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ON UNIFORM CANONICAL BASES IN Lp LATTICES AND OTHER METRIC

STRUCTURES

ITAÏ BEN YAACOV

Abstract. We discuss the notion of uniform canonical bases, both in an abstract manner and spe-
cifically for the theory of atomless Lp lattices. We also discuss the connection between the definability
of the set of uniform canonical bases and the existence of the theory of beautiful pairs (i.e., with the
finite cover property), and prove in particular that the set of uniform canonical bases is definable in
algebraically closed metric valued fields.

Introduction

In stability theory, the canonical base of a type is a minimal set of parameters required to define the
type, and as such it generalises notions such as the field of definition of a variety in algebraic geometry.
Just like the field of definition, the canonical base is usually considered as a set, a point of view which
renders it a relatively “coarse” invariant of the type. We may ask, for example, whether a type is definable
over a given set (i.e., whether the set contains the canonical base), or whether the canonical base, as a
set, is equal to some other set. However, canonical bases, viewed as sets, cannot by any means classify
types over a given model of the theory, and they may very well by equal for two distinct types. The finer
notion of uniform canonical bases, namely, of canonical bases from which the types can be recovered
uniformly, is a fairly natural one, and has appeared implicitly in the literature in several contexts (e.g.,
from the author’s point of view, in a joint work with Berenstein and Henson [BBHa], where convergence
of uniform canonical bases is discussed).

Definitions regarding uniform canonical bases and a few relatively easy properties are given in Sec-
tion 1. In particular we observe that every stable theory admits uniform canonical bases in some
imaginary sorts, so the space of all types can be naturally identified with a type-definable set. We then
turn to discuss the following two questions.

The first question is whether, for one concrete theory or another, there exist mathematically natural
uniform canonical bases, namely, uniform canonical bases consisting of objects with a clear mathematical
meaning. A positive answer may convey additional insight into the structure of the space of types as a
type-definable set. This is in contrast with the canonical parameters for the definitions, whose meaning
is essentially tautological and can therefore convey no further insight. The case of Hilbert spaces is
quite easy, and merely serves as a particularly accessible example. The case of atomless probability
spaces (i.e., probability algebras, or spaces of random variables), treated in Section 2, is not much more
difficult. Most of the work is spent in Section 3 where we construct uniform canonical bases for atomless
Lp lattices in the form of “partial conditional expectations” Et[·|E] and E[s,t][·|E] (defined there). To a
large extent, it is this last observation which prompted the writing of the present paper.
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The second question, discussed in Section 4, is whether the (type-definable) set of uniform canonical
bases is in fact definable. We characterise this situation in terms of the existence of a theory of beautiful
pairs. In Section 5 we use earlier results to show that for the theory of algebraically closed metric valued
fields, the theory of beautiful pairs does indeed exist, and therefore that the sets of uniform canonical
bases (which we do not describe explicitly) are definable.

For stability in the context of classical logic we refer the reader to Pillay [Pil96]. Stability in the
context of continuous logic, as well as the logic itself, are introduced in [BU].

1. Uniform canonical bases

In classical logic, stable theories are characterised by the property that for every model M, every
type p(x̄) ∈ Sx̄(M) is definable, i.e., that for each formula ϕ(x̄, ȳ) (say without parameters, this does
not really matter) there exists a formula ψ(ȳ) (with parameters in M) such that for all b̄ ∈M :

ϕ(x̄, b̄) ∈ p ⇐⇒ � ψ(b̄).

In this case we say that ψ is the ϕ-definition of p, and write

ψ(ȳ) = dp(x̄)ϕ(x̄, ȳ).

Obviously, there may exist more than one way of writing a ϕ-definition for p, but since any two such
definitions are over M and equivalent there, they are also equivalent in every elementary extension of
M, and thus have inter-definable canonical parameters. In other words, the canonical parameter of
the ϕ-definition of p is well-defined, up to inter-definability, denoted Cbϕ(p). The collection of all such
canonical parameters, as ϕ(x̄, ȳ) varies (and so does ȳ) is called the canonical base of p, denoted Cb(p).
This is, up to inter-definability, the (unique) smallest set over which p is definable. The same holds for
continuous logic with some minor necessary changes, namely that the ϕ-definition may be a definable
predicate (i.e. a uniform limit of formulae, rather than a formula), and it defines p in the sense that

ϕ(x̄, b̄)p = dp(x̄)ϕ(x̄, b̄).

We shall hereafter refer to definable predicates as formulae as well, since for our purposes the distinction
serves no useful end.

Since canonical parameters are, a priori, imaginary elements, the canonical base is a subset of M eq.
For most purposes of abstract model theory this is of no hindrance, but when dealing with a specific
theory with a natural “home sort”, it is interesting (and common) to ask whether types admit canonical
bases which are subsets of the model. This is true, of course, in any stable theory which eliminates
imaginaries. In continuous logic, this is trivially true for Hilbert spaces, it is proved for probability
algebras in [Ben06], and for Lp Banach lattices in [BBHb] (so all of these theories have, in particular,
weak elimination of imaginaries, even though not full elimination of imaginaries).

A somewhat less commonly asked question is the following. Can we find, for each formula ϕ(x̄, ȳ), a
formula dϕ(ȳ, Z), where Z is some infinite tuple of variables of which only finitely (or countably) many
actually appear in dϕ, such that for every model M, and every type p(x̄) ∈ Sx̄(M),

dp(x̄)ϕ(x̄, ȳ) = dϕ
(

ȳ,Cb(p)
)

.

The scarcity of references to this question is actually hardly surprising, since, first, the question as stated
makes no sense, and, second, the answer is positive for every stable theory. Indeed, if we consider Cb(p)
to be merely a set which is only known up to inter-definability, as is the common practice, then the
expression dϕ

(

ȳ,Cb(p)
)

is meaningless. We remedy this in the following manner:
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Definition 1.1. Let T be a stable theory. A uniform definition of types in the sort of x̄ consists of a
family of formulae

{

dϕ(ȳ, Z)
}

ϕ(x̄,ȳ)∈L, where Z is a possibly infinite tuple, such that for each type p(x̄)

over a model M � T there exists a tuple A ⊆M eq in the sort of Z such that for each ϕ(x̄, ȳ):

dp(x̄)ϕ(x̄, ȳ) = dϕ(ȳ, A).

If, in addition, this determines the tuple A uniquely for each p then we write A = Cb(p) and say that
the map p 7→ Cb(p) is a uniform canonical base map, or that the canonical bases Cb(p) are uniform (in
p).

To complement the definition, a (non uniform) canonical base map is any map Cb which associates
to a type p over a model some tuple Cb(p) which enumerates a canonical base for p.

