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- Université Aix-Marseille I (Université de Provence),
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Structures defined by higher-order recursion schemes
Arnaud Carayol

LIGM
Université Paris-Est and CNRS

5, boulevard Descartes, Champs-sur-Marne
F-77454 Marne-la-Vallée Cedex 2

carayol@univ-mlv.fr

Higher-order recursion schemes are a particular form of typed term rewriting systems. By iterative
rewriting from a fixed finite term, an (higher-order) recursion scheme generates at the limit an infinite
term. In 2006, Luke Ong has shown that for the infinite terms obtained in this way monadic second-
order logic (MSO) is decidable. As terms defined by recursion schemes encompass most of the known
examples of infinite terms having decidable MSO theory, this result has revived the interest for recursion
schemes.

In this talk, we will survey results concerning the structures defined by recursion schemes. These
structures are essentially graphs which can be defined using MSO logic on the terms generated by recur-
sion schemes. Our main focus will be to assess the expressivity of these structures through alternative
characterisations.

Luigi Santocanale (ed.): Fixed Points in Computer Science 2010, pp. 7-7
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Fixed points and proof theory:
An extended abstract

Dale Miller
INRIA Saclay & LIX/Ecole Polytechnique, Palaiseau, France

Abstract
We overview some recent results in the proof theory for fixed points and illustrate how those re-

sults can be used to provide a unified approach to computation, model checking, and theorem proving.
A key theme in this work is the development of focused proof system that allow for micro-rules (e.g.,
sequent calculus introduction rules) to be organized into macro-rules. Such macro-rules can often be
designed to correspond closely to “steps” or “actions” taken within computational systems.

1 Introduction

Potentially unbounded behavior is available in proof theory via the contraction rule (see Figure 1): when
reading this rule from its conclusion to its premise, a formula is duplicated and such duplication can
be applied again and again. When contraction is removed, decidability often follows. For example, the
multiplicative-additive fragment of linear logic (MALL) does not have contraction (nor weakening) and,
as a result, it is decidable whether or not a formula is a theorem. It is possible to given a proof system
for propositional intuitionistic logic that does not contain contraction [9]: a naive implementation of that
proof system can be a decision procedure for that logic.

Decidable logics, such as MALL and propositional intuitionistic logic, have rather limited applica-
tions. For a logic and proof system to find wide ranging applications in, say, computation and deduction,
they must allow for potentially infinite behaviors.

Girard designed linear logic to be the result of extending MALL with the exponentials (!, ?): the
proof rules of contraction and weakening are allowed only on formulas marked by such exponentials. In
this way, potentially infinite behaviors can be mixed with MALL: linear logic becomes undecidable in
this way (even the propositional fragment of linear logic is undecidable [12]).

While the addition of the exponentials to MALL is elegant and powerful, the exponentials are not
without problems for those working in computational logic. For example, when using (as we will) fo-
cused proof systems, the exponentials can cause focusing phases to terminate. Furthermore, exponentials
are not canonical: that is, if one allows a “red” version and a “blue” version of both of ! and ?, it is
not possible to prove them equivalent (all other connectives of linear logic are canonical in this sense).
While there are interesting uses for such non-canonical exponentials (see, for example, the material on
subexponentials in [18]) one would like to have alternative approaches to potentially infinite behavior in
proof systems.

Baelde and Miller have proposed another approach to extending MALL with potentially infinite
behavior: in particular, they have added the least and greatest fixed points directly to MALL [6, 3]. The
resulting logic is surprisingly elegant and expressive: it has been used to describe the logical foundations
of a model checker [5] and is being used to design a new theorem proving architecture for the search for
proofs involving induction [7]. The development of a focused proof system for MALL plus fixed points
has lead to some new proof theory phenomena as well as some new ways to approach the unity of such
different topics as computation, model checking, and inductive and co-inductive theorem proving.

This extended abstract will illustrate some of the proof theory of fixed points by concentrating on
adding fixed points to classical first-order logic. Parts of this abstract are based on similar material found
in [14].

Luigi Santocanale (ed.): Fixed Points in Computer Science 2010, pp. 9-16
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Structural rules:
` B,B,∆
` B,∆ contract ` ∆

` B,∆ weaken

Identity rules: ` B,B⊥
initial ` ∆1,B ` B⊥,∆2

` ∆1,∆2
cut

Multiplicative rules:
` B1,∆1 ` B2,∆2

` B1∧B2,∆1,∆2
∧ ` B1,B2,∆

` B1∨B2,∆
∨

` t
t ` ∆

` f ,∆ f

Additive rules:
` B1,∆ ` B2,∆
` B1∧B2,∆

∧ ` Bi,∆
` B1∨B2,∆

∨i

` t,∆ t
—

Figure 1: Proof rules for propositional classical logic

2 A focused proof system for classical logic

We now consider propositional classical logic over formulas built from ∧, ∨, t, f . Remarkably, we shall
not have a need for atomic formulas. Figure 1 contains a one-sided sequent calculus proof systems for
this logic. A sequent ` ∆ contains a multiset of formulas ∆. Besides containing the usual structural rules
and identity rules (initial and cut), the logical connectives have two sets of introduction rules. That is,
for each logical connective, there is a set of multiplicative rules and a set of additive rules for it. (The
set of additive rules for f is empty and the set of additive rules for ∨ contains two rules.) Notice that the
rules for the additive conjunction and the multiplicative disjunction are invertible while the rules for the
multiplicative conjunction and the additive disjunction are not necessarily invertible.

The cut rule is admissible and the initial rule is admissible for all but atomic formulas. Since we have
no atomic formulas, both identity rules can be dropped.

As is well known, the additive rule and the multiplicative rule for the same connective are inter-
admissible in the presence of the structural rules of contraction and weakening. Another way to state
this admissibility statement is the following. Annotate names of the connectives in the inference rules
as follows: the invertible rules are annotated as negative ∧− and ∨− while the not-necessarily-invertible
rules are annotated as positive ∧+ and ∨+ (annotate their units also to be t−, f−, t+, f+). Given a
formula B let B̂ be any polarization of B in which every logical connectives in B is given either a plus or
a minus annotation. Then, B is provable (in the unannotated proof system) if and only if B̂ is provable
(in the annotated proof system). We shall say that an annotated formula is negative if its top-level logical
connective is annotated negatively and is positive if its top-level logical connective is annotated positively.
By B⊥ we shall mean the negation normal form of B: since we have no atomic formulas, negations will
not occur within formulas. Notice that the de Morgan dual of ∨+ and ∧+ are, respectively, ∧− and ∨−.

If we try to take the construction of proofs literally as a model for performing computation, one is
immediately struck by the inappropriateness of sequent calculus rules in Figure 1 for this task: there are
just too many ways to build proofs and most of them differ in truly minor ways. One would like to have a
tight correspondence between the application of inference rules and “actions” within a computation. An
early attempt to provide the sequent calculus with normal forms that corresponded to computation was
the work on uniform proofs and backchaining [15] that provided a proof-theoretic foundation for logic
programming. It was, however, Andreoli’s focused proof system [1] for linear logic that really allowed
one to more richly restrict and organize the sequent calculus. The earlier work on uniform proofs was

10
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Structural rules:
`Θ,P ⇑ Γ
`Θ ⇑ Γ,P Store

`Θ ⇑ N
`Θ ⇓ N Release

` P,Θ ⇓ P
` P,Θ ⇑ · Focus

Negative phase: `Θ ⇑ Γ, t−
`Θ ⇑ Γ,A `Θ ⇑ Γ,B
`Θ ⇑ Γ,A∧− B

`Θ ⇑ Γ
`Θ ⇑ Γ, f−

`Θ ⇑ Γ,A,B
`Θ ⇑ Γ,A∨− B

`Θ ⇑ Γ,A
`Θ ⇑ Γ,∀xA

Positive phase: `Θ ⇓ t+
`Θ ⇓ A `Θ ⇓ B
`Θ ⇓ A∧+ B

`Θ ⇓ Ai

`Θ ⇓ A1∨+ A2

`Θ ⇓ A[t/x]
`Θ ⇓ ∃xA

Figure 2: The focused proof system LKF for classical logic.

rather limited, both in its range of “focusing behavior” and in the subsets of logic to which it could be
applied. Andreoli’s result, however, applied to a full and rich logic.

Figure 2 presents the focused proof system for annotated propositional classical logic that is derived
from the LKF proof system of Liang and Miller [11]. In that figure, P denotes a positive formula, N
a negative formula, and Θ consists of positive formulas. The sequents in this proof system are of the
form ` Θ ⇑ Γ and ` Θ ⇓ B where Θ is a multiset of formulas, Γ is a list of formulas, and B is a formula.
The inference rules used in the negative phase are invertible while those in the positive phase are not
necessarily invertible. The structural rules contain two rules that allow switching between the two kinds
of sequents. Notice also that the Focus rule incorporates the contraction rule.

Theorem 1. LKF is sound and complete for classical logic. More precisely, let B be a first order formula
and let B̂ be a polarization of B. Then B is provable in classical logic if and only if there is an LKF proof
of ` · ⇑ B̂ [11].

Notice that polarization does not affect provability but it does affect the shape of possible LKF proofs.
Focused proof systems such as LKF allow us to change the size of inference rules with which we

work. Let us call individual introduction rules (such as in Figures 1 and 2) “micro-rules.” An entire
phase within a focused proof (the collecting together of only ⇑ sequents or only ⇓ sequent) can be seen
as a “macro-rule.” In particular, consider the following derivation

`Θ,D ⇑ N1 · · · `Θ,D ⇑ Nn

· · · only ⇓ sequents here · · ·
`Θ,D ⇓ D
`Θ,D ⇑ ·

Here, the selection of the formula D for the focus can be taken as selecting among several macro-rules:
this derivation illustrates one such macro-rule: the inference rule with conclusion ` Θ,D ⇑ · and with
n ≥ 0 premises ` Θ,D ⇑ N1, . . . ,` Θ,D ⇑ Nn (where N1, . . . ,Nn are negative formulas). We shall say
that this macro-rule is positive. Similarly, there is a corresponding negative macro-rule with conclusion,
say, ` Θ,D ⇑ Ni, and with m ≥ 0 premises of the form ` Θ,D,C ⇑ ·, where C is a multiset of positive
formulas or negative literals. In this way, focused proofs allow us to view the construction of proofs from
conclusions of the form ` Θ ⇑ · by first attaching a positive macro rule (by focusing on some formula in
Θ) and then attaching negative inference rules to the resulting premises until one arrives again to sequents
of the form ` Θ′ ⇑ ·. Such a combination of a positive macro rule below negative macro rules is often
called a bipole [2].

11
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Quantifiers:
` B[t/x],∆
` ∃x.B,∆

` B[y/x],∆
` ∀x.B,∆

Fixed points:
` B(νB)ū,∆
` νBū,∆

` B(µB)ū,∆
` µBū,∆

Equality:
` ∆σ
` u 6= v,∆ † ` u 6= v,∆ ‡ ` u = u,∆

The † proviso requires the terms u and v to be unifiable and σ to be their most general unifier. The ‡
proviso requires that the terms s and t are not unifiable. The usual eigenvariable condition holds for y in
the ∀ introduction rule.

Figure 3: Introduction rules for = and µ .

3 Fixed points and first-order structure

To classical logic we shall now add the two fixed point constructors µ and ν , the two first-order quan-
tifiers ∀ and ∃, and the two comparison relations on first-order terms = and 6=. Notice that each pair of
these connectives forms a de Morgan dual. The connectives µ and ν are really a collection {µn}n≥0 and
{νn}n≥0 such that the simple type of µn and of νn is τn→ τn, where τn is i→ . . .→ i→ o (n occurrences
of the type i). We shall not write the subscripted arity. Notice that all six of these constants are logical
connectives in the sense that they all have introduction rules: furthermore, the identity rules (cut and ini-
tial) are admissible. The (unfocused) proof rules for these additional connectives are given in Figure 3.
The rules for equality and its negation are due to Schroeder-Heister [20] and Girard [10].

Example 2. Identify the natural numbers as terms involving 0 for zero and s for successor. The following
simple logic program defines two predicates on natural numbers.

nat 0 ⊂ true.
nat (s X) ⊂ nat X .

leq 0 Y ⊂ true.
leq (s X) (s Y ) ⊂ leq X Y.

The predicate nat can be written as the fixed point

µ(λ pλx.(x = 0)∨+ ∃y.(s y) = x∧+ p y)

and binary predicate leq (less-than-or-equal) can be written as the fixed point

µ(λqλxλy.(x = 0)∨+ ∃u∃v.(s u) = x∧+ (s v) = y∧+ q u v).

In a similar fashion, any Horn clause specification can be made into fixed point specifications (mu-
tual recursions requires standard encoding techniques). Notice the use of positively annotated logical
connectives here.

Following the usual convention of classifying invertible introduction as negative connectives, ∀ and
6= are negative and their duals ∃ and = are positive. Since the two fixed points are (currently) indistin-
guishable (they have the same introduction rules), we arbitrarily classify µ as positive and ν as negative.
The focused versions of the introduction rules for these connectives is given in Figure 4. Notice now that
focusing phases can involve long chains of unfoldings. For example, the fixed points in Example 2 are
encoded using entirely positive connectives. Thus, if the focused sequent ` Θ ⇓ leq m n has a proof, it
has a proof that involves exactly one macro-rule. As the following example illustrates, it is now possible
to put an arbitrary (Horn clause) computation within a (macro) rule.

12
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`Θ ⇓ B[t/x]
`Θ ⇓ ∃x.B

`Θ ⇑ Γ,B[y/x]
`Θ ⇑ Γ,∀x.B

`Θ ⇓ u = u
`Θσ ⇑ Γσ
`Θ ⇑ Γ,u 6= v

† `Θ ⇑ Γ,u 6= v
‡

`Θ ⇑ Γ,B(νB)ū
`Θ ⇑ Γ,νBū

`Θ ⇓ B(µB)ū
`Θ ⇓ µBū

Figure 4: Focused inference rules for = and µ . The proviso † and ‡ and the definition of σ are the same
as above.

Example 3. Consider proving the positive focused sequent

`Θ ⇓ (leq m n∧+ N1)∨+ (leq n m∧+ N2),

where m and n are natural numbers and leq is the fixed point expression displayed above. If both N1 and
N2 are negative formulas, then there are exactly two possible macro rules with this conclusion: one with
premise `Θ ⇑ N1 when m≤ n and one with premise `Θ ⇑ N2 when n≤m (thus, if m = n, either premise
is possible). In this sense, a macro inference rule can contain an entire Prolog-style computation.

The following example illustrates that fixed points can be used to describe a typical query from model
checking.

Example 4. Assume that first-order terms encode process and action expressions such as are found in
CCS. The usual notion of one-step transition can generally be written using a simple, recursive Horn
clause program: hence, the ternary relation P A−→ P′ can be encoded using a purely positive formula.
The notion of simulation is then the (greatest) fixed point of the equivalence

sim P Q≡ ∀P′∀A[P A−→ P′ ⊃ ∃Q′[Q A−→ Q′∧ sim P′ Q′]].

We can then chose to write the sim relation as the expression

νλ sλPλQ.∀P′∀A[P A−→ P′ ⊃ ∃Q′[Q A−→ Q′∧ s P′ Q′]]

(Here, we are assuming that the implication B ⊃ C is rendered as B⊥ ∨−C in the polarized setting.)
Although the body of this definition looks complex, it is, in fact, composed of exactly two “macro con-
nectives” (a bipole). The expression ∀P′∀A[P A−→ P′ ⊃ ·] is a purely negative formula and its “intro-
duction” is invertible: since all possible actions A and continuations P′ must be computed, there are no
choices to be made in building a proof for this expression. On the other hand, focusing on the expression
∃Q′[Q A−→ Q′∧+ ·] yields a non-invertible, positive macro rule. In this way, the focused proof system is
aligned directly with the structure of the actual (model-checking) problem.

The fact that an entire computation can fit within a macro rule (using purely positive fixed point
expressions) provides a great deal of flexibility in designing inference rules. Such flexibility allows
inference rules to be designed so that they correspond to an “action” within a given computational system.
If one takes seriously using only macro rules (and hiding the details of the micro rules) then placing
arbitrary computation within a macro inference rule is probably too much: the term “inference rule” is
usually reserved for decidable steps. Thus, some care should be exercised in balancing the complexity
of a macro rule with the needs of proof systems to have their correctness be decidable.

13
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` Γ,B(µB)ū
` Γ,µBū

µ ` Γ,Sū ` BSx,(Sx)⊥

` Γ,νBū
ν ` µBū,νB̄ū

µν

The variable S denotes a closed term of type τn, where the arity of ν is n. Also, x is an eigenvariable of
the proof.

Figure 5: Inference rules for induction and co-induction.

Large macro rules can easily be broken up, if desired, by the use of delays. Within LKF, we can
define the delaying operators

∂+(B) = B∧+ t+ and ∂−(B) = B∧− t−.

Clearly, B, ∂−(B), and ∂+(B) are all logically equivalent but ∂−(B) is always negative and ∂+(B) is
always positive. If one wishes to break a positive macro rule resulting from focusing on a given positive
formula into smaller pieces, then one can insert ∂−(·) into that formula. Similarly, inserting ∂+(·) can
limit the size of a negative macro rule. By inserting many delay operators, a focused proof can be made
to emulate an unfocused proof [11].

4 Induction and co-induction rules

Treating fixed points simply by unfolding is, of course, limited. For example, while it is easy to define
fixed points that describe the notions of “natural number”, “even”, and “odd”, it is not possible to prove
that every natural number is either even or odd. While one can simply write the appropriate formula
stating that theorem, attempts at proofs of it will lead only to potentially infinite unfoldings. What is
missing, of course, is induction. To this end, consider the three inference rules displayed in Figure 5
(taken from [3, 6]). Notice that the µν rule is the only form of the initial rule that we shall need in this
proof system. Here, the negation B of a body B is defined as λ p.λ~x.(B(λ~x.(p~x)⊥)~x)⊥. A body B is said
to be monotonic when for any variables p and t̄, the negation normal and λ -normal form of Bpt̄ does not
contain any negated instance of p. We shall assume that all bodies are monotonic.

Notice that the rule called ν is the rule for co-induction. If we write sequents as two sided, then
moving this rule to the left-side as an introduction rule for µ yields the usual induction rule. Thus,
induction and co-induction are treated as perfect duals of each other.

Proposition 5. The following inference rules are derivable:

` P,P⊥
init

` Γ,B(νB)ū
` Γ,νBū νR

These results are standard, cf. [21]. The proof of the second one relies on monotonicity and is
obtained by applying the ν rule with B(νB) as the co-invariant. As a result of this proposition, we can
replace the inference rules for µ and ν given in Figure 3 with the rules in Figure 5. It is also the case that
µ and ν are now canonical. Such canonicity is gained, however, by the rather “high-price” of using an
inference rule (the ν rule) that involves a higher-order variable (the invariant).

Baelde [3, 4] has proved the (relative) completeness of the focused inference rules in Figure 6 in the
context of MALL: his proof involves some rather complex arguments for treating the higher-order nature
of the induction/co-induction rule. That proof should, however, lift to the setting described here where
classical logic replaces MALL.

Notice that in the ⇑ phase, one chooses between doing (co)induction on νBt̄ and freezing the fixed
point expression by moving it to the left of the ⇑. Since such a ν-expression is assigned a negative
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` Γ ⇑ St̄,∆ `⇑ BS~x,S~x⊥

` Γ ⇑ νBt̄,∆ ~x new
` Γ,νBt̄ ⇑ ∆
` Γ ⇑ νBt̄,∆

` Γ ⇓ B(µB)~x
` Γ ⇓ µB~x ` νB~x ⇓ µB~x

Figure 6: Focused proof rules for the fixed point connectives

polarity, the Focus rule can never move it from the left of the arrow to the right. Thus, a ν-expression on
the left of the ⇑ arrow can only be used to match its dual of the right ⇓ in the (focused version of the) µν
rule. For more about these rules for (co)induction, see the Baelde’s PhD thesis [3] or the theorem prover
based on that work [7].

5 The unity of computational logic

The proof theory of fixed points offers us a framework for comparing and combining computation, model
checking, and theorem proving. The differences between these three activities can be characterized by
their different uses of fixed points. Logic programming involves may behavior only, which involves
unfolding fixed points and non-deterministically picking a path to a success. On the other hand, both
model checking and theorem proving deal with must as well as may behavior. These two differ in that
model checkers generally assume finite fixed points (or have specialized methods for handling loops)
while (inductive) theorem provers use invariants to characterize possible infinite unfoldings. Given these
rough descriptions, it is possible to see rich ways that these activities can fit together into one system
(and one logic!) and enhance each other: for example, a theorem prover might prove certain symmetry
lemmas (via induction) and these could be used in the model checker to reduce search space. Similarly,
tabling within model checkers can be seen as lemma generation in theorem provers [16]. Also, as we
have seen, logic programming-style computation can be inserted within the inference rules used in both
model checking and theorem proving.

6 Related work

The proof theory of fixed points described here is largely taken from the recent papers of Baelde [3, 7].
While Baelde largely considered adding fixed point to MALL, he has also shown how that combination
directly treats important subsets of intuitionistic logic. Miller and Saurin [17] have also considered
fixed points using dialog games which are known to be closely related to focused proof systems. This
work builds on earlier work by McDowell, Miller, and Tiu [13, 21]. The work on cyclic proofs by, say,
Santocanale [19] and Brotherston and Simpson [8], is a related but alternative approach to the treatment
of induction within proofs.

Acknowledgments: I wish to thank David Baelde and the anonymous reviewers of this abstract for their
comments.
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Panos Rondogiannis

Department of Informatics & Telecommunications, University of Athens, Greece
prondo@di.uoa.gr

We examine two successful application domains for fixed-point theory, namely (non-monotonic) logic
programming and Boolean grammars. We demonstrate that these two areas are quite close, and as a
result interesting ideas from one area appear to have interesting counterparts in the other one.
Negation in Logic Programming: We present a recent [RW05] purely model-theoretic characterization
of the semantics of logic programs with negation. The new semantics provides a logical basis for the
classical well-founded semantics of logic programs [vGRS91]. The proposed approach uses a truth
domain that has an uncountable linearly ordered set of truth values between False (the minimum element)
and True (the maximum), with a Zero element in the middle. Under the new semantics, every logic
program with negation has a unique minimum model which can be constructed as the least fixed point
of the immediate consequence operator of the program. The main benefits of the new construction is
that it provides a purely logical characterization of negation-as-failure and a better understanding of the
fixed-point semantics of non-monotonic logic programming.
Boolean Grammars: These new grammars [Okh04] extend the context-free ones by allowing conjunction
and negation in the right hand sides of rules. It has been demonstrated that Boolean grammars can be
parsed efficiently and that they can express interesting languages that are not context-free. Despite their
simplicity, Boolean grammars proved to be non-trivial from a semantic point of view. In particular, the
use of negation makes it difficult to define a simple derivation-style semantics (such as the familiar one
for context-free languages). We present the well-founded construction for Boolean grammars [KNR09],
which provides the first general solution to the problem of assigning a proper meaning to every Boolean
grammar. Our results indicate that many-valued formal language theory is the appropriate mathematical
machinery underlying Boolean grammars.
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Abstract

We give a model for Nakano’s typed lambda calculus with guarded recursive definitions in a
category of metric spaces. By proving a computational adequacy result that relates the interpretation
with the operational semantics, we show that the model can be used to reason about contextual
equivalence.

1 Introduction

Recent work in semantics of programming languages and program logics has suggested that there might
be a connection between metric spaces and Nakano’s typed lambda calculus with guarded recursive
definitions [8]. In this paper we show that is indeed the case by developing a model of Nakano’s calculus
in a category of metric spaces and by showing that the model is computationally adequate. The latter is
done with the use of a logical relation, whose existence is non-trivial because of the presence of recursive
types. We define the relation in a novel indexed way, inspired by step-indexed models for operational
semantics [2].

For space reasons, we can only briefly hint at some of the motivating applications in semantics:
In [4], Birkedal et al. gave a model of a programming language with recursive types, impredicative

polymorphism and general ML-style references. The model is a Kripke model, where the set of worlds is
a recursively defined metric space (with the recursion variable in negative position). A simplified variant
of the recursive equation can be formulated in a version of Nakano’s calculus.

Pottier [9] has recently suggested to use Nakano’s calculus as a calculus of kinds in an extension of Fω
with recursive kinds, which can serve as a target calculus for a store-passing translation of a language
with ML-style references. The model we present here can be extended to a model of Fω with recursive
kinds by indexing complete uniform per’s over metric spaces.

Hinze [6] has shown, in the context of Haskell streams, how the uniqueness of fixed points of con-
tractive functions in an operational setting can be used for verification. Nakano’s calculus can be used to
formalize such arguments, and in our model unique fixed points for contractive functions do exist.

For reasoning about imperative interactive programs, Krishnaswami et al. [7] related an efficient
imperative implementation to a simple model of functional reactive programming. In current unpublished
work by Krishnaswami on extending this to higher-order programs, metric spaces are being used to model
the functional reactive programs to capture that all uses of recursion are guarded. A logical relation is
used to relate the functional reactive programs and the imperative implementation thereof; that logical
relation is defined using ideas that seem similar to those we are using in our logical relation for the
adequacy proof in Section 3.

In the remainder of the paper, we present (our version of) Nakano’s calculus (Section 2), define the
denotational semantics and prove that it is computationally adequate (Section 3), briefly discuss some
closely related work (Section 4), and conclude with some comments about future work.

