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Abstract 
Layout design plays an important role in the design and usability of many engineering products and systems. 
Because of the great complexity of most of industrial layout problems, the decision of the acceptable layout 
is a hard and critical task since the special layout can have a significant consequence on the global 
performances. Thus, in order to propose to the designer an optimal spatial arrangement in a reasonable 
time, this paper develops an interactive optimization strategy that is tested on the facilities layout problem of 
a shelter. This problem is innovative because it introduces the concept of space of accessibility. 
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1 INTRODUCTION 
Layout problem is inherently a multidisciplinary task [1]. It 
covers all the aspects of the product design life cycle from 
the conceptual to the detailed stage and makes necessary 
the collaboration between experts of technical and 
economical disciplines. In fact, layout design is usually 
formulated as an optimization problem: find the best 
arrangement (location and orientation) of components in a 
given available space satisfying geometrical and 
functional constraints. A non-overlapping constraint is 
basically a common geometrical constraint for all 3-
Dimensional Layout problems, while alignment, orientation 
or gathering components refer to functional constraints. 
Because of the geometrical complexity, the 3-Dimensional 
layout problem optimisation is non-linear and NP-hard. It 
means that the problem is intrinsically harder than those 
that can be solved by a nondeterministic Turing machine 
in polynomial time. The objective and constraints 
evaluation is generally time consuming. 
It is essential to distinguish between Cutting and Packing 
(C&P) problems and 3-Dimensional Layout problems. In 
C&P problems, components are only geometrically related 
to each other, whereas in layout problems, components 
are geometrically and functionally related and connected. 
This difference leads different tools and methods to solve 
each class of problem being aware of the common non-
overlap constraints in the two problems. 
Typologies of C&P problems have been proposed [2] but 
as far as we know, there is no general typology of layout 
problems. Amine Drira has described a tree 
representation of facility layout problems [3] that depends 
on design constraints and objectives of the location of 
facilities inside a plant.  
Actually, layout problems can be divided into several kinds 
of specific problems, which have their own solving 
method. C&P problems can be assimilated as a particular 
application of each specific problem. 
Layout problems can also be classified according to three 
criteria: the compactness of the problem, the number and 
type of design constraints and objectives and the 
geometrical complexity of the design components. For 
example, the container loading problem and the engine 

layout design are not in the same category of problem. It 
means that, for the two problems, the compactness is 
important but in the engine layout design, constraints and 
objectives are multiple (non-overlap and functional 
constraints, accessibility objective...) and the different 
parts of the engine have complex lines. The container 
loading problem does not have the same characteristics. 
The formulation of layout problems uses mono-objective 
or multi-objective optimisation. The designer can make an 
early decision by using an aggregation function in order to 
transform a multi-objective into a mono-objective one. This 
approach is only effective when all data and information 
on the aggregation are available or if the designer is 
familiar with the specific layout problem. In this paper, we 
use multi-objective optimization. The decision on the 
preferences between objective functions is delayed so that 
the designer can use the Pareto-front in order to select the 
most appropriate solution. In this approach, the designer 
has to simultaneously optimize two or more conflicting 
objectives subject to constraints.  
The general formulation of an optimization problem can be 
written as the equation 1, where m is the number of 
objective functions and n the number of design variables. 
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The designer has to compare two solutions represented 
by two vectors of objectives ),...,,()( 21 mUUU fffUF =  and 

),...,,()( 21 mVVV fffVF =  where iUf  is the ith component 
of the vector of objectives F for the design variable U. In 
fact, U dominates V (Pareto dominance) if U is as good as 
V for all the objectives and U is better than V for at least 
one objective. Mathematically, this can be formulated by: 
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Multi-objective optimization searches for the set of non-
dominated points (assimilated to Pareto-optimal points in 
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the next sections of this paper) in the objective space 
given by efficient solutions. Figure 1 represents the Pareto 
front for an optimization problem defined by two objectives 

)21 ff min, (min  where U dominates V.  