First of all, we observe that every uniform canonical base map is in particular a canonical base map.
Second, any uniform definition of types gives rise naturally to a uniform canonical base map. Indeed,
for each ϕ we let wϕ be a variable in the sort of canonical parameters for dϕ(ȳ, Z), and let dϕ′(ȳ, wϕ)
be the corresponding formula. For a type p, let A be a parameter for the original definition, and for
each ϕ let bϕ be the canonical parameter of dϕ(ȳ, A), so dϕ(ȳ, A) = dϕ′(ȳ, bϕ). Now let W be the tuple
consisting of all such wϕ, so we may re-write dϕ′(ȳ, wϕ) as dϕ′(ȳ,W ), and let B be the tuple consisting
of all such bϕ. Then dp(x̄)ϕ(x̄, ȳ) = dϕ(ȳ, A) = dϕ′(ȳ, B) for all ϕ, and in addition this determines B
uniquely. Thus Cb(p) = B is a uniform canonical base map.

Lemma 1.2. Every stable theory admits uniform definitions of types and thus uniform canonical base
maps (in every sort).

Proof. This is shown for classical logic in, say, [Pil96], and for continuous logic (which encompasses
classical logic as a special case) in [BU]. �1.2

Lemma 1.3. The image imgCb of a uniform canonical base map is a type-definable set.

Proof. All we need to say is that the tuple of parameters does indeed define a (finitely, or, in the
continuous case, approximately finitely) consistent type, which is indeed a type-definable property. �1.3

Lemma 1.4. Let Cb be a uniform canonical base map in the sort x̄, and let f be definable function
(without parameters) defined on imgCb, into some other possibly infinite sort (this is equivalent to
requiring that the graph of f be type-definable). Assume furthermore that f is injective. Then Cb′ =
f ◦ Cb is another uniform canonical base map. Moreover, every uniform canonical base map can be
obtained from any other in this manner.

Proof. The main assertion follows from the fact that if f is definable and injective and dϕ(x̄, Z) is
a formula then dϕ

(

x̄, f−1(W )
)

is also definable by a formula on the image of f . For the moreover

part, given two uniform canonical base maps Cb and Cb′, the graph of the map f : Cb(p) 7→ Cb′(p) is
type-definable (one canonical base has to give rise to the same definitions as the other, and this is a
type-definable condition), so f is definable. �1.4

Thus, in the same way that a canonical base for a type is exactly anything which is inter-definable with
another canonical base for that type, a uniform canonical base is exactly anything which is uniformly
inter-definable with another uniform canonical base. A consequence of this (and of existence of uniformly
canonical bases) is that in results such as the following the choice of uniform canonical bases is of no
importance.

Lemma 1.5. Let z̄ = f(x̄, ȳ) be a definable function in T (say without parameters), possibly partial,
and let Cb be uniform. Then the map fCb

(

Cb(ā/M), b̄
)

= Cb
(

f(ā, b̄)/M
)

is definable as well for

(ā, b̄) ∈ dom f , b̄ ∈M , uniformly across all models of T . In case f is definable with parameters in some
set A, so is fCb, uniformly across all models containing A.
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Proof. For the first assertion, it is enough to observe that we can define tp
(

f(ā)/M
)

by

ϕ
(

f(ā, b̄), c̄
)

= dψ
(

b̄c̄,Cb(ā/M)
)

,

where ψ(x̄, ȳz̄) = ϕ
(

f(x̄, ȳ), z̄
)

. The case with parameters is merely a special case. �1.5

Lemma 1.6. Let Cb be a uniform canonical base map, say on the sort of n-tuples, into some infinite
sort, and let Cb(p)i denote its ith coordinate. Then the map ā 7→ Cb(ā/M)i is uniformly continuous,
and uniformly so regardless of M .

Proof. For a uniform canonical base map constructed from a uniform definition as discussed before
Lemma 1.2 this follows from the fact that formulae are uniformly continuous. General case follows using
Lemma 1.4 and the fact that definable functions are uniformly continuous. �1.6

Remark 1.7. The notion of a uniform canonical base map can be extended to simple theories, and the
same results hold. Of course, canonical bases should then be taken in the sense of Hart, Kim and Pillay
[HKP00], and one has to pay the usual price of working with hyper-imaginary sorts.

Now the question we asked earlier becomes

Question 1.8. Let T be a stable theory. Find a natural uniform canonical base map for T . In particular,
one may want the image to be in the home sort, or in a restricted family of imaginary sorts.

Usually we shall aim for the image to lie in the home sort, plus the sort {T, F} in the case of classical
logic, or [0, 1] in the case of continuous logic.

Example 1.9. Let T = IHS, the theory of infinite dimensional Hilbert spaces, or rather, of unit balls
thereof (from now on we shall tacitly identify Banach space structures with their unit balls).

The “folklore” canonical base for a type p = tp(v̄/E) is the orthogonal projection PE(v̄). This is not a
uniform canonical base since it lacks enough information to recover p. On the other hand, it is obtained
uniformly from any uniform canonical base of p, and by adding the missing information (in the sort
[−1, 1]) we obtain a uniform canonical base:

Cb(v̄/E) =
(

PE(vi), 〈vi, vj〉
)

i,j<n
.

This example, where we take a canonical base which is not uniform and make it uniform merely by
adding information in a constant sort (namely, {T, F} in classical logic, or [0, 1] in continuous logic) is
a special case of the following.

Definition 1.10. Say that a canonical base map is weakly uniform if it can be obtained from a uniform
map by composition with a definable function (which need not necessarily be injective, so the resulting
canonical base need not suffice to recover the type uniformly – compare with Lemma 1.4).

For example, in the case of Hilbert spaces discussed above, the canonical base map tp(v̄/E) 7→ PE(v̄)
is weakly uniform.

Proposition 1.11. Let Cb be any uniform canonical base map, and let us write its target sort as Z0×Z1,
where Z1 is a power of the constant sort. Let Cb0 be the restriction to the sort Z0. Then Cb0 is a weakly
uniform canonical base map. Conversely, every weakly uniform canonical base map can be obtained in
this fashion.

Proof. The main assertion is quite immediate, and it is the converse which we need to prove. Let Cb0
be a weakly uniform canonical base map on a sort x̄, with target sort Z0. By definition, it is of the form
f ◦Cb′, where Cb′ is a uniform canonical base map with target sortW and f : imgCb′ → Z0 is definable.
Let Φ be the set of all formulae ϕ(x̄,W ). For every such formula, the value ϕ

(

ā,Cb′(ā/M)
)

is uniformly

definable from Cb′(ā/M), call it gϕ
(

Cb′(ā/M)
)

, and let g = (gϕ)ϕ∈Φ. Then (f, g) : imgCb′ → Z0×Z1 is
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definable, and Z1 is a power of the constant sort. If we show that (f, g) is injective then, by Lemma 1.4,
we may conclude that Cb = (f, g) ◦ Cb′ is the desired uniform canonical base map.