Luigi Santocanale (ed.): Fixed Points in Computer Science 2010, pp. 19-25
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Γ,x:τ ` x : τ Γ ` n : Int
Γ,x:τ ` t : σ

Γ ` λx:τ.t : τ → σ
Γ ` t1 : •n(τ → σ) Γ ` t2 : •nτ

Γ ` t1 t2 : •nσ

Γ ` t1 : τ1 Γ ` t2 : τ2

Γ ` (t1, t2) : τ1× τ2

Γ ` t : •n(τ1× τ2)

Γ ` proji(t) : •nτi

•Γ ` t : •τ
Γ ` t : τ

Γ ` t : •τi, j

Γ ` Ini, j(t) : tyi

Γ ` t : tyi Γ,x1:•τi,1 ` t1 : τ . . . Γ,xik :•τi,ki ` tki : τ
Γ ` case t of Ini,1(x1)⇒ t1 | . . . | Ini,ki(xki)⇒ tki : τ

Γ ` t : τ ` τ ≤ σ
Γ ` t : σ

Figure 1: Typing rules of Nakano’s lambda calculus

` τ ≤ σ
` •τ ≤ •σ

` τ ′ ≤ τ ` σ ≤ σ ′

` τ → σ ≤ τ ′→ σ ′
` τ ≤ τ ′ ` σ ≤ σ ′

` τ×σ ≤ τ ′×σ ′ ` τ ≤ •τ

` τ → σ ≤ •τ →•σ ` •τ →•σ ≤ •(τ → σ) ` τ×σ ≤ •τ×•σ ` •τ×•σ ≤ •(τ×σ)

Figure 2: Subtyping

2 Nakano’s Lambda Calculus

In this section we recall the typed lambda calculus of Nakano [8]. It allows certain forms of guarded
recursive definitions, and tracks guardedness via a modality in the type system. We shall show that this
modality can be understood semantically as a scaling operation of the distances in a metric space.

The precise language considered below differs from that presented by Nakano in [8] in that we
assume a fixed number of “global” (possibly mutually recursive) datatype declarations. In contrast,
Nakano includes equi-recursive types of the form µX .A (subject to some well-formedness conditions
that ensure formal contractiveness, and a type equivalence relation).

Syntax and typing. We assume that there is a fixed number of type identifiers ty1, . . . , tyn, each as-
sociated with a recursive data type equation in the style of Haskell or ML that specifies constructors
Ini,1, . . . , Ini,ki :

data tyi = Ini,1 of τi,1 | . . . | Ini,ki of τi,ki . (1)

The types τi,1, . . . ,τi,ki that appear on the right hand side of (1) are built up from ground types b (for sim-
plicity, we restrict ourselves to Int) and the identifiers ty1, . . . , tyn, using product and function space and
the unary type constructor ‘•’ (referred to as ‘later’ modality in recent work on step-indexed semantics
[3]). One concrete instance of (1) is a type of infinite sequences of τ’s: data seqτ = Cons of τ × seqτ .
In general, these declarations need not be monotone, however, and the identifiers tyi may also appear in
negative positions. For instance, Nakano [8, Ex. 1] considers the type data u = Fold of u→ τ . With this
type, the fixed point combinator Y from untyped lambda calculus has type (•τ → τ)→ τ; thus, it is not
necessary to include a primitive for recursion.

Terms and their types are given in Figure 1. The type system uses the subtyping relation defined in
Figure 2 (omitting the reflexivity and transitivity rules). Intuitively, the type •τ may be understood as
the set of values of type τ that need to be guarded by a constructor. This intuition explains the two rules
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for typing constructor applications and pattern matching in Figure 1: The application of a constructor
lets one remove the outermost modal operator, and it also folds the recursive type. Conversely, the case
construct removes a constructor, and the typing rule records this fact by applying the modality to the
type of the bound variables. The typing rules for function application and component projections are
also generalized to take care of the modal operator. We write Tm(τ) for the set of closed terms of type τ .

Operational semantics and contextual equivalence. The operational semantics consists of the usual
(deterministic, call-by-name) reduction rules of lambda calculus with constructor types. One does not
reduce under constructors: every term of the form Ini, j(t) is a value. We take contextual equivalence as
our notion of program equivalence. Formally, we observe the values that terms yield when plugged into
closing, base-type valued contexts: Let us write `C : (Γ′ . τ ′)( (Γ . τ) for a context C if Γ `C[t] : τ
whenever Γ′ ` t : τ ′. Then t1 and t2 are contextually equivalent, written Γ ` t1 ' t2 : τ , if Γ ` t1 : τ and
Γ ` t2 : τ , and for all `C : (Γ. τ)( ( /0. Int) and n ∈ N, C[t1]

∗→ n ⇔ C[t2]
∗→ n.

3 Denotational Semantics

We give a denotational semantics of types and terms in the category of complete, 1-bounded ultrametric
spaces and non-expansive maps between them.

Ultrametric spaces. We briefly recall some basic definitions and results about metric spaces [10].
A 1-bounded ultrametric space (X ,d) is a metric space where the distance function d : X × X →
R takes values in the closed interval [0,1] and satisfies the “strong” triangle inequality d(x,y) ≤
max{d(x,z),d(z,y)}. A metric space is complete if every Cauchy sequence has a limit. Because of
the use of max in the above inequality, rather than ‘+’ as for the weaker triangle inequality of metric
spaces in general, a sequence (xn)n∈N in an ultrametric space (X ,d) is a Cauchy sequence if for every
ε > 0 there exists n ∈ N such that d(xk,xk+1)≤ ε for every k ≥ n.

A function f : X1→ X2 between metric spaces (X1,d1), (X2,d2) is non-expansive if d2( f (x), f (y))≤
d1(x,y) for all x,y ∈ X1. It is contractive if there exists some δ < 1 such that d2( f (x), f (y))≤ δ ·d1(x,y)
for all x,y ∈ X1. The complete, 1-bounded, non-empty, ultrametric spaces and non-expansive functions
between them form a Cartesian closed category CBUltne. Products are given by the set-theoretic product
where the distance is the maximum of the componentwise distances. The exponential (X1,d1)→ (X2,d2)
has the set of non-expansive functions from (X1,d1) to (X2,d2) as underlying set, and the distance func-
tion is given by dX1→X2( f ,g) = sup{d2( f (x),g(x)) | x ∈ X1}.

A functor F : (CBUltop
ne)

n×CBUltn
ne −→ CBUltne is locally non-expansive if d(F( f ,g),F( f ′,g′))≤

max{d( f1, f ′1),d(g1,g′1), . . . ,d( fn, f ′n),d(gn,g′n)} for all non-expansive f = ( f1, . . . , fn), f ′ = ( f ′1, . . . , f ′n),
g = (g1, . . . ,gn) and g′ = (g′1, . . .g

′
n). It is locally contractive if there exists some δ < 1 such that

d(F( f ,g),F( f ′,g′))≤ δ ·max{d( f1, f ′1),d(g1,g′1), . . . ,d( fn, f ′n),d(gn,g′n)}. Note that the factor δ is the
same for all hom-sets. By multiplication of the distances of (X ,d) with a non-negative shrinking factor
δ < 1, one obtains a new ultrametric space, δ · (X ,d) = (X ,d′) where d′(x,y) = δ ·d(x,y). By shrinking,
a locally non-expansive functor F yields a locally contractive functor (δ ·F)(X ,Y ) = δ · (F(X ,Y )).

It is well-known that one can solve recursive domain equations in CBUltne by an adaptation of the
inverse-limit method from classical domain theory:

Theorem 1 (America-Rutten [1]). Let Fi : (CBUltop
ne)

n×CBUltn
ne −→ CBUltne be locally contractive

functors for i = 1, . . . ,n. Then there exists a unique (up to isomorphism) X = (Xk,dk)k ∈ CBUltn
ne such

that (Xi,di)∼= Fi(X ,X) for all i.
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The metric spaces we consider below are bisected, meaning that all non-zero distances are of the
form 2−n for some natural number n≥ 0. When working with bisected metric spaces, the notation x n

= y
means that d(x,y)≤ 2−n. Each relation n

= is an equivalence relation because of the ultrametric inequality;
we are therefore justified in referring to the relation n

= as “n-equality.” Since the distance of a bisected
metric space is bounded by 1, the relation x 0

= y always holds. Moreover, the n-equalities become finer
as n increases, and x = y if x n

= y holds for all n. Finally, a function f : X1→ X2 between bisected metric
spaces is non-expansive iff x1

n
=x′1⇒ f (x1)

n
= f (x′1), and contractive iff x1

n
=x′1⇒ f (x1)

n+1
= f (x′1) for all n.

Denotational semantics of Nakano’s lambda calculus. We can now define the interpretation of types
and terms in CBUltne. More precisely, by induction on the type τ we define locally non-expansive
functors Fτ : (CBUltop

ne)
n×CBUltn

ne −→ CBUltne, by separating positive and negative occurrences of the
identifiers ty1, . . . , tyn in τ:

FInt(X ,Y ) = (Z,d), where d is the discrete metric

Ftyi
(X ,Y ) = Yi

Fτ1×τ2(X ,Y ) = Fτ1(X ,Y )×Fτ2(X ,Y )

Fτ1→τ2(X ,Y ) = Fτ1(Y,X)→ Fτ2(X ,Y )

F•τ(X ,Y ) = 1
2 ·Fτ(X ,Y )

Now consider the functors Fi : (CBUltop
ne)

n×CBUltn
ne −→ CBUltne for i = 1, . . . ,n, defined by

Fi(X ,Y ) = 1
2 ·Fτi,1(X ,Y )+ . . .+ 1

2 ·Fτi,ki
(X ,Y ) . (2)

Because of the shrinking factor 1/2 in (2), each Fi is in fact locally contractive. Theorem 1 therefore
gives a unique fixed point D with ιi : Fi(D,D)∼= Di for all i. We use D to give the semantics of types:

JτK def
= Fτ(D,D) .

Example 2 (Interpretation of streams). On streams, the semantics yields the “natural” metric. In fact,
since JseqτK∼= 1

2 · (JτK× JseqτK) we have

dJseqτK(s1s2 . . . , s′1s′2 . . .)≤ 2−n ⇔ dJτK(s1,s′1)≤ 2−(n−1) ∧ dJseqτK(s2s3 . . . , s′2s′3 . . .)≤ 2−(n−1) .

In particular, because of the discrete metric on JIntK, for seqInt this means s n
= s′ holds if s1 =

s′1, . . . ,sn−1 = s′n−1, i.e., if the common prefix of s and s′ has at least length n−1, and s = s′ if si = s′i for
all i ∈ N.

For each subtyping derivation ∆ of a judgement ` τ ≤σ we define a corresponding coercion function,
i.e., a non-expansive function J∆K : JτK→ JσK. First note that, for each of the 5 subtyping axioms ` τ ≤σ
in Figure 2 (as well as the reflexivity axiom), the underlying sets of JτK and JσK are equal. Thus we can
define J∆K as the identity on the underlying sets, and it is easy to check that ∆ is in fact non-expansive.1

If ∆ is obtained from ∆1 and ∆2 by an application of the transitivity rule, then J∆K is defined as the
composition of J∆1K and J∆2K. Finally, for each of the 3 structural rules in Figure 2, we use the functorial
property of the respective type constructor to define J∆K from the coercions of the subderivations. It
follows by induction that the coercion determined from any derivation ∆ of ` τ ≤ σ is the identity on the
underlying set of JτK, and hence independent of ∆.

1Note however that even though the underlying sets are the same, the inclusion of J•(τ → σ)K into J•τ →•σK fails to be
non-expansive. Thus we cannot have •(τ → σ) 6≤ •τ →•σ in general.
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Each term x1:τ1, . . . ,xn:τn ` t : τ denotes a non-expansive function

JtK : Jτ1K× . . .× JτnK→ JτK

which is defined by induction on the typing derivation. The cases of lambda abstraction, application,
pairing and projections are given in terms of the cartesian closed structure on CBUltne. From the def-
inition of the type interpretation it follows that ιi is an isomorphism between 1

2 · Jτi,1K+ . . .+ 1
2 · Jτi,kiK

and JtyiK. Together with the injections from J•τi, jK = 1
2 · Jτi, jK into the sum, this isomorphism is used to

interpret the constructors and pattern matching of the calculus:

JIni, j(t)K(~a) = (ιi ◦ in j ◦JtK)(~a) and Jcase t of Ini,1(x1)⇒ t1 | . . . | Ini,ki(xki)⇒ tkiK(~a) = Jt jK(~a,a)

where ι−1
i (JtK(~a)) = in j(a) for some 1≤ j ≤ ki and a ∈ Jτi, jK. We obtain a model that is sound:

Theorem 3 (Soundness). If /0 ` t : τ and t1→ t2 then Jt1K = Jt2K in JτK.

Remark 4 (Recursive definitions). In [8] Nakano shows that the fixed point combinator Y from untyped
lambda calculus can be represented by λ f .∆ f (Fold(∆ f )) where ∆ f = λx. f (case x of Fold(y)⇒ yx) and
the data type data u = Fold of u→ τ is assumed, and that this term has type (•τ → τ)→ τ . Note that
in the above interpretation, where the modality is interpreted by scaling the distances by 1/2, the type
•τ→ τ denotes the set of all non-expansive functions 1

2 · JτK→ JτK, or equivalently (by the bisectedness
of JτK) the contractive functions on JτK. Such functions have a unique fixed point in JτK by the Banach
fixed point theorem, and we can show that Y indeed returns this fixed point since f (JY K f ) = JY K f .

As an alternative to this coding, we could introduce a recursion operator rec : (•τ→ τ)→ τ for each
τ as a primitive, with reduction rule rec t→ t (rec t), and use the above observation for its interpretation.

Computational adequacy. We now relate the interpretation of lambda terms in the metric model and
their operational behaviour. In particular, we prove that the semantics is sound for reasoning about
contextual equivalence: if two terms have the same denotation then they are contextually equivalent.

The general idea of the adequacy proof is standard: the universal quantification over contexts prevents
a direct inductive proof, so we use the compositionality of the denotational semantics and construct a
(Kripke) logical relation between semantics and syntax. More precisely, we consider the family (Rk

τ)
k
τ of

relations indexed by types τ and natural numbers k, where Rk
τ ⊆ JτK×Tm(τ) is given by:

n Rk
Int t ⇔ t ∗→ n

(a1,a2) Rk
τ1×τ2

t ⇔ a1 Rk
τ1

proj1(t) ∧ a2 Rk
τ2

proj2(t)

f Rk
τ1→τ2

t ⇔ ∀ j,a1, t1. j ≤ k ∧ a1 R j
τ1 t1 ⇒ f a1 R j

τ2 t t1

a Rk
•τ t ⇔ k > 0 ⇒ a Rk−1

τ t

a Rk
tyi

t ⇔ ∃a′, t ′. a = (ιi ◦ in j)(a′) ∧ t ∗→ Ini, j(t ′) ∧ a′ Rk
•τi, j

t ′

Note that it is the natural number index which lets us define the relations Rk
τ inductively in the presence

of recursive types tyi. We prove the ‘fundamental property’ by induction on typing derivations:

Proposition 5. If Γ ` t : τ , k ∈ N, and ai Rk
τi

ti for all xi:τi in Γ, then JtK(~a) Rk
τ t[~x:=~t].

Proof sketch. By induction on the derivation of Γ ` t : τ . The proof uses the closure of the relations under
the operational semantics, the downwards closure (Kripke monotonicity) in k, and the closure under the
coercions determined by the subtyping relation.
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Now adequacy is easily proved. In fact, given Γ ` t1 : τ , Γ ` t2 : τ and ` C : (Γ . τ) ( ( /0 . Int),
and C[t1]

∗→ n for some n ∈ N, then JC[t2]K = JC[t1]K = n follows from the assumption Jt1K = Jt2K and
Theorem 3. By Proposition 5, JC[t2]K Rk

Int C[t2], and therefore n Rk
Int C[t2] holds. But by definition this

means C[t2]
∗→ n, and with a symmetric argument the claim Jt1K = Jt2K ⇒ Γ ` t1 ' t2 : τ follows.

Apart from using the semantics directly to reason about contextual equivalence, we can also use com-
putational adequacy to derive more abstract proof principles from it. For instance, by the characterization
of the metric on seqInt given in Example 2 and the fact that there are closed terms getn : seqInt→ •n Int
that yield the n-th element of a sequence, we obtain a variant of Bird and Wadler’s take lemma: if getn t1
and getn t2 reduce to the same value, for each n ∈ N, then /0 ` t1 ' t2 : seqInt. Similarly, we can exploit
the uniqueness of fixed points of contractive equations also in the operational setting: if there exists a
closed term f : •τ → τ such that f t1 and t1 are convertible, and also f t2 and t2 are convertible, then
/0 ` t1 ' t2 : τ . See, for instance, Hinze’s article [6] for numerous applications of such a unique fixed
point principle phrased in the context of Haskell streams, and Pottier’s work [9] for a similar application
to establish type equivalences in the context of Fω with recursive kinds.

4 Related Work

Metric semantics of PCF. Escardó [5] presents a metric model of PCF. One can, almost,2 factor his
interpretation of PCF into two parts: (1) a syntactic translation from PCF to Nakano’s calculus, extended
with constants for integer operations and a booleans, and (2) the metric interpretation of Nakano’s calcu-
lus presented here. The basic idea of the syntactic translation is that a potentially divergent PCF term of
integer type is translated into a term of the recursive type Ints = Done of Int | Next of Ints. After evaluat-
ing such a term, one either obtains an actual integer answer, Done(n), or a new term that one can evaluate
in the hope of eventually getting an integer answer. PCF function types are translated to function types.

Now, for all types τ that are used to interpret PCF types, one defines a term delay : •τ→ τ; this term
is used to define the fixed-point combinator of PCF in terms of the fixed-point combinator of our calculus
(Remark 4). See Escardó for more details. Intuitively, the idea is that unfolding a recursive definition
takes a “computation step,” which will be visible as an extra Next in the final answer of type Ints. Escardó
shows an adequacy result which implies that the semantics of a PCF term does indeed match the number
of unfoldings of the fixed-point combinator; the same information can be obtained from our adequacy
proof using the definition of the logical relation on recursive types. Escardó gives two adequacy proofs,
the first of which uses a Kripke logical relation as in our adequacy proof.

Since Escardó considers PCF, he does not treat recursively defined types, as we do here.

5 Conclusion and Future Work

We have presented a computationally adequate metric model of lambda calculus with guarded recursion.
It complements Nakano’s realizability interpretations [8], and it explains the modality in terms of scaling.

We conjecture that an adaptation of the present model can be used to give a model for focusing proof
systems with recursive types [11].

2Due to the syntactic restrictions on recursive types in our variant of Nakano’s calculus, the metrics on PCF ground types (and
hence on all types) differ slightly in our model and Escardó’s model.
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Abstract

Frame and anti-frame rules have been proposed as proof rules for modular reasoning about pro-
grams. Frame rules allow one to hide irrelevant parts of the state during verification, whereas the
anti-frame rule allows one to hide local state from the context. We give a possible worlds seman-
tics for Charguéraud and Pottier’s type and capability system including frame and anti-frame rules,
based on the operational semantics and step-indexed heap relations. The worlds are constructed as
a recursively defined predicate on a recursively defined metric space, which provides a considerably
simpler alternative compared to a previous construction.

1 Introduction

Reasoning about higher-order stateful programs is notoriously difficult, and often involves the need to
track aliasing information. A particular line of work that addresses this point are substructural type
systems with regions, capabilities and singleton types [1, 7, 8]. In this context, Pottier [9] presented the
anti-frame rule as a proof rule for hiding local state. It states that (the description of) a piece of mutable
state that is local to a procedure can be removed from the procedure’s external interface (expressed in
the type system). The benefits of hiding local state include simpler interface specifications, simpler
reasoning about client code, and fewer restrictions on the procedure’s use because of potential aliasing.
Thus, in combination with frame rules that allow the irrelevant parts of the state to be hidden during
verification, the anti-frame rule provides an important ingredient for modular reasoning about programs.

Soundness of the frame and anti-frame rules is subtle, and relies on properties of the programming
language. Pottier [9] sketched a proof for the anti-frame rule by a progress and preservation argument,
resting on assumptions about the existence of certain recursively defined types. Subsequently, Schwing-
hammer et al. [12] investigated the semantic foundations of the anti-frame rule by identifying sufficient
conditions for its soundness, and by instantiating their general setup to prove soundness for a separation
logic variant of the rule. The latter was done by giving a Kripke model where assertions are indexed over
recursively defined worlds. The recursive domain equation involved functions that should be monotonic
with respect to an order relation that is specified using the isomorphism of the solution itself and an op-
erator on the recursively defined worlds. This means that the standard existence theorems do not appear
to apply, and thence we had to give the solution by a laborious explicit inverse-limit construction [12].

Here we explore an alternative approach, which consists of two steps. First, we consider a recursive
metric space domain equation without any monotonicity requirement, for which we obtain a solution by
appealing to a standard existence theorem. Second, we carve out a suitable subset of what might be called
hereditarily monotonic functions. We show how to define this recursively specified subset. The resulting
subset of monotonic functions is, however, not a solution to the original recursive domain equation; hence
we verify that the semantic constructions used to justify the anti-frame rule in [12] suitably restrict to the
recursively defined subset of hereditarily monotonic functions. In summa, this results in a considerably
simpler model construction than the earlier one in loc. cit.

Luigi Santocanale (ed.): Fixed Points in Computer Science 2010, pp. 27-33
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In the next section we give a brief overview of Charguéraud and Pottier’s type and capability system
[7, 9] with higher-order frame and anti-frame rules. Section 3 summarizes some background on ultramet-
ric spaces and presents the construction of a set of hereditarily monotonic recursive worlds. Following
recent work by Birkedal et al. [4], we work with step-indexed heap relations based on the operational se-
mantics of the calculus. The worlds thus constructed are then used (Section 4) to give a model of the type
and capability system. For space reasons, many details are relegated to an online technical appendix.

2 A Calculus of Capabilities

Syntax and operational semantics. We consider a standard call-by-value, higher-order language with
general references, sum and product types, and polymorphic and recursive types. For concreteness, the
following grammar gives the syntax of values and expressions, keeping close to the notation of [7, 9]:

v ::= x | () | inji v | (v1,v2) | fun f (x)=t | l t ::= v | (vt) | case(v1,v2,v) | proji v | ref v | getv | setv

Here, the term fun f (x)=t stands for the recursive procedure f with body t. The operational semantics is
given by a relation (t |h) 7−→ (t ′ |h′) between configurations that consist of a (closed) expression t and a
heap h. We take a heap h to be a finite map from locations l to closed values, we use the notation h#h′ to
indicate that two heaps h,h′ have disjoint domains, and we write h · h′ for the union of two such heaps.
By Val we denote the set of closed values.

Types. Charguéraud and Pottier’s type system uses capabilities, value types, and memory types. A
capability C describes a heap property, much like the assertions of a Hoare-style program logic. For
instance, {σ : ref int} asserts that σ is a valid location that contains an integer value. More complex
assertions can be built by separating conjunctions C1 ∗C2 and universal and existential quantification
over names σ . Value types τ classify values; they include base types, singleton types [σ ], and are
closed under products, sums, and universal quantification. Memory types χ,θ describe the result of
computations. They extend the value types by a type of references, and also include all types of the form
∃~σ .τ ∗C which describe the final value and heap that result from the evaluation of an expression. Arrow
types (which are value types) have the form χ1 → χ2 and thus, like the pre- and post-conditions of a
triple in Hoare logic, make explicit which part of the heap is accessed and modified when a procedure is
called. We also allow recursive capabilities, value types, and memory types, resp., provided the recursive
definition is (formally) contractive, i.e., the recursion must go through a type constructor such as→.

Frame and anti-frame rules. Each of the syntactic categories is equipped with an invariant extension
operation, ·⊗C. Intuitively, this operation conjoins C to the domain and codomain of every arrow type
that occurs within its left hand argument, which means that the capability C is preserved by all procedures
of this type. This intuition is made precise by regarding capabilities and types modulo a structural
equivalence which subsumes the “distribution axioms” for ⊗ that are used to express generic higher-
order frame rules [6]. Two key cases of the structural equivalence are the distribution axioms for arrow
types, (χ1 → χ2)⊗C = (χ1⊗C ∗C)→ (χ2⊗C ∗C), and for successive extensions, (χ ⊗C1)⊗C2 =
χ⊗ (C1 ◦C2) where the derived operation C1 ◦C2 abbreviates the conjunction (C1⊗C2)∗C2.

There are two typing judgements, x1:τ1, . . . ,xn:τn ` v : τ for values, and x1:χ1, . . . ,xn:χn  t : χ for
expressions. The latter is similar to a Hoare triple where (the separating conjunction of) χ1, . . . ,χn serves
as a precondition and χ as a postcondition. This view provides some intuition for the following “shallow”
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and “deep” frame rules, and for the (roughly dual) anti-frame rule:

[SF]
Γ  t : χ

Γ∗C  t : χ ∗C
[DF]

Γ  t : χ
(Γ⊗C)∗C  t : (χ⊗C)∗C

[AF]
Γ⊗C  t : (χ⊗C)∗C

Γ  t : χ
(1)

As in separation logic, the frame rules can be used to add a capability C (which might assert the existence
of an integer reference, say) as an invariant to a specification Γ t : χ , which is useful for local reasoning.
The difference between the shallow variant [SF] and the deep variant [DF] is that the former adds C only
on the top-level, whereas the latter also extends all arrow types nested inside Γ and χ , via ·⊗C. While
the frame rules can be used to reason about certain forms of information hiding [6], the anti-frame rule
expresses a hiding principle more directly: the capability C can be removed from the specification if C is
an invariant that is established by t, expressed by · ∗C, and guaranteed to hold whenever control passes
from t to the context and back, expressed by ·⊗C.

