keywords. Phase transition, pseudo-parabolic equations, numerical approximation,
finite differences.
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1. Introduction

The aim of the present article is to investigate numerically the solutions to a nonlinear diffusion
equation of the form

(1)
∂u
∂t

=
∂2φ(u)
∂x2 (x, t) ∈ R × (0,+∞)

where u : R × [0,+∞) → R, for a non-monotone diffusion function φ : R → R; specifically, the
function φ is to be cubic-like shaped, i.e. monotone decreasing in a given interval I and monotone
increasing elsewhere.

Due to the presence of intervals where φ is a decreasing function, the initial value problem
for (1) is ill–posed and an appropriate (non classical) definition of solution has to be introduced.
In this respect, a common paradigm states that the loss of a well-posed classical framework may
emerge as consequence of some simplification of a given complete physical model, consisting in
neglecting some higher order term because of the presence of some small multiplicative factor
ε. The usual strategy is then to consider classical solutions to the original higher order equation,
pass to the limit as a definite parameter ε tends to zero and regard such singular limit as the
“physical” solution of the problem under consideration. Whenever possible, it is interesting to
prescribe a definition of generalized solution to the reduced problem that is consistent with the
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limiting procedure and, at the same time, is determined by proper conditions to be verified by such
a generalized solution, without explicit reference to the disregarded higher order terms. In this
respect, a classical example is given by scalar conservation laws where solutions can be defined
through a vanishing-viscosity approach and well-posedness is restored by considering an entropy
setting. Different higher perturbations may, in principle, lead to different limiting formulation,
as in the case of van der Waals fluids, where viscosity and viscosity-capillarity criteria give raise
to different jump conditions in the limit,[27]. In the same spirit, the approach through singular
perturbations is commonly used in the context of calculus of variations to determine appropriate
minima of non-convex energy functionals (among others, see the classical reference Ref. [16]).
A related approach consists in studying the structure of the global attractors of the higher order
equations in the singular limit, as it has been performed for a relaxation viscous Cahn–Hilliard
equation in Ref. [9].

Here, the model (1) arises as a reduced equation in the context of phase transitions and we
consider the formulation for (1), established in Refs. [21], [22], [5], obtained as singular limit of
the third order equation of pseudo-parabolic type

(2)
∂u
∂t

=
∂2

∂x2

(
φ(u) + ε

∂u
∂t

)
x ∈ R, t > 0,

originally considered in Ref. [17]. The denomination “pseudo-parabolic”, relative to the presence
of the time derivative of the elliptic operator ∂2/∂x2, has been proposed in Refs. [26], [29]; equa-
tions of the same form are also called of Sobolev type or Sobolev–Galpern type. A sketch of the
derivation of such an equation in the phase transition setting is given in Section 2.

Equations similar to (2) arise also in modeling fluid flow in heat conduction and shear in second
order fluids (see, respectively, Ref. [3], Ref. [4] and descendants). Besides, the third order term in
(2) appears in the description of long waves in shallow water (see Refs. [2], [20] and descendants),
as an alternative to the usual purely spatial third order term considered in the Korteweg–DeVries
equation. Taking the singular limit of such higher order equations gives in general a different
formulation with respect to the classical entropy formulation obtained by means of the vanishing
viscosity limit,[31]. Regardless of the physical context, the use of the third order term as a reg-
ularizing term for an ill-posed diffusion equation of the form (1), is called the quasi-reversibility
method, and it has been used by many authors, mainly in the linear case (see Ref. [19] and refer-
ences therein).

Independently of the monotonicity of the function φ, the Cauchy problem for equation (2) is
well-posed, [17]; moreover, the singular limit u of the family {uε}, solutions to (2), can be described
in term of Young measures, [21] [22]. The sign of φ′ is relevant for the dynamical properties of
the solutions: precisely, the constant state ū turns to be (asymptotically) stable if φ′(ū) > 0 and
unstable if φ′(ū) < 0. In the case under consideration, it is possible to distinguish two (unbounded)
stable phases divided by a (bounded) unstable phase, the so-called spinodal region. Generically,
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initial data with values in the spinodal region generate oscillations which lead to patterns mixing
the two stable phases.

Assuming additionally that the limit u of the family {uε} is piecewise smooth and that it takes
values only in the regions where the function φ is monotone increasing, it is possible to determine
appropriate admissibility conditions, called entropy conditions, on a function in order for it to
be limit of solutions to the higher order equation (2) (see Proposition 2.1 below). For such class
of generalized solutions, from now on denominated two-phase solutions, uniqueness and (local)
existence have been proved, [14].

Here our aim is to investigate numerically the behavior of solutions to (1) exploring two pos-
sible strategies: on the one hand, by discretizing the third-order equation (2) and considering the
behavior of the algorithm as ε→ 0; on the other hand, by providing an approximation of the solu-
tions to (1), taking advantage of the entropy conditions. Schematically, if we denote by h the size
of the discrete spatial mesh and by ε the parameter appearing in (2), both values are assumed to
be small, ideally tending to zero: in the first approach, we let ε→ 0+ and then h→ 0+. Viceversa,
in the latter, we take the limits in the opposite order. Absence of uniformity of one parameter with
respect to the other implies that the two procedures lead, in principle, to different results and we
are interested in comparing them. Specifically, dealing directly with (2) obliges to treat solutions
taking values also in the region where φ is decreasing, with the consequent appearance of strong
oscillations due to the exponential instability of constant states for the backward heat equation. On
the contrary, the two-phase solutions are designed to take values only in the region of stability (φ
increasing) and to cross the unstable region in single specific transition points where appropriate
entropy transmission conditions should be satisfied.

We benchmark the two approaches against Riemann problems, determined by the values (u−, u+)
with u± belonging to the two different stable phases. Depending on the location of such values,
the initial phase transition discontinuity, hereafter called interface in reference to the porous media
equation [15], may or may not move (see Section 2). As expected, relevant differences appear in
the location of phase boundary depending on the algorithm chosen (see Figure 1, and Section 5).

Coming back to the original modeling, it would be more appropriate to consider equation (1)
as the singular limit of some higher order equation with a much more complicated structure with
respect to the one of (2) (see Section 2). To our knowledge, in this case there is still no available
limiting formulation, meaning that one does not know which are the admissibility conditions for
the solutions to (1) to be singular limits of solutions to the corresponding higher order equation.
Hence, the only possible approach consists in taking the singular limit after having discretized the
complete equation. Such procedure can not be rigorously justified because of the non-uniform
dependence of ε with respect to h. Therefore, analyzing a simplified situation where the two
approaches are both available and can be compared, can be heuristically considered as a reliability
test on the exchange of the limits ε→ 0+ and h→ 0+.
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Figure 1. Evolution of the relative error of the position of the interface for an initial data
of Riemann type with (u−, u+) = (−2, 4) for the two approaches: explicit scheme for the
pseudo-parabolic equation (blue), two phase scheme (red).

The article is organized as follows. In Section 2, we sketch the derivation of the modeling
equation in order to identify the regime of parameters that leads to (2) and (1). Also, we recall
the main results on the analytical properties of the equation, with particular care to the two-phase
formulation. We also deduce an explicit formula for the solution of the Riemann problem in the
case of a piecewise linear diffusion function φ. In Section 3, we propose a standard finite-difference
algorithm for the third order pseudo-parabolic equation (2), as considered in Ref. [5], and we
analyze the qualitative behavior of the solutions for the corresponding semi-discrete scheme. In
Section 4, we test the fully-discretized algorithm in the case of Riemann type initial data, showing
the emergence of incorrect oscillations in the solution. Finally, in Section 5, we implement an
algorithm for the two-phase solution of (1), consisting in coupling finite-differences schemes for
the two stable phases with some appropriate transmission conditions at the phase boundary and
we compare the results given by the two approaches.

2. Physical and analytical background

Phase transitions modeling is a wide area of active research in pure and applied mathematics.
The basic target is to describe the behavior of a mixture with many different (stable or unsta-
ble) phases, with special attention to the dynamics of separating interfaces and pattern formation.
Various approaches and models have been proposed and analyzed, depending on the specific con-
text. Probably, the most celebrated is the Cahn–Hilliard model, which is based on defining an
appropriate cost functional which determines two preferred states and, at the same time, penal-
izes inhomogeneities by means of a gradient term (for a survey on Cahn-Hilliard and phase field
models, see Ref. [6]).
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Here, we consider a different model, devised in Ref. [17], that still preserves the basic structure
of two stable “competing” phases and gain regularity from memory effects, without taking into ac-
count the cost of transition layers. In this Section, we present a simplified version of the derivation
of the model equation, and then we recall the main known analytical results.

