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Abstract
We consider nonparametric maximum likelihood estimation of density using linear histogram models.

More precisely, we investigate optimality of model selection procedures via penalization, when the number
of models is polynomial in the number of data. It turns out that the Slope Heuristics �rst formulated by
Birgé and Massart [10] is satis�ed under rather mild conditions on the density to be estimated and the
structure of the considered partitions. This suggests a new look at AIC penalty and more precisely, we show
that the minimal penalty in the sense of Birgé and Massart is equivalent to half AIC penalty. Thus, as soon
as the chosen penalty is larger than half AIC, the model selection procedure satis�es an oracle inequality.
On contrary, if the penalty is less than the minimal one, then the procedure totally misbehaves. Moreover,
if the penalty is equal to AIC penalty - and the number of data is large enough -, then the model selection
procedure is nearly optimal in the sense that it satis�es a nonasymptotic, trajectorial oracle inequality
with constant almost one, tending to one when the number of data goes to in�nity. Finally, it is, to our
knowledge, the �rst time that the Slope Heuristics is theoritically validated in a non-quadratic setting.

Keywords: Maximum likelihood, density estimation, AIC, Optimal model selection, Slope heuristics,
Penalty calibration.

1 Introduction

This paper is devoted to the study of some penalized maximum likelihood model selection procedures for the
estimation of density on histograms. There is a huge amount of literature on the problem of model selection
by penalized maximum likelihood criteria, even in the more restrictive question of selecting an histogram, that
goes back to Akaike�s pioneer work. In the early seventies, Akaike [1] proposed to select a model by penalizing
the empirical likelihood of maximum likelihood estimators by the number of parameters in each model. The
analysis of Akaike [1] on the model selection procedure de�ned by the so-called Akaike�s Information Criterion
(AIC), is fundamentally asymptotic in the sense that the author considers a given �nite collection of models
with the number of data going to in�nity. This asymptotic setting is irrelevant in many situations and thus
many e¤orts have been made to develop nonasymptotic analysis of model selection procedures, letting the
dimension of the models and the cardinality of the collection of models depend on the number of data. As
pointed out by Boucheron and Massart [11], it is nevertheless worth mentioning that early works of Akaike
[2] and Mallows [22] in model selection relied, although in a disguised form, on the Wilks� phenomenon
(Wilks [28]) that asserts that in smooth parametric density estimation the di¤erence between the maximum
likelihood and the likelihood of the sampling distribution converges towards a chi-square distribution where the
number of degrees of freedom coincides with the model dimension. This phenomenon has been generalized by
Boucheron and Massart [11] in a nonasymptotic way, considering the empirical excess risk in a M-estimation
with bounded contrast setting, and is actually one the main results supporting the conjecture that the slope
heuristics introduced by Birgé and Massart [10] hold in some general framework, see Arlot and Massart [6].
Let us now describe some works related to the selection of maximum likelihood estimators.
Barron and Sheu [9] give some risks bounds on maximum likelihood estimation considering sequences of

regular exponential families made of polynomials, splines and trigonometric series. They achieve an accurate
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trade-o¤ between the bias term and the variance term considering that log-density functions have square
integrable derivatives. Considering general models, Barron, Birgé and Massart [8] give strategies of penalization
in a nonasymptotic framework and derive oracle inequalities for the Hellinger risk. In particular, the considered
penalty terms take into account the complexity of the collection of models, but as a prize to pay for generality,
they involve absolute constants that may be unrealistic.
Particularizing the structure of the models to histograms, Castellan [14] proposes a modi�ed Akaike�s crite-

rion that also takes into account the complexity of the collection of models, and that lead to signi�cant changes
compared to AIC criterion in the case of large collections of irregular partitions. She derives nonasymptotic
oracle inequalities for the Hellinger and Kullback-Leibler risks of the selected model, with leading constants in
front of the oracle only depending on the multiplicative constant in the penalty term and being optimized for
a penalty term corresponding to AIC in the case of regular histograms. But, despite the fact that she gives
optimal controls from above and from below for the mean of the Hellinger and Kullback-Leibler risks on a �xed
model (see Proposition 2.4 and 2.6 in [14]), the derived oracle inequalities are not su¢ ciently sharp to recover
the asymptotic optimality of AIC in the case of regular histograms, as the leading constants are bounded away
from one even if the number of data is going to in�nity. Castellan [14] also give a lower bound for the penalty
term that corresponds to half AIC penalty, when the unknown density is uniform on the unit interval and the
partitions are regular. This result seems to indicate that the slope heuristics exhibited by Birgé and Massart
[10] is satis�ed in the context of maximum likelihood estimation of density, at least when the considered mod-
els are regular histograms. Castellan [15] has also been able to generalize her study to exponential models
where the logarithm of functions are piecewise polynomials. By distinguishing between regular and irregular
partitions de�ning the models, she gives signi�cant bounds in Hellinger risk for procedures of model selection
based on a modi�ed Akaike�s criterion. We also refer to the introduction of Castellan [14] for a state of the
art on the problem of selecting histograms, and in particular the related question of optimal cell width in the
case of regular histograms.
We show in this paper that the slope heuristics is valid when the collection of models is of polynomial

complexity with respect to the number of data and the considered partitions satisfy some lower regularity
assumption. More precisely, we identify the minimal penalty as half AIC penalty. For a penalty function less
than the minimal one, we show that the procedure of model selection totally misbehaves in the sense that
the Kullback-Leibler excess risk of the selected model is much larger than the oracle one, and the selected
dimension is systematically large too. On the contrary, when the penalty function is larger than the minimal
one, assuming that the bias of the models are bounded from above and from below by a power of the number
of elements in each partition, we show a nonasymptotic pathwise oracle inequality for the Kullback-Leibler
excess risk of the selected model. The assumption on the bias of the models holds true when the unknown
density is a non constant �-Hölder function. Moreover, if the penalty function is close to two times the
minimal one, the leading constant in the oracle inequality is close to one, and is even converging to one when
the number of data is going to in�nity, meaning that we are close to the optimal penalty. This allows us to
show nonasymptotic quasi-optimality of AIC in this context. From a practical point of view, as our results
theoretically validate the data-driven calibration of penalty exposed by Arlot and Massart in [6] and as the
penalty shape is known in this case and is equal to the dimension of the models, we are able to provide a data-
driven model selection procedure that asymptotically behaves like AIC procedure. Moreover, this data-driven
procedure should perform better than AIC for small numbers of data. A simulation study about this fact is
still in progress.
Our analysis, that signi�cantly di¤ers from Castellan�s approach in [14], is based on the concept of contrast�s

expansion exposed in [24] in the case of least-squares regression. Moreover, on each model, the Kullback-Leibler
divergence with respect to the Kullback-Leibler projection of the unknown density is shown to be close to a
weighted L2 (P ) norm, locally around the Kullback-Leibler projection, where P is the sampling distribution.
Our approach then relies on two central facts : under a lower regularity assumption on the partitions, the
models are equipped with a localized basis structure, and assuming moreover that the unknown density is
uniformly bounded from above, the maximum likelihood estimators are consistent in sup-norm, uniformly
over the collection of models, and converge towards their corresponding Kullback-Leibler projections. We
notice that this notion of convergence in sup-norm, which is essential in our methodology, is also present in
the work of Castellan, slightly disguised in the term 
m (") de�ned in Section 2.3 of [14].
Finally, histogram models of densities combine two properties : on the one hand they are a particular

case of exponential models, and on the other hand they can be viewed as the subset of positive functions in
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an a¢ ne space. Our approach is based on the second property, whereas Castellan�s one relies on the �rst
property, taking advantage of the linear structure of the contrasted functions. We conjecture that the slope
phenomenon discovered by Birgé and Massart in a generalized linear Gaussian model setting can be extended
in the two directions described above. In each case, one of the main task will be to prove the consistency in
sup-norm of the maximum likelihood estimators on the considered models, as further explained in Section 4.
The paper is organized as follows. In Section 2 we describe the statistical framework, the considered models

and we investigate in Section 2.3 the �regular�structure of the Kullback-Leibler contrast on histogram models.
We state in Section 3 our main results. In Section 4 we give arguments concerning possible developments of
the two possible generalizations described above. The proofs are postponed to the end of the paper.

2 Framework and notations

2.1 Maximum Likelihood Estimation

We assume that we have n i.i.d. observations (�1; :::; �n) with common unknown law P on a measurable space
(Z; T ) and that � is a generic random variable of law P on (Z; T ) and independent of the sample (�1; :::; �n).
We also assume that there exists a known probability measure � on (Z; T ) such that P admits a density s�
with respect to � :

s� =
dP

d�
:

Our goal is to estimate the density s�.
For a measurable suitable integrable function f on Z, we set

Pf = P (f) = E [f (�)]

�f = � (f) =

Z
Z
fd�

and if

Pn =
1

n

nX
i=1

��i

denote the empirical distribution associated to the data (�1; :::; �n),

Pnf = Pn (f) =
1

n

nX
i=1

f (�i) :

Moreover, taking the convention ln (0) = �1 and de�ning the positive part as (x)+ = x _ 0, we set

S =
�
s : Z �!R+ ;

Z
Z
sd� = 1 and P (ln s)+ < +1

�
. (1)

We assume in the sequel that the unknown density s� belongs to S. In fact, in order to derive our results, we
will assume in Section 3 that s� is uniformly bounded away from zero and uniformly upper bounded on Z. For
now, note that since P (ln s�)� < +1 and s� 2 S, we have P jln (s�)j < +1. Moreover, the Kullback-Leibler
contrast K is de�ned on S to be

K : s 2 S 7�! (z 2 Z 7�!� ln (s (z)))

and thus the risk
PK (s) = P (Ks) = PKs = P (ln s)� � P (ln s)+

as well as the excess risk
` (s�; s) = P (Ks)� P (Ks�) = P (Ks�Ks�)
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are well de�ned on S and can be possibly in�nite. Now, for two probability distributions Ps and Pt on (Z; T )
of respective densities s and t with respect to �, the Kullback-Leibler divergence of Pt with respect to Ps is
de�ned to be

K (Ps; Pt) =
( R

Z ln
�
dPs
dPt

�
dPt =

R
Z s ln

�
s
t

�
d� if Ps � Pt

+1 otherwise.
(2)

By misuse of notation we will denote K (s; t) rather than K (Ps; Pt) and by Jensen inequality we notice that
K (s; t) is a nonnegative quantity, equal to zero if and only if s = t �-a:s: Hence, for any s 2 S, the excess
risk ` (s�; s) satis�es

` (s�; s) = P (Ks�Ks�)

=

Z
Z
ln
�s�
s

�
s�d�

= K (s�; s) � 0 (3)

and this nonnegative quantity is equal to zero if and only if s� = s ��a:s:We thus deduce that the unknown
density s� is uniquely de�ned by

s� = argmin
s2S

fP (� ln s)g

= argmin
s2S

fPK (s)g : (4)

For a subset fM � S, we de�ne the maximum likelihood estimator on fM , whenever it exists, by
sn

�fM� 2 arg min
s2fM fPnKsg (5)

= arg min
s2fM

(
1

n

nX
i=1

� ln (s (�i))
)

:

Finally, for any s 2 L2 (P ), we denote by

ksk2 =
�Z

Z
s2dP

�1=2
its quadratic norm.

2.2 Histogram models

The models fM that we consider here to de�ne the maximum likelihood estimators as in (5) are subsets of
linear spaces M made of histograms. More precisely, for a �nite partition �M of cardinality j�M j = DM , we
set

M =

(
s =

X
I2�M

�I1I ; � = (�I)I2�M 2 RDM

)
the linear vector space of piecewise constant functions with respect to �M and we assume that any element I
of the partition �M is of positive measure with respect to � :

for all I 2 �M , � (I) > 0 . (6)

By misuse of language, the space M is also called �model� or �histogram model�. The linear dimension of
M is equal to DM . In addition we associate to the model M the subset fM of the functions in M that are
densities with respect to �, fM =

�
s 2M ; s � 0 and

Z
Z
sd� = 1

�
:
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As the partition �M is �nite, we have P (ln s)+ < +1 for all s 2 fM and so fM � S. Hence, by (5), we can
associate to fM the maximum likelihood estimator sn

�fM� and in the following we denote it sn (M) rather
than sn

�fM�. We state in the next proposition some well-known properties that are satis�ed by histogram
models submitted to the procedure of maximum likelihood estimation (see for example Massart [23], Section
7.3).

Proposition 1 Let

sM =
X
I2�M

P (I)

� (I)
1I : (7)

Then sM 2 fM and sM is called the Kullback-Leibler projection of s� onto fM . Moreover, it holds
sM = arg min

s2fM P (Ks) : (8)

The following Pythagorean-like identity for the Kullback-Leibler divergence holds, for every s 2 fM ,
K (s�; s) = K (s�; sM ) +K (sM ; s) : (9)

We also have the following formula

sn (M) =
X
I2�M

Pn (I)

� (I)
1I ; (10)

and so the maximum likelihood estimator on M is well de�ned and corresponds to the classical histogram
estimator of s� associated to the partition �M .

Remark 2 Histogram models are special cases of general exponential families exposed for example in Bar-
ron and Sheu [9] (see also Castellan [15] for the case of exponential models of piecewise polynomials). The
projection property (9) can be generalized to exponential models (see Lemma 3 of [9] and Csiszár [16]).

Remark 3 As by (3) we have
P (KsM �Ks�) = K (s�; sM )

and for any s 2 fM ,
P (Ks�Ks�) = K (s�; s)

we easily deduce from (9) that the excess risk on fM is still a Kullback-Leibler divergence, as we then have for
any s 2 fM ,

P (Ks�KsM ) = K (sM ; s) : (11)

Moreover it is easy to see using (10) that the maximum likelihood estimator on a histogram model M is also
the least-squares estimator.