3 Hereditarily Monotonic Recursive Worlds

Intuitively, capabilities describe heaps. A key idea of the model that we present next is that capabilities
(as well as types and type contexts) are parameterized by invariants – this will make it easy to interpret
the invariant extension operation ⊗, as in [11, 12]. But, as the frame and anti-frame rules in (1) indicate,
invariants can be arbitrary capabilities again. Thus, we are led to consider a Kripke model where the
worlds are recursively defined: to a first approximation, we need a solution to the equation

W = W → Pred(Heap) . (2)

In fact, we will also need to consider a preorder on W and ensure that the interpretation of capabilities
and types is monotonic. We will find a solution to a suitable variant of (2) using ultrametric spaces.

Ultrametric spaces. We recall some basic definitions and results about ultrametric spaces; for a less
condensed introduction to ultrametric spaces we refer to [13]. A 1-bounded ultrametric space (X ,d) is
a metric space where the distance function d : X ×X → R takes values in the closed interval [0,1] and
satisfies the “strong” triangle inequality d(x,y) ≤ max{d(x,z),d(z,y)}. A metric space is complete if
every Cauchy sequence has a limit. A function f : X1→ X2 between metric spaces (X1,d1), (X2,d2) is
non-expansive if d2( f (x), f (y))≤ d1(x,y) for all x,y∈X1. It is contractive if there exists some δ < 1 such
that d2( f (x), f (y))≤ δ ·d1(x,y) for all x,y ∈ X1. By multiplication of the distances of (X ,d) with a non-
negative factor δ < 1, one obtains a new ultrametric space, δ ·(X ,d) = (X ,d′) where d′(x,y) = δ ·d(x,y).

The complete, 1-bounded, non-empty, ultrametric spaces and non-expansive functions between them
form a Cartesian closed category CBUltne. Products are given by the set-theoretic product where the
distance is the maximum of the componentwise distances. The exponential (X1,d1)→ (X2,d2) has the
set of non-expansive functions from (X1,d1) to (X2,d2) as underlying set, and the distance function is
given by dX1→X2( f ,g) = sup{d2( f (x),g(x)) | x ∈ X1}.

The notation x n
= y means that d(x,y) ≤ 2−n. Each relation n

= is an equivalence relation because of
the ultrametric inequality; we refer to the relation n

= as “n-equality.” Since the distances are bounded by
1, x 0

= y always holds, and the n-equalities become finer as n increases. If x n
= y holds for all n then x = y.

Uniform predicates, worlds and world extension. Let (A,v) be a partially ordered set. An upwards
closed, uniform predicate on A is a subset p ⊆ N×A that is downwards closed in the first and upwards
closed in the second component: if (k,a) ∈ p, j ≤ k and a v b, then ( j,b) ∈ p. We write UPred(A) for
the set of all upwards closed, uniform predicates on A, and we define p[k] = {( j,a) | j < k}. Note that
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p[k] ∈ UPred(A). We equip UPred(A) with the distance function d(p,q) = inf{2−n | p[n] = q[n]}, which
makes (UPred(A),d) an object of CBUltne.

In our model, we use UPred(A) with the following concrete instances for the partial order (A,v):
(1) heaps (Heap,v), where hv h′ iff h′ = h ·h0 for some h0#h, (2) values (Val,v), where uv v iff u = v,
and (3) stateful values (Val×Heap,v), where (u,h)v (v,h′) iff u = v and hv h′. We also use variants of
the latter two instances where the set Val is replaced by the set of value substitutions, Env, and by the set
of closed expressions, Exp. On UPred(Heap), ordered by subset inclusion, we have a complete Heyting
BI algebra structure [3]. Below we only need the separating conjunction and its unit I, given by

p1 ∗ p2 = {(k,h) | ∃h1,h2. h = h1·h2 ∧ (k,h1) ∈ p1∧ (k,h2) ∈ p2} and I = N×Heap .

It is well-known that one can solve recursive domain equations in CBUltne by an adaptation of the
inverse-limit method from classical domain theory [2]. In particular, with regard to (2) above:

Theorem 1. There exists a unique (up to isomorphism) (X ,d)∈CBUltne s.t. ι : 1
2 ·X→UPred(Heap)∼=X.

Using the pointwise lifting of separating conjunction to 1/2·X→UPred(Heap) we define a composi-
tion operation on X , which reflects the syntactic abbreviation C1 ◦C2 =C1⊗C2 ∗C2 of conjoining C1 and
C2 and additionally applying an invariant extension to C1. Formally, ◦ : X ×X → X is a non-expansive
operation that for all p,q,x ∈ X satisfies

ι−1(p◦q)(x) = ι−1(p)(q◦ x) ∗ ι−1(q)(x) ,

and which can be defined by an easy application of Banach’s fixed point theorem as in [11]. One can show
that this operation is associative and has a left and right unit given by emp = ι(λw.I); thus (X ,◦,emp)
is a monoid in CBUltne. Using ◦ we define an extension operation ⊗ : Y (1/2·X)×X → Y (1/2·X) for any
Y ∈ CBUltne by ( f ⊗x)(x′) = f (x◦x′). Without going into details, let us remark that this operation is the
semantic counterpart to the syntactic invariant extension, and thus plays a key role in explaining the frame
and anti-frame rules. However, for Pottier’s anti-frame rule we also need to ensure that specifications are
not invalidated by invariant extension. This requirement is stated via monotonicity, as we discuss next.

Relations on ultrametric spaces and hereditarily monotonic worlds. As a conseqence of the fact
that ◦ defines a monoid structure on X there is an induced preorder on X :

xv y ⇔ ∃x0. y = x◦ x0 .

For modelling the anti-frame rule, we aim for a set of worlds similar to X ∼= 1/2 ·X →UPred(Heap) but
where the function space consists of the non-expansive functions that are additionally monotonic, with
respect to the order induced by ◦ on X and with respect to set inclusion on UPred(Heap):

(W,v) ∼= 1
2 · (W,v)→mon (UAdm,⊆) . (3)

Because the definition of the orderv (induced by ◦) already uses the isomorphism between left-hand and
right-hand side, and because the right-hand side depends on the order for the monotonic function space,
the standard existence theorems for solutions of recursive domain equations do not appear to apply to (3).
Previously we have constructed a solution to this equation explicitly as inverse limit of a suitable chain
of approximations [12]. We show in the following that we can alternatively carve out from X a suitable
subset of what we call hereditarily monotonic functions. This subset needs to be defined recursively.

Let R be the collection of all non-empty and closed relations R⊆ X . Given R ∈R, we define

R[n]
def
= {y | ∃x ∈ X . x n

= y ∧ x ∈ R} .
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Thus, R[n] is the set of all points within distance 2−n of R. Note that R[n] ∈R. In fact, R ⊆ R[n] by the
reflexivity of n-equivalence, and if (yk)k∈N is a sequence in R[n] with limit y then d(yk,y)≤ 2−n for some
k, i.e., yk

n
= y. So there exists x ∈ X with x ∈ R and x n

= yk, and hence x n
= y which gives limn yn ∈ R[n].

We make some further observations that follow from the properties of n-equality on X . First, R⊆ S
implies R[n] ⊆ S[n] for any R,S ∈R. Moreover, using the fact that the n-equalities become increasingly
finer it follows that (R[m])[n] = R[min(m,n)] for all m,n ∈N, so in particular each (·)[n] is a closure operation
on R. As a consequence, we have R⊆ . . .⊆ R[n] ⊆ . . .⊆ R[1] ⊆ R[0]. By the 1-boundedness of X , R[0] = X
for all R ∈R. Finally, R = S if and only if R[n] = S[n] for all n ∈ N.

Proposition 2. Let d : R×R→R be defined by d(R,S) = inf{2−n | R[n] = S[n]}. Then (R,d) is a com-
plete, 1-bounded, non-empty ultrametric space. The limit of a Cauchy chain (Rn)n∈N with d(Rn,Rn+1)≤
2−n is given by

⋂
n(Rn)[n], and in particular R =

⋂
n R[n] for any R ∈R.

We will now define the set of hereditarily monotonic functions W as a recursive predicate on X . Let
the function Φ on subsets of X be given by Φ(R) = {ι(p) | ∀x,x0 ∈ R. p(x)⊆ p(x◦ x0)}. If R ∈R then
Φ(R) is non-empty and closed (i.e., Φ restricts to a function on R), and Φ is contractive. By Proposition 2
and the Banach theorem we can now define W as the (uniquely determined) fixed point of Φ and obtain

w ∈W ⇔ ∃p. w = ι(p) ∧ ∀w,w0 ∈W. p(w)⊆ p(w◦w0) .

Note that W thus constructed does not quite satisfy (3). We do not have an isomorphism between W and
the non-expansive and monotonic functions from W (viewed as an ultrametric space itself), but rather
between W and all functions from X that restrict to monotonic functions whenever applied to hereditarily
monotonic arguments. Keeping this in mind, we abuse notation and write

1
2 ·W →mon UPred(A) def

= {p : 1
2 ·X → UPred(A) | ∀w1,w2 ∈W. p(w1)⊆ p(w1 ◦w2)} .

Then, for our particular application of interest, we also have to ensure that all the operations restrict
appropriately. First, by induction we show that for all n ∈ N, if w1,w2 ∈W then w1 ◦w2 ∈W[n], and this
entails that the composition operation ◦ restricts to W . In turn, this means that the ⊗ operator restricts
accordingly: if w ∈W and p is in 1

2 ·W →mon UPred(A) then so is p⊗w.

4 Possible World Semantics of Capabilities

We define semantic domains for the capabilities and types of the calculus described in Section 2,

Cap = 1
2 ·W →mon UPred(Heap)

VT = 1
2 ·W →mon UPred(Val)

MT = 1
2 ·W →mon UPred(Val×Heap) ,

so that p ∈ Cap if and only if ι(p) ∈ W. Next, we define operations on the semantic domains that
correspond to the syntactic type and capability constructors. The most interesting of these is the one for
arrow types. Given p,q ∈ 1/2 ·X → UPred(Val×Heap), p→ q in 1

2 ·X → UPred(Val) is defined by

(p→ q)(x) def
= {(k, fun f (y)=t) | ∀ j < k. ∀w∈W. ∀r∈UPred(Heap).

∀( j,(v,h)) ∈ p(x◦w)∗ ι−1(x◦w)(emp)∗r.

( j,(t[ f :=fun f (y)=t,y:=v],h)) ∈ E (q)(x◦w)∗r} ,
(4)
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where E (q) is the extension of a world-indexed, uniform predicate on Val×Heap to one on Exp×Heap.
It is here where the index is linked to the operational semantics: (k,(t,h))∈ E (q)(x) iff for all j≤ k, t ′,h′,

(t |h) 7−→ j (t ′ |h′) ∧ (t ′ |h′) irreducible ⇒ (k− j,(t ′,h′)) ∈ ⋃
w′∈W q(x ◦w′) ∗ ι−1(x◦w′)(emp) .

Definition (4) realizes the key ideas of our model as follows. First, the universal quantification over
w ∈W and subsequent use of the world x ◦w builds in monotonicity, and intuitively means that p→ q
is parametric in (and hence preserves) invariants that have been added by the procedure’s context. In
particular, (4) states that procedure application preserves this invariant, when viewed as the predicate
ι−1(x◦w)(emp). By also conjoining r as an invariant we “bake in” the first-order frame property, which
results in a subtyping axiom χ1→ χ2 ≤ χ1 ∗C→ χ2 ∗C in the type system. The existential quantification
over w′, in the definition of E , allows us to absorb a part of the local heap description into the world.
Finally, the quantification over indices j < k in (4) achieves that (p→ q)(x) is uniform. There are two
explanations why we require that j be strictly less than k. Technically, the use of ι−1(x ◦w) in the
definition “undoes” the scaling by 1/2, and j < k is needed to ensure the non-expansiveness of p→ q
as a function 1/2 ·X →UPred(Val). Moreover, it lets us prove the typing rule for recursive functions by
induction on k. Intuitively, the use of j < k for the arguments suffices since application consumes a step.

All these constructors restrict to Cap,VT and MT, respectively. With their help it becomes straight-
forward to define the interpretation of capabilities and types, and to verify that the type equivalences hold
with respect to this interpretation. The semantics of typing judgements is defined in analogy to (4), but
also universally quantifying over worlds and indices, and it validates the typing rules of the calculus.

5 Conclusion and Future Work

To justify proof rules that take advantage of hidden state, like the frame and anti-frame rules, one needs
semantic models that adequately capture this aspect of programming languages. In this paper, we have
described the construction of a suitable possible worlds model where the worlds are given by a recur-
sively defined predicate on a recursively defined metric space. In contrast to a similar model [12] which
involved a tedious explicit inverse-limit construction, the present approach uses standard existence and
fixed point theorems. We believe that this method provides a realistic approach to study frame and anti-
frame rules in the presence of other programming language features, and to investigate the soundness of
generalizations of these rules that have recently proposed by Pottier [10].
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Abstract

We investigate how fast modal µ formulae may reach their fixpoints. We show a way how to
construct for each ordinal number α less than ω2, a formula which reaches its fixpoint in α steps.
Our approach is based on fuses i.e. finite one–way counters, which allow us to control the number of
uses of 2 while iterating our formulae.

1 Basic notions

Researchers of the modal µ calculus were widely investigating classes of formulae which reach their
fixpoints relatively fast, that is in a finite number of steps (bounded formulae) or in no more than ω
steps (constructive formulae). Some interesting remarks about those classes of formulae can be found in
Gaëlle Fontaine’s paper [1]. In this paper we analize how fast, in general, may modal µ formulae reach
their least fixpoints.

Along this paper we work with the following definition.

Definition 1. We say that a modal µ formula reaches its fixpoint in α steps in a variable x if and only if
α is the least ordinal such that for all models M and all valuations τ , ϕα+1

M ,τ (∅) = ϕα
M ,τ(∅) holds. We

will denote this fact by Ox(ϕ) = α .

Our investigation is motivated by a question asked by Damian Niwiński whether there exists a for-
mula which reaches its fixpoint in ω + 1 steps and, in a broader sense, whether it is possible to control
the number of interations of formulae above ω . As a response for this question Mikołaj Bojańczyk con-
jectured that the formula (3x∧2p1∧ p1)∨ (2x∧2p1∧¬p1)∨2⊥ reaches its fixpoint in exactly ω +1
steps. We prove this conjecture is true and make an observation on the sense of appearances of proposi-
tional variable p1 in this formula. This consideration lets us to think of p1 as a fuse, which melts while 2
is used, and which prohibits adding new points afterwards. Adding more fuses allows us to pass through
more limit ordinals. Those propositional variables may be considered also as a finite one–way counter
which, however, increases its size linearly1 – in the sense of length of the formula – while increasing
its capacity. Therefore our approach can not be extended to a construction of formulae fixing at ω2 or
further.

Now we recall some basic notions. The syntax of modal µ calculus is an extension of modal logic
with the construction µx.ϕ bounding an individual variable x, that can be applied to formulae in which
every occurrence of x is in range of a positive number of negations. Semantics for this construction is the
following: Jµx.ϕKM ,τ =

⋂{A⊆ |M | : JϕKM ,τ[x:=A] ⊆ A}. One can observe that this, indeed, is the least
fixpoint of the map ϕ : P(|M |)→P(|M |) such that ϕ(A) = JϕKM ,τ[x:=A]. We will omit subscripts, if
it is clear from the context, which model and valuation we work with.

It is easy to see that to some formulae ϕ we can not assign any ordinal number α such that Ox(ϕ)=α .
It means that there are arbitrary large ordinal numbers α and models in which those formulae reach their

Luigi Santocanale (ed.): Fixed Points in Computer Science 2010, pp. 35-39
1This can be improved to a logarithmic growth, but with a drawback on clearness of the reasoning, thus we will work with the
linear fuses.
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fixpoints in more than α steps. Certainly the easiest example of such a formula is 2x. There is a folklore
way of assigning the tree to an ordinal number. To 0 we assign just one point – the root of the tree. For
a successor α + 1 we add to the preexisting tree for α one more point, which is to be a new root, and
attach to it simply the previous one. For a limit ordinal λ we also take a new point, which is to be a new
root, but we attach to it all the roots of the trees constructed before i.e. for α < λ . A straightforward
transfinite induction argument leads us to conclusion that the formula 2x reaches its fixpoint in a model
assigned to λ in exactly λ +1 steps, for every limit ordinal λ . Therefore there is no ordinal that bounds
the number of iterations of 2x in every model – we denote it by Ox(2x) = ∞.

Before proceeding to the infinite case we introduce easy examples of formulae reaching their fix-
points in finite numbers of steps.

For n ∈ ω let us consider formulae ϕn = 2x∧2n+1⊥. Note that for k ≤ l there is 2k⊥ ∧ 2l⊥ ≡
2k(2l−k⊥ ∧ ⊥)≡2k⊥ and 2k⊥ ∨ 2l⊥ ≡2l⊥. Therefore, for each n ∈ ω , every model and valuation
ϕn+1

n (∅) = J∨n+1
i=0 (2

i+1⊥ ∧ 2n+1⊥)K = J2n+1⊥ ∧∨n+1
i=0 2i+1⊥K = J2n+1⊥ ∧2n+2⊥K = J2n+1⊥K =

ϕn
n (∅). This gives us the upper bound for the number of iterations needed by ϕn to reach its fixpoint.

To prove that it is also the lower bound, consider the trees assigned to finite ordinals from previous
paragraph.

2 Fuses – controlling the number of interations

Let us introduce sets of fuses: for n > 0 and 0 ≤ i ≤ n let Cn
i = ¬p1 ∧ ·· · ∧¬pi ∧ pi+1 ∧ ·· · ∧ pn. One

can treat Cn
i as different colors as it is obvious that for every n > 0 if i 6= j, then Cn

i ∧Cn
j ≡ ⊥. We now

proceed to the general construction2 of formulae reaching their fixpoints in α steps for ω ≤ α < ω2.

ψω·n =
n−1∨

i=0

(3x∧Cn
i ∧2Cn

i )∨
n−2∨

i=0

(2x∧Cn
i+1∧2Cn

i ),

ψω·n+m = ψω·n∨
m−1∨

i=0

(2x∧
i∧

j=0

2 jCn
n ∧2i+1Cn

n−1),

ϕω·n+m = ψω·n+m∨2⊥ .

Note that ϕω+1 is exactly the formula which, according to Mikołaj Bojańczyk’s conjecture, reaches
its fixpoint in ω +1 steps. We now show the key lemma of the paper.

Lemma 1. Let k > 0, α , β such that ω · k ≤ α, β < ω2, let M = (M,R,V ) be a model and let τ be a
valuation. Then for every a ∈M, if a |= pk and a ∈ ϕβ

α (∅), then a ∈ ϕω·k
α (∅).

Proof. Fix M = (M,R,V ), τ and a ∈M. We proceed by induction on β .
The base step for β = ω · k is trivial as we have:

∀k > 0∀ω · k ≤ α < ω2 [(a |= pk∧a ∈ ϕω·k
α (∅))⇒ a ∈ ϕω·k

α (∅)].
The limit step is obvious as well:

Let λ be a limit ordinal and for each ordinal number β < λ , ∀k > 0∀ω · k ≤ α < ω2 [(a |= pk ∧ a ∈
ϕβ

α (∅))⇒ a ∈ ϕω·k
α (∅)] holds. Fix k > 0 and α such that ω · k ≤ α < ω2 and assume that a |= pk and

a ∈ ϕλ
α (∅). By definition of λ–th iteration of ϕα : ϕλ

α (∅) =
⋃

β<λ ϕβ
α (∅), therefore there exists β < λ

such that a ∈ ϕβ
α (∅). Hence, by the induction hypothesis, a ∈ ϕω·k

α (∅).

2I would like to thank Michał Skrzypczak for showing me an idea how to present those formulae in a clearer way.
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So it remains to prove the successor case:
Let β = γ + 1, then the induction hypothesis is of the form: ∀k > 0∀ω · k ≤ α < ω2 [(a |= pk ∧ a ∈
ϕγ

α(∅))⇒ a ∈ ϕω·k
α (∅)]. We need to show that ∀k > 0∀ω · k ≤ α < ω2 [(a |= pk∧a ∈ ϕγ+1

α (∅))⇒ a ∈
ϕω·k

α (∅)].
Fix k > 0 and let α = ω · n+m, for n ≥ k and m ∈ ω . Let us assume that a |= pk and a ∈ ϕβ

α (∅).
Since β = γ +1 we have a ∈ ϕα(ϕ

γ
α(∅)). By the definition of ϕα , one of the following cases must hold:

• a |=2⊥ – then a ∈ ϕ0
α(∅)⊆ ϕω·k

α (∅),

• a |= Cn
l ∧2Cn

l for some l < k – since a |= pk, and there exists t such that aRt and t ∈ ϕγ
α(∅).

Therefore t |= Cn
l which implies t |= pl+1. By the induction hypothesis, since t ∈ ϕγ

α(∅) and
t |= pl+1, we know that t ∈ ϕω·(l+1)

α (∅). Because ω · (l + 1) is a limit ordinal, there exists s ∈ ω
such that t ∈ ϕω·l+s

α (∅). Therefore a ∈ ϕω·l+s+1
α (∅)⊆ ϕω·(l+1)

α (∅)⊆ ϕω·k
α (∅),

• a |= Cn
l+1 ∧2Cn

l for some l < k− 1 – since a |= pk, and for all t if aRt, then t ∈ ϕγ
α(∅). Fix

such t, then t |= Cn
l and therefore t |= pl+1, so by the induction hypothesis t ∈ ϕω·(l+1)

α (∅). Thus
a ∈ ϕω·(l+1)+1

α (∅)⊆ ϕω·k
α (∅) since l < k−1,

• In other cases, namely: a |= ∨m−1
i=0 (2x∧∧i

j=02
jCn

n ∧2i+1Cn
n−1), a |= Cn

n which means a |= ¬pi

for i = 1, . . . ,n, but this is a contradiction since k ≤ n and we assumed that a |= pk.

This ends the proof of lemma 1.

Lemma 1 shows us how the fuses work. If a point in which pi is true is in the least fixpoint of ϕα ,
it has to be added relatively fast, that is in at most ω · i steps. After that number of iterations the fuse pi

melts and no more points in which pi is true may be added to the fixpoint. That is a global view on fuses,
but we can also think about fuses locally. Let us consider the following example:

ϕω·2+3 = (3x∧C2
0 ∧2C2

0)∨ (3x∧C2
1 ∧2C2

1)∨ (2x∧C2
1 ∧2C2

0)∨
∨ (2x∧C2

2 ∧2C2
1)∨ (2x∧C2

2 ∧2C2
2 ∧22C2

1)∨
∨ (2x∧C2

2 ∧2C2
2 ∧22C2

2 ∧23C2
1)

We recall that C2
0 = p1∧ p2, C2

1 = ¬p1∧ p2 and C2
2 = ¬p1∧¬p2. We can restrict our considerations to

models that are trees. In every tree, in the first step all the leaves are added i.e. ϕ0
ω·2+3(∅) = J2⊥K.

Now, there are four different types of points in the model: those that satisfy p1∧ p2, p1∧¬p2, ¬p1∧ p2
and ¬p1 ∧¬p2. If a point is of the first type and was added to the fixpoint in some iteration, then its
parent will be added in the next iteration just in two cases – if it and all its children satisfy p1 and
p2 (3x∧C2

0 ∧2C2
0) or if all its children were already added to the fixpoint and it satisfies ¬p1 and p2

(2x∧C2
1 ∧2C2

0). In the second case the fuse p1 melted which says that ancestors of this point will never
be added via 2x∧C2

1 ∧2C2
0 . This melted fuse p1 represents one use of the 2. The second type of points

are not very interesting as the parents of such points will never be added while iterating ϕω·2+3 – the
second fuse is melted and the first is not while no disjunct in the formula satisfy such configuration. The
third type of points is similar to the first one, but since they satisfy ¬p1 and p2 there is one less 2 to use
while trying to add their parents to the fixpoint. And again when 2x∧C2

2 ∧2C2
1 is used to add a parent

of a point, a fuse p2 melts and the parent added that way and its ancestors that are in the fixpoint do
not satisfy p2. In such case this was again the use of 2 which might have let us pass the limit ordinal –
namely ω ·2. The forth type of points – those which may be added to the fixpoint after melting the last
fuse have nothing to do with fuses anymore – the formula is constructed in such way to ensure that there
will be just m−1 more essential iterations after melting the last fuse.

We now state the main theorem of the paper.
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Theorem 1. For every ordinal number α such that ω ≤ α < ω2, in every model M and every valuation
τ , ϕα+1

α (∅) = ϕα
α (∅) holds.

Proof. The inclusion⊇ is obvious by the monotonicity of ϕα in x. We show the other inclusion. Let α =
ω ·n+m, for n > 0 and m ∈ ω . Fix a model M = (M,R,V ), valuation τ , and assume that a ∈ ϕα+1

α (∅).
We show that a ∈ ϕα

α (∅).
If there exists i ≤ n such that a |= pi, then, by lemma 1 we know that a ∈ ϕω·i

α (∅) ⊆ ϕω·n+m
α (∅) =

ϕα
α (∅), since a ∈ ϕα+1

α (∅).
Let us now assume that for i = 1, . . . ,n, a |= ¬pi holds. Since a ∈ ϕα(ϕα

α (∅)), then by the definition
of ϕα , m > 0 and one of the following cases must hold:

• a |=2⊥ – then trivially a ∈ ϕα
α (∅).