  
Figure 1: Pareto front of a multi-objective problem. 

One finds multiple search algorithms to solve layout 
optimization problems in two or three dimensions. 
Traditional optimization approaches for three dimensional 
layout problems are described by Jonathan Cagan [4]. 
They use genetic algorithms [5], simulated-annealing 
algorithms [6,7] or extended pattern search algorithms [8]. 
Most search algorithms are developed for a specific 
problem and they provide an effective optimization 
strategy for this kind of problem. Therefore, they are not 
generic and can not be adapted to other layout problems. 
In this paper, the proposed method is based on a generic 
technique for solving layout problems. The design strategy 
uses a Genetic Algorithm coupled with a Separation 
Algorithm, in order to ensure a good diversity of solutions 
computed by the algorithm, and allows the designer to 
interact with the Pareto-optimal solutions. 
This paper is organized as follows: in section 2, the 
synopsis of the proposed optimization method is 
presented. In section 3, the proposed method is tested on 
the layout problem of facilities inside a shelter. 
Optimization problem formulation and results obtained by 
the method are described and analyzed. Sections 4 and 5 
are dedicated to an outlook on future work and the 
conclusion. 
 
2 PROBLEM SOLVING STRATEGY 
The constraint space of design variables is highly 
composite because of the geometric complexity, the non-
overlap constraints and the relative location between the 
components. This property leads us to recognise that 
there is no choice but using stochastic or heuristic 
techniques for a 2-D or 3-D layout problem. This kind of 
technique makes it possible to explore efficiently the 
design space and avoid a local optimum. We also 
recognise that a multi-objective Genetic algorithm is 
suitable for this problem. 
Basically, a genetic algorithm search uses the mechanics 
of natural selection and natural genetics to evolve a 
population of initial solutions into a near-optima solution. 
The common idea behind these algorithms is the same: 
given a set of individuals from an initial population, the 
genetic algorithm uses basically 3 operators in order to 
create a set of new candidate solutions. This process can 
iterate until candidates with sufficient good fitness are 
obtained. The three operators are namely: selection, 
mutation and crossover or recombination. Mutation and 
recombination act to create the necessary diversity and 
novelty and selection acts as a force of pushing quality 
(fitness). Repeated selection from the same population 
would produce nothing better than multiple copies of the 

best individual originally in it. For improvement to be able 
to occur, some novelty must be introduced into the 
population between selection steps. The genetic operators 
modify the selected parents by manipulating their 
genotype.  
Since the genetic algorithm is based on stochastic 
operators and parameters, the progression of multi-
objective layout optimisation is time consuming. It 
depends also on the number of design variables and the 
number of components and the types of design 
constraints. In order to improve the algorithm we introduce 
two new steps into the global process of the genetic 
algorithm: separation techniques and interaction with the 
designer. The initial random population of the GA is 
improved using the separation technique and interaction. 
In fact, the initial random population of the GA leads to a 
high number of overlap components thus the GA fails to 
find efficient candidates.  
The objective of the search algorithm proposed in this 
paper is to generate a uniformly distributed global Pareto 
front for layout optimization problems. Our strategy 
consists of initializing the multi-objective optimizer with a 
population of individuals which have been locally modified 
by a separation algorithm and designer interaction in order 
to reduce the violation of placement constraints. Thus, the 
strategy is based on three complementary approaches, 
which are clearly separated: 
1. Firstly, the generation of a database of mixed designs 

that respect non-overlap constraints. 
2. Secondly, the optimization of this database by 

considering all the design objectives (with a Genetic 
Algorithm). 

3. At the end of the GA iteration process, the interactive 
choice of the suitable solution by the designer is 
conducted using the non dominated Pareto front 
generated by the GA. 