We shall ask for a particular analytical structure of the considered models in order to derive sharp upper and
lower bounds for the excess risk on each model of reasonable dimension. Namely, we require here that the
models are ful�lled with a localized basis structure with respect to the L2 (P ) norm. As stated in the following
lemma, this property is available when the unknown density of data is uniformly bounded away from zero and
when the partition �M related to the model M satis�es some lower regularity property with respect to the
measure of reference �.

Lemma 4 Let Amin; A� > 0. Let �M be some �nite partition of Z and M be the model of piecewise constant
functions on the partition �M . Assume that

inf
z2Z

s� (z) � Amin > 0 and DM inf
I2�M

� (I) � A� > 0 . (12)
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Set rM = (AminA�)
�1=2 and de�ne, for all I 2 �M ,

'I = (P (I))
�1=2

1I :

Then the family ('I)I2�M is an orthonormal basis of (M;L2 (P )) that satis�es, for all � = (�I)I2�M 2 RDM ,




 X
I2�M

�I'I







1

� rM
p
DM j�j1 (13)

where j�j1 = max fj�I j ; I 2 �Mg. As a consequence,

sup
s2M , ksk2�1

ksk1 � rM
p
DM : (14)

The proof of Lemma 4 is straightforward and can be found in Section 5.1.

2.3 "Regularity" of the Kullback-Leibler contrast

Our goal is to study the performance of maximum likelihood estimators, that we measure by their excess risk.
So we are interested in the random quantity P (Ksn (M)�Ks�) : Moreover, since we can write

P (Ksn (M)�Ks�) = P (Ksn (M)�KsM ) + P (KsM �Ks�)

and since the bias P (KsM �Ks�) is deterministic, we focus on the quantity

P (Ksn (M)�KsM ) � 0 ;

that we want to bound in probability. We will often call this last quantity the excess risk of the estimator on
M or the true excess risk of sn (M), by opposition to the empirical excess risk for which the expectation is
taken over the empirical measure : Pn (KsM �Ksn (M)) � 0:
We notice that by Proposition 1, the excess risk of the maximum likelihood estimator onM is still a Kullback-
Leibler divergence if M is a model of histograms, as we have

P (Ksn (M)�KsM ) = K (sM ; sn (M)) :

The following lemma provides an expansion of the contrast around sM on M as the sum of a linear part and
a second order part which behaves as a quadratic.

Lemma 5 Assume that
inf
z2Z

s� (z) � Amin > 0 (15)

and consider s 2 fM such that
ks� sMk1 < Amin : (16)

Then we have infz2Z s (z) > 0 and it holds for all z 2 Z,

(Ks) (z)� (KsM ) (z) =  1;M (z) (s� sM ) (z) +  2
��

s� sM
sM

�
(z)

�
(17)

with
 1;M (z) = �

1

sM (z)

and, for all t 2 (�1;+1),
 2 (t) = t� ln (1 + t) .

The two following lemmas ensure that the remainder term  2

��
s�sM
sM

�
(z)
�
in the expansion of the contrast

(17) indeed behaves like a quadratic term, when the unknown density is uniformly bounded from below and
elements s� sM are su¢ ciently small in sup-norm.
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Lemma 6 Let � 2 [0; Amin=2]. Assume that

inf
z2Z

s� (z) � Amin > 0 . (18)

Then, for all z 2 Z and s 2 fM such that j(s� sM ) (z)j � � , it holds�����s� sMsM

�
(z)

���� � �

Amin
� 1

2

and for all (x; y) 2
h
� �
Amin

; �
Amin

i
,

j 2 (x)�  2 (y)j �
2�

Amin
jx� yj : (19)

Lemma 6 allows us in the Technical Lemmas of Section 5.5 to apply a contraction principle, which can be
found in [21] and is recalled in Theorem 28 below, in order to control the second order terms.
Now, the following lemma states that if s is close to sM in sup-norm, then the Kullback-Leibler divergence is
close to a weighted L2 (P ) norm.

Lemma 7 Assume that
inf
z2Z

s� (z) � Amin > 0 . (20)

Let � > 0 such that

0 < � � Amin
2

.

Then for all s 2 M such that ks� sMk1 � �, we have infz2Z s (z) > 0, and if moreover
R
Z sd� = 1 then

s 2 fM and it holds�
1

2
� 2�

3Amin

�



s� sMsM





2
2

� K (sM ; s) = P (Ks�KsM ) �
�
1

2
+

2�

3Amin

�



s� sMsM





2
2

: (21)

The proofs of Lemmas 6 and 7 are postponed to Section 5.1.

3 Results

We state here our main results. In Section 3.1, we investigate the convergence in sup-norm of the histogram
estimators towards the Kullback-Leibler projections. This will be needed to derive the sharp upper and lower
bounds in probability for the true and empirical excess risks of Section 3.2. Finally, the results obtained in a
model selection framework are stated in Section 3.3.

3.1 Rates of convergence in sup-norm of histogram estimators

In order to handle second order terms in the expansion of the contrast (17) we show that the histogram
estimator sn (M) is consistent in sup-norm towards the Kullback-Leibler projection sM . More precisely, for
models having a not too large dimension, the following lemma ensures the convergence in sup-norm of sn (M)
towards sM at the rate

Rn;DM
/
r
DM lnn

n
.

Proposition 8 Let �; A+; A�; A� > 0. Consider the linear modelM of histograms de�ned on a �nite partition
�M of Z, with j�M j = DM its linear dimension. Assume

ks�k1 � A� < +1 , (22)

DM inf
I2�M

� (I) � A� > 0 , (23)
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and
DM � A+

n

(lnn)
2 � n .

Then a positive constant Ac exists, only depending on A�; A�; A+ and � such that

P

"
ksn (M)� sMk1 � Ac

r
DM lnn

n

#
� 2n�� : (24)

In Proposition 8, we need to assume that the target s� is uniformly bounded from above over Z, in order to
derive the consistency in sup-norm of the histogram estimator towards the Kullback-Leibler projection sM .
This rather strong assumption can be avoided by normalizing the di¤erence between the histogram estimator
and the Kullback-Leibler projection by the latter quantity. The rate of convergence of the sup-norm of the
normalized di¤erence is the same as in Proposition 8, that isr

DM lnn

n
,

but we assume in Proposition 9 that the target s� is uniformly bounded away from zero over Z.

Proposition 9 Let �; A+; Amin; A� > 0. Consider the linear model M of histograms de�ned on a �nite
partition �M of Z, with j�M j = DM its linear dimension. Assume

inf
z2Z

s� (z) � Amin > +1 , (25)

DM inf
I2�M

� (I) � A� > 0 , (26)

and
DM � A+

n

(lnn)
2 � n .

Then a positive constant Ac exists, only depending on A�; Amin; A+ and � such that

P

"



sn (M)� sMsM






1
� Ac

r
DM lnn

n

#
� 2n�� : (27)

As claimed in Remark 11 below, Proposition 9 indeed su¢ ces in the proof of Theorem 10 to handle the second
order terms appearing in the expansion of the contrast (17).
The proof of Proposition 8 can be found in Section 5.2.

3.2 True and empirical risks bounds

In this section, we �x the linear modelM made of histograms and we are interested by upper and lower bounds
for the true excess risk P (Ksn (M)�KsM ) on M and for its empirical counterpart Pn (KsM �Ksn (M)) :
We show that under reasonable assumptions the true excess risk is equivalent to the empirical one, which is
one of the keystones to prove the slope phenomenon and the optimality of AIC that we state in Section 3.3.

Theorem 10 Let �;A+; A�; Amin; A�; A� > 0 and let M be a linear model of histograms de�ned on a �nite
partition �M . The �nite dimension of M is denoted by DM . Assume that

0 < Amin � inf
z2Z

s� (z) , (28)

ks�k1 � A� < +1 , (29)

0 < A� � DM inf
I2�M

� (I) (30)

and
0 < A� (lnn)

2 � DM � A+
n

(lnn)
2 � n :
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Then a positive constant A0 exists, only depending on �;A�; A+; A�; Amin and A�, such that by setting

"n (M) = A0max

(�
lnn

DM

�1=4
;

�
DM lnn

n

�1=4)
; (31)

we have, for all n � n0 (A+; A�; Amin; A�; �),

P
�
P (Ksn (M)�KsM ) � (1� "n (M))

DM � 1
2n

�
� 1� 6n�� ; (32)

P
�
P (Ksn (M)�KsM ) � (1 + "n (M))

DM � 1
2n

�
� 1� 6n�� ; (33)

P
�
Pn (KsM �Ksn (M)) �

�
1� "2n (M)

� DM � 1
2n

�
� 1� 2n�� ; (34)

P
�
Pn (KsM �Ksn (M)) �

�
1 + "2n (M)

� DM � 1
2n

�
� 1� 4n�� : (35)

In the previous Theorem we achieve sharp upper and lower bounds for the true and empirical excess risk on
M . They are optimal at the �rst order since the leading constants are equal in upper and lower bounds.
Moreover, Theorem 10 establishes the equivalence with high probability of the true and empirical excess risks
for models of reasonable dimension.
Castellan [14] also asks for a lower regularity property of the partition, for example in Proposition 2.5 where
she derive a sharp control of the Kullback-Leibler excess risk of the histogram estimator on a �xed model.
More precisely she assumes that there exists a positive constant B such that

inf
I2�M

� (I) � B
(lnn)

2

n
: (36)

This latter assumption is thus weaker than (30) for the considered model as its dimension DM is less than the
order n (lnn)�2. We could assume (36) instead of (30) in order to derive Theorem 10. This would lead to less
precise results for second order terms in the deviations of the excess risks but the �rst order bounds would
be preserved. More precisely, if we replace assumption (30) in Theorem 10 by Castellan�s assumption (36), a
careful look at the proofs of Lemma 4, Proposition 8 and Theorem 10 show that the conclusions of Theorem
10 are still valid for

"n = A0 (lnn)
�1=4

where A0 is some positive constant. Thus assumption (30) is not a fundamental restriction in comparison
to Castellan�s work [14], but it leads to more precise results in terms of deviations of the true and empirical
excess risks of the histogram estimator.

Remark 11 In the proof of Theorem 10 given in Section 5.3 and relying on the technical lemmas given in
Section 5.5, we localize the analysis on the subset

B(M;L1)

�
sM ; ~Rn;DM ;�

�
=
n
s 2M; ks� sMk1 � ~Rn;DM ;�

o
,

where ~Rn;DM ;� = A1
p
DMn�1 lnn is de�ned in (78). This is possible by using Propostion 8, which states

the convergence of ksn (M)� sMk1 towards zero at a rate proportional to
p
DMn�1 lnn with high probability.

Considering Proposition 9, where we establish the convergence of k(sn (M)� sM ) =sMk1 towards zero, again
at a rate proportional to

p
DMn�1 lnn with high probability, we can rather localize the analysis on the subset�

s 2M;





s� sMsM






1
� ~Rn;DM ;�

�
.

The gain is that in Proposition 9 - on contrary to Proposition 8 - we do not have to assume that the target s�
is uniformly bounded from above over Z. Hence, a careful look at the proof of Theorem 10, and especially at
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the proofs of Lemmas 5, 6 and 7 given in Section 5.1 and the proofs of Lemmas 19, 20, 21 and 22 given in
Section 5.5, show that we can make straightforward modi�cations in order to recover results of Theorem 10 -
with di¤erent values of the constants - without the assumption (29) of uniform boundedness of the target s�
on Z. More precisely, the other assumptions of Theorem 10 would stay the same, and assumption (29) would
be replaced by the much weaker moment condition

P (ln s�)+ < +1 ,

ensuring that s� 2 S. The same remark apply to Theorem 12 below.

We turn now to upper bounds in probability for the true and empirical excess risks on models with small
dimensions. Our aim here is not to compute sharp constants. In fact, information given by Theorem 12
su¢ ces to our needs as we use it in the proofs of the results stated in Section 3.3 in order to control model
selection procedures for small models.

Theorem 12 Let �;A+; Amin; A�; A� > 0 and let M be a linear model of histograms de�ned on a �nite
partition �M . The �nite dimension of M is denoted by DM . Assume that

0 < Amin � inf
z2Z

s� (z) , (37)

ks�k1 � A� < +1 , (38)

0 < A� � DM inf
I2�M

� (I) (39)

and
1 � DM � A+

n

(lnn)
2 � n :

Then a positive constant Au exists, only depending on �;A+; A�; Amin; A�, such that for all n � n0 (A+; A�; Amin; A�; �),

P
�
P (Ksn (M)�KsM ) � Au

D _ lnn
n

�
� 3n�� : (40)

and

P
�
Pn (KsM �Ksn (M)) � Au

D _ lnn
n

�
� 3n�� : (41)

The proofs of Theorems 10 and 12 can be found in Section 5.3.