• a |=∧i
j=02

jCn
n ∧2i+1Cn

n−1, for some i = 0, . . . ,m−1 and for every t such that aRt, t ∈ ϕα
α (∅).

We proceed by induction on i to show that if a |=∧i
j=02

jCn
n ∧2i+1Cn

n−1, then a ∈ ϕω·n+i+1
α (∅).

For the base step let us assume that i = 0. Then for all t such that aRt, t |=Cn
n−1 holds. Therefore

t |= pn and by lemma 1, t ∈ ϕω·n
α (∅). Thus a ∈ ϕω·n+1

α (∅).
Suppose now that for 0 ≤ i < k ≤ m if a |= ∧i

j=02
jCn

n ∧2i+1Cn
n−1, then a ∈ ϕω·n+i+1

α (∅). We
show that for i = k this implication holds as well. Suppose that a |= ∧k

j=02
jCn

n ∧2k+1Cn
n−1 then

for every t such that aRt, t |= ∧k−1
j=02

jCn
n ∧2kCn

n−1 holds. Therefore, by the induction hypothesis
t ∈ ϕω·n+k

α (∅), and thus a ∈ ϕω·n+k+1
α (∅).

Hence, for every such case a ∈ ϕω·n+m
α (∅) = ϕα

α (∅).

• In other cases, namely when a |= ∨n−1
i=0 (3x∧Cn

i ∧2Cn
i )∨

∨n−2
i=0 (2x∧Cn

i+1∧2Cn
i ) also a |= Cn+1

i
holds, for some i = 1, . . .n−1. This means that a |= pn which is a contradiction, since we assumed
that a |= ¬pn.

This ends the proof.

By theorem 1 for all ordinal numbers α such that ω ≤ α < ω2 the least fixpoint of ϕα is reached
in at most α steps. Now it is sufficient to show that for each formula ϕα there is a model such that ϕα
reaches its least fixpoint in this model in exactly α steps.

Theorem 2. For every ordinal number α such that ω ≤ α < ω2 there is a model, in which ϕα reaches
its least fixpoint in α steps.

Proof. Let us recall the assignment of the trees to ordinal numbers sketched in the end of the previous
section, where we show that Ox(2x) = ∞. To 0 we assign just one point – the root of the tree. For a
successor α + 1 we add to the preexisting tree for α one more point, which is to be a new root, and
attach to it simply the previous one. We change a limit step a bit: for a limit ordinal λ = ω · n we also
take a new point, which is to be a new root, but we attach to it just the roots of the trees ω · (n− 1),
ω · (n−1)+1, . . . . Now we need to augment models assigned to the ordinal numbers α < ω2 to models
over Prop = {p1, p2, . . .}. Let n > 0, m ∈ ω , and α = ω ·n+m and let Vω·n+m satisfy: rω·n+m ∈V (pi) if
and only if i > n, where rω·n+m is the root of the corresponding model. The idea is to start with the model
M0 whose root satisfies every pi, for i > 0. When passing the successor step – the new root satisfies the
same propositional variables as the previous one. Finally, for the limit step – if i is the least number for
which all pi are satisfied, in every point of models below, then the root of the limit model satisfies exactly
p j for j > i (it does not satisfy pi anymore). Violating the intuition, let us denote a model for an ordinal
α < ω2 by Mα+1. This construction works up to ω2 and gives us models Mα , for each nonlimit ordinal
α . By simple induction on α such that ω ≤ α < ω2 we see that the formula ϕα reaches its least fixpoint
Mα+1−{rα+1} in the model Mα+1 in exactly α steps.

38



How fast can the fixpoints in modal µ calculus be reached? Czarnecki

Corollary 1. Let α < ω2. Then Ox(ϕα) = α holds.

The question whether there are formulae that reach their fixpoints in at least ω2 iterations remains
an open problem. Note that the formulae ϕα introduced in this paper are all basic modal formulae – we
did not use the fixpoint operator in their construction. There may be some more complicated formulae
which would allow us to control the number of iterations above ω2. There also is a possibility to use
fuses in the construction of such formulae, but this would require having a single formula that behaves
as an infinite one–way counter at least in some big models3 allowing us to count the number of uses of
2 up to ω .

One can answer the following questions in order to extend the subject:

• Is there a basic modal logic formula which reaches its fixpoint in at least ω2?

• Is there a modal µ calculus formula which reaches its fixpoint in at least ω2?

• Is there a single formula behaving as an ω–counter at least in big enough models allowing us to
count 2 uses up to ω?
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Abstract

We propose a method to characterize the fixed points described in Tarski’s theorem for complete
lattices. The method is deductive: the least and greatest fixed points are ”proved” in some inference
system defined from deduction rules. We also apply the method to two other fixed point theorems,
a generalization of Tarski’s theorem to chain-complete posets and Bourbaki-Witt’s theorem. Finally,
we compare the method with the traditional iterative method resorting to ordinals and the original
impredicative method used by Tarski.

We are interested in fixed points of maps defined over partially ordered sets (abbreviated as posets).
Consider Tarski’s fixed point theorem. Asserting the existence of fixed points under certain conditions,
it is proved according to one of these two methods. In the impredicative method, the fixed points are
characterized by a property (expressing extremality) using a quantification over a domain that includes
the fixed point itself. In the iterative method, the fixed points are iteratively computed by using a trans-
finite induction. The impredicative method corresponds to a logical specification that is essentially not
constructive1. As for the iterative method, it seems to be more constructive, in that it corresponds to an
iteration. However, first, it assumes the machinery of ordinals and second, it therefore requires a specific
computation for limit ordinals, the next value being then computed from an infinite set of preceding
values.

Is there a proof method that not only is not impredicative, but also does not resort to ordinals? In
this paper, we positively answer by proposing an alternative method, where fixed points are (inductively)
proved in inference systems: this is a deductive method. It corresponds to a proof construction, using
forward chaining for deduction rules, as used in logic programming, for instance in Datalog, a query
language for deductive databases.

The paper is organized as follows. After recalling Tarski’s theorem, the first section deals with in-
ference systems, and their interpretations, either inductive or coinductive. In the second section, we
introduce the deductive method, and apply it to different fixed point theorems: Tarski’s theorem, its
generalization to chain-complete posets and Bourbaki-Witt’s theorem. Finally, we compare the deduc-
tive method with the iterative and impredicative methods. Note that the proofs presented here are just
sketched: an extended version, available online2, provides the details.

1 Induction and Coinduction for Inference Systems

Generally speaking, following Aczel’s classical presentation [1], an inference system over a set U of
judgments is a set of deduction rules. A deduction rule is an ordered pair (A,c), where A⊆U is the set
of premises or antecedents and c ∈U is the conclusion. A rule is usually written as follows:

A
.

c

Its intuitive interpretation is that the judgment c can be deduced from the set of judgments A.

Luigi Santocanale (ed.): Fixed Points in Computer Science 2010, pp. 41-46
1In a common sense: we do not specifically refer here to constructive mathematics.
2Downloadable from http://hal.archives-ouvertes.fr/.
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Fixed Point Approach. The first way to assign a definitional meaning to an inference system is to
consider the fixed points of the associated inference operator.

Indeed there exists a canonical Galois connection between the set of inference systems over U
ordered by inclusion and the set of isotone (order-preserving) maps from 2U to 2U ordered point-wise.
If Φ is an inference system over U , then the associated operator ϕ : 2U → 2U is defined as follows:

ϕ(S) = {c ∈U | ∃A⊆ S . (A,c) ∈Φ}.

The application of ϕ to S gives the conclusions that can be inferred in one step from S by using the
inference rules: ϕ is thus called the inference operator associated to the system Φ. For instance, if S is
the empty set, then ϕ(S) is the set of the axioms of the inference system, in other words the conclusions
of the rules without premises. Conversely, given an isotone operator ϕ : 2U → 2U , the inference system
containing all the rules (A,c), with c ∈ ϕ(A), and only these rules, belongs to the inverse image of ϕ:
this is the greatest element of the inverse image of ϕ .

Let Φ be an inference system and ϕ its associated inference operator. Since the powerset 2U is
a complete lattice, by applying Tarski’s fixed point theorem [9, p. 286], we obtain that the inference
operator ϕ possesses both a least fixed point and a greatest fixed point.

We recall here Tarski’s fixed point theorem, with two proof sketches following the impredicative and
the iterative methods respectively.

Theorem 1 (Tarski). Let (E ,≤) be a complete lattice. Let η : E → E be an isotone map over E . Then
η has a least fixed point lfpη and a greatest fixed point gfpη .

Impredicative method. The proof uses the following characterization:

lfpη = ∧{x ∈ E | η(x)≤ x} and gfpη = ∨{x ∈ E | x≤ η(x)},

defining the least and greatest fixed points as the smallest η-closed set and the greatest η-consistent set
respectively. It can be found in original Tarski’s paper [9].

Iterative method. The proof uses the following characterization:

lfpη =
∨

α ∆α(η) and gfpη =
∧

α ∇α(η).

where the sequences (∆α(η))α and (∇α(η))α are defined over ordinals as follows:

∆α(η) = η(
∨

β |β<α ∆β (η)) and ∇α(η) = η(
∧

β |β<α ∇β (η)).

It can be found in Cousot’s article [5], for instance, with a slight variant in the definition of the sequences.

Deductive Method. In contrast with the fixed point approach, the deductive method starts from the
proofs admissible in an inference system. These proofs are represented as trees, called proof trees. These
are trees whose nodes are labeled with judgments in U and such that for all nodes n, the label c of n and
the labels A of the sons of n correspond to an inference rule (A,c) in Φ. The conclusion of a proof is the
label of its root node. A proof d is well-founded if it has no infinite branch; d is ill-founded otherwise.
Note that an ill-founded proof is always infinite. A well-founded proof is finite if and only if it only uses
rules with a finite set of premises.

In the deductive method, the inductive interpretation of the inference system Φ is the set ∆(Φ)
of the conclusions of the well-founded proofs, while the coinductive interpretation is the set ∇(Φ) of
the conclusions of all the proofs, ill-founded or well-founded. The following theorem shows that the
interpretations defined using fixed points and using proofs coincide.
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Theorem 2 (Inductive and coinductive interpretations). Let Φ be an inference system and ϕ the associ-
ated inference operator. Then:

lfpϕ = ∆(Φ) and gfpϕ = ∇(Φ).

Proof. It is easy to show that ∆(Φ) and ∇(Φ) are a η-closed set and a η-consistent set respectively.
In the reverse direction, given a η-closed set, an induction over well-founded proofs shows that any
conclusion of a well-founded proof belongs to the η-closed set; given a η-consistent set, a system of
guarded recursive equations over proof trees can be defined, generating as solution a valuation mapping
each judgment in the η-consistent set to a proof tree with conclusion this judgment. By Tarski’s theorem,
we deduce lfpϕ = ∆(Φ) and ∇(Φ) = gfpϕ .

Details for the proof can be found in Leroy and author’s article [7, Th. 1], where some bibliographic
references are also given.

2 Generalization of the Deductive Method

Theorem 2 asserts that the least and greatest fixed points of an isotone map over a powerset, a particular
complete lattice, can also be defined as the inductive and coinductive interpretations of an inference
system. We first generalize to any complete lattice, and then to more powerful fixed point theorems.

Tarski’s Theorem Revisited. Given an isotone map η over a complete lattice (E ,≤), how can we
define an inference system Φ over E , or equivalently an inference operator ϕ : 2E → 2E , whose inductive
and coinductive interpretations produce the least and greatest fixed points of η?

A first attempt, defining ϕ(S) as the image of S with η , trivially fails, since the least fixed point would
be the empty set. However, a well-known result [4, Th. I.5.3] allows a complete lattice to be embedded in
its powerset. Indeed, let γ : 2E →{≤ x | x ∈ E } be the closure operator from the powerset of E to the set
{≤ x | x ∈ E } of principal order ideals defined as follows: γ(S) =≤ (∨S)3. Let δ : {≤ x | x ∈ E } → 2E

be its adjoint embedding: δ (≤ x) =≤ x. Now, the isomorphism ι from E to {≤ x | x ∈ E } is defined
as follows: ι(x) =≤ x. Finally, thanks to the embedding via a closure operator, we can associate to the
map η the operator ϕ : 2E → 2E , equal to δ ◦ ι ◦η ◦ ι−1 ◦ γ : we have ϕ(S) =≤ η(∨S). It turns out
that this operator has the intended properties with respect to fixed points. It suffices to use the associated
inference system to get the following theorem, which we prove using the deductive method.

Theorem 3 (Tarski revisited). Let (E ,≤) be a complete lattice. Let η : E → E be an isotone map over
E . Consider the inference system Φ over E containing all the rules, and only these rules, of the following
form:

S

s

(
S⊆ E ,s≤ η(∨S)

)
.

Then:
≤ (lfpη) = ∆(Φ) and ≤ (gfpη) = ∇(Φ).

Proof. It is easy to show that the inference operator ϕ associated to Φ is equal to δ ◦ ι ◦η ◦ ι−1 ◦ γ ,
with the preceding notation. As ≤ (lfpη) = lfpϕ and ≤ (gfpη) = gfpϕ , we can conclude by applying
Theorem 2.

3Here, and in the following, given x ∈ E , we denote by ≤ x the principal order ideal {y ∈ E | y ≤ x}. Likewise, if X ⊆ E , we
denote by ≤ X the union

⋃
x∈X (≤ x).
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Two Other Fixed Point Theorems. The deductive characterization of fixed points is still pertinent
when we consider two other well-known fixed point theorems, where the assumptions for the poset and
the map are weakened.

A poset is chain-complete if any chain, including the empty chain, has a least upper bound4. Tarski’s
theorem can be extended to chain-complete posets, as shown for instance by Markowsky [8, Th. 9]. We
again resort to the preceding inference system to characterize the least fixed point, with two restrictions:
we only consider chains as premises and greatest judgments as conclusions.

Theorem 4 (Fixed point theorem for chain-complete poset). Let (E ,≤) be a chain-complete poset and
η : E → E an isotone map. Let Φ be the inference system over E containing all the rules, and only these
rules, of the following form:

C

η(∨C)

(
C ⊆ E ,C chain

)
.

Then η has a least fixed point lfpη satisfying:

≤ (lfpη) = ≤ ∆(Φ).

Proof. We first show that ∆(Φ) is a chain, precisely that for any x1 and any x2 in ∆(Φ), we have x1≤ x2 or
x2 ≤ x1. We proceed by induction over well-founded proofs. Consider a well-founded proof ended with
the rule (C1,η(∨C1). Assume as inductive hypothesis that for any y1 ∈C1 and any y2 ∈ ∆(Φ), we have
y1 ≤ y2 or y2 ≤ y1. Let x2 be in ∆(Φ). There exists a chain C2 included in ∆(Φ) such that x2 = η(∨C2).
There are two cases.

First, assume ∃y1 ∈C1 . ∀y2 ∈C2 . y2 ≤ y1. We therefore have, for some y1 in C1 and for all y2 in C2:
y2 ≤ y1, y2 ≤ ∨C1 and ∨C2 ≤ ∨C1. We deduce by monotony x2 ≤ η(∨C1).

Second, assume ∀y1 ∈ C1 . ∃y2 ∈ C2 . ¬(y2 ≤ y1). We therefore have, for all y1 in C1 and some
dependent point y2 in C2: y1 ≤ y2 (inductive hypothesis), y1 ≤ ∨C2 and ∨C1 ≤ ∨C2. We deduce by
monotony η(∨C1)≤ x2.

Since ∆(Φ) is a chain,
(
∆(Φ),η(∨∆(Φ))

)
is a rule. We have η(∨∆(Φ))∈∆(Φ), hence η(∨∆(Φ))≤

∨∆(Φ) and then η2(∨∆(Φ)) ≤ η(∨∆(Φ)) by monotony. Assume x is η-closed: η(x) ≤ x. It is easy
to show by induction over well-founded proofs that x is an upper bound of ∆(Φ). We deduce that first
∨∆(Φ)≤ η(∨∆(Φ)) and second ∨∆(Φ) is the least fixed point of η . Finally ≤ (lfpη) = ≤ ∆(Φ) since
∨∆(Φ) ∈ ∆(Φ).

Actually, as shown by Markowsky [8, Th. 9], the preceding theorem can be considered as a corollary
of Bourbaki-Witt’s theorem [3]. We also give a proof of this theorem by using the same inference system
as in Theorem 4.

Theorem 5 (Bourbaki-Witt). Let E be a chain-complete poset and η : E → E an expansive5 map. Let
Φ be the inference system over E containing all the rules, and only these rules, of the following form:

C

η(∨C)

(
C ⊆ E ,C chain

)
.

Then η has a fixed point fpη satisfying:

≤ (fpη) = ≤ ∆(Φ).

4A chain-complete poset has therefore a bottom element, ∨ /0.
5A map η : E → E is expansive (also inflationary, progressive) if any point is η-consistent: ∀x ∈ E . x≤ η(x).
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Proof. We show that ∆(Φ) is a chain, which allows to conclude. Indeed, if ∆(Φ) is a chain, the inference
rule

(
∆(Φ),η(∨∆(Φ))

)
belongs to Φ. From η(∨∆(Φ))∈ ∆(Φ), we deduce η(∨∆(Φ))≤∨∆(Φ). Since

η is expansive, we deduce that ∨∆(Φ) is a fixpoint of η . Moreover, ∨∆(Φ) belongs to ∆(Φ). Therefore
≤ ∆(Φ) = ≤ (∨∆(Φ)).

To show that ∆(Φ) is a chain, we introduce the notion of useful proofs. A well-founded proof,
say ended by the rule (C,η(∨C)), is said useful if for any well-founded proof, say ended by the rule
(D,η(∨D)), we have:

(∨D < ∨C)⇒ (η(∨D)≤ ∨C).

Two crucial properties about usefulness can be asserted. First, for any useful proof ended by (C,η(∨C))
and any well-founded proof ended by (D,η(∨D)), we have either η(∨C) = η(∨D), η(∨C) ≤ ∨D or
η(∨D)≤ ∨C. Second, all well-founded proofs are useful.

Thanks to these properties, it is easy to conclude that ∆(Φ) is a chain. Indeed, let x1 and x2 be in
∆(Φ). There exists two well-founded proofs, respectively ended by (C1,η(∨C1)) and (C2,η(∨C2)),
such that x1 = η(∨C1) and x2 = η(∨C2). Since the former proof is useful, we have by applying the first
property either x1 = x2, x1 ≤ ∨C2 or x2 ≤ ∨C1. Since η is expansive, we deduce x1 ≤ x2 or x2 ≤ x1.

The two properties about usefulness can be proved by induction over well-founded proofs. The
arguments used are standard, since the notion of useful proofs comes from the notion of extreme points,
used in the proof of the Bourbaki-Witt’s theorem following the impredicative method: see for instance
the proof in Lang’s book [6, pp. 881–884].

Comparison of the Methods. Tarski’s theorem and its two extensions to chain-complete posets are
usually proved with the iterative method or the impredicative method, two methods that are not clearly
connected. We now suggest that the deductive method allows these two methods to be connected.

First, to each inference system Φ used in Theorems 3, 4 and 5, we can associate an inference operator
ϕ over 2E . Thus, the inductive interpretation ∆(Φ) of Φ can also be defined as the smallest ϕ-closed set,
as expressed in Theorems 1 and 2. It turns out that the definition of a ϕ-closed set is very akin to the
definition of an admissible set, as found in the standard proof of Bourbaki-Witt’s theorem following the
impredicative method [6, pp. 881–884].

Second, the deductive method can be considered as an abstraction of the iterative method: it abstracts
away from the iterative process involved in proof construction. The following proposition precisely
describes their relationship in the case of Tarski’s theorem. The height of a well-founded proof tree d
is defined as follows: it is the least ordinal greater than the height of each immediate proof sub-tree of
d. Given an inference system Φ over E and an ordinal α , we say that x ∈ E has complexity α if there
is a well-founded proof of x with height less or equal to α . We denote by ∆α(Φ) the set of all x with
complexity α .

Proposition 1. Let (E ,≤) be a complete lattice and η : E → E an isotone map over E . Consider the
transfinite sequence (∆α(η))α defined as follows:

∆α(η) = η(
∨

β |β<α ∆β (η)).

Consider the inference system Φ containing all the rules, and only these rules, of the following form:
S

s

(
S⊆ E ,s≤ η(∨S)

)
.

Then, for any ordinal α:
≤ ∆α(η) = ∆α(Φ).

Proof. By transfinite induction.

An analogous proposition holds for the two other fixed point theorems.
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3 Conclusion

We have presented a method to characterize the fixed points described in fixed point theorems for com-
plete lattices and chain-complete posets. The method is deductive: the fixed points are ”proved” in some
inference system. The techniques used in the proofs of these theorems is consistent with the method:
they are based on induction over well-founded proofs. Finally, we have sketched a comparison between
the deductive method and the two traditional methods, impredicative and iterative. In brief, given an in-
ference system, the impredicative method essentially corresponds to the characterization à la Tarski using
the inference operator associated to the inference system, whereas the iterative method corresponds to an
iterative construction of the well-founded proofs in the inference system. The connection that we have
suggested deserves a further exploration, which we reserve to future work.

We have already experienced the deductive method in a work about coinductive operational seman-
tics [7]. It turns out that the method is well-suited to the proof assistant Coq, which uses a calculus of
inductive and coinductive constructions, an extension of type theory. The fixed points were expressed
through inference systems and defined over powerset lattices. A motivation of the present work was to
extend the method to fixed points defined in Coq over complete lattices or chain-complete posets. The
iterative method resorts to ordinals, which are rarely used in Coq. Indeed, either they require to encode
set theory, which is expensive, or they are implemented as constructive ordinals, which is restrictive. As
for the impredicative method, it does not really fit with the calculus of inductive and coinductive con-
structions. Thus, the deductive method is a good candidate. A major problem to be solved is the use of
classical logic. First, since the fixed points defined may have a non-terminating behavior, for instance
when the fixed point is a function possibly divergent, adding classical logic axioms to the constructive
logic of Coq is needed. In the same way, in the preceding proofs of the fixed point theorems, we have
used the law of excluded middle. Second, as explained in the recent proposal of Bertot and Komen-
dantsky [2], the addition of classical logic axioms should allow not only to reason about a fixed point
with a terminating or non-terminating behavior, but also to extract a program computing the fixed point
from the proof that the fixed point satisfies its specification, following the Curry-Howard correspondence.
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Abstract

A recursive program is determined, up to bisimilarity, by the operation of the recursion body on
arbitrary processes, of which it is a fixpoint. The traditional proof of this fact uses Howe’s method,
but that does not tell us how the fixpoint is obtained.

In this paper, we show that the fixpoint may be obtained by a least fixpoint procedure iterated
through the hierarchy of countable ordinals, using Groote and Vaandrager’s notion of nested simula-
tion.

1 Introduction

Recursion is an important programming language feature that provides a fixpoint of an endofunction. But
an endofunction may have many fixpoints, so an important question in semantics is to determine which
is the one calculated by recursion. For example, for both the may-testing and must-testing preorders,
recursion calculates the least pre-fixed point. (In the case of must-testing, we must assume the calculus
uses erratic rather than ambiguous nondeterminism, see e.g. [Las98].)

What if we work modulo bisimilarity? We provide a characterization of the fixpoint calculated by
recursion as follows. First calculate the least pre-fixed point up to similarity. Within this equivalence
class, calculate the least pre-fixed point up to 2-nested similarity. Iterate this procedure through all the
countable ordinals and it converges on a single point: the “nesting fixpoint”. This is the one that recursion
calculates.

In Sect. 2 we introduce the general notions of nested simulation and nesting fixpoints. We illustrate
them in Sect. 3 with the process calculus CCS.

Notation

• We write ω1 for the least uncountable ordinal.

• For any sets X ,Y,Z and relations R ⊆ X×Y and R ′ ⊆ Y ×Z, we write R;R ′ for the composite.

• For any sets X and Y , we write X ⇀ Y for the set of partial functions from X to Y with finite
domain.

• For any set X with preorder 6, and any 6 ∩>-equivalence class U , we write

↓6 (U)
def
= {x ∈ X | ∃y ∈ X . x 6 y}= {x ∈ X | ∀y ∈ X . x 6 y}

2 Transition systems and ω1-nested preorders

We first recall the basic notions of transition systems.

Definition 1. Let Act be a set of actions, and let S = (X ,→) be an Act-labelled transition system, i.e.
a set X together with a relation→⊆ X×Act×X.

Luigi Santocanale (ed.): Fixed Points in Computer Science 2010, pp. 47-52
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1. For each x ∈ X and a ∈ Act, we write

succa(P)
def
= {Q ∈ Prog | P →a Q}

If this set is always countable, S is said to be image-countable.

2. A relation R ⊆ X×X is

• a simulation on S when for all (x,x′) ∈ R and a ∈ Act, if y ∈ succa(x) then there exists
y′ ∈ succa(x′) such that (x′,y′) ∈R.

• a bisimulation on S when both R and its converse are simulations.