So let us consider a model M and two tuples ā and b̄ in the sort x̄, lying in some extension N � M.
Let C = Cb′(ā/M), D = Cb′(b̄/M), and assume that (f, g)(C) = (f, g)(D). Then g(C) = g(D) means
that āC ≡ b̄D. Since also f(C) = f(D), we have āf(C) ≡ b̄f(C), i.e., ā ≡f(C) b̄. Finally, by hypothesis,

f(C) is a canonical base for both types, whence ā ≡M b̄ and therefore C = D. This completes the
proof. �1.11

Thus our question can be restated as

Question 1.12. Let T be a stable theory. Find a natural weakly uniform canonical base map for T with
image in the home sort.

Unfortunately, the canonical bases mentioned above for probability algebras and Lp lattices are not
even weakly uniform, so we cannot apply Proposition 1.11 and the problem of finding uniform canonical
bases requires some new ideas.

2. Uniform canonical bases in atomless probability spaces

The easier of the two “interesting cases” is that of atomless probability algebras. It does seem, however,
that no uniform canonical bases exist in the home sort (of events), and that one must work instead in
the (imaginary) sort of [0, 1]-valued random variables. This essentially boils down to working entirely
within the theory ARV of atomless spaces of [0, 1]-valued random variables described in [Benb]. It is
ℵ0-stable, eliminates quantifiers, and admits definable continuous calculus: if τ : [0, 1]n → [0, 1] is any
continuous function then the map X̄ 7→ τ(X̄) is definable.

Fact 2.1. Let X̄ = X0, . . . , Xn−1 be a tuple of bounded random variables. Then their joint distribution

is determined by the sequence of moments
(

E[X̄ k̄]
)

k̄∈Nn where X̄ k̄ =
∏

Xki

i .

Similarly, their joint conditional distribution over a σ-algebra B is determined by the sequence
(

E[X̄ k̄|B]
)

k̄∈Nn.

For a model M � ARV let us write E[X |M ] for E[X |σ(M)], which is itself a member of M .

Lemma 2.2. Let M � N � ARV and let X̄ ∈ Nn, k̄ ∈ Nn. Then E[X̄ k̄|M ] is uniformly definable
from Cb(X̄/M).

Proof. By the definable continuous calculus, the function (X̄, Y ) 7→ |X̄ k̄ − Y |2 is uniformly definable,

and by Lemma 1.5 the predicate ‖X̄ k̄−y‖2 is uniformly definable for y ∈M from Cb(X̄/M). For Y ∈M
we have

Y = E[X̄ k̄|M ] ⇐⇒ ‖X̄ k̄ − Y ‖2 = inf
y
‖X̄ k̄ − y‖2,

where the infimum is taken in M. Thus the graph of the function Cb(X̄/M) 7→ E[X̄ k̄|M ] is type-
definable in M, whence it follows that the function itself is definable, and uniformly so in all models of
ARV . �2.2

Theorem 2.3. For n-types over models in ARV ,

Cb(X̄/M) =
(

E[X̄k|M ]
)

k̄∈Nn

is a uniform canonical base (in the home sort).

Proof. By Lemma 2.2, this tuple is uniformly definable from any other uniform canonical base, so by
Lemma 1.4 all that is left to show is that this tuple determines the type. By Fact 2.1, it determines
the joint conditional distribution of X̄ over σ(M), which indeed determines tp(X̄/M) by quantifier
elimination. �2.3
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3. Uniform canonical bases of in atomless Lp lattices

Recall that LpL denotes the theory of Lp lattices for some fixed p ∈ [1,∞), and that ALpL denotes
the theory of atomless ones. Stability, independence and related notions were studied for ALpL by
Berenstein, Henson and the author in [BBHb]. The theory ALpL was shown to be ℵ0-stable, and
canonical bases of 1-types were described as tuples of conditional slices in the home sort (see Section 5
there). Even though they are very natural invariants of a 1-type, conditional slices are not uniform, or
even weakly uniform, in the sense of the present paper. Our aim here is to replace the conditional slices
with a related object which does provide a uniform canonical base.

We start by quickly recalling the Krivine calculus on Banach lattices (see also [LT79]).

Lemma 3.1. Every lattice term t(x̄) defines a function t : Rn → R which is finitely piecewise affine,
continuous, and R+-homogeneous of degree one, by which we mean that t(αx̄) = αt(x̄) for all α ≥ 0.

In addition, an arbitrary function ϕ : Rn → R is continuous and R+-homogeneous of degree one if
and only if it can be approximated by lattice terms uniformly on every compact.

Proof. The first assertion, as well as the if part of the second, are clear. For the only if, let us assume
that ϕ is continuous and R+-homogeneous of degree one. Then it is determined by its restriction to the
unit sphere. Since every uniform approximation of ϕ on the unit sphere yields a uniform approximation
on the entire unit ball, it will be enough to show that lattice terms are dense in C(Sn−1,R). They
obviously form a lattice there, so it will be enough to show that for every distinct x̄, ȳ ∈ Sn−1, every
a, b ∈ R and every ε > 0, there is a lattice term t such that |t(x̄)− a|, |t(ȳ)− b| < ε.

We may assume that x0 6= y0. If |x0| = |y0| then we may assume that x0 < 0 < y0 and define
t(z̄) = a

y0

z−0 + b
y0

z+0 . Otherwise, we may assume that |x0| < |y0|, in which case the opposite inequality

must hold for some other coordinate, say |y1| < |x1|. Then x1y0 − x0y1 6= 0 and we may define

t(z̄) =
bx1 − ay1
x1y0 − x0y1

z0 +
ay0 − bx0
x1y0 − x0y1

z1.

Either way, t(x̄) = a and t(ȳ) = b, which is even better than what we needed. �3.1

It is also a fact that if t is a lattice term with bound ‖t‖ on [−1, 1]n then for any Banach lattice E
and every sequence f̄ ∈ En one has |t(f̄)| ≤ ‖t‖

∨

i |fi|. It follows that if tk → ϕ uniformly on [−1, 1]n

then tk(f̄) converges in norm to a limit ϕ(f̄) which does not depend on the choice of converging lattice
terms, and at a rate which only depends on the sequence tk and on ‖

∨

i |fi|‖. It follows that the map
ϕ : En → E is uniformly definable across all Banach lattices.

Convention 3.2. For α > 0 we extend x 7→ xα to the whole real line by (−x)α = −xα (so (−7)2 = −49).