Derivation of the model. Consider a generalized diffusion equation, in a one-dimensional domain
described by the space variable x ∈ R,

(3)
∂u
∂t

=
∂2v
∂x2 x ∈ R, t > 0,

where u = u(x, t) and v = v(x, t) are real valued functions. Following Ref. [12], the unknown v,
called potential, is supposed to satisfy the relation

(4) v := ψ(u) +

∫ t

−∞

θ′(t − s)
(
ψ(u) − φ(u)

)
(x, s) ds

or, equivalently,

v = φ(u) +

∫ t

−∞

θ(t − s)
∂

∂s
(
ψ(u) − φ(u)

)
(x, s) ds,

where θ is a relaxation function, assumed to be monotone decreasing and such that θ(0) = 1
and θ(+∞) = 0. The integral term in the definition of v represents memory effects localized in
space, with decay described by the relaxation function θ. The case with no-memory is obtained by
choosing −θ′ equal to the usual Dirac distribution concentrated at zero. In this case, there holds
v = φ(u) and equation (3) reduces to a standard nonlinear diffusion equation.

The relaxing structure (4) mimes the analogous expression used as a stress–strain law in the
modeling of viscoelastic media and based on the Boltzmann superposition principle (for the gen-
eral mathematical theory, see Ref. [25] for viscoelastic materials with memory and Ref. [24] for
viscoelastic flows). In that context, functions ψ and φ represent, respectively, the instantaneous
elastic and the equilibrium stress–strain responses. Similar interpretations can be given also in the
present context as a contribution to the potential v.

The simplest choice for θ = θ(t) is a single exponential function e−t/τ, τ > 0. In this case, it
is possible to write a partial differential equation for the unknown u. Indeed, since θ(0) = 1 and
θ′ = −θ/τ, there holds

∂v
∂t

=
∂ψ(u)
∂t
−

1
τ

∫ t

−∞

θ(t − s)
∂

∂s
(
ψ(u) − φ(u)

)
(x, s) ds =

∂ψ(u)
∂t
−

1
τ

(v − φ(u))

Therefore, a relaxation function of exponential type corresponds to the assumption that the poten-
tial v solves a relaxation-type equation

∂

∂t
(v − ψ(u)) =

1
τ

(φ(u) − v)
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The case with no-memory effects is obtained by taking the singular limit τ → 0 and, again,
formally setting v = φ(u). Substituting in (3) differentiated with respect to t, we infer

∂2u
∂t2 =

∂2

∂x2

(
∂ψ(u)
∂t

+
1
τ
φ(u)

)
−

1
τ

∂2v
∂x2 ;

hence, using (3) to eliminate the second derivative of v, we obtain

τ
∂2u
∂t2 +

∂u
∂t

=
∂2

∂x2

(
φ(u) + τ

∂ψ(u)
∂t

)
Incorporating in the analysis a van der Waals term to take into account the free-energy cost of in-
homogeneities would lead to a relaxation viscous perturbation of the classical fourth-order Cahn–
Hilliard equation (containing also a fifth-order term arising from the coupling of the inhomogene-
ity cost term and the memory effect).

From now on, we choose ψ in the form ψ(u) = κ u with κ > 0. Hence, the unknown u satisfies
the equation

(5) τ
∂2u
∂t2 +

∂u
∂t

=
∂2

∂x2

(
φ(u) + ε

∂u
∂t

)
where ε := τ κ. In Ref. [17], the regime τ → 0+ with ε being fixed has been considered, yielding
the pseudo-parabolic equation (2). The nonlinear diffusion equation (1) arises in the limiting
regime ε → 0+ of equation (2). Equivalently, we can consider the system of partial differential
equations 

∂u
∂t
−
∂w
∂x

= 0,

τ
∂w
∂t
−
∂φ(u)
∂x

= ε
∂2w
∂x2 − w

where w denotes the space-derivative
∂v
∂x

of the potential v, and then consider equations (2) and

(1) as formally obtained by passing to the limit (in this order) τ→ 0+ and ε→ 0+.
Let us stress that the assumptions on the relative sizes of parameters τ and ε considered is

not motivated by any physical argument and, thus, is a pure mathematical simplification. To our
knowledge, a complete description of the limiting behavior of the equation (5) as τ, ε → 0+ for
different relative sizes of the two parameters is still not available.

Overview on the analytical theory. Next, let us review the main analytical results known about
(1) and (2) and their relations. Let φ : R → R be a locally Lipschitz continuous function with a
cubic-like graph with a local minimum with value A and a local maximum with value B, for some
A < B: precisely, we assume

φ strictly increasing in (−∞, b) ∪ (a,+∞), φ strictly decreasing in (b, a)

for some b < a with φ(a) = A and φ(b) = B. For later reference, we assume the existence of
c ∈ (−∞, b) and d ∈ (a,+∞) such that φ(c) = A and φ(d) = B.
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The monotonicity of the function φ distinguishes three different phases

(6) phase S− = (−∞, b], phaseU = (b, a), phase S+ = [a,∞).

Being interested in the dynamics generated by the different stability properties of the regions
(−∞, b), (b, a) and (a,+∞), we will restrict the analysis to the case of a piecewise linear function
and, specifically, to the case

(7) φ(u) = 2u +
3
2
(
|1 − u| − |1 + u|

)
.

In this case c = −2, b = −1, a = 1, d = 2 and A = −1, B = 1 (see Figure 2). The third-order

A

B

a

b

c

d u

φ

Figure 2. The piecewise linear diffusion function φ.

term in (2) acts as a regularizing term and the initial value problem on a bounded interval I, with
Neumann boundary conditions, for the pseudo-parabolic equation (2) is well posed in the classical
sense for initial data either bounded or continuous, [17] [18]. In Ref. [17], it is also shown that
any bounded measurable function u = u(x) such that φ(u) is constant is a stationary solution of the
equation and, if, in addition, φ′(u(x)) > 0 for any x, such a solution is also asymptotically stable
(with exponential decay rate) with respect to zero-mass initial perturbations. In particular, given
u− < b < a < u+ and x0 ∈ I, step functions

(8) u(x) =

 u− x < x0,

u+ x > x0,

satisfying the transmission condition

φ(u−) = φ(u+) ∈ (A, B)

are attracting time-independent solutions to (2). In the limit ε → 0+ such functions persist to be
solution of the corresponding limiting equation (1).

In Refs. [21], [22], a deep analysis of the limit ε → 0+ of the solutions uε to the pseudo-
parabolic equation (2) has been performed within the Young measure framework. Poorly speak-
ing, the analysis of Plotnikov shows that the singular limit of the family of solutions uε can be
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represented as

(9) u = λ−(φ−)−1(v) + λ0(φ0)−1(v) + λ+(φ+)−1(v)

where λ0, λ± and v are bounded functions and φ−, φ0, φ+ represent the restriction of φ in (−∞, b),
[b, a] and [a,+∞), respectively. Functions λ0, λ± are non-negative and satisfy

λ−(x, t) + λ0(x, t) + λ+(x, t) = 1, and

 λ
−(x, t) = 1 if v(x, t) < A,

λ+(x, t) = 1 if v(x, t) > B,

for any (x, t) under consideration. Finally, for any non decreasing function g ∈ C1(R), setting
G∗ := λ−G((φ−)−1(v)) + λ0G((φ0)−1(v)) + λ+G((φ+)−1(v)), where

G(s) :=
∫ s

0
g(φ(σ)) dσ,

the following inequality holds in the sense of distribution

(10)
∂G∗

∂t
−
∂

∂x

(
g(v)

∂v
∂x

)
+ g′(v)

(
∂v
∂x

)2

≤ 0

Representation (9) can be heuristically interpreted by stating that, in the limit ε → 0, the solution
u is decomposed in the sum of three contributions, each relative to one of the three phases S± and
U. Functions λ0, λ± represent the fraction of u in the corresponding phase. Inequality (10) can
be interpreted as an entropy inequality, recording the irreversibility of the limiting process. At the
present time, it is not known if all these conditions are sufficient for determining uniqueness of the
Cauchy problem (results on large-time behavior are obtained in Ref. [28]). Hence, the previous
list of conditions is unsatisfactory for determining a well–posed limiting dynamics.