3. The greatest bisimulation is called bisimilarity. It is an equivalence relation and written h.

4. Let 6 be a preorder on X. A relation R ⊆ X×X is

• a simulation up to 6 on the right when for all (x,x′) ∈R and a ∈ Act, if y ∈ succa(x) then
there exists y′ ∈ succa(x′) such that (x′,y′) ∈ (R;6)

• a simulation up to 6 when for all (x,x′) ∈R and a ∈ Act, if y ∈ succa(x) then there exists
y′ ∈ succa(x′) such that (x′,y′) ∈ (6;R;6)

Definition 2. [GV92] Let Act be a set, and let S = (X ,→) be an Act-labelled transition system. For
each ordinal α , we shall define a preorder .α , known as α-nested similarity, with the property that any
simulation contained in &α is also contained in .α . We define .α to be

(α = β +1) the greatest simulation contained in .β , or equivalently the greatest simulation contained
in .β ∩&β

(α a limit ordinal) the intersection of .β over all β < α .

Lemma 1. [GV92] Let Act be a set, and let (X ,→) be an Act-labelled transition system.

1. Let β be an ordinal. If R is a simulation up to .β+1 contained in &β , then R is contained in
.β+1.

2. .α contains bisimilarity, for each ordinal α .

3. If (X ,→) is image-countable, then .ω1 is bisimilarity.

We are thus led to the following abstract notion.

Definition 3. Let X be a set. An ω1-nested preorder on X is a sequence of preorders (6α)α6ω1 such that

• (6α+1)⊆ (6α)∩ (>α), for each α < ω1

• (6γ) =
⋂

α<γ(6α), for each limit ordinal γ 6 ω1

It follows that

• (60) is the indiscrete relation

• α 6 β 6 ω1 implies (6β )⊆ (6α)

• α < β 6 ω1 implies (6β )⊆ (>α)
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• (6α) is an equivalence relation, for each limit ordinal α 6 ω1.

In particular, 6ω1 is an equivalence relation, which we write ≡.

Definition 4. Let Act be a set, and let S = (X ,→) be an Act-labelled transition system. We write A(S )
for the ω1-nested preordered set (X ,(.α)α6ω1).

Definition 5. Let A = (X ,(6α)α6ω1 and B = (Y,(6α))α6ω1 be ω1-nested preordered sets. A mono-

tone function A
f // B is a function X

f // Y such that, for every α 6 ω1 (or equivalently: every
successor ordinal α < ω1), if x⊆α

A x′ then f (x)⊆α
B f (x′).

Now we come to our key definition.

Definition 6. Let A = (X ,(6α)α6ω1 be an ω1-nested preordered set, and let f be a monotone endofunc-
tion on A. We shall define a decreasing sequence of subsets (U f

α )α6ω1 of X such that U f
α either is empty

or satisfies the following conditions:

• U f
α is an equivalence class of 6α ∩>α

• f restricts to an endofunction on U f
α and hence on ↓6α (U f

α )

• if x ∈↓6α (U f
α ) and f (x)6α x then x ∈U f

α .

We define U f
α to be

(α = β +1) the set of 6 α-least elements of

{x ∈U f
β | f (x)6α x}= {x ∈↓6β (U f

β ) | f (x)6α x}

(α a limit ordinal) the intersection of U f
β over all β < α .

The elements of U f
ω1 are called nesting fixpoints of f .

Note that nesting fixpoints are fixpoints up to ≡ and unique up to ≡. But some monotone endofunc-
tions f do not have a nesting fixpoint—i.e. U f

ω1 is empty.

3 CCS and Bisimilarity

Our thesis is that a recursive program in a transition system S is is a nesting fixpoint of the mono-
tone endofunction on A(S ) given by the recursion body. To illustrate this, we consider the calculus
CCS [Mil89], over a fixed set Act of actions.

As CCS is untyped, a context Γ is merely a list of distinct identifers. The syntax is given inductively
by the rules in Fig. 1. We write Prog for the set of programs, i.e. closed terms, which forms an Act-
labelled transition system with transition relation → defined inductively by the rules in Fig. 2. This
system is easily shown to be image-countable, and we call it CCS.

Our version of CCS includes parallel composition of any countable arity I, with synchronization
described by a relation V saying when finitely many actions performed by the constituent processes may
cause an action in the combined process. In [Mil89], Act is given by a disjoint union

{a | a ∈ Σ} ∪ {a | a ∈ Σ} ∪ {τ}

where Σ is a set of synchronization actions. The parallel composition, hiding and renaming operators
provided there are subsumed by our parallel composition as follows.
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Γ ` P
a ∈ Act

Γ ` a.P

Γ ` Pi (∀i ∈ I)
I countable

Γ ` ∑i∈IPi

Γ,x ` P

Γ ` rec x. P

x ∈ Γ
Γ ` x

Γ ` Pi (∀i ∈ I)
I countable, V ⊆ (I ⇀fin Act)×Act

Γ `‖Vi∈I Pi

Figure 1: Syntax of CCS

a.P →a P

P̂ı →
a Q

ı̂ ∈ I
∑i∈IPi →a Q

P[rec x. P/x] →a Q

rec x. P →a Q

Pi →b(i) Qi (∀i ∈ dom b)
(b,a) ∈V

‖Vi∈I Pi →a ‖Vi∈I

{
Qi (if i ∈ dom b)
Pi (otherwise)

Figure 2: Operational Semantics (Transitions) of CCS

• We express P | Q as ‖V {0 7→ P,1 7→ Q}, with V given by

{({0 7→ a,1 7→ a},τ) | a ∈ Σ} ∪ {({0 7→ a,1 7→ a},τ) | a ∈ Σ}
∪ {({0 7→ a},a) | a ∈ Act} ∪ {({1 7→ a},a) | a ∈ Act}

• Let f : Σ→ Σ be a function. We express P[ f ] as ‖V {0 7→ P}, with V given by

{({0 7→ a}, f (a)) | a ∈ Σ} ∪ {({0 7→ a}, f (a)) | a ∈ Σ} ∪ {(0 7→ τ,τ)}

• Let L⊆ Σ be a subset. We express P\L as ‖V {0 7→ P}, with V given by

{({0 7→ a},a) | a ∈ Σ\L} ∪ {({0 7→ a},a) | a ∈ Σ\L} ∪ {(0 7→ τ,τ)}

The “synchronization algebras” of [WN95] are likewise expressible.
As explained in [Mil89], we could also incorporate into the language countably mutual recursion.

We have not done so, but our results would go through without difficulty.
The following operations on programs are called the basic operations:

P 7→ a.P for any a ∈ Act

(Pi)i∈I 7→ ∑i∈IPi for any countable I

(Pi)i∈I 7→ ‖Vi∈I Pi for any countable I and V ⊆ (I ⇀fin Act)×Act

Proposition 1. The basic operations preserve α-nested similarity, for every ordinal α , and hence pre-
serves bisimilarity.

Proof. Straightforward induction on α . Preservation of bisimilarity may also be proved directly.

Lemma 2. Let R be a simulation on CCS. Then the relation

{(M[P/x],M[P′/x]) | (P,P′) ∈R,x `M}

is also a simulation.
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Proof. We want to show that if M[P/x] →a Q, then for all P′ such that (P,P′) ∈R we have (R,R′) ∈R
and x ` N such that Q = N[R/x] and M[P′/x] →a N[R′/x]. We proceed by induction on→. We omit the
details.

Proposition 2. (Definable functions are monotone) Let x `M be a term. Then the endofunction on Prog

P 7→M[P/x]

preserves α-similarity, for every ordinal α , and hence preserves bisimilarity.

Proof. By induction on α using Lemma 2. Preservation of bisimilarity also follows directly from
Lemma 2.

Lemma 3. Let 6 be a preorder on Prog that is a simulation and preserved by the basic operations. Let
x `M and P ∈ Prog be such that M[P/x]6 P. Then the relation

{(N[rec x. M/y],N[P/y]) | y ` N}

is a simulation up to 6 on the right.

Proof. We want to show that if N[rec x. M/y] →a Q then there exists y ` R and Q′ ∈ Prog such that
Q = R[rec x. M/y] and N[P/y] →a Q′ and R[N/y]6 Q′. We proceed by induction on→.

• Suppose that N = y. Then M[rec x. M/x] →a Q and applying the inductive hypothesis gives
y ` R and Q′ ∈ Prog such that Q = R[rec x. M/y] and M[P/x] →a Q′ and R[N/y] 6 Q′. Since
M[P/x]6 P and 6 is a simulation we have P →a Q′′ and Q′ 6 Q′′, giving R[N/y]6 Q′′.

• The other cases are trivial.

Proposition 3. Let x `M be a term. Then rec x. M is a nesting fixpoint of the monotone endofunction
f : P 7→M[P/x] on A(CCS).

Proof. We have to show that rec x. M is in U f
α for each α 6 ω1. The case where α is a limit ordinal is

trivial, so suppose α = β +1. Since rec x.M ∈U f
β we have

↓6β (U f
β ) = {P ∈ Prog | P .β rec x. M}

We need to show that rec x. M is an .β+1-least element of

{P ∈↓6β (U f
β ) | f (P).α P}= {P ∈ Prog | P .β rec x. M∧M[P/x].α P}

It is an element because M[rec x. M/x]h rec x. M. Suppose P is another element. Then

{(N[rec x. M/x],N[P/x]) | x ` N}

is contained in &β and, by Lemma 3, is a simulation up to .α on the right. Lemma 1(1) tells us that it is
contained in .α , so rec x. M .α P as required.

Corollary 1. Let x `M,M′ be terms such that M[P/x]h M′[P/x] for all programs P. Then rec x. M h
rec x. M′.

This result may also be proved using Howe’s method [How96, Lev06].
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4 Conclusions and Further Work

The present paper was greatly inspired by the denotational semantics in [Ros04], where recursion is
interpreted by a “reflected” fixpoint calculated in two steps.

The quotient of CCS by bisimilarity is an image-countable transition system S in which bisimilarity
is discrete. (It can also be described as a final coalgebra [TR98].) Therefore nesting fixpoints in A(S ) are
genuine fixpoints and unique. This almost provides a denotational semantics, except that some monotone
endofunctions do not have a nesting fixpoint. Perhaps restricting to the exploratory functions of [LW09]
would be fruitful, as these are all definable in a sufficiently rich calculus.

In [Abr91] a domain theoretic model is provided that captures bisimilarity between processes without
divergences. For general processes it induces a more subtle preorder.

The results of this paper may be adapted to lower (i.e. divergence-insensitive) applicative bisimu-
lation [Abr90] in nondeterministic λ -calculus. However, in this instance Howe’s method is stronger
because it shows applicative bisimilarity to be preserved not only by recursion (Corollary 1) but also by
application.

References
[Abr90] S. Abramsky. The lazy λ -calculus. In Research topics in Functional Programming, pages 65–117.

Addison Wesley, 1990.
[Abr91] S Abramsky. A domain equation for bisimulation. Information and Computation, 92(2), 1991.
[GV92] Jan Friso Groote and Frits Vaandrager. Structured operational semantics and bisimulation as a congru-

ence. Information and Computation, 100(2):202–260, October 1992.
[How96] D J Howe. Proving congruence of bisimulation in functional programming languages. Inf. and Comp.,

124(2), 1996.
[Las98] S B Lassen. Relational Reasoning about Functions and Nondeterminism. PhD thesis, Univ. of Aarhus,

1998.
[Lev06] P B Levy. Infinitary Howe’s method. In Proc., 8th Intl. Workshop on Coalgebraic Methods in Comp.

Sci., Vienna, volume 164(1) of ENTCS, 2006.
[LW09] Paul Blain Levy and Kidane Yemane Weldemariam. Exploratory functions on nondeterministic strate-

gies, up to lower bisimilarity. Electr. Notes Theor. Comput. Sci, 249:357–375, 2009.
[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[Ros04] A W Roscoe. Seeing beyond divergence. presented at BCS FACS meeting “25 Years of CSP”, July

2004.
[TR98] Daniele Turi and Jan J. M. M. Rutten. On the foundations of final coalgebra semantics. Mathematical

Structures in Computer Science, 8(5):481–540, 1998.
[WN95] G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, D. Gabbay, and T. S. E. Maibaum,

editors, Handbook of Logic in Computer Science. Oxford University Press, 1995.

52



The Equivalence of Game and Denotational Semantics
for the Probabilistic µ-Calculus

Matteo Mio
LFCS, School of Informatics, University of Edinburgh

M.Mio@sms.ed.ac.uk

1 Introduction

The modal µ-calculus Lµ [7] is a very expressive logic obtained by extending classical propositional
modal logic with least and greatest fixed point operators. The logic Lµ has been extensively studied as
it provides a very powerful tool for expressing properties of labeled transition systems [14]. Encodings
of many important temporal logics such as LTL, CTL and CTL∗ into Lµ [1], provided evidence for the
very high expressive power of the calculus. A precise expressivity result was given in [6], where the
authors showed that every formula of monadic second order logic over transition systems which does
not distinguish between bisimilar models is equivalent to a formula of Lµ . The logic Lµ has a simple
denotational interpretation [14] and an elegant proof theory [15]. However it is often very difficult to
intuitively grasp the denotational meaning of a Lµ formula as the nesting of fixed point operators can
induce very complicated properties. To alleviate this problem, another complementary semantics for the
logic Lµ , based on two player (parity) games, has been studied in [3, 14]. The two semantics have been
proven to coincide and this allows us to pick the most convenient viewpoint when reasoning about the
logic Lµ . One of the main properties of the games used to give semantics to Lµ formulae is the so called
positional determinacy which asserts that both Players can play optimally in a given game-configuration
without knowing the history of the previously played moves.

In the last decade, a lot of research has focused on the study of reactive systems that exhibit some kind
of probabilistic behavior, and logics for expressing their properties. Segala systems [13] are a natural
generalization of labeled transition systems to the probabilistic scenario. Given a countable set of la-
bels L, a Segala System is a pair 〈P,{ a−→}a∈L〉 where P is a countable set of states and, for each a ∈ L,

a−→⊆ P×D(P) is the a-accessibility relation, where D(P) is the set of probability distributions over P.
The transition relation models the dynamics of the processes: (p,d) ∈ a−→ means that the process p can
perform the atomic action a ∈ L and then behave like the process q with probability d(q).
The probabilistic modal µ-calculus pLµ , introduced in [12, 5, 2], is a generalization of Lµ designed for
expressing properties of Segala systems. This logic was originally named quantitative µ-calculus, but
since other µ-calculus-like logics, designed for expressing properties of non-probabilistic systems, have
been given the same name (e.g. [4]), we adopt the probabilistic adjective.
The denotational semantics for the logic pLµ of [12, 2], interprets every formula F as a map JFK : P→
[0,1], which assigns to each process p a degree of truth. Actually, in [5] three different possible denota-
tional semantics for pLµ (including the one of [12, 2]) have been proposed as there there is no, a priori,
good reason to prefer one in favour of the others.
In [9, 10], the authors introduce a game semantics for the logic pLµ . This semantics, given in term
of two player stochastic (parity) games, is the natural generalization of the two player (non stochastic)
game semantics for the logic Lµ ; the key difference being that in the configuration 〈p,〈a〉F〉 (respec-
tively 〈p, [a]F〉) Player 1 (respectively Player 2) choses a a-successor of p, i.e. a distribution d such
that (p,d) ∈ a−→, and the next configuration 〈q,F〉 is then reached with probability d(q). This semantics

Luigi Santocanale (ed.): Fixed Points in Computer Science 2010, pp. 53-59
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allows one to interpret formulae as expressing, for each process p, the (limit) probability of the property
specified by the formula to hold in the state p. This game semantics suggests a very clear operational
interpretation for the logical connectives of the logic which, a posteriori, justifies the denotational inter-
pretation of [12, 2].
In [10, 9], the authors proved the equivalence of the denotational and game semantics for pLµ only for
finite models. The proof crucially depends on positional determinacy which does not hold, in general,
for the infinite pLµ stochastic parity games generated by infinite models. The general result, i.e. the
equivalence of the game and denotational semantics for arbitrary infinite models, has been left open.
In this workshop paper we show that the equivalence indeed holds for arbitrary infinite models, thus
strengthening the connection between denotational and game semantics. Our contribution consists in
adapting the technique introduced in [4], where the authors used it to prove a similar result for a µ-
calculus-like logic designed to express quantitative properties of (non-probabilistic) labeled transition
systems. While this is not a difficult adaption, the result seems worth noticing since the question has
been open in literature since [9]. Moreover the differences between the games considered in [4] and pLµ
stochastic games, e.g. the fact that Markov chains are the outcomes of the games rather than just infinite
paths, make this result not immediate from [4].

The rest of the paper is organized as follows: in section 2 we define the syntax of the logic pLµ and the
class of models given by Segala systems; in section 3 we define the denotational semantics of pLµ as in
[12, 2]; in section 4 we define the class of parity games that are going to be used to give game semantics
to the logic; in section 5 we define the game semantics of pLµ in terms of two player stochastic parity
games; in section 6 we state the main theorem which asserts the equivalence of the denotational and
game semantics. An extended version of this paper with detailed proofs is available at [11].

2 The Probabilistic Modal µ-Calculus

Given a set Var of propositional variables ranged over by the letters X ,Y,Z and a set of labels L ranged
over by the letters a,b,c, the formulae of the logic are defined by the following grammar:

F,G ::= X | 〈a〉F | [a]F | F ∨G | F ∧G | µX .F | νX .F

We assume the usual notions of free and bound variables. A formula is closed if it has no free variables.

Definition 2.1 (Subformulae). We define the function Sub(F) by case analysis on F as follows:

Sub(X)
def
= {X} Sub(F1∧F2)

def
= {F1∧F2}∪Sub(F1)∪Sub(F2)

Sub([a]F)
def
= {[a]F}∪Sub(F) Sub(νX .F)

def
= {νX .F}∪Sub(F)

The cases for the connectives ∨, 〈a〉 and µX are defined as for their duals. We say that G is a subformula
of F if G ∈ Sub(F).
Definition 2.2 (Normal Formula). A formula F is normal if

• Whenever ?1X1 and ?2X2 , with ?1,?2 ∈ {µ,ν}, are two different occurrences of binders in F then
X1 6= X2.

• No occurrence of a free variable X is also used in a binder ?X in F .

Every formula can be put in normal form by standard α-renaming of the bound variables. We only
consider formulae F in normal form. A bound variable X in F is called a µ-variable (respectively a
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ν-variable) if it is bound in F by a µ (respectively ν) operator.

Definition 2.3 (Variables subsumption). Given a normal formula F such that ?1X1.F1,?2X2.F2 ∈ Sub(F),
we say that the variable X1 subsumes X2 in F if ?2X2.F2 ∈ Sub(F1).

The formulae of the logic pLµ are interpreted over the class of models given by Segala systems.
Definition 2.4. A Segala system is a pair 〈P,{ a−→}a∈L〉 where P is a countable set of states and for each
a ∈ L, a−→⊆ P×D(P) is the transition relation where D(P) is the set of all probability distribution over
P. Given a probability distribution d ∈ D(P) we denote by supp(d) the support of d defined as the set
{p ∈ P | d(p)> 0}.

3 Denotational Semantics

Given a Segala system 〈P,{ a−→}a∈L〉 we denote by (P→ [0,1]) and by (D(P)→ [0,1]) the complete
lattice of functions from P and from D(P) respectively, to the real interval [0,1] with the component-wise
order. Given a function f ∈ (P→ [0,1]), we denote by f ∈ (D(P)→ [0,1]) the lifted function defined as
follows: f def

= λd.
(
∑p∈supp(d) d(p) · f (p)

)
.

A function ρ : Var→ (P→ [0,1]) is called an interpretation of the variables. Given a function f ∈ (P→
[0,1]) we denote by ρ[ f/X ] the interpretation that assigns f to the variable X , and ρ(Y ) to all other
variables Y .
Fix a Segala System 〈P,{ a−→}a∈L〉 and an interpretation ρ , the denotational semantics JFKρ : P→ [0,1] of
the pLµ formula F , under the interpretation ρ , is defined by structural induction on F as follows:

JXKρ = ρ(X)

JG∨HKρ = JGKρ t JHKρ JG∧HKρ = JGKρ u JHKρ

J〈a〉GKρ = λ p.
(⊔{ JGKρ(d) | p a−→ d}

)
J[a]HKρ = λ p.

(d{ JHKρ(d) | p a−→ d}
)

JµX .GKρ = lfp of the functional λ f .(JGKρ[ f/X ]) JνX .HKρ = gfp of the functional λ f .(JHKρ[ f/X ])

Since the interpretation assigned to every pLµ operator is monotone, the existence of the least and great-
est fixed points is guaranteed by the Knaster-Tarski theorem. Moreover the least and the greatest fixed
point can be computed inductively: JµX .GKρ =

⊔

α
JµX .GKα

ρ and JνX .GKρ =
l

α
JνX .GKα

ρ where

JµX .GKα
ρ

def
=





JGKρ[λ p.0/X ]

JGKρ[JµX .GKα−1
ρ /X ]

JGKρ[
⊔

β<αJµX .GKβ
ρ /X ]

JνX .GKα
ρ

def
=





JGKρ[λ p.1/X ] for α = 0
JGKρ[JνX .GKα−1

ρ /X ] for α successor ordinal.
JGKρ[

d
β<αJνX .GKβ

ρ /X ]
for α limit ordinal.

4 Two Player Stochastic Parity Games

A turn-based Stochastic Game Arena (or just a 2 1
2 Game Arena) is a tuple A = 〈(S,E),{S1,S2,SP},π〉

where (S,E) is a directed graph with countable set of states S and successor function E : S→ 2S; the
sets S1, S2, SP are a partition of S and π : SP→ D(S) is called the probabilistic transition function. For
every state s ∈ S, E(s) is the (possibly infinite) set of successors of s. We require that for all s ∈ SP,
E(s) = supp(π(s)) 6= /0. We denote by St the set of terminal states, i.e. those s ∈ S such that E(s) = /0.
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The states in S1 are Player 1 states; the states in S2 are Player 2 states; the states in SP are probabilistic, or
Player P, states. At a state s ∈ S1 (respectively s ∈ S2), if s 6∈ St Player 1 (respectively Player 2) chooses
a successor from the set E(s); if s ∈ St the game ends. At a state s ∈ SP, a successor state is chosen
probabilistically according to the distribution π(s).

A finite path~s in A is a finite sequence s0, ...,sn of states in S such that for every 0 < i≤ n, si ∈ E(si−1).
An infinite path ~s in A is an infinite sequence of states {si}i∈N such that for every i > 0, si ∈ E(si−1).
We denote by Pω and P<ω the sets of infinite paths and finite paths in A respectively. Given a finite
path ~s ∈P<ω we denote by last(~s) the last state s ∈ S of ~s. We denote by P<ω

1 , P<ω
2 and P<ω

P the
sets of finite paths having last state in S1, S2 and SP respectively. We also denote by P t the set of finite
paths ending in a terminal state, i.e. the set of paths~s such that E(last(~s)) = /0; the paths in P t are called
terminated paths. We denote by P the set Pω ∪P t and we refer to this set as the set of the possible
Plays in A. Given a finite path ~s ∈P<ω , we denote by O~s the set of all plays having ~s as prefix. We
consider the standard topology on P , where the basis for the open sets is given by the cones in G, i.e.
the sets O~s for~s ∈P<ω .

As usual in Game Theory, Players’ moves are determined by strategies. A (full memory) deterministic
strategy σ1 for Player 1 in the Game Arena A is defined as usual as a function σ1 : P<ω

1 → S∪{•} such
that σ1(~s) ∈ E(last(s)) if E(last(~s)) 6= /0 and σ1(~s) = • otherwise. Similarly a strategy σ2 for Player 2 is
defined as a function σ2 : P<ω

2 → S∪{•}.

A pair 〈σ1,σ2〉 of strategies, one for each player, is called a strategy profile and determines the behaviors
of both players. Fix a strategy profile 〈σ1,σ2〉 and an initial state s ∈ S we denote by Ms

σ1,σ2
the Markov

Chain obtained by pruning A, starting from s, accordingly with σ1 and σ2. We often refer to this Markov
Chain as the Markov Play generated by the strategy profile 〈σ1,σ2〉 from s ∈ S. Each Markov Play
Ms

σ1,σ2
has an associated probability measure on the set P of plays in A, which we denote by M s

σ1,σ2
.

The probability measure M s
σ1,σ2

is defined as usual as the unique probability measure which assigns
to every basic open set O~s the multiplication of all the probabilities associated with the probabilistic
transitions in~s.

A priority assignment P (of rank n ∈ N) for the arena A is a function assigning a natural number in
{0, ...,n} to every state in S, i.e. P : S→ {0, ...,n}. Given a priority assignment P of any rank, and an
infinite path~s = {si}i∈N, we denote by P(~s) the greatest natural number appearing infinitely often in the
infinite sequence {P(si)}i∈N. A reward assignment B for the arena A is a function assigning a value in the
real interval [0,1] to each terminal state s∈ St , i.e. B : St→ [0,1]. A pair 〈P,B〉 of a priority assignment P
and a reward assignment B for the arena A, determines a unique measurable function Φ〈P,B〉 : P→ [0,1]
defined as follows:

Φ〈P,B〉(~s) =





B(last(~s)) if~s ∈P t

0 if~s ∈Pω and P(~s) is even
1 if~s ∈Pω and P(~s) is odd

The value Φ〈P,B〉(~s) should be understood as the payoff assigned to Player 1 when~s is the outcome of the
game. The payoff function Φ〈P,B〉 is called the Parity payoff determined by 〈P,B〉. We say that Φ〈P,B〉
has rank n if P has rank n. We often omit the subscript 〈P,B〉 in Φ〈P,B〉 if the context is clear enough.
Note that, since the priority assigned by P to the terminal states s ∈ St does not affect the induced payoff
function, we can assume, without any loss of generality, that P(s) = 0 for any terminal state s ∈ St . From
now on we assume that this condition holds for every priority assignment P.