2.1 Separation Algorithm 
Several separation algorithms have been proposed [9,10]. 
However, the key idea is always the same: given a 
configuration that doesn't satisfy location constraints, the 
objective of the separation algorithm is to minimize the 
non-respect of overlap between components and 
protrusion (overlap between components and the non 
allowed space). 
For solving simple layout problems in two dimensions, the 
separation problem is formulated as an unconstrained 
minimization problem defined by: 
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where ijA represents the intersection area between the 
components i and j. Consequently, it is possible to define 
the violation of placement constraints F as the total sum of 
intersection areas between the different elements which 
make up the layout design. For example, let us consider 
that all the items of the layout design are rectangles, the 
intersection area between two items is equal to: 
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where ),( ii yx are the coordinates of the geometric center 
of the rectangle i. iL  and il  represent respectively the 
length and the width of the rectangle i. 
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The algorithm used to minimize F is based on the 
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. This 
algorithm computes a finite-difference approximation of 
the gradient and the hessian of the function F in order to 
locally modify the optimization variables and to minimize 
F. The algorithm stops after a certain number of iterations. 
 

 
  

Figure 2: Separation algorithm BFGS test. 
In order to understand the principle of the separation 
algorithm, let us consider a layout problem test. The 
dimensions of the square container are 21001010 m=× . 
The objective of this 2D-configuration problem is to place 
N square items whose dimensions are 2111 m=× in the 
container. It means that the algorithm searches the 
optimal configuration that reduces the violation of 
placement constraints F, which has been previously 
defined as the total sum of intersection areas between the 
square items and the container. Figure 2 shows 
simulations results, considering different values of the 
problem density. 

2.2 Multi-objective optimization 
The multi-objective optimizer is in charge of exploring 
efficiently the search space to propose trade-off solutions. 
The proposed method uses the Multi-Objective Genetic 
Algorithm (MOGA-II) [11]. MOGA-II is an efficient Multi-
Objective Genetic Algorithm (MOGA) [12] that uses a 

smart multi-search elitism. This new elitism operator is 
able to preserve some excellent solutions without bringing 
premature convergence to local-optimal frontiers. For 
simplicity, MOGA-II requires only very few user-provided 
parameters. Several other parameters are internally 
settled in order to provide robustness and efficiency to the 
optimizer. Three genetic operators are used to generate 
new solutions: 
• Directional Cross-over: the cross-over operator is a 

method of recombination where parents produce off-
spring by sharing information. The aim of this operator is 
to obtain individuals with better characteristics while 
maintaining the diversity of the population. 

• Selection: this value gives the probability that design 
configurations are not changed during the evolution. In 
order to maintain a good diversity between points, this 
parameter should be kept small, 

• Mutation: this value gives the probability that a design 
configuration is randomly changed. 

For the application studied in section 3, the genetic 
operators have been set as shown in Table 1. The number 
of individuals in the initial generation is equal to 240 
because a rule of thumb suggests the possibly to 
accumulate an initial population of at least 16 design 
configurations and possibly more than 2 x Number of 
variables x Number of objectives = 2 x 24 x 5 = 240. 