3.3 Model Selection

We study in this section the behavior of model selection procedures by penalization of histogram estimators
of the density s�. Under reasonable assumptions stated below, we derive in Theorem 14 a pathwise oracle
inequality for the Kullback-Leibler excess risk of the selected estimator, with constant almost one in front of
the excess risk of the oracle when the penalty is close to Akaike�s one. Our result thus establishes in this case
the nonasymptotic quasi-optimality of AIC procedure with respect to the Kullback-Leibler risk. This is an
improvement of results of Castellan [14] in the case of �small�collections of models.
Moreover, we validate the slope heuristics �rst formulated by Birgé and Massart [10] and extended by Arlot
and Massart [6]. Indeed, we show in Theorem 13 that if the chosen penalty is less than half of Akaike�s penalty
then the model selection procedure totally misbehaves. More precisely, the excess risk of the selected estimator
is much bigger than the one of the oracle and the dimension of the selected model also explode. This jump
of dimension can be exploited in practice to derive a data-driven procedure of calibration of AIC penalty, as
explained in Arlot and Massart [6]. This improvement should lead to better performances, at least when the
number of data is �small�. A comparison, based on simulations, of AIC procedure and the calibration of the
linear shape of the optimal penalty via the slope heuristics is still in progress.
Let us now de�ne the model selection procedure. Given a collection of modelsMn with cardinality depending
on the number of data n and its associated collection of maximum likelihood estimators

fsn (M) ;M 2Mng ;

10



and a nonnegative penalty function pen onMn

pen :M 2Mn 7�! pen (M) 2 R+

the output of the procedure, also called the selected model is

cM 2 arg min
M2Mn

fPn (Ksn (M)) + pen (M)g : (42)

The target of the model selection procedure is

M� 2 arg min
M2Mn

fP (Ksn (M))g

and the associated M-estimator sn (M�) is called an oracle. Let us now state the set of assumptions.

3.3.1 Set of assumptions (SA)

(P1) Polynomial complexity ofMn : Card (Mn) � cMn�M :

(P2) Upper bound on dimensions of models in Mn : there exists a positive constant AM;+ such that for
every M 2Mn;

DM � AM;+
n

(lnn)
2 � n : (43)

(P3) Richness ofMn : there existM0;M1 2Mn such that DM0
2 [
p
n; crich

p
n] and DM1

� Arichn (lnn)
�2
:

(Abd) The unknown density s� is uniformly bounded from below and from above : there exist some positive
�nite constants Amin; A� such that,

ks�k1 � A� <1 (44)

and
inf
z2Z

s� (z) � Amin > 0 : (45)

(Apu) The bias decreases as a power of DM : there exist �+ > 0 and C+ > 0 such that

` (s�; sM ) � C+D
��+
M :

(Alr) Lower regularity of the partition with respect to � : A positive �nite constant A� such that, for all
M 2Mn,

DM inf
I2�M

� (I) � A� > 0 : (46)

Theorem 13 Under the set of assumptions (SA) de�ned above, we further assume that for Apen 2 [0; 1) and
Ap > 0; we have with probability at least 1�Apn�2, for all M 2Mn;

0 � pen (M) � Apen
DM � 1
2n

: (47)

Then there exist two positive constants A1; A2 independent of n such that, with probability at least 1�A1n�2;
we have for n � n0 ((SA) ; Apen),

DcM � A2n ln (n)
�2

and
`
�
s�; sn

�cM�� � ln (n) inf
M2Mn

f` (s�; sn (M))g :

11



In Theorem 13 stated above we prove the existence of a minimal penalty, which is half of AIC. It thus validate
the �rst part of the slope heuristics. Moreover, by Theorem 10 of Section 3.2, we see that for models of
dimension not too small we have, with high probability,

Pn (KsM �Ksn (M)) �
DM � 1
2n

:

In fact, a careful look at the proof of Theorem 13 - which follows from arguments that are essentially the
same as those of the proof of Theorem 1 of [25] - shows that, by Lemma 16 of Section 5.4, we can replace the
condition (47) by the following one,

0 � pen (M) � ApenE [Pn (KsM �Ksn (M))] :

This latter formulation is also interesting because it presents our results as a particular case of the general
statement of the slope heuristics given by Arlot and Massart in [6].

Theorem 14 Assume that the set of assumptions (SA) hold together with

(Ap) The bias decreases like a power of DM : there exist �� � �+ > 0 and C+; C� > 0 such that

C�D
���
M � ` (s�; sM ) � C+D

��+
M :

Moreover, for � 2
�
0; 12
�
and L > 0; assume that an event of probability at least 1 � Apn

�2 exists on which,
for every model M 2Mn such that DM � AM;+ (lnn)

2,

(1� �) DM � 1
n

� pen (M) � (1 + �) DM � 1
n

: (48)

Then, for 1
2 > � >

�
1� �+

�
+
=2, there exists a constant A3 and a sequence

�n = sup
M2Mn

n
"n (M) ; AM;+ (lnn)

3 � DM � n�+1=2
o
�

L(SA)

(lnn)
1=4

such that with probability at least 1�A3n�2, it holds for all n � n0
�
(SA); C�; ��; �; �

�
,

DcM � n�+1=2

and

`
�
s�; sn

�cM�� �  1 + 2�
1� 2� +

5�n

(1� 2�)2

!
` (s�; sn (M�)) : (49)

Theorem 14 states that if the penalty is more than half AIC for models of reasonable dimension then the
model selection procedure achieve a nonasymptotic oracle inequality. Moreover, we prove the nonasymptotic
quasi-optimality of the selected histogram estimator when the empirical excess risk is penalized by Akaike�s
criterion, which corresponds to the case where � = 0. Indeed, we derive in (49) a nonasymptotic pathwise
oracle inequality with leading constant almost one. So Theorem 14 validates the second part of the slope
heuristics. In order to recover the general formulation of the slope heuristics given by Arlot and Massart, we
could replace the condition (48) by the following one

2 (1� �)E [Pn (KsM �Ksn (M))] � pen (M) � 2 (1 + �)E [Pn (KsM �Ksn (M))]

and the conclusions of the theorem would be exactly the same.
The proofs of Theorems 13 and 14 can be found in Section 5.4.
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3.3.2 Comments

Let us now comment on the set of assumptions (SA) . Assumption (P1) states that the collection of models
has a �small�complexity, more precisely a polynomially increasing one. For this kind of complexities, if one
wants to perform a good model selection procedure for prediction, the chosen penalty should estimate the
mean of the ideal one on each model. Indeed, as Talagrand�s type inequalities for the empirical process are
pre-Gaussian, they allow to neglect the deviations of the quantities of interest from their mean, uniformly
over the collection of models. This is not the case for too large collection of models, where one has to put an
extra-log factor depending the complexity of the collection of models inside the penalty, see for example [14]
and Massart [23].
The assumption (45) stating that the unknown density is uniformly bounded by below can also be found in the
work of Castellan [14]. The author assumes moreover in Theorem 3.4 where she derives an oracle inequality for
the Kullback-Leibler excess risk of the histogram estimator, that the target is of �nite sup-norm as in inequality
(44). But in the case of the Hellinger risk this assumption is replaced in [14] by the weaker assumption that
the logarithm of the unknown density s� is square integrable with respect to the sampling distribution.
In assumption (P3) we assume that we have a model M0 of reasonable dimension and a model M1 of high
dimension. We demand in (Apu) that the quality of approximation of the collection of models is good enough
in terms of bias. More precisely, we require a polynomially decreasing of excess risk of Kullback-Leibler
projections of the unknown density onto the models. For a density s� uniformly bounded away from zero, this
is satis�ed when for example, Z is the unit interval, � = Leb is the Lebesgue measure on the unit interval,
the partitions �M are regular and the density s� belongs to the set H (H;�) of �-hölderian functions for some
� 2 (0; 1] : if f 2 H (H;�), then for all (x; y) 2 Z2

jf (x)� f (y)j � H jx� yj� .

In that case, �+ = 2� is convenient and when the chosen penalty is more than half AIC in our case, the
procedure is adaptive to the parameters H and �, see Castellan [14].
In assumption (Ap) of Theorem 14 we also assume that the bias ` (s�; sM ) is lower bounded by a power of
the dimension DM of the model M . This hypothesis is in fact quite classical as it has been used by Stone [26]
and Burman [13] for the estimation of density on histograms and also by Arlot and Massart [6] and Arlot [5],
[4] in the regression framework. Combining Lemma 1 and 2 of Barron and Sheu [9] we can show that

1

2
e
�3



ln� s�

sM

�



1

Z
Z

(sM � s�)2

s�
d� � ` (s�; sM )

and thus assuming (Abd) we get

A3min
2A4�

Z
Z
(sM � s�)2 d� � ` (s�; sM ) .

Now, since in the case of histograms the Kullback-leibler projection sM is also the L2 (�) projection of s�
onto M , we can apply Lemma 8.19 in Section 8.10 of Arlot [3] to show that assumption (Ap) is satis�ed for
�� = 1+ �

�1, in the case where Z is the unit interval, � = Leb is the Lebesgue measure on the unit interval,
the partitions �M are regular and the density s� is a non-constant �-hölderian function.

4 Two directions of generalization

We present here two possible generalizations of the results exposed in Section 3. Models of piecewise constant
densities have the particular property of been exponential models as well as the subset of positive functions in
an a¢ ne space and we expose below strategies to extend our results in these two directions.
We �rst notice that the proofs of Theorems 13 and 14 of model selection follow from straightforward adaptations
of the proofs of Theorem 2 and 3 in Arlot and Massart [6], only using the results given in Theorems 10, 12 and
Lemmas 16 and 17 of Section 5.4 where the quantities of interest can be de�ned for more general models than
histograms. For this reason, the proofs given in Arlot and Massart [6] give some general algebra to derive the
properties of the slope heuristics considering a small collection of models and the main task is thus to deal
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with some �xed model. Theorems 10 and 12 respectively provide with a sharp control of the excess risk and
the empirical excess risk for models of dimension not too large and not too small, and a control of the same
quantities for models of small dimension. In Lemma 16 we derive a sharp control of the empirical excess risk
in mean for models of reasonable dimension and in Lemma 17 we bound the di¤erence between the bias and
its empirical counterpart.
In the following, we emphasize on generalizations of Theorem 10. In fact, Lemma 17 that follows from Bernstein
inequality can be easily extended to more general models and Lemma 16 is a straightforward corollary of
Theorem 10. Moreover, Theorem 12 directly follows from the convergence in sup-norm of maximum likelihood
estimators at the rate

p
DM ln (n) =n as derived in the case of histograms in Proposition 8.

4.1 A¢ ne spaces

We intend to point out here that results of Theorem 10 may be extended to more general linear models M
than piecewise constant functions. Let us set

M =

(
s =

DMX
k=1

�k'k ; � = (�k)
DM

k=1 2 R
DM

)
(50)

the vector space of dimension DM spanned by the basis ('k)
DM

k=1 that we assume to be orthonormal in L2 (P ).
We also set the subset fM of the functions in M that are densities with respect to �,

fM =

�
s 2M ; s � 0 and

Z
Z
sd� = 1

�
;

and consider that the maximum likelihood estimator on fM exists, denoted by sn (M).
The proof of Theorem 10, that we give in Section 5, relies on purpose on more general arguments than the
ones strictly needed in the case of histograms. More precisely, using explicit formula 7 and 10 for the Kullback-
Leibler projection and the histogram estimator, we could have avoid the use of the slices in excess risk de�ned
in (87) and (88) by controlling the excess risk and the empirical excess risk directly on the estimator. But our
aim is to point out the generality of the method, and a careful look at the proof of Theorem 10 shows that
for more general models as in (50), we achieve the same bounds for the excess risks (with di¤erent values of
constants) if the �ve following points are satis�ed :

� The target s� is uniformly lower and upper bounded : for Amin; A� > 0,

0 < Amin � inf
z2Z

s� (z) � ks�k1 � A� < +1

� The model is of reasonable dimension : A� (lnn)2 � DM � A+
n

(lnn)2
� n :

� ('k)
DM

k=1 is a localized orthonormal basis in (M;L2 (P )) : for some rM > 0;





DMX
k=1

�k'k







1

� rM
p
DM j�j1 . (51)

� The Kullback-Leibler projection sM is well-de�ned and the excess risk is, locally around sM , close to the
weighted L2 (P ) norm : positive constants AH and LH exist such that, if ks� sMk1 � � � AH then�

1

2
� LH�

�



s� sMsM





2
2

� P (Ks�KsM ) �
�
1

2
+ LH�

�



s� sMsM





2
2

: (52)

� The maximum likelihood estimator is consistent towards the Kullback-Leibler projection sM at the ratep
DM ln (n) =n : for any � > 0, positive constants Ac and Lc exist such that

P

"
ksn (M)� sMk1 � Ac

r
DM lnn

n

#
� Lcn

�� : (53)
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Note that the assumption of lower regularity of the partition of Theorem 10 in the case of histograms, stating
that DM infI2�M � (I) � A� > 0 for some A� > 0, is replaced here by the more general assumption of
localized basis (51). It is easy to see using Lemma 4 that the two properties are equivalent in the case of
histograms. Moreover, Property (52) is based in the case of histograms on the Pythagorean-like identity (9)
given in Proposition 1 and remains a work in progress for more general models fM . In Csiszár and Matú�
[17], general conditions are given under which Pythagorean-like identities for the Kullback-Leibler divergence
hold true. In their terminology, the Kullback-Leibler projection is called �reverse I-projection�. Among other
results, they show Pythagorean-like identities in the context of convex sets, a property that is satis�ed for fM ,
but considering the �I-projection� rather than the �reverse I-projection�. Nevertheless, generalized reverse
I-projections onto convex sets of probability measures can be found in Barron [7]. Property (53) remains an
open issue for general linear models as well.