Lemma 3.3. For every p, q ∈ [1,∞) the theories LpL and LqL are quantifier-free bidefinable. More
exactly, if E = Lp(Ω) and F = Lq(Ω) then we may identify their respective underlying sets via the

bijection f 7→ f
p

q . Under this identification, each Banach lattice structure is quantifier-free definable in
the other.

Moreover, if q ∈ (1,∞) and q′ = q
q−1 is its conjugate exponent, then the duality pairing 〈f, g〉 =

∫

fg

on Lq × Lq′ is definable in Lp.

Proof. Immediate. �3.3

For the time being we consider a 1-type over a model tp(f/E).

Lemma 3.4. Assume that p > 1, and let Cb be any uniform canonical base map. Then Cb(f/E) 7→
E[f |E] is definable in ALpL. More generally, if t(x, ȳ) is any lattice term, then the map

(

Cb(f/E), ḡ
)

7→

E
[

t(f, ḡ)|E
]

, where ḡ ∈ E, is definable.
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Proof. Since ‖E[f |E]‖ ≤ ‖f‖ for all f , it is enough to show that the graph of the map is uniformly

type-definable in the canonical base. Indeed, the function (x, y) 7→ x
1

p y
p−1

p is continuous and R+-

homogeneous of degree one. Therefore (h, g) 7→ ‖h
1

p g
p−1

p ‖p =
∫

|h||g|p−1 is a definable predicate.
Separating into positive and negative parts we see that ϕ(x, z) =

∫

xzp−1 is a definable predicate as
well. Then in E we have x = E[f |E] if and only if

sup
z

∣

∣ϕ(x, z)− dϕ
(

z,Cb(f/E)
)∣

∣ = 0,

and this remains true if we restrict z to the unit ball. This concludes the proof. The case of a lattice
term follows by Lemma 1.5. �3.4

Remark 3.5. It follows that at least for p > 1, the conditional expectation with respect to a sub-lattice is
intrinsic to the structures and does not depend on any presentation as concrete Lp spaces. Using similar
techniques (namely, interpreting an Lq lattice in an Lp lattice) we shall see later on that the same follows
for p = 1, although without the uniformity proved above. This fact has already been shown in [BBHb]
for all p but without uniformity.

Let us consider the map g 7→ E[g −. f |E] on E. It is clearly determined by tp(f/E), and it follows
from Lemma 3.4 that for p > 1 it is even uniformly definable from the canonical base. It follows from
what we do later that this map also contains sufficient information in order to recover the type tp(f/E).
We can code the map (and thus the type, and uniformly so when p > 1) by a canonical parameter for
the predicate d

(

x,E[y −. f |E]
)

, but as we explained in the introduction this is exactly what we wish to
avoid doing.

Instead, we observe that the map g 7→ E[g −. f |E] is convex on E. It is therefore equal to its double
Legendre transform (with respect to the multiplication E ×R → E), and in particular can be recovered
from its Legendre transform, which we shall denote by t 7→ Et[f |E]:

Et[f |E] = sup
g∈E

tg −E[g −. f |E].

We observe that Et[f |E] = +∞ for t /∈ [0, 1], and we claim that Et[f |E] ∈ E for t ∈ [0, 1]. Indeed, it
is also not difficult to see that E0[f |E] = 0 and E1[f |E] = E[f |E]. Since t 7→ Et[f |E] is convex (as
a Legendre transform) we obtain Et[f |E] ≤ tE[f |E] for 0 < t < 1, as desired. The double Legendre
transform is then

E[g −. f |E] = sup
t∈[0,1]

tg −Et[f |E].

In order to see a little clearer, let us fix a concrete presentation E = Lp(X), and let

E′ = Lp

(

(

X × [0, 1]
)

∪ [0, 1]
)

, where the intervals are taken with the Lebesgue measure. Then E em-

beds canonically in E′, and by quantifier elimination for ALpL the embedding is elementary. It is shown
in [BBHb] that every 1-type over E admits an “increasing” realisation in E′. We may therefore assume
that f ∈ E′, and that for each x ∈ X , the map t 7→ f(x, t) is increasing. In this case, E[f |E] ∈ E is

merely the map x 7→
∫ 1

0
f(x, t) dt. For t ∈ (0, 1) and x ∈ X let ft(x) = f(x, t). Then the map t 7→ ft is

increasing, and we have (where ‖·‖ = ‖·‖p)

‖f‖p ≥ ‖f↾X×[0,1]‖
p =

∫ 1

0

‖ft‖
p dt =

∫ 1

0

‖f+
t ‖p + ‖f−

t ‖p dt.

Since ‖f+
t ‖ (respectively, ‖f−

t ‖) is increasing (respectively, decreasing) in t we get

‖f+
t ‖p ≤

‖f‖p

1− t
, ‖f−

t ‖p ≤
‖f‖p

t
,
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whereby

‖ft‖ ≤
‖f‖

(t− t2)1/p
.

In particular, ft ∈ E for all t ∈ (0, 1) (in fact one can actually get ‖ft‖ ≤ ‖f‖min(t, 1 − t)−1/p). It is
not difficult to see now that

tft −E[ft −. f |E] = Et[f |E] =

∫ t

0

fs ds.

The first equality just means that the supremum in the definition of Et[f |E] is attained at ft.
In fact, it is a general fact that if F is convex and F ∗(t) = supx tx−F (x) is its Legendre transform, then

the supremum is attained at x if and only D−
t F

∗(t) ≤ x ≤ D+
t F

∗(t), where D± denote the derivatives
on the left and on the right, respectively. In our case we have F (g) = E[g −. f |E] and F ∗(t) = Et[f |E],
so the first equality above is equivalent to D−

t Et[f |E] ≤ ft ≤ D+
t Et[f |E] for all t, which in turn is

equivalent to the second. A comparison with [BBHb] yields that ft is equal to the conditional slice
S1−t(f/E) for all t where the two one-sided derivatives agree, and in particular for almost all t. Notice
that this description of ft in terms of one-sided derivatives also means that it ft is a well-determined
member of E for almost all t in a manner which is intrinsic to the type of f over E.

Lemma 3.6. For each t, Assume that p > 1. Then Cb(f/E) 7→ Et[f |E] is definable in ALpL for all
t ∈ [0, 1].

Proof. For t = 0, 1 this is already known, so we may assume that t ∈ (0, 1). It follows from the definition
that in E:

∥

∥x−Et[f |E]
∥

∥

p
= inf

y

∥

∥

∥

(

x− ty +E[y −. f |E]
)+

∥

∥

∥

p

+ sup
y

∥

∥

∥

(

x− ty +E[y −. f |E]
)−

∥

∥

∥

p

.