Number of individuals in the initial 
generation 

240 

Probability of Directional Cross-Over 0.1 

Probability of Selection 0.05 

Probability of Mutation 0.45 

Probability of Classical Cross-Over 0.4 

Elitism enabled 

DNA String Mutation Ratio 0.5 

Number max of generations 100 

Table 1: Multi-Objective Genetic Algorithm parameters. 
2.3 Interactive process 
In general the development of an engineering object is 
considered as a single process involving multicriteria 
identification of the mathematical model followed by 
multicriteria optimization of the object design on the basis 
of this mathematical model. The process of statement-
solution of engineering design problems without the 
interference of the design is impossible. In solving the 
design problem, the designer almost always has to correct 
either the mathematical model, the dimension of the 
vectors of design variables and criteria, the design 
variable ranges, and so on. This creative process of 
correcting an initial statement is natural when solving 
engineering problems. The direct participation of the 
designer in the construction of the feasible design and 
nonformal analysis are the essential stage of the search 
for the optimal design [13]. The simulation tools provide 
powerful solutions for planning and designing of complex 
mechanical systems. The problem with these is the 
representation and the interpretation of the results by the 
engineer. Important for the engineer is not only the value 
of the point but its variation and the information about the 
most favorable directions. The exploitation of the results is 
not obvious and the link with the performance value of the 
real phenomenon is not trivial. When one analyzes the 
communication between the operator and the computer, it 
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can be perceived that the operator immersion in the digital 
model is very weak. 
It was pointed out in section 1, that the decision can be 
made earlier in the design optimisation process by the 
creation of an aggregation of the objective function or later 
using the non-dominated points generated by the genetic 
algorithm. The proposed strategy uses two interactive 
steps. The first one is the interactivity of the designer for 
the selection of feasible solution to present as an initial 
population of the genetic algorithm. The first interaction 
step is limited to the geometrical non-overlap of 
components. The GA algorithm can be stopped after a 
fixed number of iterations. Since all the non-dominated 
points are potentially good acceptable solutions of the 
given Layout problem, the designer has to explore the set 
of these points and select the best solution. It is well 
recognised by the expert of the optimisation that it is 
always very hard to express all the designer requirements 
using only the objective function. Several subjective 
functions are qualitative and can not easily be expressed 
explicitly by using a numerical value. In order to take into 
account this subjective aspect of the layout problem, 
selected solutions of the non-dominated front are 
presented to the designer and an interactive numerical 
environment is used to support the decision. Since the 
number of non-pareto points can be to very large, we also 
use a reduction approach that regroups all the equivalent 
solutions. Then for each presented solution, the designer 
can act on the environment and locally modify the position 
or orientation of the appropriate components. This step is 
different to the initial interaction since the designer has 
also the evaluation of all the objective function. The 
interactivity is not only limited to the geometrical visual 
evaluation but the value of the objectives function and 
there deviation are helpful at this step. 
 
3 APPLICATION 

3.1 Problem description 
In this section we consider an application of the proposed 
strategy to find the optimal layout of facilities in a shelter. 
Several components have to be arranged in the shelter 
including electric and energetic cabinets, desks and 
electrical boxes. The CAD model of the shelter is 
presented Figure 3. 

 
Figure 3: Overall view of the shelter. 

The layout optimization of this shelter is a three 
dimensional optimization problem. However for the 
presentation, and fortunately because the cabinets are the 
full height of the shelter and prevent a superposition of 
elements, the model is simplified and conceptualized in 

two dimensions. The simplified model of the shelter is 
shown Figure 4. 

 
Figure 4: Configuration model of the shelter in 2D. 

The formulation of this layout problem is innovative 
because the components can be classified in two 
categories: those which have a mass (material 
components) and those which no have mass (virtual 
components). Here, the virtual components represent the 
spaces of accessibility of the cabinets and the desks. For 
example, the space of accessibility of the cabinet is the 
required space to insert some materials into the cabinet. 
These spaces are symbolized in Figure 4 by dotted 
rectangles. With this problem formulation, design 
constraints depend on the category of components. It 
means that overlap is allowed between two spaces of 
accessibility, taking account that operations of materials 
loading are sequentially made whereas overlap has to be 
minimized between two material components. 
Moreover, the space, represented by hatching in Figure 4, 
is the space below the air-conditioner where no cabinet 
can be placed. This space is also a virtual component that 
is fixed during the optimization process  
The dimensions of the shelter are 2150mm x 2740mm. 
The density of this configuration, without considering the 
spaces of accessibility of the different components, is 
equal to 50%. If the spaces of accessibility are 
considered, this density increases up to 90%. 