A Two Player Stochastic Parity Game G is a tuple G = 〈A,P,B〉 of a 2 1
2 Game Arena A, a priority

assignment P and a B assignment for the arena A. Given a Parity game G = 〈A,P,B〉, a state s ∈ S and a
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strategy profile 〈σ1,σ2〉, we denote by with M s
σ1,σ2

(Φ〈P,B〉) the value defined as:
∫

P
Φ〈P,B〉 dM s

σ1,σ2

which corresponds to the expected payoff for Player 1 when the game starts in the state s and Player
1 and Player 2 follow the strategies σ1 and σ2 respectively. We denote by Val1(G ) : S→ [0,1] and
Val2(G ) : S→ [0,1] the functions defined as follows:

Val1(G )(s) = tσ1 uσ2 M s
σ1,σ2

(Φ) Val2(G )(s) = uσ2 tσ1 M s
σ1,σ2

(Φ).

Val1(G )(s) represents the limit (expected) payoff that Player 1 can get, when the game begins in s, by
choosing his strategy σ1 first and then letting Player 2 pick an appropriate counter strategy σ2. Similarly
Val2(G )(s) represents the limit (expected) payoff that Player 1 can get, when the game begins in s, by
first letting Player 2 choose a strategy σ2 and then picking an appropriate counter strategy σ1. Clearly
Val1(G )(s)≤Val2(G )(s) for every s ∈ S.
Theorem 4.1 (Determinacy [8]). For every Two Player Stochastic Parity Game G = 〈A,P,B〉 the fol-
lowing equality holds:

∀s ∈ S, Val1(G )(s) =Val2(G )(s).

Intuitively the determinacy Theorem states that the players do not get any advantage by letting the op-
ponent choose his strategy first. We just write V(G ) for the value function of the Game defined as
Val1(G ) =Val2(G ). As a corollary of the Determinacy theorem we have the following Lemma:
Lemma 4.2 (ε-optimal strategies). Given a Two Player Stochastic Parity Game G = 〈A,P,B〉, for every
ε > 0 the following assertions hold:

• there exists a strategy σ ε
1 for Player 1 such that for every s ∈ S, uσ2M

s
σ ε

1 ,σ2
(Φ)> V(G )(s)− ε .

• there exists a strategy σ ε
2 for Player 2 such that for every s ∈ S, tσ1M

s
σ1,σ ε

2
(Φ)< V(G )(s)+ ε .

5 Game Semantics

Fix a Segala System 〈P,{ a−→}a∈L〉, a formula F and an interpretation ρ : Var → (P→ [0,1]) of the
variables, we denote by G F

ρ the parity game 〈A,P,B〉 formally defined as described below.
The state space of the arena A = 〈(S,E),{S1,S2,SP},π〉, is the set S =

(
P∪D(P)

)
×Sub(F) of pairs of

states p ∈ P or distributions d ∈D(P) and subformulae G ∈ Sub(F); the transition relation E is defined
as E(〈d,G〉) = {〈p,G〉 | p ∈ supp(d)} for every d ∈D(P); E(〈p,G〉) is defined by case analysis on the
outermost connective of G as follows:

1. if G = X , with X free in F , then E(〈p,G〉) = /0.

2. if G = X , with X bound in F by the subformula ?X .H, with ? ∈ {µ,ν},
then E(〈p,G〉) = {〈p,?X .H〉}.

3. if G = ?X .H, with ? ∈ {µ,ν}, then E(〈p,G〉) = {〈p,H〉}.
4. if G = 〈a〉H or G = [a]H then E(〈p,G〉) = {〈d,H〉 | p a−→ d}.
5. if G = H ∨H ′ or G = H ∧H ′ then E(〈p,G〉) = {〈p,H〉,〈p,H ′〉}

The partition {S1,S2,SP} is defined as follows: every state 〈p,G〉 with G’s main connective in
{〈a〉,∨,µX} or with G = X where X is a µ-variable, is in S1; dually every state 〈p,G〉 with G’s main
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connective in {[a] ,∧,νX} or with G = X where X is a ν-variable, is in S2. Finally every state 〈d,G〉
is in SP. The terminal states 〈p,X〉, with X free in F , are in S1 by convention. The probability transi-
tion function π : SP → S is defined as π(〈d,G〉)(〈p,G〉) = d(p). The priority assignment P is defined
as usual in µ-calculus model checking games [14]: the priority assigned to the states 〈p,X〉, with X a
µ-variable is even; dually the priority assigned to the states 〈p,X〉, with X a ν-variable is odd. Moreover
P(〈p,X〉) > P(〈p′,X ′〉) if X subsumes X ′ in F . All other states get priority 0. The reward assigment B
is defined as B(〈p,X〉) = ρ(X)(p) for every terminal state 〈p,X〉 with X free in F . All other terminal
states in G F

ρ are either of the form 〈p,〈a〉H〉 or 〈p, [a]H〉. The reward assignment B is defined on these
terminal states as follows: B(〈p,〈a〉H〉) = 0 and B(〈p, [a]H〉) = 1.

Fix a Segala system 〈P,{ a−→}a∈L〉, the game semantics of the formula F under the interpretation ρ , is
the function LF Mρ : P→ [0,1] defined as LF Mρ

def
= λ p.V(G F

ρ )(〈p,F〉).

6 Equivalence of Denotational and Game Semantics for pLµ

We are now ready to give the main theorem which states that given any Segala system 〈P,{ a−→}a∈L〉, the
denotational and game semantics of any pLµ formula coincide.
Theorem 6.1. Given a Segala system 〈P,{ a−→}a∈L〉, for every pLµ formula F and interpretation ρ for
the variables, the following equality holds: JFKρ = LF Mρ .
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Denotational semantics for lazy initialization of letrec
black holes as exceptions rather than divergence
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Abstract

We present a denotational semantics for a simply typed call-by-need letrec calculus, which dis-
tinguishes direct cycles, such as let rec x = x in x and let rec x = y and y = x+ 1 in x, and looping
recursion, such as let rec f = λx. f x in f 0. In this semantics the former denote an exception whereas
the latter denotes divergence.

The distinction is motivated by “lazy evaluation” as implemented in OCaml via lazy/force and
Racket (formerly PLT Scheme) via delay/force: when a delayed variable is dereferenced for the first
time, it is first pre-initialized to an exception-raising thunk and is updated afterward by the value
obtained by evaluating the expression bound to the variable. Any attempt to dereference the variable
during the initialization raises an exception rather than diverges. This way, lazy evaluation provides
a useful measure to initialize recursive bindings by exploring a successful initialization order of the
bindings at runtime and by signaling an exception when there is no such order. It is also used for the
initialization semantics of the object system in the F# programming language.

The denotational semantics is proved adequate with respect to a referential operational semantics.

1 Introduction

Lazy evaluation is a well-known technique in practice to initialize recursive bindings. OCaml [6] and
Racket (formerly PLT Scheme) [4], provide language constructs, lazy/force and delay/force operators
respectively, to support lazy evaluation atop call-by-value languages with arbitrary side-effects. Their
implementations are quite simple: when a delayed variable is dereferenced for the first time, it is first
pre-initialized to an exception-raising thunk and is updated afterward by the value obtained by evaluating
the expression bound to the variable. Any attempt to dereference the variable during the initialization
raises an exception rather than diverges. In other words, lazy evaluation as implemented in OCaml
and Racket distinguishes direct cycles 1, which we call “black holes”, such as let rec x = x in x and
let rec x = y and y = x+1 in x, and looping recursion, such as let rec f = λx. f x in f 0. The former raise
an exception, whereas the latter diverges.

Lazy evaluation provides a useful measure to initialize recursive bindings by exploring a successful
initialization order of the bindings at runtime and by signaling an exception when there is no such order.
In [12], Syme advocates the use of lazy evaluation for initializing mutually recursive bindings in ML-
like languages to permit a wider range of recursive bindings 2. Flexibility in handling recursive bindings
is particularly important for these languages to interface with external abstract libraries such as GUI
APIs. Syme’s proposal can be implemented using OCaml’s lazy/force operators and it underlies the
initialization semantics of the object system in F# [13].

There is a gap between lazy evaluation, as outlined above, and conventional models for lazy, or
call-by-need, computation as found in the literature. Traditionally call-by-need is understood as an eco-
nomical implementation of call-by-name, which does not distinguish black holes and looping recursion
but typically interprets both uniformly as “undefined”. The gap becomes evident when a programming
language supports exception handling, as both OCaml and Racket do — one can catch exceptions but

Luigi Santocanale (ed.): Fixed Points in Computer Science 2010, pp. 61-67
1Direct cycles are also known as provable divergence.
2In ML, the right-hand side of recursive bindings is restricted to be syntactic values.
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Expressions M,N ::= n | x | λx.M |M N | let rec x1 beM1, . . . ,xn beMn in M | •
Results V ::= n | λx.M | •
Types τ ::= nat | τ1→ τ2

Figure 1: Syntax of λletrec

n : nat x : type(x) • : τ
x : τ1 M : τ2

λx.M : τ1→ τ2

M : τ1→ τ2 N : τ1
M N : τ2

x1 : τ1 . . . xn : τn M1 : τ1 . . . Mn : τn N : τ
let rec x1 beM1, . . . ,xn beMn in N : τ

Figure 2: Typing rules

cannot catch divergence. Indeed catching exceptions due to black holes is perfectly acceptable, or could
be even desired, in practice; it is just like catching null-pointer exceptions due to object initialization
failure in object-oriented languages.

In this paper we present a denotational semantics, which matches the lazy evaluation as implemented
in OCaml and Racket and used in F#’s object initialization. In this semantics, direct cycles denote excep-
tions whereas looping recursion denotes divergence. The key observation is to think of lazy evaluation
as a most successful initialization strategy of recursive bindings: the initialization succeeds if and only if
there is a non-circular order in which the bindings can be initialized. The operational semantics searches
such an order by on-demand computation. The denotational semantics searches such one intuitively by
initializing recursive bindings in parallel and choosing the most successful result as the denotation.

The denotational semantics, proved adequate with respect to a referential operational semantics, is
the main contribution of the paper.

2 Syntax and operational semantics

The syntax of our simply typed letrec calculus, λletrec, is given in figure 1. An expression is either a natu-
ral number n∈N, variable x, abstraction λx.M, application M N, letrec let rec x1 beM1, . . . ,xn beMn in M,
or black hole •, which represents an exception. Results are natural numbers, abstraction and black holes.
A type is either a base type, nat, or a function type of shape τ1→ τ2. To simplify the calculus, we assume
each variable x is associated with a unique type, given, e.g., type(x). Typing rules are found in figure 2,
which are all straightforward.

In figure 3, we present the natural semantics. The natural semantics is identical to that given in
our previous work [8], which is very much inspired by Launchbury’s [5] and Sestoft’s [10]. Heaps,
ranged over by metavariables Ψ and Φ, are finite mappings from variables to expressions. We write
x1 7→M1, . . . ,xn 7→Mn to denote a heap whose domain is {x1, . . . ,xn}, and which maps xi’s to Mi’s. The
notation Ψ[x1 7→M1, . . . ,xn 7→Mn] denotes mapping extension. Precisely, Ψ[x1 7→M1, . . .xn 7→Mn](xi) =
Mi and Ψ[x1 7→M1, . . .xn 7→Mn](y)=Ψ(y) when y 6= xi for any i in 1, . . . ,n. We write Ψ[x 7→M] to denote
a single extension of Ψ with M at x. In rule Letrec, M′i ’s and N′ denote expressions obtained from Mi’s
and N by substituting x′i’s for xi’s, respectively. We may abbreviate 〈Ψ〉M where Ψ is an empty mapping,
i.e., the domain of Ψ is empty, to 〈〉M.

The judgment 〈Ψ〉M ⇓ 〈Φ〉V expresses that an expression M in an initial heap Ψ evaluates to a result
V with the heap being Φ. In Variable rule, the heap Ψ is updated to map x to • while the expression
bound to x is evaluated. For instance, 〈〉 let rec xbex in x ⇓ 〈x′ 7→ •〉• is deduced. This way, an attempt
to dereference a variable which is under “initialization” results in a black hole. Errorβ rule propagates
black holes. Other rules are self-explanatory.
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Result
〈Ψ〉V ⇓ 〈Ψ〉V

Application
〈Ψ〉M1 ⇓ 〈Φ〉λx.N 〈Φ[x′ 7→M2]〉N[x′/x] ⇓ 〈Ψ′〉V x′ fresh

〈Ψ〉M1 M2 ⇓ 〈Ψ′〉V
Variable

〈Ψ[x 7→ •]〉Ψ(x) ⇓ 〈Φ〉V
〈Ψ〉x ⇓ 〈Φ[x 7→V ]〉V

Letrec
〈Ψ[x′1 7→M′1, . . . ,x

′
n 7→M′n]〉N′ ⇓ 〈Φ〉V x′1, . . . ,x

′
n fresh

〈Ψ〉 let rec x1 beM1, . . . ,xn beMn in N ⇓ 〈Φ〉V
Errorβ

〈Ψ〉M1 ⇓ 〈Φ〉•
〈Ψ〉M1 M2 ⇓ 〈Φ〉•

Figure 3: Natural semantics

〈x′ 7→ •, f ′ 7→ •〉λy.y ⇓ 〈x′ 7→ •, f ′ 7→ •〉λy.y
〈x′ 7→ •, f ′ 7→ λy.y〉 f ′ ⇓ 〈x′ 7→ •, f ′ 7→ λy.y〉λy.y

〈x′ 7→ •, f ′ 7→ λy.y,y′ 7→ •〉• ⇓ 〈x′ 7→ •, f ′ 7→ λy.y,y′ 7→ •〉•
〈x′ 7→ •, f ′ 7→ λy.y,y′ 7→ •〉x′ ⇓ 〈x′ 7→ •, f ′ 7→ λy.y,y′ 7→ •〉•
〈x′ 7→ •, f ′ 7→ λy.y,y′ 7→ x′〉y′ ⇓ 〈x′ 7→ •, f ′ 7→ λy.y,y′ 7→ •〉•

〈x′ 7→ •, f ′ 7→ λy.y〉 f ′ x′ ⇓ 〈x′ 7→ •, f ′ 7→ λy.y,y′ 7→ •〉•
〈x′ 7→ f ′ x′, f ′ 7→ λy.y〉x′ ⇓ 〈x′ 7→ •, f ′ 7→ λy.y,y′ 7→ •〉•

〈〉 let rec xbe f x, f beλy.y in x ⇓ 〈x′ 7→ •, f ′ 7→ λy.y,y′ 7→ •〉•

Figure 4: The derivation for let rec xbe f x, f beλy.y in x

In figure 4 we present the derivation for the expression let rec xbe f x, f beλy.y in x. We deliberately
chose a black hole producing expression.

3 Denotational semantics

We proceed to the denotational semantics. An expression M of type τ denotes an element of (Vτ +Errτ)⊥,
where (·)⊥ is lifting and Errτ is a singleton, whose only element is •τ . Vτ denotes proper values of type
τ and is defined by induction on τ:

Vnat = N Vτ0→τ1 = [(Vτ0 +Errτ0)⊥→ (Vτ1 +Errτ1)⊥]

We omit injections for both the lifting and the sum. A metavariable ϕ ranges over proper function
values, i.e., elements of Vτ0→τ1 for some τ0 and τ1. For d ∈ (Vτ0→τ1 +Errτ0→τ1)⊥ and d′ ∈ (Vτ0 +Errτ0)⊥,
application of d to d′ is defined by

d(d′) =

{ ⊥τ1 when d =⊥τ0→τ1
•τ1 when d = •τ0→τ1
ϕ(d′) when d = ϕ
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[[n : τ]]ρ = n
[[x : τ]]ρ = ρ(x)
[[• : τ]]ρ = •τ

[[λx.M : τ0→ τ1]]ρ = λν .[[M : τ1]]ρ[x 7→ν ]
[[Mτ0→τ1 Nτ0 : τ1]]ρ = ([[M : τ0→ τ1]]ρ)([[N : τ0]]ρ)

[[let rec x1 beMτ1
1 , . . . ,xn beMτn

n in N : τ]]ρ = [[N : τ]]{{x1 7→M
τ1
1 ,...,xn 7→Mτn

n }}(n)ρ

{{x1 7→Mτ1
1 , . . . ,xn 7→Mτn

n }}
(m+1)
ρ =
µρ ′.ρ[x1 7→ [[M1 : τ1]]ρm · [[M1 : τ1]]ρ ′ , . . . ,xn 7→ [[Mn : τn]]ρm · [[Mn : τn]]ρ ′ ]

where ρm = {{x1 7→Mτ1
1 , . . . ,xn 7→Mτn

n }}
(m)
ρ

{{x1 7→Mτ1
1 , . . . ,xn 7→Mτn

n }}
(0)
ρ = ρ[x1 7→ •τ1 , . . . ,xn 7→ •τn ]

Figure 5: Denotational semantics of λletrec

Moreover we write (d)∗ to denote the strict version of d on both ⊥τ0 and •τ0 , i.e.,

(d)∗(d′) =

{ ⊥τ1 when d = ϕ and d′ =⊥τ0
•τ1 when d = ϕ and d′ = •τ0
d(d′) otherwise

An environment, ρ , is a function from variables to denotations, which respects types, i.e., ρ(x) ∈ (Vτ +
Errτ)⊥ where x : τ . The least environment, ρ⊥, maps all variables to bottom elements.

The semantic function [[M : τ]]ρ assigns a denotation to a typing derivation M : τ under an environ-
ment ρ and is defined in figure 5 by induction on the derivation 3. µ stands for the least fixed point
operator. ρ[x1 7→ d1, . . . ,xn 7→ dn] stands for extension of ρ with di’s at xi’s. For d,d′ ∈ (Vτ +Errτ)⊥,
the notation d ·d′ abbreviates ((λy.λx.x)∗(d))(d′). The semantic function, being defined using only con-
tinuous operations, is continuous and mostly standard (c.f., [14]) except for letrec. The denotation of
let rec x1 beMτ1

1 , . . . ,xn beMτn
n in N : τ is defined with the help of a semantic function for (typed) heaps.

The function {{x1 7→Mτ1
1 , . . . ,xn 7→Mτn

n }}(m)
ρ takes three parameters, a heap x1 7→Mτ1

1 , . . . ,xn 7→Mτn
n , an

environment ρ and a natural number m, and returns an environment. It is defined by induction on m, with
semantic functions for Mi : τi’s given by the outer induction.

We compute the denotation of a heap Ψ = x1 7→ Mτ1
1 , . . . ,xn 7→ Mτn

n under an environment ρ as
follows. Let ρm = {{Ψ}}(m)

ρ . The variables xi’s are first pre-initialized to black holes, that is, ρ0 = ρ[x1 7→
•τ1 , . . . ,xn 7→ •τn ]. Next we compute the denotation [[Mi : τi]]ρ0 of Mi : τi for each i under the initial
environment ρ0, so that we take the fixed-point semantics for the recursive bindings whose initialization
was successful. That is, ρ1 = µρ ′.ρ[x1 7→ d1, . . . ,xn 7→ dn] where

di =

{
•τi when [[Mi : τi]]ρ0 = •τi

[[Mi : τi]]ρ ′ otherwise

Indeed it follows from lemmata 3.1 and 3.2 below that this is equivalent to defining ρ1 = µρ ′.ρ[x1 7→
[[M1 : τ1]]ρ0 · [[M1 : τ1]]ρ ′ , . . . ,xn 7→ [[Mn : τn]]ρ0 · [[Mn : τn]]ρ ′ ]. Generally, ρm+1 is given by taking the fixed-
point semantics for the recursive bindings whose initialization is successful under the environment ρm;
i.e., ρm+1 = µρ ′.ρ[x1 7→ d1, . . . ,xn 7→ dn] where

di =

{
•τi when [[Mi : τi]]ρm = •τi

[[Mi : τi]]ρ ′ otherwise

3We use the lambda notation to express (mathematical) functions on domains.
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This process is iterated for n times, where n is the length of the heap Ψ. The number of the iteration is jus-
tified, as it converges by then: {{Ψ}}(n)ρ = {{Ψ}}(n+m)

ρ for any m (lemma 3.3 below). Let us define {{x1 7→
Mτ1

1 , . . . ,xn 7→ Mτn
n }}ρ = {{x1 7→ Mτ1

1 , . . . ,xn 7→ Mτn
n }}(n)ρ . For instance, we have {{x 7→ xnat}}ρ⊥(x) =

•nat, {{ f 7→ (λx. f x)nat→nat}}ρ⊥( f ) = λx.⊥nat, and {{x 7→ ( f x)nat, f 7→ (λy.y)nat→nat}}ρ⊥ = ρ⊥[x 7→
•nat, f 7→ λy.y] therefore [[let rec xbe( f x)nat, f be(λy.y)nat→nat in x : nat]]ρ⊥ = •nat.

3.1 Adequacy

The denotational semantics is adequate with respect to the natural semantics. An important fact, to
be stated in lemma 3.4, is that, as we iteratively compute denotations of (typed) heaps Ψ under an
environment ρ , we reach a fixed point: {{Ψ}}ρ(x) = [[Ψ(x)]]{{Ψ}}ρ .

We define a relation <<τ⊆ (Vτ +Errτ)⊥× (Vτ +Errτ)⊥ by induction on τ:

•τ <<τ d for any d ∈ (Vτ +Errτ)⊥
⊥τ <<τ ⊥τ
n <<nat n
ϕ <<τ1→τ2 ϕ ′ iff d <<τ1 d′ implies ϕ(d) <<τ2 ϕ ′(d′)

Then a relation << on environments is defined such that ρ << ρ ′ iff for any x, ρ(x) <<τ ρ ′(x) where
x : τ . It captures a relationship between (intermediate) denotations of a heap at different iterations (see
lemma 3.2 below).

Lemma 3.1. For any ρ,ρ ′,M : τ , if ρ << ρ ′, then [[M : τ]]ρ <<τ [[M : τ]]ρ ′

Lemma 3.2. For any x1 : τ1, . . . ,xn : τn,M1 : τ1, . . . ,Mn : τn,m and ρ , {{x1 7→Mτ1
1 , . . . ,xn 7→Mτn

n }}(m)
ρ <<

{{x1 7→Mτ1
1 , . . . ,xn 7→Mτn

n }}(m+1)
ρ .

Lemma 3.3. For any x1 : τ1, . . . ,xn : τn,M1 : τ1, . . . ,Mn : τn,m and ρ , {{x1 7→Mτ1
1 , . . . ,xn 7→Mτn

n }}(n)ρ =

{{x1 7→Mτ1
1 , . . . ,xn 7→Mτn

n }}(n+m)
ρ .

Lemma 3.4. For any x1 : τ1, . . . ,xn : τn,M1 : τ1, . . . ,Mn : τn,ρ and i ∈ 1..n, {{x1 7→ Mτ1
1 , . . . ,xn 7→

Mτn
n }}(n)ρ (xi) = [[Mi : τi]]{{x1 7→Mτ1

1 ,...,xn 7→Mτn
n }}(n)ρ

.

The natural semantics is correct with respect to the denotational semantics in that evaluations pre-
serve the denotations of expressions.

Proposition 3.1. For any typed expression M : τ , if 〈〉M ⇓ 〈Ψ〉V , then V : τ and [[M : τ]]ρ⊥ = [[V :
τ]]{{Ψ}}ρ⊥

.

Moreover an expression evaluates to a result if and only if its denotation is non-bottom.

Proposition 3.2. For any typed expression M : τ , [[M : τ]]ρ⊥ 6=⊥τ iff there are Φ and V such that 〈〉M ⇓
〈Φ〉V .

4 Related work

The natural semantics used in the paper is very much inspired by those of Launchbury [5] and Ses-
toft [10]. Ariola and Felleisen gave a reduction semantics for λletrec [2], which is proved equivalent to
our natural semantics [8]. Our denotational semantics is also influenced by Launchbury’s, except that his
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semantics assigns a bottom element to both black holes and looping recursion; the distinction of the two
is at the heart of our work.

Ariola and Klop [3] studied equational theories of cyclic lambda calculi by means of cyclic lambda
graphs and observed that having non-restricted substitution leads to non-confluence. Ariola and Blom [1]
and Schmidt-Schauß et al. [9] use infinite lambda terms to reason about call-by-need letrec; it is not
obvious if their techniques can be adapted so that black holes are distinguished from divergence.

Viewing black holes as exceptions is not new. For instance, Moggi and Sabry’s monadic operational
semantics for value recursion signals a monadic error when a black hole is encountered [7]. The idea
seems to be ascribed to the backpatching semantics of Scheme [11].

5 Conclusion

We have presented a denotational semantics for lazy initialization of letrec. The semantics interprets
direct cycles, called black holes, as exceptions, which fits lazy evaluation as implemented in OCaml and
Racket and which underlies the initialization semantics of F#’s object system. We think signaling an
exception for these “non-sense recursion” is natural and useful in practice; we believe it is also natural
in theory.
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Abstract

Tiling is a classic model of combinatorial structure, whose global properties are determined
by simple local rules. In this paper we construct tilings with some specific properties, using self-
referential argument originating in Kleene’s recursion theorem. This methods proves to be very
effective though the initial problems under consideration are purely combinatorial and do not refer
explicitly to any questions of computability.

More specifically, we investigate the problem of long range order formulated by C. Radin:
whether one can determine by local rules such tilings on the plane in which we loose all infor-
mation while traveling between distant areas. We present a partial answer to Radin’s question by
constructing a tile set τ = τ0tτ1 (i.e., all tiles in τ are divided into two disjoint classes of 0-tiles and
1-tiles) such that every τ-tiling of the plane corresponds to some configuration in {0,1}Z2

, where
there is no long range order.