It is enough to restrict the quantifiers on y to ‖y‖ ≤ ‖ft‖ ≤ ‖f‖
p
√
t−t2

. Together with Lemma 3.4, this

means that d
(

x,Et[f |E]
)

is uniformly definable from Cb(f/E), and the proof is complete. �3.6

Theorem 3.7. For every p ∈ (1,∞) and every dense subset D ⊆ (0, 1) (e.g., D = Q ∩ (0, 1)), the
tuple

(

‖f+‖, ‖f−‖,Et[f |E]
)

t∈D
is a uniform canonical base for tp(f/E), and

(

Et[f |E]
)

t∈D
, is a weakly

uniform canonical base in the home sort.

Proof. By Proposition 1.11 it is enough to prove the first assertion. We have already seen that
Cb(f/E) 7→ Et[f |E] is definable, and clearly Cb(f/E) 7→ ‖f±‖ are, so by Lemma 1.4 all that is left is
to show that the tuple

(

‖f+‖, ‖f−‖,Et[f |E]
)

t∈D
determines tp(f/E).

Since t 7→ Et[f |E] is convex, it is determined on a dense subset, so for all t ∈ (0, 1) we may define gt =
D−

t Et[f |E] ∈ E. Working again in E′ defined as above, define g(x, t) = gt(x). Then g↾X×[0,1] = fX×[0,1]

(almost everywhere, and therefore in E′). In particular, ‖g±↾X×[0,1]‖ ≤ ‖f±‖, and we may define g on

the disjoint copy of [0, 1] so that ‖g±‖ = ‖f±‖. Then g � tp(f/E), and the proof is complete. �3.7

Notice that Et[f |E] → 0 as t → 0, by dominated convergence, and similarly Et[f |E] → E[f |E] as
t→ 1. Moreover, for p > 1 (fixed) the rate of convergence depends uniformly on ‖f‖. Indeed, otherwise
Lemma 3.6 together with a compactness argument would yield a type (or a canonical base of a type,
which is the same thing) for which convergence fails altogether. On the other hand, for p = 1, consider
for some ε the case where µ(X) = 1 and fε(x, t) = −ε−11X×[0,ε]. Then ‖fε‖ = 1 and Eε[fε|E] = −1X ,
also of norm one, so the rate of convergence is not uniform. Thus Lemma 3.6, and therefore Lemma 3.4,
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fail for p = 1. This is essentially the only obstacle, and by keeping away from the endpoints of [0, 1] we
do manage to get an analogue of Theorem 3.7 for p = 1. For 0 ≤ t < s ≤ 1 let us define

E[t,s][f |E] = Es[f |E]−Et[f |E] =

∫ s

t

fr dr.

Lemma 3.8. Let p ∈ [1,∞). Then for every 0 < s < t < 1, the map Cb(f/E) 7→ E[t,s][f |E] is definable.

Proof. For p > 1 this is already known, so we only need to deal with the case of p = 1. For each q > 1 we
may apply the bidefinability of AL1L and ALqL, and calculate E[t,s][f |E]Lq = E[t,s][f

1/q|E]q uniformly

from Cb(f/E). It will be enough to show that as q → 1, E[t,s][f |E]Lq → E[t,s][f |E] at a rate which only

depends on ‖f‖. We may choose a concrete representation where h = E
[

|f |
∣

∣E
]

is an indicator function,
and consider what happens in a single fibre over E. There all functions in E are constants, and we may
identify f with the function f(t) = ft, which is increasing on [0, 1]. If h = 0 then everything is zero,

so we may assume that h =
∫ 1

0
|f | = 1. Since f is increasing, we must have f(r) ∈ [− 1

t ,
1

1−s ] for all

r ∈ [t, s], and
∫ s

t
f(r)1/q dr ∈ [− 1

t ,
1

1−s ] as well. It follows that for any desired ε > 0 there exists q0 > 1,
depending only on t, s and ε, such that for all 1 < q < q0:

∣

∣

∣

∣

(
∫ s

t

f(r)
1

q dr

)q

−

∫ s

t

f(r) dr

∣

∣

∣

∣

< ε.

Integrating over all fibres we obtain
∣

∣E[t,s][f |E]Lq −E[t,s][f |E]
∣

∣ < ε‖f‖,

as desired. �3.8

Theorem 3.9. For every p ∈ [1,∞) and every dense subset D ⊆ (0, 1) (e.g., D = Q ∩ (0, 1)), the tuple
(

‖f+‖, ‖f−‖,E[t,s][f |E]
)

t,s∈D,t<s
is a uniform canonical base for tp(f/E), and

(

E[t,s][f |E]
)

t,s∈D,t<s
is

a weakly uniform canonical base in the home sort.

Proof. Same argument as for Theorem 3.7. �3.9

We have thus produced (weakly) uniform canonical bases in the home sort for 1-types in ALpL. For n-
types, we use the following general fact. Recall first that if E ⊆ E′ are two Lp lattices then each member
of E′ can be written uniquely as f = f↾E + f↾E⊥ , where f↾E⊥ is orthogonal to E and f↾E is orthogonal
to E⊥ = {g ∈ E′ : g ⊥ E}. If E = Lp(X,Σ, µ) ⊆ Lp(X

′,Σ′, µ′) (where (X,Σ, µ) ⊆ (X ′,Σ′, µ′) is an
extension of measure spaces) then f↾E = f1X and f↾E⊥ = f1X′

rX . In particular, ·↾E and ·↾E⊥ are
linear lattice homomorphisms.

Fact 3.10. The n-type tp(f̄↾E/E) is determined by the 1-types tp(k̄ · f̄ /E), where k̄ · f̄ =
∑

i kifi and
k̄ varies over Zn.

Proof. Indeed, this information determines tp(t̄ · f̄ /E), and in particular tp(t̄ · f̄↾E/E) for all t̄ ∈ Qn

and therefore for all t̄ ∈ Rn. Now apply [BBHb, Proposition 3.7]. �3.10

Theorem 3.11. Let Cb be a uniform canonical base map for 1-types. Then

tp(f̄ /E) 7→
(

Cb(k̄ · f̄ /E), tp(f̄)
)

k̄∈Zn

is a uniform canonical base map for n-types.
If Cb is a weakly uniform canonical base map for 1-types then

tp(f̄ /E) 7→
(

Cb(k̄ · f̄/E)
)

k̄∈Zn

is a weakly uniform canonical base map for n-types.