3.2 Problem formulation 
Problem formulation is a very important step of the 
optimization process. The optimization problem studied 
here is an under constrained multi-objective problem. Let 
us see how the variables, constraints and design 
objectives are defined. 
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Optimization variables 
Each layout component has three optimization variables 

),,( αYX : the coordinates of each element (a continued 
variable along X axis and another one along Y axis) and 
the rotation angle (one discreet variable along Z axis). 
Consequently, the number of optimization variables for 
this problem is equal to 24 (= 8 items x 3 coordinates). 
Because of the rotation of each component, variables X 
and Y are bounded according to the following relation (for 
the variable iX  for example):  

),(),( iishiii LllXLl  min min −<<   (5) 

where shl  represents the width of the shelter. Here, il  is 
the dimension of the component along X axis (it does not 
have to be confused as the width of the component i). 

Design constraints 
The design constraints of this layout problem are non-
overlap constraints. They are divided in four categories, 
according to the following classification: 
• Non-overlap constraints between components (C1). 
• Non-overlap constraints between components and 

spaces of accessibility (dotted rectangle represented in 
Figure 4) (C2). 

• Non-protrusion constraints between components, 
spaces of accessibility and the shelter (C3). 

• Non-overlap constraints between cabinets and the 
space below the air-conditioner (hatching represented in 
Figure 4) (C4). 

The rectangular shape of components simplifies the 
formulation of design constraints. Thus, the non-overlap 
constraint between the rectangles i and j is equal to the 
intersection area between the component i and j (in cm²). 
This area has been defined in equation 4. Actually, the 
objective of the separation algorithm is defined as: 

4321 CCCCF +++=  (6) 

Design objectives 
In collaboration with the company experts of this specific 
problem, we have considered for this optimization problem 
the five following design objectives: 

• To minimize the distance between the center of gravity 
of components and the geometrical center of the shelter, 
in order to balance the masses inside the shelter (O1). 

• To maximize the distance between the cabinet 1 and the 
cabinets 2 and 3 and the electrical box 2, in order to limit 
interactions between energy and electric network (O2, 
O3, O4). 

• To minimize the distance between the electrical box 2 
and one of the shelter's walls, in order to establish a 
connection with exterior (O5). 

The design objectives O2, O3, O4 and O5 are formulated 
by the distance between the centers of gravity of 
elements. For example, the distance ijd  between the 
components i and j is equal to: 

)²()²( ijijij yyxxd −+−=   (7) 

where x and y are the coordinates of the centers of gravity 
of the items i and j.  
Let us consider the coordinates of the center of gravity of 
all the elements which are placed in the shelter. These 
coordinates are equal to:  
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where N is equal to the number of elements which have a 
mass: the cabinets, the desks, the electrical boxes and the 
air-conditioners. Then, by considering equation 7, the 
objective 1 (O1) is computed. 
More designer's knowledge could be incorporated in the 
layout problem formulation. It means for example, in the 
configuration design of the shelter studied in this paper, 
the design objective O5 can be deleted and the degree of 
freedom of the electrical box 2 can be reduced, in order to 
force it to displace along one of the walls of the shelter. 
The designer's contribution for formulation should simplify 
the search of feasible solutions by reducing the number of 
possible solutions. 

3.3 Results and analysis 
The resolution of this optimization problem has been firstly 
realized only with the multi-objective optimizer MOGA-II. 
The algorithm has been randomly initialized with a 
population of 240 designs. Most of these initial designs did 
not respect the non-overlap constraints because they have 
been randomly generated. Because of the great density of 
this layout problem, only one or two feasible configurations 
were computed for each simulation. A configuration is 
defined as: 
Design j is a new configuration if it differs from the design i 
by at least one of the following criteria: 
• One of the components of the layout has been displaced 

from at least Δ mm along one of the axis X or Y, ( Δ  is 
set to 500 mm in this application). 

• One of the components has been rotated. 
• The minimum difference between the objective values of 

the two designs is bigger than a limit, for example, fixed 
at 10 cm. 