1 Introduction

In this paper we call by tile a unit square with colored sides. Given a finite set of tiles we consider tilings,
i.e., coverings of the plane by copies of these tiles such that colors match (adjacent sides of every two
neighbor tiles must have the same color in both squares).

For example, for a tile set that consists of two tiles (the first one has black lower and left side and
white top and right sides, and the second one has the opposite colors) only the checkerboard tilings are
possible.

More formally, we consider a finite set C of colors. A tile is a quadruple of colors (assigned to its
four sides), i.e., an element of C4. A tile set is a subset τ ⊂C4. Respectively, a tiling of the plane with
tiles from τ (τ-tiling) is a mapping U : Z2→ τ that respects the color matching condition.

A tiling U is periodic if it has a period, i.e., a non-zero vector T ∈ Z2 such that U(x+T ) =U(x) for
all x ∈ Z2. For example, for the checkerboard tiling in the example above the vertical and horizontal unit
shifts are periods.

Intuitively it seems that a periodic tiling has an extremely simple structure. It is not surprising that
some local rules enforce simple and regular periodic configurations. On the contrary, what is rather
unexpected, is the fact that some tile sets do imply much more complex global structures. The first result
of this kind was proven by Berger in [2]:

Theorem 1. There exists a tile set τ such that τ-tilings exist and all of them are aperiodic (such tilings
are called aperiodic).

Berger’s theorem shows that very simple local rules (matching rules for some finite set of colored
tiles) can imply rather nontrivial global structure. Later it was shown that a tile set can enforce even
much more sophisticated structures than just aperiodic configurations. For example, in [4] there was
constructed a tile set whose tilings have maximal “density of information” (more precisely, Kolmogorov
complexity of each N×N-square in a tiling must have Kolmogorov complexity Ω(N)).

Charles Radin in [11] noticed that there exist another natural angle of the intuitive idea of “regular
configuration”. A global configuration looks regular if it has long range order, i.e., there is dependency

Luigi Santocanale (ed.): Fixed Points in Computer Science 2010, pp. 69-75
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even between very far remote tiles. For example, in a periodic tiling U every two tiles U(x) and U(x+T )
must be equal to each other if T is a multiple of the minimal period (thus, T can be arbitrarily large).

Following [11], we define a notion of long range order in a more general way. Let τ be a tile sets
and P be some subset of τ . For a τ-tiling U we denote by ν(P) the frequency of tiles from P in U . More
precisely, for each positive integer N we count in U the fraction of tiles from P in N-neighborhood of the
point (0,0). We define ν(P) as the limit of these fractions as N tends to infinity. Note that (a) this limit
exists not for all tilings; (b) if this limit exists, it does not change under shifts of the tiling. We restrict
our attention to tilings in which this limit exists for each P ⊂ τ . Similarly, for subsets P,Q ⊂ τ and a
translation t ∈ Z2 we denote by ν(P t−→ Q) the limit fraction of points x ∈ Z2 such that U(x) ∈ P and
U(x+ t) ∈ Q. We say that a tiling does not have long range order if probabilities of occurrences of tiles
at distant sites are in some sence ‘almost independent’. More precisely, we say that a τ-tiling U does not
have long range order if for all P,Q⊂ τ

lim
|t|→∞

|ν(P t−→ Q)−ν(P) ·ν(Q)|= 0 (∗)

where |t| is the usual Euclidean norm of vector t.
The following question was formulated by C. Radin in [11]: Does exist a tile set τ such that some

τ-tilings exists and all τ-tilings do not have long range order? Obviously, such tilings must be aperiodic.
However this requirement is much stronger than aperiodicity. In particular, the classic constructions of
aperiodic tilings (e.g., [10, 1]) do not satisfy (*). In fact, (*) looks rather counterintuitive: we look for a
local rule which guarantees that tiling must look globally “irregular” in some sense.

To the best of our knowledge, this question of Radin remains open. We believe that tilings without
long range order can be obtained from self-similar tile set constructions based on the fixed-point argu-
ment. In this paper we explain the main ideas of this technique and prove a weaker version of the main
conjecture:

Theorem 2 (main result). There exists a tile set τ that can be split into two disjoint parts τ = PtQ so
that (a) τ-tilings exist, and (b) for each τ-tiling (*) is true.

Since τ = PtQ, we can correspond to each τ-tiling U a configuration in U ′ ∈ {0,1}Z2
: we let

U ′(x)= 0 if U(x)∈P and U ′(x)= 1 if U(x)∈Q. Theorem 2 claims that to each τ-tiling there corresponds
a configuration U ′ satisfying (*). In other words, the local rules of τ admit tilings such that the natural
projection π : τZ2 →{0,1}Z2

maps each τ-tiling to a configuration that does not have long range order.
In the rest of this paper we explain the idea of the fixed-point construction of tilings and give a sketch

of the proof of Theorem 2.

2 Fixed point construction of a tiling

First we present a construction of an aperiodic tile set that is based on Kleene’s fixed-point construction.
This argument is similar to J. von Neumann self-reproducing automata [9]; very similar ideas were also
used by P. Gács in the context of error-correcting computations [7]. This type of argument was used in [5]
to construct tilings with some specific properties. Flexibility of this construction allows us to construct a
tile set that is not only aperiodic but satisfies the claim of Theorem 2. We believe that the same technique
can help answer the question of C. Radin in the most general form.

2.1 Macro-tiles

Let us fix some tile set τ and some integer N > 1. We call by a macro-tile any N ×N square tiled
by τ-tiles. Neighbor tiles in this square must match (adjacent sides must have equal colors); there is
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no constraints for colors on the boarder line of this square. Thus, every side of a macro-tile carries a
sequence of N colors. We call this sequence of colors a macro-color.

Let ρ be a set of τ-macro-tiles. We say that τ simulates ρ if (a) at least one τ-tilings exist, and (b) for
each τ-tiling there exists a unique grid of vertical and horizontal lines that cuts this tiling into N×N
macro-tiles from ρ .

(i+ 1, j)(i, j)

(i, j)

(i, j + 1)

Figure 1: Basic tiles

For example, let a set ρ consist of exactly one macro-tile (that has the same
macro-colors on all four sides) is simulated by some tile set τ . The tile set τ
consists of N2 tiles indexed by pairs (i, j) of integers modulo N. A tile from
τ has colors on its sides as shown on Fig. 1. The macro-tile in ρ has colors
(0,0), . . . ,(0,N−1) and (0,0), . . . ,(N−1,0) on its borders (Fig. 2).

If a tile set τ simulates some set ρ of τ-macro-tiles with zoom factor N > 1
and ρ is isomorphic to τ , then the set τ is called self-similar. We call by an
isomorphism between τ and ρ some bijection that respects the relations “one tile can be placed on the
right of another one” and “one tile can be placed on the top of another one”. For the sake of brevity we
say that a tile set τ simulates a tile set ρ when τ simulates some set of macro tiles ρ̃ isomorphic to ρ . So,
a self-similar tile set simulates itself.

(0, 0)

(0, 0)

(0, N − 1)

(0, 0)

(N − 1, 0)

(0, 0)

(0, N − 1)

(N − 1, 0)

N

Figure 2: Macro-tile of
size N×N

The idea of self-similarity was used (sometimes implicitly) in most con-
structions of aperiodic tile sets. Probably only the constructions in [8, 3] are
the exceptions. The proof is based on a simple lemma:

Lemma 1 (folklore). A self-similar tile set τ has only aperiodic tilings.

Thus, to prove that aperiodic tile set exits, it is enough to construct a self-
similar tile set. We show how to construct such a tile set using the idea of
Kleene’s fixed-point theorem. To this end, we first explain how to simulate a
given tile set by embedding computations (e.g., a Turing machine) in a tiling.

2.2 Simulating a tile set

We start with an informal discussion. Assume that we have a tile set ρ whose colors can be encoded as
k-bit strings (i.e., C ⊂ Bk) and the set of tiles ρ ⊂C4 is presented as a predicate R(c1,c2,c3,c4). Assume
that we have some Turing machine R that computes R. Now we show how to simulate ρ using some
other tile set τ .

Our construction extends the example on Fig. 2. We keep the coordinate system modulo N embedded
into tiles of τ . These coordinates guarantee that all τ-tilings can be uniquely cut into blocks of size N×N
and every tile “knows” its position in the block. In addition to the coordinate system, now each tile in τ
carries supplementary colors on its sides. On the border of a macro-tile only two supplementary colors
(e.g., 0 and 1) are allowed. So the macro-color encodes a string of N bits, where N is the size of macro-
tiles. We assume that N ≥ k and let k bits in the middle of macro-tile sides represent colors from C. All
other bits on the sides are zeros (this is a restriction on the tile set: each tile knows its coordinates so it
also knows whether non-zero supplementary colors are allowed).

Now we introduce additional restrictions on tiles in τ that guarantee that the macro-colors on sides
of each macro-tile satisfy the relation R. To this end we ensure that bits from the macro-tile sides are
transferred to the central part of the tile where the checking computation of R is simulated.

For this “information transmission” we fix which tiles in a macro-tile form “wires”. This choice can
be done in any reasonable way; we may even assume that wires do not cross each other. We require that
tiles along each of these wires carries equal bits on two sides (so one bit value of is transmitted along a
wire); again it is easy to organize since each tile knows its coordinates.
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To check that the property R is true for a quadruple of macro-colors, we require that the central part of
a macro-tile represents a time-space diagram of R’s computation. Embedding of a space-time diagram
in a tiling is a standard trick. We require that horizontal rows represent configurations of the tape of the
Turing machine, time goes upwards. We require that computation terminates in an accepting state: if
not, the tiling cannot be formed.

To make this construction work, the size of macro-tile should be large enough: we need enough space
for k bits to propagate and enough time and space to perform accepting computation of R.

In this construction the number of supplementary colors depends on the machine R. The more states
it has, the more colors are needed in the computation zone. To get rid of this dependency, we replace the
ad hoc machine R by a fixed universal Turing machine U that runs a program simulating R.

Universal
Turing
machine
program

Figure 3: Scheme
of a macro-tile

Talking about the universal Turing machine, we may require that the tape has an
additional read-only layer. Each cell of this layer carries one bit that is not changed
during the computation; these bits are used as a program for the universal machine
(Fig. 3). So in the computation zone the columns carry unchanged bits, and the tile
set restrictions guarantee that these bits form the program for U , and the central
zone represents the protocol of an accepting computation for that program. In this
way we get a tile set τ that simulates ρ with zoom factor N using O(N2) tiles.

2.3 Simulating itself

We already know how to simulate a given tile set ρ (represented as a program for the universal Turing
machine) by another tile set τ with a large enough zoom factor N. Now we want τ to be isomorphic to ρ
itself. Here we use a construction that follows the fixed-point argument from Kleene’s recursion theorem.
Recall the construction from Section 2.2. Note that most rules of τ do not depend at all on the program
for R. They deal only with information transfer along the wires, the vertical propagation of unchanged
program bits, and the space-time diagram for the universal Turing machine in the computation zone. We
make these rules a part of ρ’s definition, and get a program which checks that macro-tiles behave like
τ-tiles in this respect.

The only remaining part of the rules for τ is the hardwired program. We must guarantee that macro-
tiles carry the same program as τ-tiles do. Hence, our program for the universal Turing machine needs
to access the bits of its own text. This self-referential action is quite legal. Indeed, the program is written
on the tape, and the machine can read it (this argument is the key idea of the standard proof of Kleene’s
recursion theorem). The program checks that if a macro-tile belongs to the first line of the computation
zone, this macro-tile carries the correct bit of the program.

Now we choose N. We need it to be large enough so the described above computations can fit in the
computation zone. The used computations are rather simple. They all are polynomial in the input size,
i.e., of size O(logN). So for large N it easily fits in O(N) available space and time. This finishes the
basic construction of a self-similar aperiodic tile set. This construction together with Lemma 1 is already
enough to get Theorem 1. However to prove Theorem 2 we need to extend our self-referential technique.

3 Variable zoom factor

In our basic construction the macro-tiles of all levels are of the same size: each of them contained N×N
macro-tiles of the previous level for some constant zoom factor N. It is not enough to achieve our main
result, since we will need to host arbitrarily long computations in high-level macro-tiles. So we need an
increasing sequence of zoom factors N0,N1,N2, . . .; macro-tiles of the first level are blocks of N0×N0
tiles; macro-tiles of the second level are blocks of N1 ×N1 macro-tiles of level 1 (and have size of
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N0N1×N0N1 if measured in individual tiles). In general, macro-tiles of level k are made of Nk−1×Nk−1
macro-tiles of level k−1 and have side N0N1 . . .Nk−1 measured in individual tiles.

However, all these macro-tiles (of all levels) still carry the same program in their computation zone.
The difference between their behavior is caused by the input data on the tape: each macro-tiles “knows”
its level since it is provided as a sequence of bits on its tape. Then this level k may be used to compute
Nk which is then used as a modulus for coordinates in the father macro-tile.

We must ensure that this information is correct. We need two properties: (a) all macro-tiles of the
same level have the same idea about their level, and (b) these ideas are consistent between levels (each
father is one level higher than its sons). To achieve these properties we involve additional features in our
macro-tiles. Since each macro-tile knows its position inside the father, so it knows whether the father
should keep some bits of his level information in that macro-tile. If yes, the macro-tile checks that this
information is correct. Each macro-tile checks only one bit of the level information, but with brothers’
help they check all the bits in their father’s memory.

Also we should check that the level information fits into the tiles, and the computation required to
compute Nk from k also fits into level k tile. This means that logk, logNk and the time needed to compute
Nk from k should be much less than Nk−1 (since the computation zone is some fraction of Nk−1). So Nk
should not grow very slow (e.g., Nk = logk is too slow), should not grow very fast (e.g., Nk = 2Nk−1 is
too fast) and should not be too hard to compute. All these restriction still leave us a lot of freedom. E.g.,
Nk can be proportional to

√
k, to k, to 2k, etc. In the next section we assume that Nk = 2Ck

from some
large enough constant C. Now computational zones of macro-tiles increase on each next level, so we can
embed there computations of increasing sizes into the macro-tiles.

4 Sketch of the proof of Theorem 2

In our basic construction every tile knows its coordinates in the macro-tile and some additional infor-
mation needed to arrange ‘wires’ and simulate calculations of the universal Turing machine. Now in
addition to this basic structure each tile keeps one auxiliary bit of information. Formally it means that
the set of all tiles is split into two parts: τ = τ0tτ1. These bits (assigned to all tiles of a tiling) will make
a configuration in {0,1}Z2

that satisifies (*). Similarly, we assign an auxiliarely bit to each macro-tile
(i.e., on each level we will have 0-type or 1-type macro-tiles).

On each level k, we allow exactly two different valid distributions of auxiliary bits in a k-level macro-
tiles; these two distributions will be opposite to each other (one is the “reversed image” of the other one).
For each k-level macro-tile the choice between these two possible distributions of subordinate “auxiliary
bits” is determined by the “auxiliary bit” assigned to this macro-tile itself. The two valid distributions of
auxiliary bits inside a k-level macro-tile are defined inductively: first we chose two valid distributions of
0-tiles and 1-tiles in a 1-level macro-tile of size N0×N0 (there will be exactly 50% of 0-tiles and 50% of
1-tiles in a macro-tile of level 1); then we define two valid distributions of 1-level macro-tile in a 2-level
macro-tile (which is an N1×N1-matrix of 1-level macro-tiles), etc.

The distribution of auxiliary bits inside of a k-level macro-tile should be chosen in such a way that
for every shift t such that N0N1 . . .Nk−1 ≤ |t| < N0N1 . . .Nk the difference |ν(P t−→ Q)− ν(P) · ν(Q)| is
bounded by 1/k (so, it tend to 0 as k tends to infinity). The fact that such configurations of auxiliary bits
exist, follows from a simple probabilistic argument. In what follows, we explain this argument in some
detail.

Assume we already fixed valid distributions of 0-tiles and 1-tiles in all macro-tiles of level up to k.
Now we decide how to distribute k-level macro-tiles of type 0 and 1 inside a matrix of size Nk×Nk,
which makes a (k + 1)-level macro-tile. Let us draw independent random bits for each row and each
column of a (k+ 1)-level macro-tile (i.e., we need 2Nk random bits), and assign to each macro-tile of
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level k inside the Nk×Nk-matrix XOR of the two random bits corresponding to its row and column.
Now consider any 1×Nk row of k-level macro-tiles in the constructed macro-tile of level k+1 (this

“row” is a rectangle of size (N0 · . . . ·Nk−1)× (N0 · . . . ·Nk) paved by τ-tiles), and consider the shift of this
row by vector t. It is not hard to check (with standard Chernoff bounds) that with very high probability
this shift “changes” assigned bits for approximately 50% of all tiles in the block. The typical deviation
of the fraction of “changed” bits from 50% is very small and can be bounded by 1/k. Technically the
deviation of this frequency is greater than 1/k only with probability at most e−Ω(Nk/poly(k)) · poly(Nk).
(Remark: this bound requires the assumption Nk−1�Nk. For the lack of space we skip the calculations.)
Probability of large deviations remains very small even when we sum up it for all rows in a (k+1)-level
macro-tile (i.e., multiply it by Nk).

Thus, we proved probabilistically that the required distribution of k-level macro-tiles inside a (k+1)-
level macro-tile exists. How to enforce such a coloring by local rules? First of all, we can guarantee
that this distributions are the same (or exactly opposite) in every two neighboring (k+ 1)-level macro-
tiles (in our construction the choice of the distribution of 0- and 1-tiles in a (k+ 1)-level macro-tile is
determined by only O(Nk) bit parameters; so this information can be passed through the borderline of
neighboring macro-tiles of size Nk×Nk). It remains to guarantee that the valid distribution of k-level
macro-tiles indeed implies that shifts t such that N0N1 . . .Nk−1 ≤ |t|< N0N1 . . .Nk changes about 50% of
“auxiliary bits” inside every (k+1)-level macro-tile. To this end, the computational zone of each (k+2)-
level macro-tile checks the required property is true. We have enough room for this computation since
Nk+1� Nk. To run this computation we need to deliver to the computational zone of every (k+2)-level
macro-tile the auxiliary bits assigned to its subordinate macro-tiles of lower levels. This can be done by
the bit propagation technique from [6]. Since the complete argument is rather technical, we have to skip
detail for the lack of space.

5 Further research

We see two main avenues for the subsequent work. First, we believe that our technique is suitable
to answer the question of C. Radin in the most general setting. Another intriguing question is how
to implement the fixed-point construction of a tile set with a smaller size of a tile set. In the present
argument the number of different tiles in a tile set is about several millions. It would be interesting to
obtain a similar construction with hundreds or even dozens of tiles. This probably requires involving
other programming model, supporting more succinct programming style than Turing machines.
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Decision Problems, Springer-Verlag, 1996.
[2] R. Berger, The Undecidability of the Domino Problem. Mem. Amer. Math. Soc., 66, 1966.
[3] K. Culik, An Aperiodic Set of 13 Wang Tiles, Discrete Math., 160, 245–251, 1996.
[4] B. Durand, L. Levin, A. Shen, Complex Tilings. J. Symbolic Logic, 73 (2), 593–613, 2008 (See also Proc.

33rd Ann. ACM Symp. Theory Computing, 732–739, 2001.
[5] B. Durand, A. Romashchenko, A. Shen, Fixed-point tile sets and their applications. arXiv:0910.2415.
[6] B. Durand, A. Romashchenko, A. Shen, Effective closed subshifts in 1D can be implemented in 2D.

arXiv:1003.3103
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Abstract
I show a basic Yoneda-like lemma relating strongly dinatural transformations and initial algebras.

Further, I apply it to reprove known results about unique existence of uniform parameterized fixpoint
operators.

1 Introduction

I present a Yoneda-like lemma relating strongly dinatural (a.k.a. Barr dinatural) transformations and
initial functor-algebras. It is very basic, but I do not know whether it has appeared in the literature. I have
found it quite useful: it can be used, for example, to prove the validity of some Mendler-style structured
recursion schemes for initial algebras or recursive coalgebras [12, 14] and to prove properties of Church
representations of inductive types [9, 5]. Here, I use it to reprove some known results [7, 10] about
existence and unique existence of uniform parameterized fixpoint operators, exploiting that uniformity
is a strong dinaturality condition. I would not dare to claim that the proofs become simpler, but they
obtain a structure that nicely localizes the invocations of the various initial and bifree algebra existence
assumptions made.

2 Strong dinaturality and a Yoneda lemma for initial algebras

Dinatural transformations [2] and strongly dinatural (a.k.a. Barr dinatural) transformations [7, 8] are
two generalizations of natural transformations from (covariant) functors to mixed-variant functors that
have components only defined for the diagonal of the domain. We recall the definitions, starting with
dinaturality.

Definition 1 (Dinaturality). A dinatural transformation between H,K ∈ Cop×C→ E is given by, for
any X ∈ |C|, a map ΘX ∈ E(H(X ,X),K(X ,X)) such that, for any f ∈ C(X ,X ′), the following hexagon
commutes in E:

H(X ,X)
ΘX // K(X ,X)

K(X , f )
))SSSSSS

H(X ′,X)

H( f ,X) 55kkkkkk

H(X ′, f ) ))SSSSSS
K(X ,X ′)

H(X ′,X ′)
ΘX ′

// K(X ′,X ′)
K( f ,X ′)

55kkkkkk

Dinatural transformations are used, for example, in the definitions of coend and end. A coend is an
initial cowedge, where a cowedge is given by an object and an accompanying dinatural transformation
(just as a colimit is defined as an initial cocone, a cocone being an object with a natural transformation).

Dinatural transformations do not generally compose and so do not give a category. Strongly dinatural
transformations do not suffer from this shortcoming.

Luigi Santocanale (ed.): Fixed Points in Computer Science 2010, pp. 77-82
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Definition 2 (Strong dinaturality). A strongly dinatural transformation between H,K ∈ Cop×C→ E is
given by, for any X ∈ |C|, a map ΘX ∈ E(H(X ,X),K(X ,X)) such that, for any map f ∈ C(X ,X ′) and
any span (W, p, p′) on (X ,X ′), if the square in the following diagram commutes in E, then so does the
hexagon:

H(X ,X)
H(X , f )

))SSSSSS
ΘX // K(X ,X)

K(X , f )
))SSSSSS

W

p 66nnnnnnn

p′ ((PPPPPPP H(X ,X ′) ⇒ K(X ,X ′)

H(X ′,X ′)
H( f ,X ′)

55kkkkkk

ΘX ′
// K(X ′,X ′)

K( f ,X ′)

55kkkkkk

If E is a category with pullbacks such as, e.g., Set, one can equivalently require that, for every map
f ∈ C(X ,X ′), the outer hexagon of the above diagram commutes for (W, p, p′) the chosen pullback of
the cospan (H(X ,X ′),H(X , f ),H( f ,X ′)).

We write [C,E]sd for the category of mixed-variant functors from C to E and strongly dinatural
transformations.

Any strongly dinatural transformation is also dinatural, but the converse does not hold in general.
This note is centered around the following observation, which I have not noticed published (I have

mentioned it in an unpublished talk abstract [11] ten years ago, and also in a paper on the recursion
scheme from the cofree recursive comonad [14]). Please be so kind and tell me, if you know of a
reference where it might appear. It is a kind of a Yoneda lemma for strongly dinatural transformations
and initial algebras.

Proposition 1 (Yoneda lemma for initial algebras). Let C be a locally small category, F ∈ C→ C a
functor with an initial algebra (which we denote (µ F, inF ) and K ∈ C→ Set a functor (whose padding
into a mixed-variant functor we denote also by K). Then

[C,Set]sd(C(F−,−),K)∼= K(µ F)

(so [C,Set]sd(C(F−,−),K) is, in fact, a set too). This isomorphism is natural in F (to the extent that
initial algebras exist in C).

A strongly dinatural transformation between C(F−,−) and K is given by, for any X , a map ΘX ∈
C(FX ,X)→K X , such that, for any X , X ′, φ ∈C(F X ,X), φ ′ ∈C(F X ′,X ′), f ∈C(X ,X ′), f ◦φ = φ ′◦F f
(i.e., f being an F-algebra map from between (X ,φ) and (X ′,φ ′)) implies ΘX ′ = K f ΘX ∈ K X ′.

We denote the natural isomorphism by iF . It is defined as follows: for Θ ∈ [C,Set]sd(C(F−,−),K),
iF Θ =df Θµ F inF ∈ K (µ F); and, for x ∈ K (µ F), X ∈ |C|, k ∈ C(FX ,X), (i−1

F x)X k =df K (foldF,X k)x ∈
K X , where foldF,X denotes the unique algebra map from (µ F, inF) to (X ,k).

An important special case is when KX =df C(1,X). We get that

[C,Set]sd(C(F−,−),C(1,−))∼= C(1,µ F)

This is closely related to Church representations of inductive types. Remember that, in System F, we
represent µ F by ∀X . (F X ⇒ X)⇒ X).

Needless to say, for final coalgebras, a dual proposition is true; I refrain from spelling it out here.

3 Uniform parameterized fixpoint operators

We now turn to parameterized fixpoint-like operators and uniformity. The dependencies between differ-
ent axiomatiozations and sufficient conditions for existence have been studied by Bloom and Ésik [1],
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Freyd [3, 4], Mulry [7], Simpson and Plotkin [10] etc. Hyland and Hasegawa [6] showed that (uniform)
Conway operators are equivalent to (uniform) traces (definable in general monoidal categories, not just
categories with finite products).