We may view tp(f̄) as a sequence in [0, 1] via any embedding of Sn(ALpL) in [0, 1]ℵ0 .
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Proof. For the first assertion, it is enough to show that tp(f̄ /E) is determined by this data. Indeed,
tp(f̄↾E/E) is already known to be determined. Let h =

∑

i |fi|. Then tp(f̄↾E/E) determines tp(h↾E/E),
and in particular ‖h↾E‖, while ‖h‖ is determined by tp(f̄). Thus ‖h↾E⊥‖ is known. Alongside the facts
that h↾E⊥ is positive and orthogonal to E, this is enough to determine tp(h↾E⊥/E). Since in any case we
are only interested in the type over E, we may assume that h↾E and h↾E⊥ are known. We may further
assume that h↾E = 1A and h↾E⊥ = 1B in some concrete presentation of the ambient space. Now tp(f̄)
determines tp(f̄/h), which, again by [BBHb, Proposition 3.7], can be identified with the joint conditional
distribution of f̄ with respect to {∅, A∪B} (which is essentially the same thing as the distribution of f̄
restricted to A∪B, with the caveat that A∪B has finite measure which is not necessarily one, i.e., is not
necessarily a probability space). Similarly, tp(f̄↾E/E) determines tp(f̄↾E) and thus tp(f̄↾E/h↾E), which
can be identified with the joint conditional distribution of f̄↾E with respect to {∅, A}. Subtracting, we
obtain the joint conditional distribution of f̄↾E⊥ with respect to {∅, B}, namely tp(f̄↾E⊥/h↾E⊥), and
thus tp(f̄↾E⊥) and finally tp(f̄↾E⊥/E, f̄↾E). Thus tp(f̄ /E) is known and the proof of the first assertion
is complete.

For the second assertion it is enough to show that the tuple is a canonical base for the type, i.e., is inter-
definable with some other canonical base for the type, a fact which follows from the first assertion. �3.11

Corollary 3.12. For every p ∈ [1,∞) and every dense subset D ⊆ (0, 1) the tuple
(

tp(f̄),E[t,s][k̄ ·

f̄ |E]
)

t,s∈D,t<s,k̄∈Zn is a uniform canonical base for tp(f̄ /E), and
(

E[t,s][k̄ · f̄ |E]
)

t,s∈D,t<s,k̄∈Zn is a

weakly uniform canonical base in the home sort. When p > 1 we may replace E[t,s] with Et.

Remark 3.13. At least for p = 1 this cannot be improved, in the sense that the types of every k̄ · f̄ need
not determine tp(f̄). Indeed, let f1, f2 and f3 be disjoint positive functions of norm one, and let

g = f1 − f2, h = f1 + f2 − 2f3.

Then tp(kg + ℓh) = tp(kg − ℓh) for all k, ℓ, but tp(g, h) 6= tp(g,−h).

4. On uniform canonical bases and beautiful pairs

It is implicitly shown by Poizat [Poi83], based on Shelah’s f.c.p. Theorem [She90], that a stable
classical theory does not have the finite cover property if and only if the set of uniform canonical bases
(for all types in any one given sort) is definable, rather than merely type-definable (here, a definable
set in an infinite sort means a set which is closed under coordinate-wise convergence, and such that the
projection to each finite sub-sort is definable in the ordinary sense). A similar result should hold for
continuous logic, where the finite cover property (and in particular Shelah’s f.c.p. Theorem) have not yet
been properly studied. Here we concentrate on the relation between the existence of a good first order
theory for beautiful pairs and the definability of the sets of uniform canonical bases.

We fix a stable theory T in a language L admitting quantifier elimination as well as a uniform canonical
base map Cb. We may write the latter as (Cbn)n, since it consists of a map for the sort of n-tuples
for each n (we shall assume that L is single sorted, otherwise even more complex notation is required).
We define LP = L ∪ {P}, where P is a new unary predicate symbol (1-Lipschitz, in the continuous
setting). We also define LCb to consist of L along with, for each n, n-ary function symbols to the
target sorts of Cbn. We denote the (possibly infinite) tuple of these new function symbols fCb(x̄), where
n = |x̄|. In the continuous setting, uniform continuity moduli for the fCb are as per Lemma 1.6. We let
LP,Cb = LP ∪ LCb.

By a pair of models of T we mean any elementary extension N � M � T . We shall identify such a pair
with the structures (M, P ), (M, fCb) or (M, P, fCb), as will be convenient, where P (x) = d(x,N) and
fCb(x̄) = Cb(x̄/N). The property that the predicate P defines an elementary sub-structure is elementary,
so the class of all pairs of models of T is elementary as well, of theory TP,0. Similarly, TP,Cb,0 will be
the LP,Cb-theory of pairs, which consists in addition of the axioms saying that fCb(x̄) = Cb(x̄/P ).
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It is easy to check that all these axioms are indeed expressible by an inductive LP -theory and an
inductive LP,Cb-theory, respectively. Clearly, TP,Cb,0 is a definitional expansion of TP,0, so we may
unambiguously refer to a model of TP,Cb,0 as (M, P ). On the other hand, the predicate P is also
superfluous in TP,Cb,0, since it can be recovered in the classical and continuous cases, respectively, as

P (x) = ∃y d[x = y]
(

y,Cb(x/P )
)

, P (x) = inf
y
d[d(x, y)]

(

y,Cb(x/P )
)

.

Since T admits quantifier elimination, the formulae on the right hand side can be taken to be quantifier-
free. We may therefore express the same properties as above in an inductive LCb-theory TCb,0, for which
TP,Cb,0 is merely a quantifier-free definitional expansion. We may therefore work quite interchangeably
in one setting or the other, i.e., with or without the predicate P .

Lemma 4.1. The theory TCb,0 admits amalgamation over arbitrary sets. If T is complete, then TCb,0

also admits the joint embedding property.

Proof. Let (Mi, P ) � TCb,0 for i = 0, 1 and let A be a common sub-structure. Then M0 ≡ M1 (even if T
is incomplete) so let N be a large model of the common theory in which we seek to embed this configur-
ation, at a first time as L-structures. First, we may place A and P (Mi) in N so that P (M0) |⌣A

P (M1).

Since A is a sub-structure in LCb, we know that A |⌣P (A)
P (Mi). It follows that A |⌣P (A)

P (M0)P (M1),

and we may choose a sub-model P (N ) � N such that P (N) ⊇ P (Mi) and A |⌣P (A)
P (N). We now

embed each Mi such that Mi |⌣A,P (Mi)
P (N). Then in particular Mi |⌣P (Mi)

P (N). It follows that

the embeddings of (Mi, P ) in (N , P ) respect LCb, and we are done. If T is complete then we can
amalgamate any two models of TCb,0 over the empty substructure. �4.1

(This argument already appears, in essence, in [BPV03], the only novelty is that we use the language
LCb to ensure that every sub-structure is P -independent, i.e., verifies A |⌣P (A)

P .)