These results lead us to use the method proposed in this 
paper in order to generate, with only one optimization 
simulation, a set of well distributed Pareto-optimal 
designs. 
Thus, the results obtained for each step of the method are 
described here: 

1. Separation algorithm and first interaction with the 
designer: the algorithm has been randomly initialized 
with designs that do not respect non-overlap 
constraints. Then, a set of 162 “feasible”' (it means 
that respect design constraints) designs have been 
computed. This population then has been completed 
with 78 individuals randomly generated in order to 
create the first population (240 individuals) and to 
guarantee the diversity of the genetic algorithm. 

2. Multi-Objective Genetic Algorithm: the algorithm has 
searched optimal solutions by considering the design 
constraints and all the objectives of the problem. Then, 
after a hundred generations, a set of 172 feasible 
configurations have been computed. 41 of these 
solutions are Pareto-optimal designs. Figure 5 shows 
three of these Pareto-optimal configurations and the 
initial solution. It's important to mention that this initial 
configuration is an intuitive solution which has been 
generated only by considering geometric aspects. 
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Figure 5: Solution computed by the algorithm. 
The Pareto-optimal solutions, shown in Figure 5, point 
out a problem that is present in all the solutions 
computed by the algorithm. In fact, Figure 5 shows 
that, even though the design is a feasible configuration 
that respects all the design constraints, some facilities 
(for example facilities n°2, 4, 5, 8 in the first solution) 
are not accessible from the shelter’s entry. It means 
that a design constraint or an objective is missing in 
the layout problem formulation, in order to characterize 
the accessibility to a facility from the shelter’s entry. 
Consequently, the problem description has been 
changed and a free corridor, located in the middle of 
the shelter, has been added. In fact, this corridor is a 
space of living that can be considered as a fixed virtual 
component, where all the material components can not 
be placed. This space is going to resolve the problem 
of accessibility inside the shelter. 
Then, with the separation algorithm, a set of feasible 
designs have been computed and by interacting 
directly with them and by relaxing the design 
constraints (until 150 cm²), the designer has selected 
78 different designs. This population then has been 
completed with 162 individuals randomly generated. 
Next, the genetic algorithm has generated 14 feasible 
configurations whose 7 are Pareto-optimal solutions. 

3. Interactive decision making: the 7 Pareto-optimal 
designs do not dominate the initial solution. On the 
other hand, the initial solution does not dominate 
either the solutions computed by the proposed 
method. Actually, it means that the designer is the only 
person who can make the final design choices. 
In order to make a decision, the method provides to 
the designer an interactive geometric and numeric 
visualization of the designs. The designer can explore 
the set of non-dominated solutions, compare their 
objective values and interact with them. Figure 6 
represents the interface that allows the designer to 
visualize at the same time the layout design and the 
associated design constraints and objectives values. 
The designer can also compare two solutions. In fact, 

when the designer displaces one component or 
changes its direction, the design constraints and 
objectives are automatically actualized.  

 
Figure 6: Interactive layout interface. 

Actually, among the 7 Pareto-optimal solutions 
computed by the algorithm, let us focus on the third 
solution. Locally changing the location of some 
components of this design improves its performances. 
Figure 7 shows this solution 3 and the solution that 
results from the modifications made by the designer.  

 

Figure 7: Local modification of the solution 3. 
Table 3 describes all the objectives values for the 
initial solution generated by the expert, the solution 3 
and the solution 3 locally modified by the designer. 
Actually, due to the interaction of the designer with the 
final solutions, a new solution, better than the initial 
one, is created. 
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Design 
objective 

Initial 
solution Solution 3 Improved 

solution 3 

O1 (minimize) 25.41 cm 8.67 cm 3.48 cm 
O2 (maximize) 240.58 cm 238.30 cm 240.58 cm 
O3 (maximize) 198.50 cm 177.80 cm 198.50 cm 
O4 (maximize) 165.80 cm 168.29 cm 172.51 cm 
05 (minimize) 0 cm 0 cm 0 cm 

Table 3: Industrial solution vs solution 3. 
 