4.2 Exponential models

In this section, we brie�y describe how our strategy of proofs can be adapted to derive sharp bounds for the
excess risks in the case of exponential models and possibly recover the slope heuristics in good cases. This
work is still in progress. Let us set

M =

(
t =

DMX
k=1

�k'k ; � = (�k)
DM

k=1 2 R
DM

)

the linear vector space of dimension DM spanned by the basis ('k)
DM

k=1, that we assume to be orthonormal
in L2 (P ). We assume that the constant function 1 2 M and that M � L1 (�). Then we set the associated
exponential model fM , de�ned to be

fM =

�
s = exp (t) ; t 2M and

Z
Z
sd� = 1

�
and consider the maximum likelihood estimator sn

�fM� on fM . It is well-known (see for example Barron and
Sheu [9] and also Csiszár and Matú� [17]) that in this case sn (M) exists with high probability as a solution
of a family of linear constraints, and its uniqueness is a familiar consequence of the strict convexity of the
log-likelihood. It is also well-known (see Lemma 3 of Barron and Sheu [9]) that the unknown density s� has a
unique Kullback-Leibler projection sfMon fM , characterized by the following Pythagorean-like identity,

K (s�; s) = K
�
s�; sfM�+K �sfM ; s� :

This property is essential, as it follows that the excess risk on fM is the Kullback-Leibler divergence with
respect to the Kullback-Leibler projection sfM ,

P
�
Ks�KsfM� = K �sfM ; s�

and by consequence, we can relate the excess risk on fM to the L2 (P ) norm in M , due to the following lemma
of Barron and Sheu [9].

Lemma 15 (Lemma 3, [9]) Let p and q be two probability density functions with respect to � such that
kln (p=q)k1 is �nite. Then it holds

K (p; q) � 1

2
e�kln(p=q)k1

Z
p

�
ln
p

q

�2
d�

and

K (p; q) � 1

2
ekln(p=q)�ck1

Z
p

�
ln
p

q
� c
�2

d� ,

where c is any constant.
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Hence, we have for any s 2 fM ,
0 <

1

2
e�kln(s=sfM)k1

Z
sfM
�
ln

s

sfM
�2

d� � P
�
Ks�KsfM� (54)

� 1

2
ekln(s=sfM)k1

Z
sfM
�
ln

s

sfM
�2

d� . (55)

Now, if we can show that 





ln
0@sn

�fM�
sfM

1A






1

� Aconsp
lnn

for some positive constant Acons and for all n su¢ ciently large, we can restrict our study to the subset of
functions in fM satisfying



ln �s=sfM�

1 � Aconsp
lnn

- by the same type of arguments that are given in Section 6
of [24] - and so we have on this subset of interest, by inequalities (54) and (55),

P
�
Ks�KsfM� � 1

2

Z
sfM
�
ln

s

sfM
�2

d�

=
1

2





ln s

sfM




2
2

+
1

2

Z �
sfM � s�

��
ln

s

sfM
�2

d� .

Moreover, for the right-hand term in the latter identity, it holds�����12
Z �

sfM � s�
��
ln

s

sfM
�2

d�

����� � 

sfM � s�



1
1

2





ln s

sfM




2
L2(�)

which should be negligible in front of the weighted L2 (P ) norm 1
2




ln s
sfM



2
2
if the considered model fM has a

small bias in sup-norm and if the unknown density is uniformly bounded away from zero, in order to upper
bound k�kL2(�) by k�kL2(P ). Under the right assumptions on the smoothness of the target s� and a suitable
choice of M the assumption on the bias of the model should be satis�ed if at least its dimension is not too
small ( a power of lnn should be again su¢ cient in many cases). The importance of a control in sup-norm
for the bias of the models in maximum likelihood estimation of density has been pointed out by Stone [27]
considering log-splines models. The author provides with a sharp control of the bias in sup-norm in this case,
a work that should be inspiring for other situations and also in order to prove the consistency in sup-norm

of ln
�
sn(fM)
sfM

�
. By consequence, we can conjecture that under reasonable assumptions, the weighted L2 (P )

norm described above is a good approximation of the excess risk on fM for a model M of dimension not too
small and it has the convenient property to be Hilbertian : on a subset of interest on fM ,

P
�
Ks�KsfM� � 1

2





ln s

sfM




2
2

=
1

2



ln s� ln sfM

22 (56)

where ln (s) and ln
�
sfM� belong to M .

Let us explain now how to take advantage of (56) for exponential models. The arguments given below are
close in the spirit to arguments of Section 6 of [24], considering the log-linearity of exponential models, or in
other words the linearity of the contrasted functions. If we set

tM = ln sfM 2M

and for any r � 0,

�n (r) = E

2664 sup
t2M , kt�tMk22=2rR

exp(t)d�=1

j(P � Pn) (t� tM )j

3775 ,
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then, as claimed in Section 6 of [24], we can approximately write for models of reasonable dimension,

P
�
Ksn

�fM��KsM� � arg max
Rn;DM

�r�0

8<:E
24 sup
s2fM , P(Ks�KsfM)=r

��(P � Pn) �Ks�KsfM���
35� r

9=;
where we assume that

P
�
Ksn

�fM��KsfM� �






ln
0@sn

�fM�
sfM

1A






1

� Rn;DM
� Aconsp

lnn

with high probability (of order 1� Ln��, � > 0). Then, from (56) we have for Rn;DM
� r � 0,

E

24 sup
s2fM , P(Ks�KsfM)=r

��(P � Pn) �Ks�KsfM���
35 � �n (r)

and so
P
�
Ksn

�fM��KsM� � arg max
Rn;DM

�r�0
f�n (r)� rg . (57)

By the same type of reasoning, we can also conjecture that for models of reasonable dimensions,

Pn

�
KsM �Ksn

�fM�� � max
Rn;DM

�r�0
f�n (r)� rg . (58)

Moreover, in good cases satisfying assumptions of Corollary 32 we have

�n (r) � E1=2

2664
0BB@ sup
t2M , kt�tMk22=2rR

exp(t)d�=1

j(P � Pn) (t� tM )j

1CCA
23775 (59)

and if we de�ne

tCS =
p
2r

PDM

k=1 (P � Pn) ('k)'kqPDM

k=1 (P � Pn)
2
('k)

+ tM ,

then it holds ktCS � tMk22 = 2r and

sup
t2M , kt�tMk22=2r

j(P � Pn) (t� tM )j = (P � Pn) (tCS � tM ) (60)

=
p
2r

vuutDMX
k=1

(P � Pn)2 ('k) .

Now, assuming that 1� Rn;DM
� L

q
DM lnn

n for a positive constant L su¢ ciently large, if we can prove that
with high probability,

ktCS � tMk1 � Rn;DM
for r � Rn;DM

,

which is typically the case when ('k)
DM

k=1 is a localized basis, thenZ
exp(tCS)d� �

Z
exp(tM )d�+

Z
(tCS � tM ) d�

� 1 . (61)
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Finally, taking into account (59), (60) and (61), we can conjecture that under some assumptions on the model
M that allow to control the sup-norm in a su¢ ciently sharp way, we would have

�n (r) �

vuut2r

n

DMX
k=1

Var ('k)

for r � Rn;DM
and so, using (57) and (58), as

arg max
Rn;DM

�r�0

8<:
vuut2r

n

DMX
k=1

Var ('k)� r

9=; = max
Rn;DM

�r�0

8<:
vuut2r

n

DMX
k=1

Var ('k)� r

9=; =

PDM

k=1Var ('k)

2n

for Rn;DM
�
qPDM

k=1 Var('k)

2n , this would lead to

P
�
Ksn

�fM��KsM� � Pn

�
KsM �Ksn

�fM�� � PDM

k=1Var ('k)

2n

for models of reasonable dimensions having good enough properties with respect to the sup-norm.

5 Proofs

5.1 Proofs of Section 2

Proof of Lemma 4. Remind that, for all I 2 �M ,

'I = (P (I))
�1=2

1I :

Hence, ('I)I2�M is an orthonormal basis of (M;L2 (P )) : Moreover, by (12) we have, for all I 2 �M ,

P (I) � Amin� (I) � AminA�D
�1
M > 0

and so, by setting rM = (AminA�)
�1=2, we get for all I 2 �M ,

(P (I))
�1=2 �

r
DM

AminA�
= rM

p
DM :

Now, as the elements 'I for I 2 �M have disjoint supports, we deduce that, for all � = (�I)I2�M 2 RDM ,




 X
I2�M

�I'I







1

� max
I2�M

fj�I j k'Ik1g

� max
I2�M

n
j�I j (P (I))

�1=2
o

� rM
p
DM j�j1

and Inequality (13) is then proved. Next, Inequality (14) easy follows by observing that, for any s =P
I2�M �I'I 2M satisfying ksk2 � 1, we have

max
I2�M

j�I j �
s X
I2�M

�2I � 1

and so
ksk1 � rM

p
DM :

�
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Proof of Lemma 5. By (15)and (7), we have

inf
z2Z

sM (z) � Amin > 0 ;

then  1;M (z) and (KsM ) (z) = � ln (sM (z)) are well de�ned for all z 2 Z. Moreover, as we assume
ks� sMk1 < Amin, we have

inf
z2Z

s (z) = inf
z2Z

fsM (z) + (s� sM ) (z)g � inf
z2Z

sM (z)� ks� sMk1 > 0

and 



s� sMsM






1
� ks� sMk1

Amin
< 1

thus (Ks) (z) = � ln (s (z)) is well de�ned for each z 2 Z as well as (sM (z))
�1 and ln

�
1 + s�sM

sM
(z)
�
, so the

expansion (17) is a simple rewriting of the identity

(Ks) (z)� (KsM ) (z) = � ln
�
s (z)

sM (z)

�
:

�

Proof of Lemma 6. Lemma 6 is straightforward, since

 02 (x) =
x

1 + x
, x 2 (�1;+1) .

Hence, for all x 2
h
� �
Amin

; �
Amin

i
; with 0 � � � Amin=2,

jh0 (x)j � �=Amin
1� �=Amin

� 2 �

Amin
;

which yields the result. �

Proof of Lemma 7. For s 2M such that ks� sMk1 � � � Amin

2 , we have

inf
z2Z

s (z) � inf
z2Z

sM (z)� ks� sMk1 � Amin
2

> 0 and





s� sMsM






1
� 1

2
.

and so, if
R
Z sd� = 1 then s 2 fM: Moreover, in this case, by (11) we have

P (Ks�KsM ) = K (sM ; s)

and it holds

K (sM ; s) =
Z
Z
ln
�sM
s

�
sMd�

=

Z
Z
� ln

�
1 +

s� sM
sM

�
sMd�

=

1X
k=1

(�1)k

k

Z
Z

�
s� sM
sM

�k
sMd�

=

Z
Z
(sM � s) d�+ 1

2

Z
Z

�
s� sM
sM

�2
sMd�+

1X
k=3

(�1)k

k

Z
Z

�
s� sM
sM

�k
sMd�: (62)
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Now, as
R
Z sd� = 1, we have Z

Z
(sM � s) d� = 0 : (63)

Moreover, notice that by (7), for all I 2 �M ,Z
Z
1IsMd� =

P (I)

� (I)
� (I) = P (I) =

Z
Z
1Is�d�

and so, for all t 2M , Z
Z
t � sMd� =

Z
Z
t � s�d� .

Now, using the fact that
�
s�sM
sM

�2
2M , it holds

1

2

Z
Z

�
s� sM
sM

�2
sMd� =

1

2

Z
Z

�
s� sM
sM

�2
s�d�

=
1

2
P

�
s� sM
sM

�2
=
1

2





s� sMsM





2
2

. (64)

Moreover, we have �����
1X
k=3

(�1)k

k

Z
Z

�
s� sM
sM

�k
sMd�

�����
� 1

3

Z
Z

�
s� sM
sM

�2
sMd��

1X
j=1





s� sMsM





j
1

=
1

3

Z
Z

�
s� sM
sM

�2
s�d��

1X
j=1





s� sMsM





j
1

�




s� sMsM





2
2

2�

3Amin
: (65)

Inequality (21) then follows by using (63), (64) and (65) in (62). �

5.2 Proof of Section 3.1

Proof of Proposition 8. Let � > 0 to be �xed later. Recall that, by (7) and (10),

sn (M) =
X
I2�M

Pn (I)

� (I)
1I ;

sM =
X
I2�M

P (I)

� (I)
1I :

Hence, the sup-norm of the di¤erence can be written

ksn (M)� sMk1 = sup
I2�M

j(Pn � P ) (I)j
� (I)

: (66)
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By Bernstein�s inequality (171) applied for the random variable 1�2I we get, for all x > 0,

P

"
j(Pn � P ) (I)j �

r
2P (I)x

n
+

x

3n

#
� 2 exp (�x) :

Taking x = � lnn and normalizing by the quantity � (I) > 0 we get

P

"
j(Pn � P ) (I)j

� (I)
� 1

� (I)

r
2�P (I) lnn

n
+

� lnn

� (I) 3n

#
� 2n�� : (67)

Now, by (22) and (23),

0 <
1

� (I)
� DM

A�
(68)

and p
P (I)

� (I)
�

s
A�
� (I)

�
r
A�DM

A�
: (69)

So, injecting (68) and (69) in (67) and using the fact that DM � A+
n

(lnn)2
we get

P

"
j(Pn � P ) (I)j

� (I)
� Ac

r
DM lnn

n

#
� 2n�� , (70)

where Ac = max
�q

2�A�
A�

;
�
p
A+

3A�

�
. We then deduce from (66) and (70) that

P

"
ksn (M)� sMk1 � Ac

r
DM lnn

n

#
� 2DM

n�

and, since DM � n, taking � = �+ 1 yields Inequality (24). �

Proof of Proposition 9. Let � > 0 to be �xed later. Recall that, by (7) and (10),

sn (M) =
X
I2�M

Pn (I)

� (I)
1I ; (71)

sM =
X
I2�M

P (I)

� (I)
1I : (72)

Hence, by (25) and (72) we get inf sM (z) � Amin > 0. By (71) and (72) we have



sn (M)� sMsM






1
= sup

I2�M

j(Pn � P ) (I)j
P (I)

: (73)

By Bernstein�s inequality (171) applied for the random variable 1�2I we get, for all x > 0,

P

"
j(Pn � P ) (I)j �

r
2P (I)x

n
+

x

3n

#
� 2 exp (�x) :

Taking x = � lnn and normalizing by the quantity P (I) � Amin� (I) > 0 we get

P

"
j(Pn � P ) (I)j

P (I)
�

s
2� lnn

P (I)n
+

� lnn

P (I) 3n

#
� 2n�� : (74)
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Now, by (25) and (26), we have

0 <
1

P (I)
� DM

AminA�
. (75)

Hence, using (75) in (74) and using the fact that DM � A+
n

(lnn)2
we get

P

"
j(Pn � P ) (I)j

P (I)
� Ac

r
DM lnn

n

#
� 2n�� , (76)

where Ac = max
�q

2�
A�Amin

;
�
p
A+

3AminA�

�
. We then deduce from (73) and (76) that

P

"
ksn (M)� sMk1 � Ac

r
DM lnn

n

#
� 2DM

n�

and, since DM � n, taking � = �+ 1 yields Inequality (27). �

5.3 Proofs of Theorems 10 and 12

In order to introduce the quantities of interest, we recall some notations stated below and add some new
de�nitions. As usual, M denotes the �nite dimensional linear vector space of piecewise constant functions
with respect to the �nite partition �M . Moreover, we write DM = j�M j the linear dimension of M . Assuming
(46) and (45) we have, for all I 2 �M , P (I) > 0 and so, if we set

'I =
1Ip
P (I)

; I 2 �M ;

the family ('I)I2�M is an orthonormal basis of (M;L2 (P )) : We set

�n = max

(r
lnn

DM
;

r
DM lnn

n

)
. (77)

In what follows � > 0 is �xed and for some positive constant A1 to be chosen in the proof of Theorem 10 and
satisfying

A1 � Ac > 0

where Ac is de�ned in Proposition 8 and only depends on A�; A�; A+ and �, we set

~Rn;DM ;� = A1

r
DM lnn

n
(78)

and

1;� =

n
ksn (M)� sMk1 � ~Rn;DM ;�

o
.