It follows that a model companion of TCb,0 (or of TP,Cb,0, this is the same thing), if it exists, eliminates
quantifiers, i.e., it is a model completion. Even if it does not exist we may still consider it as a Robinson
theory in the sense of Hrushovski [Hru97].

Lemma 4.2. Modulo TCb,0, the restriction of every quantifier-free LCb-formula to P is L-definable
there.

Proof. This follows immediately from the fact that the map ā 7→ Cb(ā/ā) is definable in L. �4.2

Definition 4.3. Following Poizat [Poi83], we say that a pair (M, P ) of models of T is beautiful if P
is approximately ℵ0-saturated and N is approximately ℵ0-saturated over M. We define T b

Cb to be the
LCb-theory of all beautiful pairs of models of T .

Theorem 4.4. Let T be a stable theory with quantifier elimination and a uniform canonical base map,
as above. Then the following are equivalent.

(i) The image set imgCbn is definable for each n (i.e., its projection to every finite sort is a
definable set in that sort).

(ii) If (M, P ) � T b
Cb is κ-saturated for some κ > |T | then M is κ-saturated over P (M). In

particular, every sufficiently saturated model of T b
Cb is itself a beautiful pair.

(iii) The theory TCb,0 admits a companion TCb such that for some κ > |T |, if (M, P ) � TCb is
κ-saturated then M is κ-saturated over P (M). Moreover, such a companion is necessarily the
model companion of TCb,0.

(iv) The theory TCb,0 admits a model completion TCb (i.e., its model companion exists and eliminates
quantifiers).

If T is complete, this is further equivalent to:
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(v) Let (M, P ) � TCb,0, where P (M) is |T |+-saturated and M is |T |+-saturated over P (M). Then
(M, P ) is ℵ0-saturated (and is, moreover, a model of the model companion).

(vi) There exists an approximately ℵ0-saturated beautiful pair (M, P ).

Proof. (i) =⇒ (ii). Let TCb consist of TCb,0 along with the axioms saying that for every canonical
base Z ∈ imgCb and every tuple w̄, the type defined by Z on the domain P ∪ w̄ is finitely realised (or,
in the continuous setting, approximately finitely realised). Since the set imgCb is definable, this axiom
can indeed be expressed, and clearly TCb ⊆ T b

Cb.
Now let (M, P ) � TCb be κ-saturated, in which case P (M) is κ-saturated as well. Let also ā be a

tuple in some elementary extension of M, C = Cb(ā/M) ∈ M , and let A ⊆ M , |A| < κ. Let π(x̄) be
the partial LCb-type saying that x̄ realises tp(ā/A ∪ P ), i.e., that

sup
ȳ∈P

∣

∣ϕ(x̄, ȳb̄)− dϕ(ȳb̄, C)
∣

∣ = 0

for each formula ϕ(x̄, ȳz̄) and b̄ ∈ A. By TCb, this partial type is approximately finitely realised in
(M, P ), and since |A ∪ C| < κ, it is realised there.

(ii) =⇒ (iii). It is easy to check that TCb,0 and T b
Cb are companions, whence the main assertion.

For the moreover part, let TCb be any companion with the stated property, and we shall show that all
its models are existentially closed. Indeed, let us consider an extension (M, P ) ⊆ (N , P ) of models
of TCb, and we need to show that (M, P ) is existentially closed in (N , P ). Since the latter is an
elementary property of an extension, we may replace the extension with any elementary extension
thereof (technically speaking, we represent the extension by (N , P,Q), where Q(x) = d(x,M), and take
an elementary extension of this). We may therefore assume that (M, P ) is κ-saturated, so in particular
P (M) is κ-saturated, and by assumption M is κ-saturated over P (M).

Now let b̄ ⊆ Mm, ā ∈ Nn, and let p(x̄, ȳ) = tp
(

ā, b̄/P (N)
)

, q(ȳ) = tp
(

b̄/P (N)
)

, C = Cb(p),
D = Cb(q). By saturation of P (M) we may find C′ ⊆ P (M) such that C′ ≡D C, and define p′(x̄, ȳ)
to be the type over P (N) defined by C′. Now, C ≡D C′ along with q ⊆ p yields q ⊆ p′, so p′(x̄, b̄) is
consistent. Therefore, its restriction to P (M), b̄ is realised in M , say by ā′. Then ā and ā′ have the same
quantifier-free LCb-type over b̄, which concludes the proof.

(iii) =⇒ (iv). By Lemma 4.1, the model companion eliminates quantifiers.
(iv) =⇒ (i). The set (imgCb)P is definable in TCb, as the image of a definable set (the entire universe)

under a definable function. By quantifier elimination, it is quantifier-free definable. It follows that the
set (imgCb)P is L-definable in P , which means exactly that imgCb is definable.

(iv) =⇒ (v). A close inspection of the argument for (ii) =⇒ (iii) reveals that it proves the following
intermediary result: if (M, P ) � TCb,0, P (M) is κ-saturated, and M is κ-saturated over P (M), then
(M, P ) is ℵ0-saturated. In addition, such a pair is clearly a model of TCb as given there.

(v) =⇒ (vi). Clear.
(vi) =⇒ (i). Here we also assume that T is complete. Assume that imgCbn is not definable, keeping

in mind that it is always type-definable. This means that for some ε > 0, the set of types q in the sort of
imgCbn satisfying d(q, imgCbn) ≥ ε has an accumulation point in imgCbn. By our saturation assump-
tion for P (M), the partial type saying that Z ∈ (imgCbn)

P and d
(

Z, fCb(M
n)
)

≥ ε is approximately
finitely realised in (M, P ), and therefore, by the saturation assumption for (M, P ), realised there, say
by C. Then the type p ∈ Sn(P ) whose canonical base is C is (approximately) realised in M, by the
saturation assumption for M, so d

(

C, fCb(M
n)
)

= 0, a contradiction. �4.4

Corollary 4.5. The image sets imgCbn are definable if and only if TCb,0 admits a model companion,
if and only if this model companion is T b

Cb (and is in fact a model completion).

In case these equivalent conditions hold we shall simply denote the model companion by TCb, or, in
the language LP , by TP (although it is not usually a model companion in the language LP ). In this
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case we say that the class of beautiful pairs of models of T is weakly elementary, in the sense that any
sufficiently saturated model of the theory of this class, TP , also belongs to it. By results of Poizat [Poi83],
for a classical theory T this is further equivalent to T not having the finite cover property.

Corollary 4.6. If T is ℵ0-categorical then T b
Cb is the model completion of TCb,0.