Two–phase solutions. Linearization around an unstable value ū ∈ (b, a) readily shows that solu-
tions of the third order equation (2) tend to escape from the unstable interval exponentially fast,
precisely with rate exp(−φ′(ū) t/ε). In the limit ε → 0+, values in (b, a) instantaneously exit from
the unstable region; hence, solutions to (1) are expected to take values generically in the stable
regions. Thus, a natural point of view is to consider solutions composed of “pure” stable phases,
meaning that, in the decomposition (9), λ0 is identically zero and λ± take values in the binary set
{0, 1}. We refer to such special solutions as two-phase solutions.

Assuming the smoothness of the interface separating the two stable phases, Evans and Portilheiro[5]
took advantage of the entropy condition (10) to determine pointwise conditions to be satisfied on
such transition interface by a piecewise smooth solution, in the same fashion as in the case of
hyperbolic conservation laws. Precisely, given the smooth curve γ :=

{
(ξ(t), t) | t ∈ [0,T ]

}
, let

R± :=
{
(x, t) : t ∈ [0,T ], ±

(
x − ξ(t)

)
> 0

}
,

and assume u to be smooth outside γ and such that, for any t ∈ [0,T ],

u
(
R−

)
⊆ (−∞, b], u

(
R+) ⊆ [a,∞),
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and assume that there exist finite limits

lim
η→0+

u(ξ(t) ± η, t) =: u(ξ(t)±, t), lim
η→0+

∂u
∂x

(ξ(t) ± η, t) =:
∂u
∂x

(ξ(t)±, t).

Then condition (10) can be translated in a pointwise condition to be satisfied along the phase
transition curve γ.

Proposition 2.1. [5] A piecewise smooth weak solution u with the above described structure sat-
isfies the entropy condition (10) if and only if:
i. the function u is a classical solution of (1) outside the curve γ;
ii. along the curve γ there hold

(11) [φ(u)]γ = 0, ξ′(t) [u]γ +

[
∂φ(u)
∂x

]
γ

= 0

where [ f ]γ := f (ξ(t)+, t) − f (ξ(t)−, t) denotes the jump of f at γ.
iii. along the curve γ the following entropy conditions are satisfied

(12)


ξ′(t) ≥ 0 if φ(u)(ξ(t), t) = A ,

ξ′(t) ≤ 0 if φ(u)(ξ(t), t) = B ,

ξ′(t) = 0 if φ(u)(ξ(t), t) ∈ (A, B).

Roughly speaking, a two-phase solution can face alternatively two different possible evolutions:
the steady interface problem and the moving interface one.

i. Steady interface. If φ(u)(ξ(t), t) ∈ (A, B), then the entropy condition (12) implies that the
transition interface γ is steady. Moreover, conditions (11) become

[φ(u)]γ = 0,
[
∂φ(u)
∂x

]
γ

= 0.

In this case, the solution can be obtained by solving (1) at the left and at the right of γ, with the
condition of a C1-connection for φ(u) at γ.

ii. Moving interface. If φ(u)(ξ(t), t) ∈ {A, B} then the entropy condition (12) implies that the
transition interface γ is allowed to move, becoming a free interface of the problem, with direction
of propagation depending on the value φ(u)(ξ(t), t). To fix ideas, let φ(u)(ξ(t), t) = A. The values
of u at the left-hand and at the right-hand side of γ are hence given by

u(ξ(t)−, t) = c, u(ξ(t)+, t) = a.

The second condition in (11), to be read as a Rankine–Hugoniot condition, is needed to determine
the speed of propagation of the free-interface.

A result on local existence and uniqueness of such kind of solutions has been proved in Ref. [14],
showing that the approach by Plotnikov is indeed sufficient to guarantee well-posedness when re-
stricted to solutions with pure and stable phases.
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Going back to the derivation of the complete model equation, it is natural to ask if the two-phase
description for the limiting solutions to (2) as ε → 0+ still holds when considering the limiting
solutions to (5) as ε, τ → 0+. We are not aware of any result in this direction and we regard the
problem of determining an appropriate limiting dynamics for (5) as a very challenging direction
to investigate.

Riemann problems. Among other initial-value problems, the Riemann problem for (1), deter-
mined by an initial data of the form

(13) u0(x) =

 u− x < 0,

u+ x > 0,

with u± ∈ R given, is particularly noteworthy because of its invariance with respect to the rescaling
(x, t) 7→ (λx, λ2t). As a consequence, for any u± ∈ R, the solution of the Cauchy problem (1)–(13)
has the form

(14) u(x, t) = f (ξ) where ξ :=
x
√

t

where the function f is such that f (±∞) = u±. Discontinuity curves in the (x, t)−plane have the
form x = ξ̄

√
t for some ξ̄ ∈ R. For ξ , ξ̄, the function f is solution to the following (second order)

ordinary differential equation

(15) φ( f )′′ +
1
2
ξ f ′ = 0.

At any jump point ξ̄, the following relations, obtained from conditions (11),

(16)
[
φ( f )

]
ξ̄ = 0,

[
φ( f )′

]
ξ̄ +

1
2
ξ̄
[
f
]
ξ̄ = 0,

have to hold. A detailed analysis of such self-similar solutions to (1) has been fulfilled in the case
of general initial data u± (hence, also in the unstable region)[10]. Here, we focus on the case of a
piecewise linear diffusion function φ

(17)
φ(u) = φ−(u) := m−u + q− for u ≤ b,

φ(u) = φ+(u) := m+u + q+ for u ≥ a,

for some m± > 0 and q± ∈ R. In this case, it is possible to assemble an explicit formula for the
solution satisfying the conditions described in Proposition 2.1. Such solutions will be useful to
test the algorithms proposed in the subsequent Sections.

In order to give an explicit formula for the solution to the Riemann problem, let us introduce
the functions, related to the fundamental solution of the linear diffusion equation in the half-space:
given m > 0, we set

E−m(ξ) :=
1

√
4 πm

∫ ξ

−∞

e−y2/4m dy, E+
m(ξ) :=

1
√

4 πm

∫ +∞

ξ
e−y2/4m dy.
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The functions E±m satisfy the properties

E±m(±∞) = 0, E±m(∓∞) = 1 and E−m + E+
m ≡ 1.

Without loss of generality, we consider the case u− ∈ (−∞, b] and u+ ∈ [a,+∞).

Proposition 2.2. . Let φ be given as in (17). The Riemann problem for (1), determined by the
initial datum (13), has a two-phase solution with a steady interface if and only if

(18)

√
m+

√
m+ +

√
m−

φ(u−) +

√
m−

√
m+ +

√
m−

φ(u+) ∈ [A, B],

In this case, the solution has the form (14) where

f (ξ) :=

 (φ−)−1(g(ξ)) ξ < 0,

(φ+)−1(g(ξ)) ξ > 0,

and

(19) g(ξ) :=


φ(u−)E+

m−(ξ) + φ(u+)E−m−(ξ) −

√
m+ −

√
m−

√
m+ +

√
m−

[
φ
]

E−m−(ξ) ξ < 0,

φ(u−) E+
m+(ξ) + φ(u+) E−m+(ξ) −

√
m+ −

√
m−

√
m+ +

√
m−

[
φ
]
E+

m+(ξ) ξ > 0.