By Proposition 8 it holds, since A1 � Ac,

P
�

c1;�

�
� 2n�� . (79)

Moreover, our analysis is localized on the subset

B(M;L1)

�
sM ; ~Rn;DM ;�

�
=
n
s 2M; ks� sMk1 � ~Rn;DM ;�

o
:

Assuming that
DM � A+n (lnn)

�2

we have, for all n � n0 (A+; Amin; A1),

~Rn;DM ;� �
Amin
2

(80)
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whereAmin is de�ned in (45). Now, assuming (45), we have by (80) and Lemma 5, for all n � n0 (A+; Amin; A1),

for every s 2 B(M;L1)

�
sM ; ~Rn;DM ;�

�
and all z 2 Z;

(Ks) (z)� (KsM ) (z) =  1;M (z) (s� sM ) (z) +  2
��

s� sM
sM

�
(z)

�
(81)

where
 1;M (z) = �

1

sM (z)

and, for all t 2 (�1;+1) ,
 2 (t) = t� ln (1 + t) :

Recall that, by (45), 

 1;M

1 �
�
inf
z2Z

jsM (z)j
��1

� A�1min : (82)

Moreover, by (80) and Lemma 6 we have, for all n � n0 (A+; Amin; A1), for all s 2 B(M;L1)

�
sM ; ~Rn;DM ;�

�
and all z 2 Z, using that  2 (0) = 0,���� 2��s� sMsM

�
(z)

����� � �����s� sMsM

�
(z)

���� : (83)

We also have by (80) and Lemma 6, for all n � n0 (A+; Amin; A1), for every s; t 2 B(M;L1)

�
sM ; ~Rn;DM ;�

�
and all z 2 Z, ���� 2��s� sMsM

�
(z)

�
�  2

��
t� sM
sM

�
(z)

����� � 2A�2min ~Rn;DM ;� j(t� s) (z)j : (84)

For convenience, we will use the following notation,

 2 �
�
s� sM
sM

�
: z 2 Z 7�! 2

��
s� sM
sM

�
(z)

�
.

We now de�ne slices of excess risk on the model fM . We set, for all C > 0,

FC =
n
s 2 fM ;



 1;M � (s� sM )


2
2
� 2C

o\
B(M;L1)

�
sM ; ~Rn;DM ;�

�
(85)

F>C =
n
s 2 fM ;



 1;M � (s� sM )


2
2
> 2C

o\
B(M;L1)

�
sM ; ~Rn;DM ;�

�
(86)

and for any interval J ,

FJ =
�
s 2 fM ;

1

2



 1;M � (s� sM )


2
2
2 J

�\
B(M;L1)

�
sM ; ~Rn;DM ;�

�
: (87)

We also de�ne, for all L � 0,

DL =
n
s 2 fM ;



 1;M � (s� sM )


2
2
= 2L

o\
B(M;L1)

�
sM ; ~Rn;DM ;�

�
: (88)

By Lemma 7, we have, for all n � n0 (A+; Amin; A1) and for any s 2 B(M;L1)

�
sM ; ~Rn;DM ;�

�
such thatR

Z sd� = 1,

0 <

�
1

2
� 2

3Amin
~Rn;DM ;�

�

 1;M � (s� sM )


2
2
� K (sM ; s) = P (Ks�KsM ) (89)

�
�
1

2
+

2

3Amin
~Rn;DM ;�

�

 1;M � (s� sM )


2
2
: (90)
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Finally, notice that, if we assume (45) and (Alr), then by Proposition 4, if we set rM = (AminA�)
�1=2 then

for all z 2 Z,
sup

s2M , ksk2�1
ksk1 � rM

p
DM (91)

and moreover, for all � = (�I)I2�M 2 RDM ,




 X
I2�M

�I'I







1

� rM
p
DM j�j1 : (92)

5.3.1 Proofs of Theorems 10 and 12.

Proof of Theorem (10). We divide the proof of Theorem 10 in four parts corresponding to the four
Inequalities (32), (33), (34) and (35). The values of A0 and A1, respectively de�ned in (31) and (78), will
then be �xed at the end of the proof. Note that, since DM � A� (lnn)

2, we have DM � 2 for all n � n0 (A�)
so we can assume in the following that DM � 2.

Proof of Inequality (32). By (78), it holds for all n � n0 (A+; Amin; A1),

1� 4

3Amin
~Rn;DM ;� >

1

2
.

Let r 2 (1; 2] to be chosen later and C; eC > 0 such that

rC =
DM � 1
2n

(93)

and, for all n � n0 (A+; Amin; A1),

eC = �1� 4

3Amin
~Rn;DM ;�

�
C > 0 .

By inequality (89), if

P (Ksn (M)�KsM ) � eC and ksn (M)� sMk1 � ~Rn;DM ;�

then 

 1;M � (sn (M)� sM )


2
2
� 2C ,

for all n � n0 (A+; Amin; A1). Hence, by inequality (79), we get for all n � n0 (A+; Amin; A1),

P
�
P (Ksn (M)�KsM ) � eC� � P�nP (Ksn (M)�KsM ) � eCo\
1;�

�
+ 2n��

� P
�n

 1;M � (sn (M)� sM )



2
2
� 2C

o\

1;�

�
+ 2n�� . (94)

Now, by de�nition of the slices FC and F>C respectively given in (85) and (86), it holds

P
�n

 1;M � (sn (M)� sM )



2
2
� 2C

o\

1;�

�
� P

�
inf
s2FC

Pn (Ks�KsM ) � inf
s2F>C

Pn (Ks�KsM )
�

� P
�
inf
s2FC

Pn (Ks�KsM ) � inf
s2F(C;rC]

Pn (Ks�KsM )
�

= P

 
sup
s2FC

Pn (KsM �Ks) � sup
s2F(C;rC]

Pn (KsM �Ks)
!
: (95)
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Now, as by (93) we have
DM

8n
� C � (1 +A4�n)2

DM � 1
2n

where A4 is de�ned in Lemma 23, we can apply Lemma 23 with � = �, Al = 1=8 and it holds, for all
n � n0 (A�; A+; Amin; rM ; A1; �),

P

"
sup
s2FC

Pn (KsM �Ks) �
�
1 + LA�;Amin;A1;rM ;� � �n

�r2C (DM � 1)
n

� C
#
� 2n�� , (96)

where �n = max
�q

lnn
DM

;
q

DM lnn
n

�
. Moreover, we can apply Lemma 25 with

� = �; Al = 1=8; Au = 1=2

and
A1 � 32

p
2B2A�rM ;

and since rC = (DM � 1) =2n, it gives, for all n � n0 (A+; A�; rM ; Amin; A1),

P

 
sup

s2F(C;rC]
Pn (KsM �Ks) �

�
1

2
� LA�;Amin;A1;� � �n

�
DM � 1

n

!
� 2n�� ; (97)

Now, from (96) and (97) we can deduce that a positive constant ~A0 exists, only depending on A�; Amin; A1;
rM and �, such that for all n � n0 (A�; A+; Amin; rM ; A1; �), it holds on the same event of probability at
least 1� 4n��,

sup
s2FC

Pn (KsM �Ks) �
�
1 + ~A0�n

�r2C (DM � 1)
n

� C

=
�
1 + ~A0�n

� DM � 1
n

1p
r
� DM � 1

2n

1

r
(98)

and

sup
s2F(C;rC]

Pn (KsM �Ks) �
�
1� 2 ~A0�n

� DM � 1
2n

: (99)

Hence, from (98) and (99) we can deduce, using (94) and (95), that if we choose r 2 (1; 2] such that�
1� 2 ~A0�n

�
r � 2

�
1 + ~A0�n

�p
r + 1 > 0 (100)

then, for all n � n0 (A�; A+; Amin; rM ; A1; �), P (Ksn (M)�KsM ) � C with probability at least 1� 6n��.
Moreover, since

A� (lnn)
2 � DM � A+n (lnn)

�2

we have, for all n � n0

�
A+; A�; ~A0

�
,

~A0�n �
1

4
(101)

and so, for all n � n0

�
A+; A�; ~A0

�
, simple computations using (101) show that by taking

r = 1 + 48

q
~A0�n (102)

inequality (100) is satis�ed. Notice that, for all n � n0

�
A+; A�; ~A0

�
, 0 < 48

p
~A0�n < 1, so that r 2 (1; 2].

Finally, we can compute C by (93) and (102), for all n � n0

�
A+; A�; ~A0

�
,

C =
rC

r
=

1

1 + 48
p
~A0�n

1

4

D

n
K21;M �

�
1� 48

q
~A0�n

�
1

4

D

n
K21;M > 0 . (103)
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The result then follows the fact that by (103) and (77), it holds for all n � n0

�
A+; A�; A1; Amin; ~A0

�
,

eC = �1� 4

3Amin
~Rn;DM ;�

�
C

�
�
1� 4

3Amin
~Rn;DM ;�

��
1� 48

q
~A0�n

�
1

4

D

n
K21;M

�
�
1� 4

3Amin
~Rn;DM ;�

��
1� 48

q
~A0�n

�
1

4

D

n
K21;M

� (1� LA1;Amin
�n)

�
1� 48

q
~A0�n

�
1

4

D

n
K21;M

�
�
1� LA1;Amin; ~A0

p
�n

� 1
4

D

n
K21;M ,

where the constant ~A0 only depends on A�; Amin; A1; rM and �. �

To prove inequalities (33), (34), (35) and Theorem 12 it su¢ ces to adapt the proofs of inequalities (23),
(24), (25) and Theorem 4 given in Section 7 of [24] in the same way that we just did in the proof of inequality
(32). We thus skip these proofs as they are now straightforward.

5.4 Proofs of Section 3.3

Given Lemmas 16 and 17 below, the proofs of Theorems 13 and 14 follow from straightforward adaptations of
the proofs of Theorems 1 and 2 given in Section 4 of [25].

Lemma 16 Let AM;� > 0. Assume (P2), (Abd) and (Alr) of the set of assumptions de�ned in Section
3.3.1. Then for every model M of dimension DM such that

AM;� (lnn)
2 � DM � AM;+n (lnn)

�2
;

we have, for all n � n0 (AM;+; AM;�; A�; Amin; A�; �M),�
1� LAM;+;AM;�;A�;Amin;A�"

2
n (M)

� DM � 1
2n

� E [Pn (KsM �Ksn (M))] (104)

�
�
1 + LAM;+;AM;�;A�;Amin;A�

"2n (M)
� DM � 1

2n
(105)

where "n (M) = A0max

��
lnn
DM

�1=4
;
�
DM lnn

n

�1=4�
is de�ned in Theorem 10.