Proof. In an ℵ0-categorical theory every type-definable set is definable. �4.6

Since the theories discussed in previous sections (IHS, APr andALpL) are ℵ0-categorical, they satisfy
the equivalent conditions of Theorem 4.4 in a somewhat uninteresting fashion. In the next section we
consider a more interesting example of a non ℵ0-categorical theory.

Just as we remarked in Section 1, these results can be extended to simple theories, where beauti-
ful pairs are replaced with lovely pairs (see [BPV03]). The price to be paid is either to work with
hyper-imaginary sorts (which can be done relatively smoothly in continuous logic) or to assume that
uniform canonical bases exist in real or imaginary sorts (which is a strong form of elimination of hyper-
imaginaries).

5. The case of ACMV F

A convenient feature of condition (iii) of Theorem 4.4 is that it remains invariant under the addition
(or removal) of imaginary sorts. It may therefore serve as a criterion for the definability of the sets of
uniform canonical bases even when these do not exist in any of the named sorts. As an example of this,
let us consider the theory ACMV F of algebraically closed metric valued fields, as defined in [Bena].

Theorem 5.1. The equivalent conditions of Theorem 4.4 hold for T = ACMV F .

Proof. We recall that a model of ACMV F is not a valued field but rather a projective line KP1 over

one, equipped with a modified distance function d(x, y) = ‖x−y‖ = |x−y|
max |x|,1·max |y|,1 when x, y 6= ∞ and

d(x,∞) = 1
max |x|,1 .

Given a polynomial Q(Z, W̄ , V̄ ) over Z and a tuple ē, let
√

Q(X, ē, P ) denote the collection of all
roots of instances Q(X, ē, f̄) where f̄ ∈ P (or more exactly, of the homogeneisation thereof, so ∞ can
also be obtained a root). Let us define TCb to consist of TCb,0 along with the axioms saying that every

r ∈ [0, 1], b ∈ P and Q(ē, V̄ ) as above there is a such that d(a, b) = d
(

a,
√

Q(X, ē, P )
)

= r, or at least

approximately so. One checks that
√

Q(X, ē, P ) is a definable set, so this is expressible in continuous
logic.

In order to check that TCb is indeed a companion, let us consider an instance of the axioms. Since the

map x 7→ x−1 is an isometric bijection of KP1, and for every Q there is Q′ such that
√

Q(X, ē, P )
−1

=
√

Q′(X, ē, P ), we may assume that |b| ≤ 1. We may then add a such that |a − c| = max r, |b − c| for

all c ∈
√

Q(X, ē, P ) r {∞}, so in particular |a| = max |b|, r ≤ 1. It follows that d
(

a,
√

Q(X, ē, P )
)

=
d(a, b) = r.

Now, let (KP1, P ) be an ℵ1-saturated model of TCb, and we claim that the opposite holds, namely,
that for all b ∈ P r {∞}, countable set ∞ /∈ A and r ∈ (0,∞), if B denotes the algebraic closure of
P ∪ A then there exists a such that |x − c| = max r, |b − c| for all c ∈ B. We notice that if |b| < r
then replacing b with some b′ ∈ P such that |b′| = r, which exists by saturation, does not change the
conditions of the problem. We may therefore assume that |b| ≥ r. If |b|, r ≤ 1 then (by saturation)
there exists x such that d(a,B) = d(a, b) = r, and as in the previous paragraph this x is as desired.
Otherwise, |b| > 1. We then find a such that for all c ∈ Br{∞}, |a− c| = max r′, |z− b−1| with r′ = r

|b|2
(since |b−1|, r′ ≤ 1). We observe that |a| = max |b−1|, r|b−2| = |b−1|, i.e., |ab| = 1. A direct calculation
yields that for c ∈ B r {∞}, |a−1 − c| = max r

∣

∣

c
b

∣

∣ , |b − c| (the case c = 0 may have to be considered
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separately). We now consider three cases (keeping in mind that |b| ≥ r):

max r
∣

∣

∣

c

b

∣

∣

∣
, |b− c| =











max r
∣

∣

c
b

∣

∣ , |b| = |b| = max r, |c− b|, |c| < |b|,

max r, |c− b|, |c| = |b|,

max r
∣

∣

c
b

∣

∣ , |c| = |c| = max r, |c− b|, |c| > |b|.

Our claim is thus proved.
Now let p(x) ∈ S1(PA), and let q be any global extension of p to M. Since M is ℵ1-saturated, there

exists b ∈ M such that r = d(x, b)q(x) is minimal. Replacing p with q↾PAb, we may assume that b ∈ A.
By our previous claim, there exists a ∈M such that d(a, b) = d(a,B) = r, so this x must realise p.

We have thus shown that for every ℵ1-saturated model (M, P ) of the companion TCb, M is ℵ1-
saturated over P , so by Theorem 4.4 TCb is the model completion of TCb,0, and every uniform canonical
base map has a definable image. �5.1

On the other hand, there are no canonical bases, so in particular no uniform ones, in the home sort
of ACMV F . Indeed, we observed in [Bena] that 1-types over models are parametrised by spheres, and
it is not difficult to see that if S is a sphere of non zero radius then in the home sort dcl(S) = dcl(∅). In
the case of 1-types it is relatively easy to construct an imaginary sort in which uniform canonical bases
exist. Indeed, let us consider the set of all pairs (a, r) with a ∈ KP1 and r ∈ [0, 1], more conveniently
written as ar, and let [ar] denote the closed ball of radius r around a. We define

d(ar, bs) = |r − s| ∨ d(a, b)−. (r ∧ s).

Let us show that

d(ar , ct) ≤ d(ar, bs) + d(bs, ct).

If d(ar, ct) = |r − t| then the inequality is clear. Otherwise, may assume that d(a, c) ≤ d(a, b), so

d(ar, ct) = d(a, c)−. (r ∧ t) ≤ d(a, b)−. (r ∧ s) + |s− t| ≤ d(ar, bs) + d(bs, ct).

(A somewhat less direct way of observing the same would consist of defining ϕ(x, a, r) = d(x, a) −. r
(namely d(x, [ar ])), and observe that d(ar, bs) = supx |ϕ(x, a, r) − ϕ(x, b, s)|. Clearly d(ar, bs) = 0 if
and only if [ar] = [bs].) On the other hand, the set of all such quotients is incomplete, and the set of
completions consists, in addition to all closed balls, of all spheres over the structure (this construction can
be carried out in any bounded ultra-metric structure). In this imaginary sort, 1-types admit a uniform
canonical base map. The case of canonical bases for n-types and general elimination of imaginaries for
ACMV F are far more complex, compare with [HHM06] as well as with more recent results of Hrushovski
and Loeser with respect to uniform canonical bases of generically stable types in ACV F .
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