Proof. Let us look for the self-similar solution f in the form

f (ξ) =

 u− + C−E−m−(ξ) ξ < ξ̄,

u+ −C+E+
m+(ξ) ξ ≥ ξ̄,

where ξ̄,C± have to be determined. In terms of the function

g(ξ) := φ( f (ξ)) =

 φ(u−) + κ− E−m−(ξ) ξ < ξ̄,

φ(u+) − κ+ E+
m+(ξ) ξ ≥ ξ̄,

where κ± := m±C±, the transmission conditions (16) give a linear system for the unknowns κ±
E+

m+(ξ̄) κ+ + E−m−(ξ̄) κ
− =

[
φ
]−e−ξ̄

2/4m+

√
m+

+

√
π ξ̄

m+
E+

m+(ξ̄)

 κ+ +

e−ξ̄
2/4m−

√
m−

+

√
π ξ̄

m−
E−m−(ξ̄)

 κ− =
√
π ξ̄

[
u
]

Setting

∆(ξ̄) := E+
m+(ξ̄)

e−ξ̄
2/4m−

√
m−

+

√
π ξ̄

m−
E−m−(ξ̄)

 + E−m−(ξ̄)

e−ξ̄
2/4m+

√
m+

−

√
π ξ̄

m+
E+

m+(ξ̄)


=

e−
1
4 ξ̄

2(1/m++1/m−)
√

m+ m−

{
F+(ξ̄) + F−(ξ̄) +

√
π (m+ − m−)

m+ m−
ξ̄ F+(ξ̄) F−(ξ̄)

}
,

where Fi(ξ̄) :=
√

mi eξ̄
2/4mi

Ei
mi(ξ̄), with i ∈ {−,+}, the values of κ± are given by

κ+ =
e−ξ̄

2/4m−

√
m− ∆(ξ̄)

[
φ
]
+

√
π

m−
(
φ+(u+) − φ−(u+)

) ξ̄ E−m−(ξ̄)

∆(ξ̄)
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κ− =
e−ξ̄

2/4m+

√
m+ ∆(ξ̄)

[
φ
]
−

√
π

m+

(
φ+(u−) − φ−(u−)

) ξ̄ E+
m+(ξ̄)

∆(ξ̄)
.

In the case ξ̄ = 0, there hold

∆(ξ̄) =

√
m+ +

√
m−

2
√

m+ m−
, κ± =

2
√

m±
√

m+ +
√

m−
[
φ
]
,

so that the function g is given by (19). Such a formula defines an entropy solution of the problem
if and only if condition iii. in Proposition 2.1 is satisfied, that is,

1
2
φ(u−) +

1
2
φ(u+) −

1
2

√
m+ −

√
m−

√
m+ +

√
m−

[
φ
]
∈ [A, B],

that is equivalent to (18). �

If (18) does not hold, the Riemann problem exhibits a moving interface. For the sake of sim-
plicity, let us restrict the attention to the case m+ = m− = m. Then the values of κ± reduce to

κ± =
[
φ
]
±

√
π
√

m
(
q+ − q−

)
ξ̄ eξ̄

2/4m E∓m(ξ̄)

and the function g can be rewritten as

(20)
g(ξ) =

(
φ(u−) +

√
π
√

m
(
q− − q+) ξ̄ eξ̄

2/4m E−m(ξ̄)χ
[ξ̄,+∞)

(ξ)
)

E+
m(ξ)

+

(
φ(u+) +

√
π
√

m
(
q− − q+) ξ̄ eξ̄

2/4m E+
m(ξ̄)χ

(−∞,ξ̄)
(ξ)

)
E−m(ξ)

where χI denotes the characteristic function of the set I. Condition (18) corresponds to the request
1
2

(φ(u−) + φ(u+)) ∈ [A, B].

If 1
2 (φ(u−) + φ(u+)) > B (or < A), the relation g(ξ̄) = B (= A, respectively) is an implicit relation

for the value ξ̄ and the transition curve for the corresponding solution to the Riemann problem is
given by x = ζ(t) = ξ̄

√
t.

3. Semi-discrete approximation of the pseudo-parabolic equation

Next, we aim at designing appropriate numerical schemes for both equation (1), considered in
the setting described in Section 2, and the pseudo-parabolic equation (2). First of all, we concen-
trate on the latter, considered in a finite interval I ⊂ R, with homogeneous Neumann boundary
conditions,[17]

(21)
∂u
∂x

∣∣∣∣
x∈∂I

= 0.

Different types of approximations of pseudo-parabolic equations have been considered in the liter-
ature (finite-element methods Reff. [1, 13, 30, 8, 7], spectral methods Ref. [23], finite differences
Ref. [11]. . . ). Here, we consider a standard finite-difference space discretization for equation (2),
that appears to be continuous at ε = 0, so that the limit ε→ 0+ can be analyzed by simply setting
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ε = 0 directly in the algorithm. Formally, this amounts to an exchange of order of the two vanish-
ing limits h→ 0+ and ε→ 0+. Because of the presence of the ratio

ε

h2 , no uniformity of one limit
with respect to the other parameter into play may hold, in general. Hence, there is no guarantee
that such an approach leads to the correct limiting solution.

The semi-discrete scheme. Let I := (0, 1). Given h := 1/(J − 1) > 0 for some J ≥ 5, let us set
x j := j h for j = 1, . . . , J. Let U = U(t) = (U1(t), . . . ,UJ(t)). Let us approximate the second order
derivative with respect to x with

∂2u
∂x2 (x j, t) =

u(x j+1, t) − 2u(x j, t) + u(x j−1, t)
h2 + O(h2).

The boundary conditions (21) translate into the conditions

U1(t) = U2(t), UJ(t) = UJ−1(t).

For the sake of simplicity, we denote abusively (φ(U1), . . . , φ(UJ))T by φ(U). Equation (2) can
thus be approximated by the ODE system(

h2 I + εA
) dU

dt
= −A φ(U),

where I is the identity matrix and

(22) A :=



1 −1 0 · · · · · · · · · 0 0 0

−1 2 −1
. . . · · · · · · 0 0 0

0 −1 2
. . .

. . . · · · 0 0 0
...

. . .
. . .

. . .
. . .

. . .
...

...
...

...
...

. . .
. . .

. . .
. . .

. . .
...

...
...

...
...

. . .
. . .

. . .
. . .

. . .
...

0 0 0 · · ·
. . .

. . . 2 −1 0

0 0 0 · · · · · ·
. . . −1 2 −1

0 0 0 · · · · · · · · · 0 −1 1



.

The matrix A being an irreducible Hessenberg symmetric matrix, A is diagonalizable and all its
eigenvalues are simple. By Gerschgörin-Hadamard’s circle theorem, the spectrum σ(A) of the
(symmetric) matrix A is contained in D(2, 2) := {λ ∈ C : |λ − 2| ≤ 2}. Let us denote the
eigenvalues of A by

(23) λ j := 4 sin2
(
( j − 1)π

2J

)
, j ∈ {1, . . . , J},

as can be inferred from the computation of the eigenvectors. As a consequence, the matrix A is
positive semi-definite and the matrix h2I + εA is invertible for any value of positive ε and h. Note
that λJ converges to 4 as J → ∞, so that the upper bound given by Gerschgörin-Hadamard’s circle
theorem is optimal.
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The semi-discrete scheme can be rewritten as

(24)
dU
dt

= −
(
h2I + εA

)−1
A φ(U) =: −Ah2,εφ(U).

Remark 3.1. Since Ah2,ε is a polynomial fraction of the matrix A, the spectral theorem implies at
once that A and Ah2,ε share the same spectral decomposition, that is their eigenvalues are simple
and their eigenvectors are associated respectively with λ j and R(ελ j/h2)/ε, for any j ∈ {1, . . . , J},
where R : x ∈ R+ 7→ x/(1 + x). Since for any x ≥ 0, 0 ≤ R(x) ≤ min(1, x), the spectrum of
Ah2,ε is bounded from above by min(1/ε, 4/h2). Thus the numerical effect of considering Ah2,ε

in place of h−2A is that the large eigenvalues of A are filtered. Note also the difference becomes
more apparent when dealing with data in the unstable region, φ′ < 0, since for such values the
semi-discrete scheme (24) exhibits exponentially increasing behavior at the linearized level.

Following Remark 3.1 and the fact that Ah2,ε has a regular limit as ε → 0+, we now focus on
the limit of the semi-discretized system

(25)
dU
dτ

= −A φ(U),

where τ = t/h2. In the original variable t, system (25) is stiff as h → 0+. Note that, since −A ◦ φ
is autonomous and globally Lipschitz continuous, the Cauchy problem for system (25) with an
initial condition admits a unique C1 solution defined globally. The study of the behavior of this
semi-discrete solution requires the knowledge of both L∞ and L2 properties of System (25). Since
φ is assumed to be piecewise linear, this system can be seen as

(26)
dU
dτ

(τ) = −M(τ)U(τ) + W(τ),

where M(τ) is a J × J matrix and W(τ) is a vector of size J, M and W being piecewise constant in
time: the jumps occur when a point changes phases, that is when the interface moves.