Proof. Under assumptions of Lemma 16 we can apply Theorem 10 with � = 2 + �M. For all n �
n0 (AM;+; AM;�; Amin; A�; �M), we thus have on an event 
1 (M) of probability at least 1� 6n�2��M ,�

1� "2n (M)
� DM � 1

2n
� Pn (KsM �Ksn (M)) �

�
1 + "2n (M)

� DM � 1
2n

(106)

where

"n (M) = A0max

(�
lnn

DM

�1=4
;

�
DM lnn

n

�1=4)
� A0n

�1=8 (107)
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as DM � 1. Moreover, we have,

0 � Pn (KsM �Ksn (M)) = Pn

�
ln

�
sn (M)

sM

��
= Pn

 X
I2�M

ln

�
Pn (I)

P (I)

�
1I

!
=
X
I2�M

ln (Pn (I))Pn (I) +
X
I2�M

ln

�
1

P (I)

�
Pn (I)

� max
I2�M

�
ln

�
1

P (I)

��
� ln

�
(AminA�)

�1
DM

�
; (108)

where the last inequality follows from (Abd) and (Alr). We also have

E [Pn (KsM �Ksn (M))]
= E

�
Pn (KsM �Ksn (M))1
1(M)

�
+ E

�
Pn (KsM �Ksn (M))1(
1(M))c

�
: (109)

Hence, as n � DM � AM;� (lnn)
2, it comes from (107) and (108) that, for all n � n0 (AM;�; A0; Amin; A�),

0 � E
�
Pn (KsM �Ksn (M))1(
1(M))c

�
� 6 ln

�
(AminA�)

�1
DM

�
n�2��M � "2n (M)

DM � 1
2n

(110)

and, as we can see that "n (M) < 1 for all n � n0 (A0), we have by (106), for all
n � n0 (AM;+; AM;�; A0; Amin; A�; �M),�

1� 6n�2��M
� �
1� "2n (M)

� DM � 1
2n

� E
�
Pn (KsM �Ksn (M))1
1(M)

�
(111)

�
�
1� 6n�2��M

� �
1 + "2n (M)

� DM � 1
2n

: (112)

Finally, noticing that n�2��M � A�20 "2n (M) by (107), we can use (110), (111) and (112) in (109) to conclude
by straightforward computations that

LAM;+;AM;�;A�;Amin;A� = 6A
�2
0 + 2

is convenient in (104) and (105), as A0 only depends on �M; A�; A+; A�; Amin and A�. �

Lemma 17 Let � > 0. Assume that (Abd) of Section 3.3.1 is satis�ed. Then by setting �� (M) = (Pn � P ) (KsM �Ks�),
we have for all M 2Mn;

P

0@���� (M)�� �s4A��` (s�; sM ) lnn
Aminn

+ ln

�
A�
Amin

�
� lnn

3n

1A � 2n�� (113)

and if moreover, assumptions (P2), (Abd) and (Alr) of Section 3.3.1 hold, then a positive constant Ad exists,
depending only in A�; Amin and � such that, for all M 2 Mn such that AM;� (lnn)

2 � DM and for all
n � n0 (AM;+; AM;�; A�; Amin; A�),

P
����� (M)�� � ` (s�; sM )p

DM

+Ad
lnnp
DM

E [p2 (M)]
�
� 2n�� ; (114)

where p2 (M) = Pn (KsM �Ksn (M)).

Proof. First recall that

sM =
X
I2�M

P (I)

� (I)
1I =

X
I2�M

�Z
I

s�
d�

� (I)

�
1I :
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Thus by (Abd) we deduce that

0 < Amin � inf
z2Z

sM (z) � ksMk1 � A� < +1 : (115)

Now, as we have

KsM �Ks� = � ln
�
sM
s�

�
;

we get, by (Abd) and (115), that

kKsM �Ks�k1 � ln
�

A�
Amin

�
: (116)

Hence, by Lemma 1 of Barron and Sheu [9], we have

P
h
(KsM �Ks�)2

i
� 2 exp (kKsM �Ks�k1)K (s�; sM ) :

By Proposition 1, we also have

K (s�; sM ) = P (KsM �Ks�) = ` (s�; sM )

and thus by (116), it holds

P
h
(KsM �Ks�)2

i
� 2A�
Amin

` (s�; sM ) : (117)

We are now ready to apply Bernstein�s inequality (171) to

�� (M) = (Pn � P ) (KsM �Ks�) :

By (116) and (117) we have, for any x > 0,

P

0@���� (M)�� �s4A�` (s�; sM )x
Aminn

+ ln

�
A�
Amin

�
x

3n

1A � 2 exp (�x) :

Hence, taking x = � lnn we have

P

0@���� (M)�� �s4A��` (s�; sM ) lnn
Aminn

+ ln

�
A�
Amin

�
� lnn

3n

1A � 2n�� ; (118)

which yields Inequality (113). Now, by noticing the fact that 2
p
ab � a� + b��1 for all � > 0, and by using it

in (118) with a = ` (s�; sM ), b = A�� lnn
Aminn

and � = D
�1=2
M , we obtain

P
����� (M)�� � ` (s�; sM )p

DM

+

�
A�
Amin

p
DM +

1

3
ln

�
A�
Amin

��
� lnn

n

�
� 2n�� : (119)

Then, for a model M such that AM;� (lnn)
2 � DM � AM;+n (lnn)

�2, we can apply Lemma 16 and by (104),
it holds for all n � n0 (AM;+; AM;�; A�; Amin; A�; �M),�

1� LAM;+;AM;�;A�;Amin;A�
"2n (M)

� DM � 1
2n

� E [p2 (M)] (120)

where "n (M) = A0max

��
lnn
DM

�1=4
;
�
DM lnn

n

�1=4�
. Moreover as

AM;� (lnn)
2 � DM � AM;+n (lnn)

�2 ,

we can deduce that for all n � n0 (AM;+; AM;�; A�; Amin; A�),

LAM;+;AM;�;A�;Amin;A�
"2n (M) � 1=2

and we have by (120), E [p2 (M)] � DM

8n for all n � n0 (AM;+; AM;�; A�; Amin; A�). This allows, using (119),
to conclude the proof by simple computations. �
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5.5 Technical lemmas

We state here some lemmas needed in the proofs of Theorem 10. Their proofs are quite similar to the proofs
given in Section 7 of [24] as we use the same generic approach exposed in details in Section 6 of [24]. More
precisely, the least-squares contrast in regression and the Kullback-Leibler contrast satisfy the same formal
property of expansion (81) and the models that we consider are endowed with localized basis. The main
technical di¤erence comes from the fact that the Kullback-Leibler excess risk is only close to an Hilbertian
norm on the considered functions of B(M;L1)(sM ;

~Rn;DM ;�), whereas in the least-squares regression the excess
risk is the Hilbertian L2 (P ) norm itself.

Lemma 18 Assume (45), (Alr) and DM � 2. Then for any � > 0; a positive constant LrM ;� exists, such
that by setting

�n = LrM ;�

 r
lnn

DM
_
p
lnn

n1=4

!
;

we have

P

24s X
I2�M

(Pn � P )2 ('I) � (1 + �n)
r
DM � 1

n

35 � n�� :

Proof. By Cauchy-Schwarz inequality we have

�M =

s X
I2�M

(Pn � P )2 ('I) = sup
s2F(C;rC]

fj(Pn � P ) (s)j ; s 2M & ksk2 � 1g :

Hence, we get by Bousquet�s inequality (173) with F = fs ; s 2M; ksk2 � 1g, for all x > 0, � > 0;

P
�
�M �

r
2�2

x

n
+ (1 + �)E [�M ] +

�
1

3
+
1

�

�
bx

n

�
� exp (�x) (121)

where
�2 � sup

s2M; ksk2�1
E
h
(s (X))

2
i
= 1

and
b � sup

s2M; ksk2�1
ks� P (s)k1 � 2 sup

s2M; ksk2�1
ksk1 � 2rM

p
DM by (91).

Moreover, since X
I2�M

Var ('I) =
X
I2�M

(1� P (I)) = DM � 1 ,

it holds

E [�M ] �
q
E [�2M ] =

sP
I2�M Var ('I)

n
=

r
DM � 1

n
:

So, from (121) it follows that

P

"
�M �

r
2x

n
+ (1 + �)

r
DM � 1

n
+

�
1

3
+
1

�

�
2rM

p
DMx

n

#
� exp (�x) : (122)

Hence, taking x = � lnn, � =
p
lnn
n1=4

in (122), we can derive that a positive constant LrM ;� exists such that

P

"
�M �

 
1 + LrM ;�

 r
lnn

DM
_
p
lnn

n1=4

!!r
DM � 1

n

#
� n�� ;

which gives the result.�
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Lemma 19 Let r > 1 and C > 0. Assume that (Abd) and (Alr) hold. If positive constants A�; A+; Al; Au
exist such that

A+
n

(lnn)
2 � D � A� (lnn)

2 and Al
D

n
� rC � Au

D

n
;

and if the constant A1 de�ned in (78) satis�es

A1 � 64B2
p
AuA�rM ; (123)

then a positive constant LAl;Au;Amin
exists such that, for all n � n0 (B2; A+; A�; Al; Au; rM ; Amin),

E

"
sup

s2F(C;rC]
(Pn � P )

�
 1;M � (sM � s)

�#
�
�
1� LAl;Au;Aminp

DM

�r
2rC (DM � 1)

n
: (124)

In the previous Lemma, we state a sharp lower bound for the mean of the supremum of the empirical process
on the linear parts of contrasted functions of fM belonging to a slice of excess risk. This is done for models of
reasonable dimensions. Moreover, we see that we need to assume that the constant A1 introduced in (78) is
large enough. In order to prove Lemma 19 we need the following intermediate result.

Lemma 20 Let r > 1; A+; A�; Au; � > 0 and C � 0. Assume that (Abd) and (Alr) hold and that

A+
n

(lnn)
2 � DM � A� (lnn)

2 and rC � Au
DM

n
:

Set

�n;I =

p
2rC (Pn � P ) ('I)r P
I2�M

(Pn � P )2 ('I)
for all I 2 �M ;

and
sCS =

X
I2�M

�n;I'I 2M :

Then the following inequality holds, Z
Z
(sMsCS + sM ) d� = 1 (125)

and if the constant A1 de�ned in (78) satis�es

A1 � 32B2
p
Au�A�rM ;

then it holds, for all n � n0 (B2; A+; A�; rM ; �)�

P

"
max
I2�M

���n;I �� � ~Rn;DM ;�

A�rM
p
DM

#
� 2DM + 1

n�
: (126)

In this case, (sM � sCS + sM ) 2 F(C;rC] with probability at least 1� (2DM + 1)n�� :

Proof of Lemma 20. Let us begin with property (125). As
R
Z sMd� = 1, it su¢ ces to check thatZ

Z
sM � sCSd� = 0 :
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Indeed, as by (7) we have sM =
P

I2�M
P (I)
�(I) 1I ,

sM � sCS =
p
2rCr P

I2�M
(Pn � P )2 ('I)

X
I2�M

(Pn � P )
 

1Ip
P (I)

!
P (I)

� (I)

1Ip
P (I)

=

p
2rCr P

I2�M
(Pn � P )2 ('I)

X
I2�M

(Pn � P ) (1I)
1I
� (I)

:

So the expectation of sM � sCS with respect to � is proportional toZ
Z

X
I2�M

(Pn � P ) (1I)
1I
� (I)

d�

= (Pn � P ) (1Z) = 0 :

Thus property (125) is satis�ed. We now turn to the proof of (126). As in the proof of Lemma 18 we write

�M =

s X
I2�M

(Pn � P )2 ('I) :

By Cauchy-Schwarz inequality, we get

� = sup
s2SM

j(Pn � P ) (s)j ;

where SM is the unit sphere of M , that is

SM =

8<:s 2M; s =
X
I2�M

�I'I and
s X
I2�M

�2I = 1

9=; :

Thus we can apply Klein-Rio�s bound (175) to � since it holds

sup
s2SM

ks� Psk1 � 2 sup
s2SM

ksk1 � 2rM
p
DM by (91). (127)

sup
s2SM

Var (s) � 1

and also, by Inequality (170), using (127),

E [�M ] � B�12

q
E [�2M ]�

2rM
p
DM

n

= B�12

r
DM � 1

n
� 2rM

p
DM

n
:

We thus obtain, for all "; x > 0;

P

"
�M � (1� ")B�12

r
DM � 1

n
�
r
2
x

n
�
�
1� "+

�
1 +

1

"

�
x

�
2rM

p
DM

n

#
� exp (�x) :

So, by taking " = 1
2 and x = � lnn, and as DM � A� (lnn)

2, it holds, for all n � n0 (B2; A�; rM ; �),

P

"
�M � B�12

8

r
DM

n

#
� n�� : (128)

31



Furthermore, combining Bernstein�s inequality (171) with the observation that we have, for every I 2 �M ,

k'I � P'Ik1 � 2 k'Ik1 � 2rM
p
DM by (92)

Var ('I) � 1 ;

we get that, for every x > 0,

P
�
j(Pn � P ) ('I)j �

r
2
x

n
+
2rM

p
DMx

3n

�
� 2 exp (�x) :

Hence, for x = � lnn; it comes

P

"
max
I2�M

j(Pn � P ) ('I)j �
r
2� lnn

n
+
2rM

p
DM� lnn

3n

#
� 2DM

n�
; (129)

then by using (128) and (129), for all n � n0 (B2; A�; rM ; �),

P

24max
I2�M

���n;I �� � 8B2
p
2rCq

DM

n

 r
2� lnn

n
+
2rM

p
DM� lnn

3n

!35 � 2DM + 1

n�
:

Finally, as A+ n
(lnn)2

� DM we have, for all n � n0 (A+; rM ; �),

2rM
p
DM� lnn

3n
�
r
2� lnn

n

and we can check that if
A1 � 32B2

p
Au�A�rM

then, for all n � n0 (B2; A+; A�; rM ; �),

P

"
max
I2�M

���n;I �� � A1
A�rM

r
lnn

n

#
� 2DM + 1

n�
:

which readily yields Inequality (126). As a consequence, it holds with probability at least 1� (2DM + 1)n�� ,

k(sM � sCS + sM )� sMk1 � ksMk1 ksCSk1
� A� ksCSk1 by (44) and (7)

= A�






 X
I2�M

�n;I'I







1

� A�rM
p
DM max

I2�M

���n;I �� by (92)

� ~Rn;DM ;� by (126) (130)

Now, by observing that 

 1;M � ((sM � sCS + sM )� sM )


2
2
= ksCSk22
= 2rC ;

we get by (125) and (130) that for all n � n0 (B2; A�; rM ; �), (sM � sCS + sM ) 2 F(C;rC] with probability at
least 1� (2DM + 1)n�� . �
We are now ready to prove the lower bound (124) for the expected value of the largest increment of the

empirical process over F(C;rC]:
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Proof of Lemma 19. Let us begin with the lower bound of E 1
2