We will closely follow the account of Simpson and Plotkin [10]. First we recall the definitions of
parameterized fixpoint operators, parameterized Conway operators and uniformity.

We assume given a category D with finite products.

Definition 3 (Parameterized fixpoint-like operator). A parameterized fixpoint-like operator on D is given
by, for any X ,Y ∈ |D|, a function fixX ,Y ∈ D(X×Y,Y )→ D(X ,Y ).

Definition 4 (Parameterized fixpoint operator). A parameterized fixpoint operator on D is a parameter-
ized fixpoint-like operator fix on D such that

• for any f ∈ D(X ,X ′) and k′ ∈ D(X ′×Y,Y ), fix(k′ ◦ ( f × idY )) = fixk′ ◦ f (naturality);

• for any k ∈ D(X×Y,Y ), fixk = k ◦ 〈idX ,fixk〉 (parameterized fixpoint property).

Definition 5 (Conway operator). A Conway operator on D is a parameterized fixpoint operator fix on D
with the further properties that

• for any f ∈D(X×Y,Y ′) and h ∈D(X×Y ′,Y ), f ◦〈idX ,fix(h◦〈fst, f 〉)〉= fix( f ◦〈fst,h〉) (param-
eterized dinaturality);

• for any k ∈ D((X×Y )×Y,Y ), fix(k ◦ 〈idX×Y ,sndX ,Y 〉) = fix(fixk) (diagonal property).

Parameterized dinaturality implies the parameterized fixpoint property, so for Conway operators the
latter condition is redundant.

For our final definition, we assume we also have a category C with finite products and the same
objects as D together with an identity-on-objects functor J ∈ C→ D preserving the finite products of C
strictly. We call the maps of D in the image of J pure.

Definition 6 (Uniformity). A parameterized fixpoint-like operator fix on D is said to be uniform wrt. J,
if

• for any f ∈ C(Y,Y ′), k ∈ D(X ×Y,Y ) and k′ ∈ D(X ×Y ′,Y ′), J f ◦ k = k′ ◦ (idX × J f ) implies
J f ◦fixk = fixk′.

(In the terminology of iteration theories [1], naturality is parameter identity, parameterized fixpoint
property is fixpoint identity, parameterized dinaturality is composition identity and diagonal property is
double dagger identity. Finally, uniformity corresponds to the functoriality condition.)

We now focus on the special case of D arising as the coKleisli category of a comonad (D,ε,(−)†)1

on C with J the right adjoint in its coKleisli splitting. The prototypical well-behaved situation here has
C =df Cppo⊥, D =df (−)⊥ and D ∼= Cppo, where Cppo stands for the category of ω-complete pointed
partial orders and ω-continuous functions, Cppo⊥ is as Cppo but has as maps only the strict (bottom-
preserving) maps of Cppo and (−)⊥ is the lifting endofunctor. More generally, the lifting comonad can
be replaced with any comonad on Cppo⊥ that has its underlying functor Cppo-enriched.

In terms of the “base” category C, a parameterized fixpoint-like operator is now, for any X ,Y ∈ |C|,
a function fixX ,Y ∈ C(D(X ×Y ),Y )→ C(DX ,Y ). The various optional additional conditions specialize
into the following:

1We write (−)† for the coKleisli extension operation of a comonad.
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• for any f ∈ C(DX ,X ′) and k′ ∈ C(D(X ′×Y ),Y ), fix(k′ ◦ 〈 f ◦D fst,εY ◦Dsnd〉†) = fixk′ ◦ f † (nat-
urality);

• for any k ∈ C(D(X×Y ),Y ), fixk = k ◦ 〈εX ,fixk〉† (parameterized fixpoint property);

• for any f ∈C(D(X×Y ),Y ′) and h ∈C(D(X×Y ′),Y ), f ◦〈εX ,fix(h◦〈εX ◦D fst, f 〉†)〉† = fix( f ◦
〈εX ◦D fst,h〉†) (parameterized dinaturality);

• for any k ∈ C(D((X×Y )×Y ),Y ), fix(k ◦D〈idX×Y ,sndX ,Y 〉) = fix(fixk) (diagonal property);

• for any f ∈C(Y,Y ′), k∈C(D(X×Y ),Y ) and k′ ∈C(D(X×Y ′),Y ′), f ◦k = k′◦D(idX× f ) implies
f ◦fixk = fixk′ (uniformity).

(Notice that here, id and ◦ refer to identity and composition in C rather than in D, differently from what
they meant above.)

Crucially for us, the uniformity condition asserts nothing else than strong dinaturality of fixX ,Y in Y ,
i.e., that fixX ,− ∈ [C,Set]sd(C(D(X×−),−),C(DX ,−))—an observation first made by Mulry [7].

From Proposition 1, we immediately get:

Corollary 1. If every functor D(X ×−) ∈ C→ C has an initial algebra, then a uniform wrt. J parame-
terized fixpoint-like operator fix on D is the same as, for any X ∈ |C|, a map fixX ∈C(DX ,µ(D(X×−))).

The bijection is given by fixX =df fixX ,µ(D(X×−) inD(X×−) and, for k ∈ C(D(X ×Y ),Y ), fixX ,Y k =df
foldD(X×−),Y k ◦fixX .

It is not difficult to strengthen this corollary to the following characterization of uniform parameter-
ized fixpoint operators (one has to verify that the conditions are pairwise equivalent):

Proposition 2. If every functor D(X×−) ∈C→C has an initial algebra, then a uniform wrt. J param-
eterized fixpoint operator fix on D is the same as, for any X ∈ |C|, a map fixX ∈ C(DX ,µ(D(X ×−)))
such that

• for any f ∈ C(DX ,X ′), µ(〈 f ◦D fst,ε− ◦Dsnd〉†)◦fixX = fixX ′ ◦ f † (“naturality”);

• for any X ∈ |C|, fixX = inD(X×−) ◦ 〈εX ,fixX〉† (“parameterized fixpoint property”).

Recall that a bifree algebra is an initial algebra that is at the same time also a final coalgebra. The
following is nearly immediate from the proposition we just stated.

Proposition 3 ([10, Proposition 6.5]). If every functor D(X ×−) ∈ C→ C has a bifree algebra, then D
has a unique uniform wrt. J parameterized fixpoint operator.

Proof. Just observe that the parameterized fixpoint property can be rewritten as in−1
D(X×−) ◦ fixX =

D(X × fixX) ◦ 〈εX , idDX〉†, which stipulates that fixX (if existing) must be a coalgebra map between
(DX ,〈εX , idDX〉†) and (µ(D(X ×−)), in−1

D(X×−)). As the latter is a final coalgebra, there is exactly one
such map. This map turns out to also satisfy the required naturality condition.

Uniform Conway operators can be analyzed similarly. Here we need the existence of further initial
algebras to replace conditions on fix with conditions on fix. When these initial algebras are also final
coalgebras, we have a unique uniform Conway operator.

Proposition 4. If all functors D(X ×−),D(X ×D(X ×−)),D((X ×−)×−) ∈ C→ C have initial
algebras, then a uniform wrt. J Conway operator on D is the same as, for any X ∈ |C|, a map fixX ∈
C(DX ,µ(D(X×−))) satisfying the conditions of Proposition 2, but also the following conditions:
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• for any X ∈ |C|, in ◦ 〈εX , fold(〈εX ◦ D fst, in〉†) ◦ fix〉† = fold(in ◦ 〈εX ◦ D fst, id〉†) ◦ fix
∈ C(DX ,µ(D(X×D(X×−)))) (“parameterized dinaturality”);

• for any X ∈ |C|, fold(in◦D〈id,snd〉)◦fix = fold(fold in◦fix)◦fix ∈ C(DX ,µ(D((X ×−)×−)))
“diagonal property”).

Proposition 5 ([10, Theorem 3]). If all functors D(X×−),D(X×D (X×−)),D((X×−)×−)∈C→C
have bifree algebras, then D has a unique uniform wrt. J Conway operator.

4 Uniform guarded recursion operators

A similar treatment is possible for guarded recursion operators (we have previously considered some
aspects for the dual situation of guarded iteration [13]). Here, the prototypical example is given by cofree
recursive comonads on endofunctors on Set, such as the nonempty list comonad defined by DX =df
µ(X× (1+(−))).

An ideal comonad on a category C with finite products is a comonad given by DX =df X ×D0X ,
εX =df fst ∈ C(DX ,X), for any k ∈ C(DX ,Y ), k† =df 〈k,k‡ ◦ snd〉 ∈ C(DX ,DY ) where D0 is an endo-
functor on C and, for any X ,Y ∈ |C|, (−)‡

X ,Y ∈ C(DX ,Y )→ C(D0X ,D0Y ).
A guarded recursion operator for an ideal comonad is, for any X ,Y ∈ |C|, a unique function recX ,Y ∈

C(X ×D0 (X ×Y ),Y ) → C(DX ,Y ) satisfying the guarded recursion equation reck = k ◦ (fst× id) ◦
〈ε, reck〉† and possibly further properties.

As soon as all functors X ×D0 (X ×−) have initial algebras, having a uniform guarded recursion
operator rec becomes equivalent to having, for any X ∈ |C|, a map recX ∈ C(DX ,µ (X ×D0 (X ×−))
such that rec = in◦ (fst× id)◦ 〈ε, rec〉†.

A uniform guarded recursion operator exists uniquely, e.g., whenever D is the cofree recursive
comonad on an endofunctor H on C, in which case DX ∼= µ (X×H (−))∼= X×µ (H (X×−)).

5 Conclusion

I find it intruiging that the use of the Yoneda-like lemma stages the invocations of the initial algebra resp.
bifree algebra existence assumptions: the initial algebra existence assumptions ensure the possibility of
reducing the existence of a parameterized fixpoint operator to the existence of a family of maps to initial
algebras; the bifree algebra existence assumptions ensure that such a family of maps exists uniquely.

I would like to learn more about the relationship of strong dinaturality and models of parametric
polymorphism.

Acknowledgment I thank my anonymous referees for useful remarks. This research was supported by
the Estonian Science Foundation under grant no. 6940.
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Abstract

We show that: (a) Banach’s and Knaster-Tarski’s fixed point theorems are instances of a sin-
gle theorem with a constructive proof; (b) Bourbaki-Witt’s and Caristi’s theorems are instances of
a single theorem that cannot have a constructive proof.

1 Introduction

Banach’s and Knaster-Tarski’s fixed point theorems have constructive proofs. In the first part of this
paper we show that more is true: both statements are instances of a single theorem. As we shall see, in
both cases the fixed point of a given map f : X→X is found by examining its generalized direct image f ∗

on a suitably constructed directed-complete poset. Since f ∗ is always order-preserving, regardless of the
properties of f , we can apply the well-known theorem that an order-preserving map on a pointed dcpo
has the least fixed point; remarkably, as shown by D. Pataraia [12], this statement has a fully constructive
proof, formalizable in higher-order intuitionistic logic (in 2003 it found an entry to the compendium on
continuous lattices and domains [7], where it is presented as a set of exercises). Hence we are going to
use Pataraia’s construction to simultaneously prove Banach’s and Knaster-Tarski’s theorems.

In the second part of this paper we show that Caristi’s [3] theorem is precisely the metric analogue
of the Bourbaki-Witt theorem. Again, both results are instances of a single statement, but this time we
do not use any external help in the proof — it is the Bourbaki-Witt construction that proves the unifying
theorem. Now, it has recently been discovered by A. Bauer [1] that the Bourbaki-Witt theorem can never
be demonstrated by a fully constructive argument. In what follows we are going to use Bauer’s insight
to show that unless a proof of Caristi’s theorem substantially rely on the symmetry axiom of the metric,
then it cannot be accepted intuitionistically.

1.1 A construction of fixed points for order-preserving maps on dcpos

Since we will refer to details of Pataraia’s proof, we shall start with a concise description of his construc-
tion.

Recall that a map f : P→ P on a poset P is expanding if x 6 f x, for all x. We say that an order-
preserving expanding map is inflationary. A dcpo is a poset P where each directed set has a supremum.
A poset is pointed, if it has the least element, usually denoted as ⊥. Now, suppose f is order-preserving
on a pointed dcpo P. Following Pataraia’s line of thought, we look for subsets of P that (a) contain ⊥,
(b) are closed under f , and (c) are directed-complete. Clearly Y := {x ∈ P | x 6 f x} is one of them. Let
C be the intersection of all sets with (a)-(c). Therefore, f : C→C is inflationary. Now, the set E(C) of
all inflationary maps on C, ordered pointwise, is directed-complete, and — and this is the crux of the
construction — it is itself a directed set. The reason is that for g,h ∈ E(C), we have g,h 6 g◦h. Hence
E(C) has a top element m : C→C. Consequently, f ◦m = m, and thus f (m(⊥)) = m(⊥), i.e. m(⊥) ∈C
is a fixed point of f . If x ∈ P is some other fixed point of f , then ↓x := {y ∈ P | y 6 x} satisfies (a)-(c),
hence C ⊆ ↓x and consequently, m(⊥)6 x.

Luigi Santocanale (ed.): Fixed Points in Computer Science 2010, pp. 83-87
∗The author is supported by grant number N206 3761 37 funded by Polish Ministry of Science and Higher Education.
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2 The setup

The fundamental reason why we can treat both order and metric fixpoint theorems from a unified per-
spective is that both structures are examples of quantale-enriched categories [11]. Consequently, we will
work with distances that do not posses all flexibility of metrics. This is of course the price that must be
paid for generality of the setup.

Our primary object of investigation is thus a set X together with a distance into [0,∞] that satisfies:
(a) X(x,y) = X(y,x) = 0 iff x = y, (b) X(x,y)+X(y,z) > X(x,z), for all x,y,z ∈ X . In the literature on
the subject a set X as above is known as a generalized metric space (gms) [2].

Any gms carries an intrinsic partial order: x 6X y iff 0 = X(x,y). It is crucial to observe that if the
distance map X(−,−) takes only two values: 0 and ∞, then the gms X is a partial order. We will say:
“a gms X is a poset” precisely when its distance map takes values in 2 := {0,∞}.

Taking into account absence of symmetry, every gms X has its dual, denoted Xop. Note also that
[0,∞] itself is a gms with [0,∞](x,y) = y− x, where − is the (extended) substraction truncated at zero.

A map f : X → Y is non-expansive if X(x,y)> Y ( f x, f y) for all x,y ∈ X .
The set all non-expansive maps of type Xop → [0,∞] will be denoted X̂ , to distinguish it from the

set [0,∞]X of all maps of the same type. The former plays a crucial role in our paper: it is a gms when
equipped with the usual sup-distance X̂(φ ,ψ) := supz∈x(ψz−φz).

2.1 The generalized direct image of a function

Let f : X → Y be any non-expansive map. Consider f ∗ : X̂ → Ŷ given by

f ∗(φ)(y) := inf
x∈X

(φx+Y (y, f x)).

Since X̂(φ ,ψ)+ f ∗(φ)(y)> infx∈X(ψx+Y (y, f x)) = f ∗(ψ)(y), we get X̂(φ ,ψ)> Ŷ ( f ∗(φ), f ∗(ψ)), i.e.
f ∗ is non-expansive. The map f ∗ can be interpreted as a generalized direct image of f , see Sect. 2.6
of [13]. For example if X and Y are posets (i.e. gmses with distances into 2), then f ∗ is a lower closure
of the direct image of f .

It is perhaps helpful for the reader if we issue a warning here: a non-expansive map in a gms may not
be continuous. For example, if X and Y are posets, non-expansiveness means order-preserving, while
continuous means directed-sup preserving, which is a stronger property.

2.2 Completeness of gmses

Consider an operation J that assigns to every gms X a subset J X of elements of X̂ in such a way that
(a) each J X contains all yx for all x ∈ X (where yx := X(−,x)); (b) each J X contains all f ∗(φ) for
φ ∈JY and a non-expansive f : Y → X . We say that elements of J X are ideals on X . Observe that
J X with the distance inherited from X̂ is in fact a subgms of X̂ .

Now we say that X is J -complete if there exists a non-expansive map S : J X → X , called supre-
mum, with

∀φ ∈J X ∀x ∈ X X(Sφ ,x) = X̂(φ ,yx).

The importance of the above notion of completeness lies in the fact that certain choices of J capture
completeness of metric spaces and directed-completeness of posets at the same time, as will be shown
on examples below.
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3 A pattern for Banach’s and Knaster-Tarski’s theorems

A class J of ideals is admissible if each J -complete X is directed-complete with respect to the intrinsic
order 6X introduced in Sect. 2.

Theorem 3.1. Fix an admissible class of ideals J . Let T : X → X be a non-expansive map on an J -
complete gms X. Suppose that there exists φ ∈J X, which is a fixed point of T ∗. Then T has a fixed
point, which is the least fixed point of T above Sφ .

Proof. Since X is complete, Sφ exists. By Prop. 2.5. of [13], non-expansiveness of T yields
S(T ∗(φ)) 6X T (Sφ), hence Sφ 6X T (Sφ). We can now follow steps of Pataraia’s construction, the
only difference being that instead of ⊥, we use Sφ . Thus T has a fixed point, which is of the form
m(Sφ) for some m : C→C. Recall that C ⊆ X is the smallest set closed under T and directed lubs that
contains Sφ . Suppose now that x1 is also fixed by T , and that Sφ 6 x1. Being the lower cone of a fixed
point, ↓x1 is closed under T and directed lubs. As a consequence m(Sφ) ∈C ⊆ ↓x1.

We will now demonstrate that Thm. 3.1 offers a pattern for generalizing and proving both of the
classic fixed point theorems.

3.1 Banach’s fixed point theorem

A first example of an admissible class of ideals is J = A, where by definition φ ∈ AX if and only if
φx := infi∈I sup j≥i X(x,x j) for some forward Cauchy net (xi)i∈I [2] (recall that a net (xi)i∈I is forward
Cauchy if ∀ε > 0 ∃N ∈ I ∀m≥ n≥N ε >X(xn,xm)). It can be shown that a metric space X is A-complete
iff it is complete in the usual sense. On the other hand, if X is a poset, then X is A-complete iff it is a
dcpo.

Lemma 3.2. A is admissible.

Proof. Suppose (xi)i∈I is 6X -directed. Define φ := infi∈I sup j≥i X(−,x j). Since X is A-complete, the
supremum Sφ ∈ X exists, and now will show that it is the least upper bound of (xi)i∈I .

Let k ∈ I. Firstly observe φ(xk) 6 sup j≥k X(xk,x j) = 0. Therefore 0 = φ(xk) = X̂(yxk,φ) >
X(xk,Sφ), whence xk 6X Sφ . On the other hand take any upper-bound u∈X of (xi)i∈I . Then 0=X(xk,u)
for all k ∈ I, and consequently 0 = infk sup j≥k X̂(yxk,yu) = X̂(φ ,yu) = X(Sφ ,u), i.e. Sφ 6X u.

Lemma 3.3. Let T : X → X be a non-expansive map on an A-complete gms X. Suppose that there exists
x0 ∈ X such that (T nx0)n∈ω is a forward Cauchy sequence. Then there is φ ∈ AX such that φ = T ∗(φ).

Proof. Define an ideal on X by φ := infm∈ω supn≥m X(−,T nx0). Let us first show that φ 6X̂ T ∗φ .
Fix N ∈ ω , y ∈ X and choose ε > 0 such that ε > supn≥N X(y,T nx0). Then there is δ > 0 with ε >
supn≥N X(y,T nx0)+δ . Use Cauchyness to get M ≥N such that for all i≥M, δ > X(T Mx0,T ix0). Hence
δ > supi≥M X(T Mx0,T ix0). Consequently,

ε > sup
n≥N

X(y,T nx0)+δ > sup
n≥M

X(y,T nx0)+δ

> X(y,T M+1x0)+ sup
i≥M

X(T Mx0,T ix0)

> inf
z∈X

(X(y,T z)+ sup
i≥M

X(z,T ix0))

> inf
z∈X

(X(y,T z)+ inf
M∈ω

sup
i≥M

X(z,T ix0))

= T ∗(φ)(y).
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Since ε is arbitrary, supn≥N X(y,T nx0) > T ∗(φ)(y). This holds for any N ∈ ω and y ∈ X , therefore
φ 6 T ∗(φ).

For the converse, let y,z ∈ X , m ∈ ω and n ≥ m. Then X(y,T z) + X(z,T nx0) > X(y,T z) +
X(T z,T n+1x0) > X(y,T n+1x0) and thus X(y,T z)+φz > φy. Consequently, T ∗(φ)6X̂ φ .

Theorem 3.4 (Banach). A contraction on an A-complete gms has a unique fixed point.

Proof. Let X be A-complete and T : X → X be contractive. Then for any x0 ∈ X , (T nx0)n∈N is a forward
Cauchy sequence. Hence by Lemma 3.3, there exists φ ∈ AX that is fixed under T ∗. Now Theorem 3.1
applies and we get a fixed point of T . Since T is a contraction, any choice of x0 leads to the same Sφ ∈ X .
Hence the fixed point of T is unique.

3.2 Knaster-Tarski’s fixed point theorem

Now J X = X̂ . It is well-known that that any (̂·)-complete X is a complete lattice in the intrinsic order,
and hence (̂·) is admissible.

It is actually a metric version of Knaster-Tarski’s theorem that we are going to prove. We recover the
original statement exactly when X is a poset.

Theorem 3.5 (Knaster-Tarski). A non-expansive map T : X → X on an (̂·)-complete gms has the least
and the greatest fixed point.

Proof. Let ⊥,> be the least and the top elements of X , respectively. By proofs of Lemmata 3.2, 3.3,
φz := infm∈ω supn≥m X(z,T n(⊥)) is an ideal on X with supremum

∨
n∈ω T n(⊥). Moreover, φ is a fixed

point of T ∗. By Theorem 3.1, there exists a fixed point of T , which is least above
∨

n∈ω T n(⊥), and hence
least above ⊥ as well.

Since T is non-expansive on X iff it is non-expansive on Xop, the same construction applied to Xop

in place of X produces the least fixed point of T in Xop, i.e. the greatest fixed point of X .

4 A pattern for Caristi’s and Bourbaki-Witt’s fixed point theorems

It is known from [6] that any complete metric space X can be embedded onto the set of maximal elements
of a continuous dcpo BX := {〈x,r〉 | x ∈ X ,∞ > r > 0} ⊆ X̂ , where 〈x,r〉(z) := X(z,x)+r, and 〈x,r〉6BX
〈y,s〉 iff 〈x,r〉 6X̂ 〈y,s〉 iff r > X(x,y)+ s. In [9] it has been shown that X is an A-complete gms iff
(BX ,6BX) is a dcpo. We will use this knowledge in proving a generalized version of Caristi’s fixed point
theorem.

Theorem 4.1. Let X be an A-complete gms and let ϕ : X → [0,∞) be a lower semicontinuous function.
Suppose T : X → X is an arbitrary mapping which satisfies ϕ(x) > X(x,T x)+ϕ(T x) for each x ∈ X.
Then T has a fixed point.

Proof. Let Z be a subgms of BX consisting of elements of the form 〈x,ϕ(x)〉 for x ∈ X . Hence
〈x,ϕ(x)〉 6Z 〈y,ϕ(y)〉 iff ϕ(x) > X(x,y)+ϕ(y). Moreover ϕ is lower semicontinuous iff it preserves
directed suprema with respect to the order 6Z . All this means that (Z,6Z) is a subdcpo of (BX ,6BX).
By assumption, T ′ : Z→ Z, defined as T ′(〈x,ϕ(x)〉) := 〈T x,ϕ(T x)〉 is expanding.

Therefore we use the Bourbaki-Witt argument (that can be found in [10]) to conclude that T ′ : Z→ Z
has a fixed point. That is: 〈z,ϕ(z)〉= 〈T z,ϕ(T z)〉 for some z ∈ X . Therefore, z = T z, as required.

Note that when X is a poset and ϕ is constant, then Thm. 4.1 becomes the Bourbaki-Witt theorem
for dcpos. On the other hand, since any complete metric space is A-complete, we have:
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Theorem 4.2 (Caristi). Let X be a complete metric space and let ϕ : X → [0,∞) be a lower semicontin-
uous function. Suppose T : X → X is an arbitrary mapping which satisfies ϕ(x)> X(x,T x)+ϕ(T x) for
each x ∈ X. Then T has a fixed point.

We conclude the paper with recalling a result of A. Bauer [1] who proved that in the effective topos,
there is a chain-complete lattice with an inflationary map that does not have a fixed point. As a con-
sequence the Bourbaki-Witt theorem for chain-complete lattices (or — equivalently [4] — for dcpos)
cannot have a proof in higher-order intuitionistic logic. For us, this means that Theorem 4.1 has no con-
structive proof. Moreover, if the original Caristi theorem for metric spaces had a constructive proof that
does not rely on symmetry of the distance, nor on the assumption that X(x,y)< ∞ for all x,y ∈ X — see
e.g. [8], [5] for proofs that neither use Zorn’s lemma nor symmetry — then it would be a valid proof of
our Theorem 4.1, and hence of the Bourbaki-Witt construction, which is impossible.

Taking into account the observations above we conjecture that symmetry plays no role in the ar-
gument, and therefore no proof of Caristi’s theorem is constructively valid, but we are unable to prove
this at the moment. One way to support our claim would be a construction, for every complete metric
space X , of a non-symmetric A-complete quasi-metric on X with equivalent fixed-point properties; such
a quasi-metric could perhaps be found by a deeper analysis of these existing proofs of Caristi’s theorem
that do not invoke equivalents of Zorn’s lemma.
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