Remark 3.2. From now on, we will concentrate on a particular symmetric piecewise linear φ given
in (7) such that φ±(s) = 2 s ∓ 3, a = −b = 1, d = −c = 2 and B = −A = 1 (see Figure 2). In this
case, condition (18) becomes u−+u+ ∈ [−1, 1]. The numerical analysis we will perform makes use
of the remarkable spectral properties of the matrix A. If φ has different slopes m± > 0 on the left-
and right- hand sides, then one can apply the following analysis keeping in mind that A should be
replaced by AD, where D is a diagonal matrix of the form diag(m−, . . . ,m−,m+, . . . ,m+), so that
A and AD are similar matrices and share the same spectral properties.

Riemann initial data with steady interface. To analyze the semi-discrete algorithm (24), we
consider the Riemann initial data

u0(x) =

{
u− x < 1/2,
u+ x > 1/2,

where u± ∈ S± are chosen such that u− ≤ b < a ≤ u+ satisfy (18), so that the interface should not
move and both sides should remain in their respective stable phases.
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First of all, let L ∈ {1, . . . , J} be such that the initial datum U0 = (U0
1 , . . . ,U

0
J) for the system

(25) satisfies

(27) U0
j ≤ b < a ≤ U0

h ∀ j = 1, . . . , L, h = L + 1, . . . , J,

The behavior of the solution U can be easily determined since φ is supposed to be piecewise linear
and symmetric, as given in (7). Indeed, the function V = φ(U) = 2U + (3, . . . , 3,−3, . . . ,−3)T

satisfies, at least locally in time, the system

(28)
dV
ds

= −AV,

where s = 2τ = 2 t/h2, so that, as long as the components of the solution U are localized as in
(27), there holds

V(s) = exp(−sA)V(0).

Since exp(−sA) = lim
n→+∞

(I + sA/n)−n, ‖(I + sA/n)−1‖∞ = 1 and (I + sA/n)−1 ∈ (R+)J×J , we infer

‖ exp(−sA)‖∞ = 1 and exp(−sA) ∈ (R+)J×J .

Consequently, if V j(0) ∈ [−1, 1] for any j, then V j(s) ∈ [−1, 1] for all j ∈ {1, . . . , J} and for any
s > 0. If V j(0) < [−1, 1], that is u+ > 2 or u− < −2, and u+ + u− ∈ [0, 1] (resp. u+ + u− ∈ [−1, 0]),
one can get back to the previous case by dividing U0 by u− (resp. u+).

Hence, there is no change of phases and M(τ) = −A for all τ ≥ 0. This behavior is of course
compatible with condition (18).

Let us now study the asymptotic behavior of the solution U. The value 0 belongs to σ(A) and
Ar = 0 where r1 = (1, . . . , 1)T/

√
J. Therefore, the matrix P1 := r1rT

1 = 1/J, where 1 is the
J × J matrix composed of ones, is the eigenprojection corresponding to the eigenvalue 0. Hence,

the matrix A admits a spectral decomposition of the form A =
1
J

+
J∑

j=2
λ j P j, where λ j are the

eigenvalues of A and P j are the corresponding eigenprojections. Therefore

(29) e−As =
1
J

+

J∑
j=2

e−λ j s P j

and a solution to (28) with initial data V0 converges exponentially fast to

P1 V0 =
(1

J

J∑
j=1

V0
j

)
(1, . . . , 1)T .

This means that the solution U converges to a Riemann-shaped steady state as τ → +∞. The
solution to system (28) with initial data V0 is given by

V(τ) = e−Aτ V0 =
(1

J

J∑
j=1

V0
j

)
(1, . . . , 1)T +

J∑
j=2

e−λ j τ P j V0.
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If U0 is a Riemann-type initial data with values (u−, u+), that is

U0
j = u−, ∀ j = 1, . . . , L, U0

h = u+ ∀ h = L + 1, . . . , J,

the jump being at the middle point of the grid, we have

(30) V(t/hx2) =
φ(u+) + φ(u−)

2
+

J∑
j=1

e−λ j t/h2
P j V0

Hence, there holds for all j ∈ {1, . . . , J}

(31) lim
t→+∞

V j(t/h2) =
φ(u+) + φ(u−)

2
= v∞,

that is the value towards which φ converges at the transition interface ζ. Thus the solution U
converges to a two-phase state

(32) U∞j =

 (φ−)−1(v∞) if j ≤ L,

(φ+)−1(v∞) if j ≥ L + 1.

Thanks to the spectral properties (23) and (30), we know that this convergence is exponential of
rate

(33) 2λ2 =
8
h2 sin2

(
π

2J

)
∼

J→+∞
2π2.

Behavior at a transition point. Now, let us focus on a model situation in which one point is on
the verge of the unstable phaseU, that is there exists L ∈ {2, . . . , J − 1} such that the initial datum
is given by

U0 = (b, . . . , b, d, d + δ)T ,

where the definitions of b, d are described in Figure 2, the value d is assumed at the (L + 1)-th
position of the vector V0 and δ > 0 is a positive perturbation. The borderline point V0

L is attracted
to the stable phase S+ because of the jump conditions, but it has to cross the unstable phase U
first. Let us determine the expression of M(τ) at least in a neighborhood of τ = 0. We already
know that the solution U is of class C1. At first, note that U j(τ) is in the stable phase S+ for
j ≥ L + 1 and that

dU j

dτ
(0) = φ(U j−1(0)) − 2φ(U j(0)) + φ(U j+1(0)) =


2δ if j = L + 1,

− 2δ if j = L + 2,

0 otherwise,

so that

U j(τ) =



− 1 + o(τ) if j ≤ L,

2 + 2δτ + o(τ) if j = L + 1,

2 + δ − 2δτ + o(τ) if j = L + 2,

2 + δ + o(τ) if j ≥ L + 3.
Consequently, one has (dUL/dτ)(τ) = 4δτ + o(τ), and therefore UL increases and changes phases
S− → U. Meanwhile, for j ≤ L − 1, (dU j/dτ)(τ) = o(τ), so that U j(τ) = −1 + o(τ2) and
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(dUL−1/dτ)(τ) = −2δτ2 +o(τ2). By recursion, U j stays locally in the stable phase S−, for j ≤ L−1
and we can write the ODE system (25) linearly, at least locally in time in a neighborhood of t = 0,
as

(34)
dU
dτ

= −BU + B,

with B := (0, . . . , 0,−3, 0, 3, 0, . . . , 0)T and

B := 2



1 −1 0 . . . . . . . . . . . . . . . . . . . . . 0 0 0

−1 2 −1
. . . . . . . . . . . . . . . . . . . . . 0 0 0

0 −1 2
. . .

. . . . . . . . . . . . . . . . . . 0 0 0
...

. . .
. . .

. . .
. . .

. . .
...

...
...

...
...

. . . −1 2 −1
. . .

...
...

...
...

...
...

. . . −1 2 1/2
. . .

...
...

...
...

...
...

. . . −1 −1 −1
. . .

...
...

...
...

...
...

. . . 1/2 2 −1
. . .

...
...

...
...

...
...

. . . −1 2 −1
. . .

...
...

...
...

...
. . .

. . .
. . .

. . .
. . .

...

0 0 0 . . . . . . . . . . . . . . .
. . .

. . . 2 −1 0

0 0 0 . . . . . . . . . . . . . . . . . .
. . . −1 2 −1

0 0 0 . . . . . . . . . . . . . . . . . . . . . 0 −1 1


where the “defect” is located at the (L − 1)-th, L-th and (L + 1)-th lines. The above expression
allows us to give a formula for U(τ), for as long as UL stays in the unstable phase U, that is
τ ∈ [0, τ̃]:

(35) U(τ) = exp(−τB)U(0) +

(∫ t

0
exp(−sB)ds

)
B.

In order to fully exploit (35) and predict the time τ̃ at which UL shall leave the unstable phaseU,
let us describe the spectrum of B.

Proposition 3.3. The matrix B is diagonalizable in R with J distinct eigenvalues which can be
ordered as −1 < µ−1 < µ0 = 0 < µ1 < . . . < µJ−2 < 8. In particular, B has only one negative
eigenvalue.