�
sups2F(C;rC] (Pn � P )

�
 1;M � (sM � s)

��2
,

a result that will be needed further in the proof. By Lemma 20, if we set

~
 =
�
(sM � sCS + sM ) 2 F(C;rC]

	
if we choose � = 4 and if

A1 � 64B2
p
AuA�rM ;

then it holds, for all n � n0 (B2; A+; A�; rM ),

P
h
~

i
� 1� 2DM + 1

n4
: (131)

Also, it holds

E
1
2

 
sup

s2F(C;rC]
(Pn � P )

�
 1;M � (sM � s)

�!2

� E 1
2

24 (Pn � P ) X
I2�M

�n;I'I

!!2
1~


35
�
p
2rC

vuutE" X
I2�M

(Pn � P )2 ('I)
!
1~


#
: (132)

Furthermore, since by (92) k'Ik1 �
p
DMrM for all I 2 �M , and since P ('I) � 0 we have����� X

I2�M

(Pn � P )2 ('I)
����� � DM max

I2�M
k'Ik

2
1 � r2MD

2
M

and it ensures by (131), for all n � n0 (B2; A+; A�; rM ),

E

" X
I2�M

(Pn � P )2 ('I)
!
1~


#
� E

" X
I2�M

(Pn � P )2 ('I)
!#

� r2MD2
M

2DM + 1

n4
:

Comparing the last inequality with (132), we obtain the lower bound, for all n � n0 (B2; A+; A�; rM ),

E
1
2

 
sup

s2F(C;rC]
(Pn � P )

�
 1;M � (sM � s)

�!2

�
p
2rC

vuutE" X
I2�M

(Pn � P )2 ('I)
#
� rMDM

p
2rC

r
2DM + 1

n4

=

r
2rC (DM � 1)

n
� rMDM

p
2rC

r
2DM + 1

n4
:

Now, since DM � A+n (lnn)
2, we get for all n � n0 (A+; rM ),

rMDM

p
2rC

r
2DM + 1

n4
� 1p

DM

�
r
2rC (DM � 1)

n

and so, if A1 � 64B2
p
AuA�rM then, for all n � n0 (B2; A+; A�; rM ),

E
1
2

 
sup

s2F(C;rC]
(Pn � P )

�
 1;M � (sM � s)

�!2
�
�
1� 1p

DM

�r
2rC (DM � 1)

n
. (133)
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Now, as DM � A� (lnn)
2 we have for all n � n0 (A�), D

�1=2
M � 1=2. Moreover we have rC � AlDMn

�1, so
we deduce from (133) that, for all n � n0 (B2; A+; A�; rM ),

E
1
2

 
sup

s2F(C;rC]
(Pn � P )

�
 1;M � (sM � s)

�!2
�
r
Al
2

DM

n
. (134)

We turn now to the lower bound of E
h
sups2F(C;rC] (Pn � P )

�
 1;M � (sM � s)

�i
. First observe that s 2 F(C;rC]

implies that 2sM � s 2 F(C;rC], so that

E

"
sup

s2F(C;rC]
(Pn � P )

�
 1;M � (sM � s)

�#
= E

"
sup

s2F(C;rC]

��(Pn � P ) � 1;M � (sM � s)
���# : (135)

In the next step, we apply Corollary 32. More precisely, using notations of Corollary 32, we set

F =
�
 1;M � (sM � s) ; s 2 F(C;rC]

	
and

Z = sup
s2F(C;rC]

��(Pn � P ) � 1;M � (sM � s)
��� :

Now, since for all n � n0 (A+; A1), it holds ~Rn;DM ;� � 1=2, we get by (45),

sup
f2F

kf � Pfk1 � 2 sup
s2F(C;rC]



 1;M � (sM � s)



1 � 2A�1min ~Rn;DM ;� � A�1min .

we set b = A�1min. Since we assume that rC � Au
DM

n , it moreover holds

sup
f2F

Var (f) � sup
s2F(C;rC]

P
�
 1;M � (sM � s)

�2 � 2rC � 2AuDM

n

and so we set �2 = 2Au DM

n . Now, by (134) we have, for all n � n0 (B2; A+; A�; rM ),

p
E [Z2] �

r
Al
2

DM

n
: (136)

Hence, a positive constant LAl;Au;Amin
exists such that, by setting

{n =
LAl;Au;Aminp

DM

we can get using (136), that for all n � n0 (B2; A+; A�; rM ),

{2nE
�
Z2
�
� �2

n

{2n
p
E [Z2] � b

n

and that, as DM � A� (lnn)
2, we have for all n � n0 (Al; Au; A�; Amin),

{n 2 (0; 1) :

So, using (135) and Corollary 32, it holds for all n � n0 (B2; A+; A�; Al; Au; rM ; Amin),

E

"
sup

s2F(C;rC]
(Pn � P )

�
 1;M � (sM � s)

�#
�
�
1� LAl;Au;Aminp

DM

�
E

1
2

 
sup

s2F(C;rC]
(Pn � P )

�
 1;M � (sM � s)

�!2
:

(137)

34



Finally, using (133) in the right-hand side of Inequality (137), we can deduce that for all n � n0 (B2; A+; A�; Al; Au; rM ; Amin),

E

"
sup

s2F(C;rC]
(Pn � P )

�
 1;M � (sM � s)

�#
�
�
1� LAl;Au;Aminp

DM

�r
2rC (DM � 1)

n

and so (124) is proved. �
The two following lemmas give some controls of the supremum over the second order terms in the expansion
of the contrast (81).

Lemma 21 Let C � 0 and A+ > 0. Under (45), assuming that

A+
n

(lnn)
2 � DM ;

it holds, for all n � n0 (A+; Amin; A1),

E
�
sup
s2FC

����(Pn � P )� 2 � �s� sMsM

������� � 8A�2min ~Rn;DM ;�

r
2C (DM � 1)

n
:

Proof. We de�ne the Rademacher process Rn on a class F of measurable functions from Z to R, to be

Rn (f) =
1

n

nX
i=1

"if (�i) , f 2 F

where "i are independent Rademacher random variables also independent from the �i. By the usual sym-
metrization argument we have

E
�
sup
s2FC

����(Pn � P )� 2 � �s� sMsM

������� � 2E � sup
s2FC

����Rn

�
 2 �

�
s� sM
sM

������� : (138)

As A+ n
(lnn)2

� DM ; we have, for all n � n0 (A+; Amin; A1),

~Rn;DM ;� �
Amin
2

.

Hence, by Inequality (19) of Lemma 6 it holds for all n � n0 (A+; Amin; A1), for all (x; y) 2
h
�A�1min ~Rn;DM ;�; A

�1
min

~Rn;DM ;�

i2
,

j 2 (x)�  2 (y)j � 2A�1min ~Rn;DM ;� jx� yj : (139)

We de�ne now the following real-valued function �,

� (x) =

8>>>><>>>>:

�
2A�1min

~Rn;DM ;�

��1
 2 (x) if x 2

h
�A�1min ~Rn;DM ;�; A

�1
min

~Rn;DM ;�

i
�
2A�1min

~Rn;DM ;�

��1
 2

�
�A�1min ~Rn;DM ;�

�
if x � �A�1min ~Rn;DM ;��

2A�1min
~Rn;DM ;�

��1
 2

�
A�1min

~Rn;DM ;�

�
if x � A�1min

~Rn;DM ;�

and since � (0) = h (0) = 0, it follows from (139) that � is a contraction mapping for all n � n0 (A+; Amin; A1).
Then, taking the expectation with respect to the Rademacher variables, we then get for all n � n0 (A+; Amin; A1),

E"
�
sup
s2FC

����Rn

�
 2 �

�
s� sM
sM

�������
= 2A�1min

~Rn;DM ;�E"

"
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����� 1n
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i=1
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s� sM
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������
#

(140)
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We can now apply Theorem 28 to get for all n � n0 (A+; Amin; A1),

E"

"
sup
s2FC

����� 1n
nX
i=1

"i�

��
s� sM
sM

�
(�i)

������
#
� 2E"

"
sup
s2FC

����� 1n
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i=1

"i

�
s� sM
sM

�
(�i)

�����
#

= 2E"
�
sup
s2FC

����Rn

�
s� sM
sM

������ (141)

and so we derive successively the following upper bounds in mean, for all n � n0 (A+; Amin; A1),

E
�
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����Rn
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 2 �

�
s� sM
sM

������� = E �E" � sup
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and the result follows by injecting (142) and (143) in (138). �

Lemma 22 Let A+; A�; Al; �; C� > 0, and assume (45) and (Alr). Then if C� � Al
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n and A+n (lnn)
�2 �

DM � A� (lnn)
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As a consequence, for all n � n0 (Amin; A1; A+),
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Now, since [C>C�FC � B(M;L1)

�
sM ; ~Rn;DM ;�

�
where
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We thus have, for all n � n0 (Amin; A1; A+),
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k
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Simple computations show that, since DM � 1 and C� � Al
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Given j 2 f1; :::; Jg ; Lemma 21 yields
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and we can next apply Bousquet�s inequality (173) to handle the deviations around the mean. Since for all
n � n0 (Amin; A1; A+) we have for all s 2 FqjC� ,

ks� sMk1 � ~Rn;DM ;� �
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2

we can apply Inequalities (45) and (83) to get, for all n � n0 (Amin; A1; A+),

sup
s2FqjC�





 2 � �s� sMsM

�
� P

�
 2 �

�
s� sM
sM

��



 � 2 sup
s2FqjC�

k s2 � (s� sM )k1

� 2A�1min sup
s2FqjC�





 1sM (s� sM )2





1

� 2A�2min ~R2n;DM ;�
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It follows that Inequality (173) applied with " = 1 gives, for all x > 0 and for all n � n0 (Amin; A1; A+),
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As a consequence, as DM � A� (lnn)
2, C� � AlDMn

�1 and as ~Rn;DM ;� � 1 for all n � n0 (Amin; A1; A+),
taking x = 
 lnn in (146) for some 
 > 0, easy computations show that a positive constant LA�;Al;Amin;


independent of j exists such that for all n � n0 (Amin; A1; A+),
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Hence, using (145), we get for all n � n0 (Amin; A1; A+),
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:

And �nally, as J � LAl;q lnn, taking 
 = � + 1 and q = 2 gives the result for all n � n0 (Amin; A1; A+; Al).
�

Having controlled the residual empirical process driven by the remainder terms in the contrast, and having
proved sharp bounds for the expectation of the increments of the main empirical process on our slices, it
remains to combine the above lemmas in order to establish the crucial probability estimates controlling the
empirical excess risk on the slides.
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Lemma 23 Let �;A�; A+; Al; C > 0. Assume that (45) and (Alr) hold. A positive constant A4 exists, only
depending on Amin; A1; rM ; �, such that, if
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where the last bound follows from Cauchy-Schwarz inequality. Then, for all n � n0 (A+; Amin; A1),
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Hence, since DM � A� (lnn)
2 � 2 for all n � n0 (A�), we deduce from Lemma 18 that for all n �
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Assume now that
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Hence, using (150) and (152) in (149), if C � DM�1
n it holds for all n � n0 (A�; A+; Amin; A1),
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Now, we set A4 = LAmin;A1;rM ;� the positive constant appearing in (153). If C � (1 +A4�n)
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Moreover, since C � Al
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and as
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The conclusion follows by making use of (154) and (155) in Inequality (147). �

Lemma 24 Let �;A�; A+; Au; C � 0. Assume that (45) and (Alr) hold. A positive constant A5, depending
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Moreover, when we only assume C � 0 (and keep the other assumptions unchanged), a positive constant A6
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Proof. The proof is similar to that of Lemma 23 and follows from the same kind of computations. First
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where the last bound follows from Cauchy-Schwarz inequality. From Lemma 18 and since for all n � n0 (A�),
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Now, since
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Now using (158) and (159) in (157) we obtain, for all n � n0 (Amin; A1; A+; A�),

P

"
sup

s2F>C
Pn (KsM �Ks) � sup

L>C

(�
1 + LA1;rM ;Amin;A�;� � �n

�r2L (DM � 1)
n

� (1� LrM ;�)L
)#

� 2n��

(160)
and we set ~A5 = LA1;rM ;Amin;A�;� _LrM ;� where LA1;rM ;Amin;A�;� and LrM ;� are the constants appearing in

(160). Since, for all n � n0

�
A+; A�; ~A5

�
, 0 < 1+ ~A5�n

1� ~A5�n
� 1 + 4 ~A5�n, and for C �

�
1 + 4 ~A5�n

�2
DM�1
2n we get

by simple calculations, for all n � n0

�
A+; A�; ~A5

�
,

sup
L>C

(
p
2L
�
1 + ~A5�n

�rDM � 1
n

�
�
1� ~A5�n

�
L

)
=
�
1 + ~A5�n

�r2C (DM � 1)
n

�
�
1� ~A5�n

�
C .

Moreover, we have C � Au
DM

n , so for all n � n0 (A�), C �
q

2AuC(DM�1)
n and and as a consequence, for all

n � n0

�
A+; A�; ~A5

�
,

sup
L>C

(
p
2L
�
1 + ~A5�n

�rDM � 1
n

�
�
1� ~A5�n

�
L

)
�
�
1 +

�
1 +

p
Au

�
~A5�n

�r2C (DM � 1)
n

� C ,

so, for all n � n0

�
Amin; A1; A+; A�; ~A5

�
,

P

"
sup

s2F>C
Pn (KsM �Ks) �

�
1 +

�
1 +

p
Au

�
~A5�n

�r2C (DM � 1)
n

� C
#
� 2n��

which gives the �rst part of the lemma by setting A5 = 4 ~A5 _
�
1 +

p
Au
�
~A5. The second part comes from

(160) and the fact that, for any value of C � 0, for all n � n0

�
A+; A�; ~A5

�
,

sup
L>C

(
p
2L
�
1 + ~A5�n

�rDM � 1
n

�
�
1� ~A5�n

�
L

)
�
�
1 + 4 ~A5�n

�2 DM � 1
2n

.