4 RESTROSPECT AND PERSPECTIVE 
This paper has introduced a new interactive optimization 
strategy for solving layout problems. The method can be 
divided into several steps, as shown in Figure 8. Firstly, a 
population of designs, randomly initialized, is optimized by 
the separation algorithm. Then, the designer interacts with 
the solutions computed by the algorithm and selects some 
individuals according to the design constraints. Secondly, 
the new population is optimized by the multi-objective 
optimizer by considering all the design objectives. Then, 
the designer can locally modify some computed designs in 
order to improve their objectives. Actually, our strategy 
has the innovative particularity to allow the designer to 
interact with the optimization process in order to improve 
the performances of the Pareto-optimal designs and to 
keep a good diversity in computed solutions. 
The application, which has been studied in this paper, has 
an innovative problem formulation because it introduces 
the concept of space of accessibility, which can be 
considered as a virtual component of the layout design. 
Moreover, this application emphasizes the problem of 
accessibility to a facility from the container’s entry. This 
problem has been resolved by inserting the user’s 
knowledge in the problem description. Here, the designer 
decided to insert a free corridor in the shelter in order to 
keep a space of accessibility to all the components. 
However, when the designer decides to insert his job 
knowledge in the problem formulation, he automatically 
influences the search of solutions realised by the 
algorithm. If he wants to find innovative solutions, he has 
to simplify the problem description and to adapt the design 
constraints and the objectives to his design preferences. 
For example, in the application studied in this paper, the 
idea is to consider the accessibility to the facilities as a 
design constraint or an objective. Next research works 
have to explore this new concept.  
Actually, this innovative optimization process proposed in 
this paper also suggests that the method could be 
improved according to the designer preferences: 
• Qualitative fitness could be inserted into design 

objectives. When solving complex design problems, as a 
layout problem for example, the translation of some 
constraints and objectives into simple mathematical 
expressions can be very difficult. It means that these 
constraints and objectives could be replaced by a mark 
given by designers in order to characterize their designs. 
Then, this qualitative fitness could be considered by the 
algorithm as a design objective. Alexandra Melike 
Brintrup has already developed an interactive genetic 
algorithm-based framework for handling qualitative 
criteria in design optimization [14]. Actually, it should 
improve the performances of Pareto-optimal solutions. 

• The designer could interact with design variables during 
the optimization process. Stopping the optimizer would 
allow the designer to firstly analyze a specific solution, 
secondly locally modify the design configuration and 
then decide to keep this modified design in the next 

generation of the genetic algorithm. We can find in [15] a 
significant contribution to this concept applied to the 
design optimization of architectural layouts.  

 
Figure 8: Schematic representation of the optimization 

strategy. 
 

5 CONCLUSION 
This article presents an innovative layout problem 
formulation including the concept of space of accessibility 
defined in section 3. It shows that problem formulation is a 
very important step in the optimization process because it 
has a great impact on computed solutions. Secondly, the 
hybridization of the separation algorithm and the multi-
objective algorithm is a very efficient method to ensure a 
good diversity in a Pareto-optimal solutions set. Moreover, 
the strategy is designed to allow the interaction between 
the user and the optimization process in order to improve 
the performances of Pareto-optimal designs. 
Actually, for industrial experts, design optimization has 
great advantages. On the one hand, it allows the 
designers to explore more alternative solutions to their 
problem. This is a very good way to encourage the 
innovation. On the other hand, using design optimization 

Population P1 
(randomly initialized) 

Population P2 
(first solutions) 

Population P3 
(first generation of GA) 

Population P4 
(non-dominated solutions) 

Population P5 
(optimal solutions) 

Separation algorithm 
(to minimize placement constraints) 

User interaction 1 
(to select individuals among P2) 

Multi-objective optimizer 
(to generate non-dominated solutions) 

User interaction 2 
(to perform manually some solutions) 



lets the designer to easily make his design choices and 
justifying them with quantitative values related to his 
problem formulation. 
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