Remark 3.4. The negative eigenvalue of B is the one that allows the borderline point to go through
the unstable phaseU.

Proof. The matrix BT can be written as BT = DA where D = diag(2, . . . , 2,−1, 2, . . . , 2). Let us
prove that BT is diagonalizable. As mentioned before, A is symmetric non-negative and can
be diagonalized in an orthonormal basis (r0, . . . , rJ−1). Let Λ := diag(0, λ1, . . . , λJ−1), Λ̂ :=
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diag(1, λ1, . . . , λJ−1), which is invertible, and W be the unitary matrix the columns of which are
(r0, . . . , rJ−1) in that order, so that

W =


1
√

J
wT

1J−1,1
√

J
W̃

 ,
with w ∈ RJ−1 and A = WΛWT where we denote by M̃ the (1, 1)-submatrix of size (J−1)× (J−1)
of a J × J matrix M. Let us note that

(36)
1
J

1J−1,J−1 + W̃ W̃T = wwT + W̃T W̃ = IdJ−1,J−1,

so that, in particular, W̃ is invertible and W̃−1 =
J

J − 1
W̃T . The matrix C := WTBT W =

WT DWWTAW = WT DWΛ is similar to BT .
Let us now multiply on the left- and right-hand sides of C by Λ̂1/2 and Λ̂−1/2:

Λ̂1/2CΛ̂−1/2 = Λ̂1/2WT DWΛ1/2 =

(
0 cT

0J−1,1 Λ̃1/2∆Λ̃1/2

)
where c ∈ RJ−1 and ∆ := W̃T D̃W̃ +2wwT which is symmetric. Let us show now that ∆ is invertible
and has exactly one negative and J − 2 positive eigenvalues, so that BT (and B) is similar to a
diagonalizable matrix with one negative, one zero and J − 2 positive eigenvalues using Sylvester’s
law of inertia.

Using relation (36), one can rewrite ∆ as

∆ = 2Id + W̃T (D̃ − 2Id)W̃.

The definition of D implies that

D̃ − 2Id = −3ELL

where EL−1L−1 := (δi=L−1, j=L−1)1≤i, j≤J−1, δ being the Kronecker symbol. The spectrum of ∆ is thus

2 with multiplicity J − 2 and associated eigenspace W̃−1(Span(e j) j,L−1) and −
J − 3

J
associated

with W̃−1eL−1. This proves that B is diagonalizable with simple eigenvalues with the announced
signs.

Applying Gerschgörin-Hadamard’s circle theorem to BT , we have

Sp(B) ⊂ D(4, 4) ∪ D(−2, 2),

so that we get the upper bound of the spectrum quite easily. To prove the lower bound, we
need to examine more closely the computation of the eigenvalues: assume (µ,V) is an eigen-
value/eigenvector of BT . Solving BT V = µV leads to solving two linear recurrences of order
2 that have the same characteristic polynomial with compatibility conditions. The computation
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gives the following result: if µ ∈ [−4, 0) ∪ (0, 8) is an eigenvalue of BT , then

χ(µ) := −2(µ + 2)
[
vJ−2

+ (µ) + vJ−2
− (µ)

]
+ (4 + µ(2 − µ))

[
vJ−1

+ (µ) + vJ−1
− (µ)

]
+ 3 µ

[
vJ−2L−1

+ (µ) + vJ−2L−1
− (µ)

]
= 0

where v±(µ) = 1 −
µ

4
±

√
µ

2

(
µ

8
− 1

)
. Note that, for all k ∈ N,

vk
+(µ) + vk

−(µ) =

[(k−1)/2]∑
p=0

(
k

2p

) (
1 −

µ

4

)k−2p (
−µ

2

)p (
1 −

µ

8

)p

is a µ-polynomial of degree k, so that χ is also a µ-polynomial, of degree J + 1. The possible
eigenvalue µ = 8 is not valid in χ since it corresponds to a double root in v±. However, χ(8) = 0,
but a further computation shows that 8 is not an eigenvalue of B: it implies that the characteristic
polynomial of BT is χ̃ := χ/(8 − µ). We already know that there is only one negative eigenvalue
of χ̃. Proving that χ̃(−1)χ̃(−∞) > 0 will show that this negative eigenvalue is necessarily larger
than −1. Since v±(−1) = 2±1, we get χ̃(−1) = −(21−J + 2J−2L−1 + 22L+1−J)/3 < 0. Thanks to the
expression of vJ−1

+ (µ) + vJ−1
− (µ), one sees that it is positive as µ tends to −∞ so that χ̃(−∞) < 0.

This ends the proof of Proposition 3.3. �

Since B is diagonalizable with simple eigenvalues, one can compute explicitly the spectral
projectors: let µ be an eigenvalue of B and (v,w) ∈ (RJ \ {0})2 such that Bv = µv, BT w = µw.
Since wT v , 0, one can assume wT v = 1, so that the spectral projector associated to µ reads
Pµ = vwT/(wT v). The direct consequence is the following expression for U(τ), τ ∈ [0, τ̃], from
(35):

(37) U(τ) = P0(U(0) + τB) +
∑

µ∈Sp(B)\{0}

Pµ

{
e−τµU(0) +

1 − e−τµ

µ
B

}
so that, identifying the asymptotically larger terms and noting that, since P0 = J D−1e eT/(J − 1),
there holds P0B = 0, we infer

(38) U(τ) = e−τµ−1 Pµ−1

(
U(0) −

1
µ−1
B

)
+ P0U(0) +

∑
µ∈Sp(B)\{0}

1
µ

PµB + o(e−µ1τ).

An approximation of the exit time τ̃ is thus given by

(39) τ̃ '

log
(
a − [P0U(0)](L) −

∑
µ∈Sp(B)\{0}

[PµB](L)
µ

)
log

([
Pµ−1

(
U(0) −

B

µ−1

)]
(L)

) .

Note that formulas (35)-(37)-(38)-(39) hold for general piecewise-linear φ, changing B to a similar
matrix and modifying B.
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In conclusion, within the time interval [0, τ̃], there is only one component, namely UL, that
lies in the unstable phase U and, as soon as it has entered the stable phase S+, the matrix of
the dynamical system is again as in (28). It means that the interface between S− and S+ has
moved to the left, as predicted by (18). One is then faced to two independent constant coefficient
heat equations, that can be treated as in the steady configuration case. If, on the right-side, the
perturbation δ is too large, UL+1 will at some point be larger than B and the situation will revert
to that with a point in the unstable phaseU. The system will then move the interface to the right-
hand side again by making this point go through the unstable phaseU, until the border is reached
or the discretization is such that φ(UL+1) is less that B.

In the general case of initial data of Riemann type, satisfying (27), and such that |u− + u+| > 1,
the semi-discrete differential system will make UL converge exponentially fast to the “closest”
border predicted by the entropy conditions (12): if u− + u+ < −1, then (UL(t),UL+1(t)) goes to
(c, a) and otherwise (UL(t),UL+1(t) goes to (b, d). The rate of convergence to this intermediate
state is again 2λ2 = 8 sin2(π/(2J)/h2 ∼

J→+∞
2π2. Once the border is reached, we are faced with a

situation where the dynamical system is the same as in (34). The analysis previously developed
still holds: the borderline point (UL if u−+u+ > 1 or UL+1 otherwise) is the only one going through
the unstable phaseU. Once it has reached the opposite stable phase, the following point (UL−1 or
UL+2), that has been monotonically changing (decreasing or increasing) goes to the border, then
enters U and so on, so that the interface moves as predicted by Proposition 2.1 in the continuous
setting.

4. Numerical experiments in the limiting regime ε = 0

Now that we have shown that the semi-discrete scheme plays the role of simulating either the
convergence to a Riemann-type steady state or the movement of the interface, we turn our attention
to performing concrete numerical experiments, by adding an appropriate discretization for the time
derivative.

There are two ways of fully discretizing the problem, remembering that equation (1) is fully
non-linear and φ is not differentiable, so that Newton’s algorithm cannot be used in a fully implicit
scheme:

– either discretize explicitly in time and space, that is introducing a time-discretization tn = n∆t
with step ∆t and using an explicit Euler scheme

(40) Un+1 = Un −
∆t
h2 A φ(Un),

where (Un
j ) j∈{1,...,J},n∈N;

– or use the previous analysis and discretize (26) with an implicit scheme, globally in time if the
initial data is of steady Riemann type or else by estimating the exit/entrance time

(41) Un+1 = Un −
∆t
h2

(
M(tn+1) Un+1 −W(tn+1)

)
.