�

Lemma 25 Let r > 1 and C; � > 0. Assume that (Abd) and (Alr) hold. If positive constants A�; A+; Al; Au
exist such that

A+
n

(lnn)
2 � DM � A� (lnn)

2 and Al
DM

n
� rC � Au

DM

n
;

and if the constant A1 de�ned in (78) satis�es

A1 � 64B2
p
AuA�rM ;

then a positive constant LA�;Al;Au;Amin;A1;� exists such that, for all n � n0 (A+; A�; Al; Au; rM ; Amin; A1),

P

 
sup

s2F(C;rC]
Pn (KsM �Ks) �

�
1� LA�;Al;Au;Amin;A1;� � �n

�r2rC (DM � 1)
n

� rC
!
� 2n�� ;

where �n = max
�q

lnn
DM

;
q

DM lnn
n

�
.

42



Proof. Start with
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b1;r;C � 2 sup
s2F(C;rC]



 1;M � (sM � s)



1 � 2A�1min ~Rn;DM ;� � 1 (165)

Hence, using (163), (164) and (165) in Inequality (162), we get for all x > 0 and all n � n0 (A+; A�; Al; Au; rM ; Amin; A1),

P

 
S1;r;C � (1� �)

�
1� LAl;Au;Aminp

DM

�r
2rC (DM � 1)

n
�
r
4rCx

n
�
�
1 +

1

�

�
x

n

!
� exp (�x) :

Now, taking x = � lnn, � =
q

lnn
DM

, we can deduce by simple computations that a positive constant

LAl;Au;Amin;� exists such that, for all n � n0 (A+; A�; Al; Au; rM ; Amin; A1),

P

 
S1;r;C �

 
1� LAl;Au;Amin;�

r
lnn

DM

!r
2rC (DM � 1)

n

!
� n�� (166)
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and as r
lnn

DM
� �n ,

(166) gives, for all n � n0 (A+; A�; Al; Au; rM ; Amin; A1),

P

 
S1;r;C � (1� LAl;Au;Amin;��n)

r
2rC (DM � 1)

n

!
� n�� : (167)

Moreover, from Lemma 22 we can deduce that, for all n � n0 (Amin; A1; A+; Al),

P

"
sup
s2FrC

����(Pn � P )� 2 � �s� sMsM

������ � LA�;Al;Amin;�

r
rC (DM � 1)

n
~Rn;DM ;�

#
� n�� (168)

and noticing that

~Rn;D;� = A1

r
D lnn

n
� A1�n

we deduce from (168) that, for all n � n0 (Amin; A1; A+; Al),

P

"
sup
s2FrC

����(Pn � P )� 2 � �s� sMsM

������ � LA�;Al;Amin;A1;��n

r
2rC (DM � 1)

n

#
� n�� : (169)

Finally, using (167) and (169) in (161) we get that, for all n � n0 (A+; A�; Al; Au; rM ; Amin; A1),

P

 
sup

s2F(C;rC]
Pn (KsM �Ks) �

�
1� LA�;Al;Au;Amin;A1;� � �n

�r2rC (DM � 1)
n

� rC
!
� 2n�� ;

which concludes the proof. �

5.6 Probabilistic Tools

We recall here the main probabilistic results that are instrumental in our proofs.
Let us begin with the Lp-version of Ho¤mann-Jørgensen�s inequality, that can be found for example in [21],
Proposition 6.10, p.157.

Theorem 26 For any independent mean zero random variables Yj ; j = 1; :::; n taking values in a Banach
space (B; k:k) and satisfying E [kYjkp] < +1 for some p � 1; we have

E1=p







nX
j=1

Yj








p

� Bp

0@E







nX
j=1

Yj







+ E1=p
�
max
1�j�n

kYjk
�p1A

where Bp is a universal constant depending only on p.

We will use this theorem for p = 2 in order to control suprema of empirical processes. In order to be
more speci�c, let F be a class of measurable functions from a measurable space Z to R and (X1; :::; Xn) be
independent variables of common law P taking values in Z. We then denote by B = l1 (F) the space of
uniformly bounded functions on F and, for any b 2 B, we set kbk = supf2F jb (f)j. Thus (B; k:k) is a Banach
space. Indeed we shall apply Theorem 26 to the independent random variables, with mean zero and taking
values in B, de�ned by

Yj = ff (Xj)� Pf; f 2 Fg :
More precisely, we will use the following result, which is a straightforward application of Theorem 26. Denote
by

Pn =
1

n

nX
i=1

�Xi
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the empirical measure associated to the sample (X1; :::; Xn) and by

kPn � PkF = sup
f2F

j(Pn � P ) (f)j

the supremum of the empirical process over F .

Corollary 27 If F is a class of measurable functions from a measurable space Z to R satisfying

sup
z2Z

sup
f2F

jf (z)� Pf j = sup
f2F

kf � Pfk1 < +1

and (X1; :::; Xn) are n i.i.d. random variables taking values in Z, then an absolute constant B2 exists such
that,

E1=2
h
kPn � Pk2F

i
� B2

�
E [kPn � PkF ] +

supf2F kf � Pfk1
n

�
: (170)

Another tool we need is a comparison theorem for Rademacher processes, see Theorem 4.12 of [21]. A function
' : R! R is called a contraction if j' (u)� ' (v)j � ju� vj for all u; v 2 R. Moreover, for a subset T � Rn
we set

kh (t)kT = khkT = sup
t2T

jh (t)j :

Theorem 28 Let ("1; :::; "n) be n i.i.d. Rademacher variables and F : R+ �! R+ be a convex and increasing
function. Furthermore, let 'i : R �! R; i � n; be contractions such that 'i (0) = 0. Then, for any bounded
subset T � Rn;

EF

 




X
i

"i'i (ti)







T

!
� 2EF

 




X
i

"iti







T

!
:

The next tool is the well known Bernstein�s inequality, that can be found for example in [23], Proposition 2.9.

Theorem 29 (Bernstein�s inequality) Let (X1; :::; Xn) be independent real valued random variables and de�ne

S =
1

n

nX
i=1

(Xi � E [Xi]) :

Assuming that

v =
1

n

nX
i=1

E
�
X2
i

�
<1

and
Xi � b a:s:

we have, for every x > 0,

P
�
jSj �

r
2v
x

n
+
bx

3n

�
� 2 exp (�x) : (171)

We now turn to concentration inequalities for the empirical process around its mean. Bousquet�s inequality
[12] provides optimal constants for the deviations above the mean. Klein-Rio�s inequality [18] gives sharp
constants for the deviations below the mean, that slightly improves Klein�s inequality [19].

Theorem 30 Let (�1; :::; �n) be n i.i.d. random variables having common law P and taking values in a
measurable space Z. If F is a class of measurable functions from Z to R satisfying

jf (�i)� Pf j � b a:s:; for all f 2 F ; i � n;

then, by setting

�2F = sup
f2F

n
P
�
f2
�
� (Pf)2

o
;
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we have, for all x � 0,
Bousquet�s inequality :

P
�
kPn � PkF � E [kPn � PkF ] �

r
2 (�2F + 2bE [kPn � PkF ])

x

n
+
bx

3n

�
� exp (�x) (172)

and we can deduce that, for all "; x > 0, it holds

P
�
kPn � PkF � E [kPn � PkF ] �

r
2�2F

x

n
+ "E [kPn � PkF ] +

�
1

"
+
1

3

�
bx

n

�
� exp (�x) : (173)

Klein-Rio�s inequality :

P
�
E [kPn � PkF ]� kPn � PkF �

r
2 (�2F + 2bE [kPn � PkF ])

x

n
+
bx

n

�
� exp (�x) (174)

and again, we can deduce that, for all "; x > 0, it holds

P
�
E [kPn � PkF ]� kPn � PkF �

r
2�2F

x

n
+ "E [kPn � PkF ] +

�
1

"
+ 1

�
bx

n

�
� exp (�x) : (175)

The following result is due to Ledoux [20]. We will use it along the proofs through Corollary 32 which is sated
below. From now on, we set for short Z = kPn � PkF .

Theorem 31 Let (�1; :::; �n) be independent random with values in some measurable space (Z; T ) and F be
some countable class of real-valued measurable functions from Z. Let

�
�01; :::; �

0
n

�
be independent from (�1; :::; �n)

and with the same distribution. Setting

v = E

"
sup
f2F

1

n

nX
i=1

�
f (�i)� f

�
�0i
��2#

then
E
�
Z2
�
� E [Z]2 � v

n
.

Corollary 32 Under notations of Theorem 30, if some {n 2 (0; 1) exists such that

{2nE
�
Z2
�
� �2

n

and

{2n
p
E [Z2] � b

n

then we have, for a numerical constant A1;�,

(1� {nA1;�)
p
E [Z2] � E [Z] :

Proof of Corollary 32. Just use Theorem 31, noticing the fact thatp
E [Z2]� E [Z] �

p
V (Z)

and that, with notations of Theorem 31,

v � 2�2 + 32bE [Z] .

The result then follows from straightforward calculations. �

46



References

[1] H. Akaike. Information theory and an extension of the maximum likelihood principle. In Second In-
ternational Symposium on Information Theory (Tsahkadsor, 1971), pages 267�281. Akadémiai Kiadó,
Budapest, 1973.

[2] Hirotugu Akaike. A new look at the statistical model identi�cation. IEEE Trans. Automatic Control,
AC-19:716�723, 1974. System identi�cation and time-series analysis.

[3] Sylvain Arlot. Resampling and Model Selection. PhD thesis, University Paris-Sud 11, December 2007.
oai:tel.archives-ouvertes.fr:tel-00198803_v1.

[4] Sylvain Arlot. Model selection by resampling penalization, March 2008. oai:hal.archives-ouvertes.fr:hal-
00262478_v2.

[5] Sylvain Arlot. V -fold cross-validation improved: V -fold penalization, February 2008. arXiv:0802.0566v2.

[6] Sylvain Arlot and Pascal Massart. Data-driven calibration of penalties for least-squares regression. J.
Mach. Learn. Res., 10:245�279 (electronic), 2009.

[7] A. R. Barron. Limits of information, markov chains, and projections. In Proceedings. 2000 International
Synopsium on Information Theory, page 25, 2000.

[8] Andrew Barron, Lucien Birgé, and Pascal Massart. Risk bounds for model selection via penalization.
Probab. Theory Related Fields, 113(3):301�413, 1999.

[9] A.R. Barron and C.H. Sheu. Approximation of density functions by sequences of exponential families.
Ann. Statist., 19(3):1347�1369, 1991.

[10] Lucien Birgé and Pascal Massart. Minimal penalties for Gaussian model selection. Probab. Theory Related
Fields, 138(1-2):33�73, 2007.

[11] S. Boucheron and P. Massart. A high dimensional Wilks phenomenon. Probability Theory and Related
Fields, 2010. To appear.

[12] Olivier Bousquet. A Bennett concentration inequality and its application to suprema of empirical
processes. C. R. Math. Acad. Sci. Paris, 334(6):495�500, 2002.

[13] P. Burman. Estimation of equifrequency histogram. Statist. Probab. Lett., 56(3):227�238, 2002.

[14] G. Castellan. Modi�ed Akaike�s criterion for histogram density estimation. Technical report ]99.61,
Université de Paris-Sud., 1999.

[15] Gwénaëlle Castellan. Density estimation via exponential model selection. IEEE Trans. Inform. Theory,
49(8):2052�2060, 2003.

[16] Imre Csiszár. I-divergence geometry of probability distributions and minimization problems. Ann.
Probab., 3(1):146�158, 1975.

[17] Imre Csiszár and Franti�ek Matú�. Information projections revisited. IEEE Trans. Inform. Theory,
49(6):1474�1490, 2003.

[18] R. Klein and E. Rio. Concentration around the mean for maxima of empirical processes. Annals of
Probability, 1:63�87 (electronic), 2005.

[19] T. Klein. Une inégalité de concentration à gauche pour les processus empiriques. C.R. Acad. Sci. Paris,
Ser I, 334:500�505, 2002.

[20] M. Ledoux. On Talagrand�s deviation inequalities for product measures. ESAIM: Probability and Stat-
tistics, 1:63�87, 1996.

47



[21] M. Ledoux and M. Talagrand. Probability in Banach spaces. Springer, Berlin, 1991.

[22] Colin L. Mallows. Some comments on Cp. Technometrics, 15:661�675, 1973.

[23] P. Massart. Concentration Inequalities and Model Selection. Springer-Verlag, 2007.

[24] Adrien Saumard. Optimal upper and lower bounds for the true and empirical excess risks in heteroscedastic
least-squares regression, August 2010. hal-00512304, v1.

[25] Adrien Saumard. The slope heuristics in heteroscedastic regression, August 2010. hal-00512306, v1.

[26] Charles J. Stone. An asymptotically optimal histogram selection rule. In Proceedings of the Berkeley
conference in honor of Jerzy Neyman and Jack Kiefer, Vol. II (Berkeley, Calif., 1983), Wadsworth
Statist./Probab. Ser., pages 513�520, Belmont, CA, 1985. Wadsworth.

[27] Charles J. Stone. Uniform error bounds involving logspline models. In Probability, statistics, and mathe-
matics, pages 335�355. Academic Press, Boston, MA, 1989.

[28] S. Wilks. The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann.
Math. Stat., 9(3):60�62, 1938.

48