21

Using (40) allows to obtain a numerical solution without having to consider exit/entrance times,
but the CFL condition for stability is 4∆t/h2 ≤ 1 and the order of approximation is 1 in time,
whereas (41) avoids L2 and L∞ stability conditions and increase the order of the approximation
but requires the knowledge of M(t). Here, we implement both approaches and compare the results.

First of all, we analyze the case of initial data in stable phases, in order to validate the schemes
by comparing to the exact solution for the Riemann problem stated in Proposition 2.2, with the
left-hand state u− belonging to S− and the right-hand state u+ to S+, with S± defined in (6).
Specifically, we choose the case (u−, u+) = (−1, 1), for which the predicted behavior is that of a
steady interface and continuity and differentiability of φ(u) at x = 0.5. The convergence error to
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Figure 3. Numerical solution at time T = 0.05 with Riemann initial data (−1, 1).

the exact solution given by (20) can be expressed as

(42) E2 :=

√√√
h

J∑
j=1

(Un
j − u(tn, x j))2 = O(∆tα) + O(hβ).

In the case of standard diffusion equations with regular initial data, e.g. taking the exact solution
at small t for (u−, u+) in the same stable phase, under the required CFL condition ∆t = O(h2), the
order of the explicit scheme is α = 1, β = 2. The implicit scheme requires no stability condition
and is also of order α = 1, β = 2, the counterpart being that we should solve a system at each step.
Here, since the initial data are step functions, one cannot hope for such good estimates.

Numerically, we show here that the order of approximation is β = 1 in h for both schemes and
between 0.5 and 1 in ∆t for the implicit scheme. The higher-order region in ∆t could be explained
by the fact that, h being fixed, as we refine ∆t, the solution is smoothed out faster. In conclusion,
since in the steady case the system to be inverted is linear, tridiagonal, the implicit scheme should
be preferred (see Table 1).
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implicit (var ∆t) implicit (var h) Explicit (∆t = h2/4)
K J error cpu
12 0.0043659 0.02
14 0.0034607 0.06
18 0.0033399 0.62
20 9 0.0033395 3.05
22 0.0033394 9.98

K J error cpu
6. 0.0264534 1.76
7. 0.0132975 1.94
8. 0.0066676 2.31

20 9. 0.0033395 3.05
10. 0.0016730 4.48
11. 0.0008409 7.71
12. 0.0004287 14.37
13. 0.0002299 33.90

J error cpu
6 0.0373874 0.02
7 0.0188008 0.13
8 0.0094283 0.16
9 0.0047216 0.80
10 0.0023638 3.87
11 0.0011850 25.54
12 0.0005981 193.12
13 0.0003099 1971.36
14 0.0001749 17407.04

Table 1. Comparison of L2 errors of φ(u) and execution times (cpu) for the implicit and
Explicit schemes wrt ∆t = 2−K , h = 2−J .

Next, we consider a Riemann-type initial data with values (u−, u+) = (−2, 3). Since φ(−2) = −1
and φ(3) = 3, the function φ(u) is discontinuous at time t = 0 with a jump located at the middle
point x = 0.5. In short time, as expected, the function φ(u) is regularized and, at x = 0.5, takes
a value in the interval [A, B] = [−1, 1] depending on the choice of u−, u+ (see Figure 4). As a
consequence of such a regularization of φ, the profile of u is forced to bend at the left-hand and
right-hand side of the phase transition point. From now on, diffusion in the two stable phases will
flatten the profile of u on the two phases and, at the same time, the interaction between the two
stable phases will determine the position of the transition interface and of the corresponding value
of φ(u) on the interface itself.

S-
S+

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Im plicit  schem e - u at  t im e 0.005 - dt= 2^ (-11) - dx= 1/255

x

u

L

(a) u as a function of x

phi

phi num

-2

-1

0

1

2

3

4

-3 -2 -1 0 1 2 3 4
u

p
h

i(
u

)

(b) φ(u) as a function of u

Figure 4. Short time evolution of the Riemann data (−2, 3). The two graphs show the profile of
u and φ(u) at the final time t = 5 × 10−3.

For large time, the solution u converges to a Riemann–shaped steady state and the profile of φ(u)
tends to a constant exponentially fast, as shown in Figure 5. As the continuous theory predicted
(18), since φ(u−) + φ(u+) = 2 ∈ [2A, 2B], the interface did not move. The same asymptotic
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behavior is shown by different choices of initial values (u−, u+). As long as we were dealing with
steady cases, we were able to use the implicit scheme without further study.
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Figure 5. Large time evolution of the Riemann data (−2, 3). Letting the time go as far as t = 0.5
ensures an error of order 10−4 according to (33).

A higher level in the jump between the initial states u− and u+ leads to a movement of the
transition interface separating the stable phases, as shown in Figure 6, corresponding to the initial
data (−2, 4). We used an explicit scheme to treat this case since a point might have to go through
the unstable phase.

The analysis of the movement of the transition interface ζ starting at x = 0.5 at initial time t = 0
is very delicate. First of all, we have to define the position of the interface. Here, we consider
the interface ζ in the semi-discretized scheme to be determined by finding the maximal (resp.
minimal) value of j such that U j ≤ −1 (resp. U j ≥ 1). Here, the position ζ = ζ(t) of the interface
is given by ζ(t) = k(t) · h, k(t) being the index localizing the left-hand side of the interface. The
explicit scheme allows us to get an approximation of the movement of the interface (see Figure 7),
from which one recognizes the parabolic shape predicted by (14). However, the use of this scheme
yields oscillations.

The space derivative φ(u)x of the function φ(u) varies very rapidly close to the interface ζ,
consistently with the presence of a movement of the interface. Nevertheless, the algorithm finds
as value φ(u)

∣∣∣
ζ

an uncorrected level (in the limit ε → 0+, left–moving interface are allowed if
and only if φ(u) = B = 1). In fact, in the continuous limiting model the unstable phase (a, b) is
prohibited and the solution u jumps instantaneously from one phase to the other. On the contrary,
in the semi-discretized algorithm (25), the transition from one phase to the other is accomplished
by smoothly passing from values under the level a = −1 to values above the level b = 1, thus
passing all way through the spinodal region (a, b) (see Figure 6(c)-(d)). Correspondingly, the
function φ decreases its value from B to A and then increases again to B. Such a transition is faster
as h→ 0+, but it is always (incorrectly) present.
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Figure 6. Small time evolution of the Riemann data (−2, 4). On the right-hand side, the graph in
the phase–space (u, φ(u)) with corresponding values of the solution, where a point in the spinodal
region is clearly seen.
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Figure 7. Riemann initial data u− = −2, u+ = 4 with h = 0.01.

5. Two–phase scheme

In this Section, we consider the problem of determining a numerical scheme for the limiting
equation (1) together with the entropy conditions described in Proposition 2.1. The algorithm is
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based on the idea that initial data taking values only in the stable regions give rise to solutions with
values in the stable regions matched in order to satisfy the appropriate transmission conditions. In
the interior of any region, where the solution is in one of the stable phases, a diffusion equation
has to be solved; and the procedure has to be completed with an appropriate description of the
transition interfaces behavior, based on the entropy conditions.

At each step, additionally to the values Un ∈ RJ giving the approximate value of the solution,
we also track the non-integer position ζn of the transition interface determining the passage from
one phase to the other. The index of such position is denoted by jn∗.

Description of the algorithm. Let φ± : R → R be two strictly increasing extensions of restric-
tions φ

∣∣∣
(−∞,b) and φ

∣∣∣
(a,+∞), respectively (where, for the sake of simplicity, φ is piecewise linear and

symmetric). For j ∈ {2, . . . , J − 1}, let us introduce the projection matrix Π j

Π j :=

 O j−1 0 0
0 I2 0
0 0 OJ− j−1

 ,
where O j and I j denotes the null and the identity j× j matrices, respectively. Finally, given A < B,
let us introduce the truncation function T defined by

(43) T (U) := max{A,min{U, B}}.

The algorithm reads as follows. Let U ∈ RJ and j∗ ∈ {1, . . . , J} be the values for the approximate
solution and approximate interface location. Let C := C(U, j∗) be the transition value suggested
by (31), i.e. set

C = C(U, j∗) :=
1
2

(
φ−(U j∗−1) + φ+(U j∗+2)

)
.

If C < [A, B], that is the transition value is not in the hysteresis interval, we use the truncation
function (43) to transform it in an admissible value. Specifically, if C > B, then T (C) = B; if
C < A, then T (C) = A. Correspondingly, the values of U at j∗ and j∗ + 1 are mapped in the values
(φ−)−1(T (C)) and (φ+)−1(T (C)), respectively (i.e. b and d if C > B, and c and a if C < A). If
C ∈ [A, B], the transition value is in the hysteresis loop and the new values for U at j∗ and j∗ + 1
have to be determined, imposing the transmission conditions[

φ(u)
]

=
[
φ(u)x

]
= 0,

that is, in discretized form,

φ(U j∗) = φ(U j∗+1), φ(U j∗) − φ(U j∗−1) = φ(U j∗+2) − φ(U j∗+1).

These conditions give

(44) φ(U j∗) = φ(U j∗+1) =
1
2

(
φ(U j∗−1) + φ(U j∗+2)

)
= C(U, j∗).
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Hence, let us set

(45)
F(U, j∗) := (0, . . . , 0 , (φ−)−1(T (C))︸          ︷︷          ︸, (φ+)−1(T (C)), 0, . . . , 0)

j-th element

Then, setting Ũn := F(Un, jn∗) + (I − Π jn∗ ) Un, the scheme can be written as

(46)


Π jn∗U

n+1 = F(Un, jn∗),

(I − Π jn∗ )U
n+1 = (I − Π jn∗ )

(
Un −

∆t
h2 A φ(Ũn)

)
where A is the matrix introduced (22). Note that the scheme (46) coincides with (40), ε = 0, apart
from the definition at the transition points j∗ and j∗ + 1.

To define the transition interface sequence, given U ∈ RJ and j∗ ∈ {1, . . . , J}, let us define the
values for the (discrete) time-derivative of the interface ζ as follows

ζ′(C) = −
1

(φ+)−1(T (C)) − (φ−)−1(T (C))

(
φ(U j∗+2) − T (C)

h
−

T (C) − φ(U j∗−1)
h

)
that is

ζ′(C) =
2(T (C) −C)

((φ+)−1(T (C)) − (φ−)−1(T (C)))h
.

If C ∈ [A, B], then T (C) = C, and ζ′ = 0; if C > B, then T (C) = B and ζ′ < 0; finally, if C < A,
then T (C) = A and ζ′ > 0. Thus, the entropy jump conditions are satisfied. The transition interface
algorithm is defined by

(47) ζn+1 = ζn + ζ′(Cn) ∆t and jn+1
∗ =

[
ζn+1

h

]
+ 1.

Next, let us fix our attention on the scheme (46) in the steady interface case (i.e. C(Un, jn∗) ∈ [A, B]
for any n). In this situation, it is possible to consider a corresponding semi-discrete scheme. Setting
V = φ(U), relations (44) becomes

(48) V j∗ = V j∗+1 =
1
2

(
V j∗−1 + V j∗+2

)
,

so that the original system for the variable V = (V1, . . . ,VJ) can be reduced to a system for
V̂ := (V1, . . . ,V j∗−1,V j∗+2, . . . ,V J). The system to be satisfied by V̂ , taking into account (48), is

(49)
dV̂
ds

= −Â V̂ ,
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where s = 2τ = 2t/h2 and Â is the symmetric (J − 2) × (J − 2) matrix defined by

(50) Â :=



1 −1 0 . . . . . . . . . . . . . . . . . . 0 0 0

−1 2 −1
. . . . . . . . . . . . . . . . . . 0 0 0

0 −1 2
. . .

. . . . . . . . . . . . . . . 0 0 0
...

. . .
. . .

. . .
. . .

. . .
...

...
...

...
...

. . . −1 2 −1
. . .

...
...

...
...

...
...

. . . −1 3/2 −1/2
. . .

...
...

...
...

...
...

. . . −1/2 3/2 −1
. . .

...
...

...
...

...
...

. . . −1 2 −1
. . .

...
...

...
...

...
. . .

. . .
. . .

. . .
. . .

...

0 0 0 . . . . . . . . . . . .
. . .

. . . 2 −1 0

0 0 0 . . . . . . . . . . . . . . .
. . . −1 2 −1

0 0 0 . . . . . . . . . . . . . . . . . . 0 −1 1


(here the lines (. . . , 0,−1, 3/2,−1/2, 0, . . . ) and (. . . , 0,−1/2, 3/2,−1, 0, . . . ) correspond to the in-
dices j∗ − 1 and j∗ + 2). The matrix Â defined in (50) has spectral properties similar to the
ones of the matrix A. Specifically, Â is semi-definite positive, 0 ∈ σ(Â) and Âr̂1 = 0 where
r̂1 = (1, . . . , 1)T/

√
J − 2. The matrix P̂1 := r̂1 ⊗ r̂1 = 1/(J − 2), where 1 is the (J − 2) × (J − 2)

matrix composed by all ones, is the eigenprojection corresponding to the eigenvalue 0. As a con-
sequence, solution to (49) with initial data V0 converges exponentially fast to

P̂1 V0 =
1

J − 2

J−2∑
j=1

V0
j (1, . . . , 1)T ,

that is the solution U converges to a Riemann-shaped steady state as τ→ +∞ as described in (32).

Numerical experiments for the two-phase scheme. Next, we perform numerical experiments
for the scheme (46) with the same Riemann-type initial data considered for the scheme (40) specif-
ically with (u−, u+) = (−2, 3.5) and (u−, u+) = (−2, 4). Results are shown in Figure 8.

In term of the solution profiles u (or φ(u)), the results obtained with the present approach and
the one considered in the previous Section are consistent with each other. On the contrary, in term
of position of the moving interface, the behavior is very different, being much more regular and
non oscillatory in the case of the algorithm (46) (compare Figures 7(b) and 9).

Indeed, the two approaches differ strongly in the determination of the interface position. When
dealing with the algorithm (40), the position of the transition interface is determined by the last
index j such that u j ≤ b. As a consequence, the movement of the interface is always concentrated
at specific iterations and have an amount of multiples of the space-discretization size h. The
algorithm proposed for the limit model (1) is based on the assumption that both the solution u and
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Figure 8. Evolution of the Riemann data. The two graphs show the profile of u at time t = 0.2
and h = 0.01. The choice of different symbols helps keeping track of the initial position of the
interface.
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Figure 9. Riemann initial data u− = −2, u+ = 4 with h = 0.01.

the interface position ζ are unknowns of the problem. Formula (47) permits to define a smoother
location of the transition interface since its position is determined by calculating the values ζ′ at
each step. The discrepancy between the two approaches is shown in Figure 10, for the Riemann
problem with initial data (−2, 4). The two-phase scheme and the explicit scheme are both of order
1 in h (see Fig. 11), but the error for the two-phase scheme (compared to the exact solution
computed in (20), the constant ξ̄ being computed with Newton’s algorithm) is less (see Figure
10) and the interface ζ is better approximated and smoother (see Figure 1). However, due to the
intermediate computations, the numerical cost is also higher than the one of the explicit scheme
(see Table 2).
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Figure 10. Comparison of the numerical solutions of the explicit and two-phase
schemes with the exact solution for (u−, u+) = (−2, 4) at t = 0.005 for h = 1/255
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Figure 11. Convergence error for φ(u) in L2 norm

Two-phase scheme Explicit
J error cpu
6 0.028548 0.23
7 0.0133988 0.34
8 0.0065732 1.16
9 0.0032091 7.18

10 0.0015852 64.73
11 0.0007498 919.69

J error cpu
6 0.0600245 0.13
7 0.0300282 0.26
8 0.0150125 1.05
9 0.0075057 6.02
10 0.0037539 52.31
11 0.0016060 723.27

Table 2. Comparison of L2 errors of φ(u) and execution times (cpu) for the two-phase
and explicit schemes for (u−, u+) = (−2, 4).
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