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Abstract

We consider the estimation of a regression function with random design and heteroscedastic noise in
a nonparametric setting. More precisely, we address the problem of characterizing the optimal penalty
when the regression function is estimated by using a penalized least-squares model selection method. In
this context, we show the existence of a minimal penalty, de�ned to be the maximum level of penalization
under which the model selection procedure totally misbehaves. The optimal penalty is shown to be twice
the minimal one and to satisfy a non-asymptotic pathwise oracle inequality with leading constant almost
one. Finally, the ideal penalty being unknown in general, we propose a hold-out penalization procedure
and show that the latter is asymptotically optimal.

Keywords: nonparametric regression, heteroscedastic noise, random design, optimal model selection,
slope heuristics, hold-out penalty.

1 Introduction

Given a collection of models and associated estimators, two di¤erent model selection tasks can be tackled:
�nd out the smallest true model (consistency problem), or select an estimator achieving the best performance
according to some criterion, called a risk or a loss (e¢ciency problem). We focus on the e¢ciency problem,
where the leading idea of penalization, that goes back to early works of Akaike [2, 3] and Mallows [33], is to
perform an unbiased - or uniformly biased - estimation of the risk of the estimators. FPE and AIC procedures
proposed by Akaike respectively in [2] and [3], as well as Mallows� Cp or CL [33], aim to do so by adding to
the empirical risk a penalty which depends on the dimension of the models.

The �rst analysis of such procedures had the drawback of being fundamentally asymptotic, considering
in particular that the number of models as well as their dimensions are �xed while the sample size tends
to in�nity. As explained for instance in Massart [34], in various statistical settings it is natural to let these
quantities depend on the amount of data. Thus, pointing out the importance of Talagrand�s type concentration
inequalities in the nonasymptotic approach, Birgé and Massart [15, 17] and Barron, Birgé and Massart [11]
have been able to build nonasymptotic oracle inequalities for penalization procedures. Their framework takes
into account the complexity of the collection of models as a parameter depending on the sample size.

In an abstract risk minimization framework, which includes statistical learning problems such as classi�ca-
tion or regression, many distribution-dependent and data-dependent penalties have been proposed, from the
more general and less accurate global penalties, see Koltchinskii [27], Bartlett et al. [12], to the re�ned local
Rademacher complexities in the case where some favorable noise conditions hold (see for instance Bartlett,
Bousquet and Mendelson [13], Koltchinskii [28]). But as a price to pay for generality, the above penalties suf-
fer from their dependence on unknown constants. These penalized procedures are very di¢cult to implement
and calibrate in practice. Moreover, the existing risk bounds for these procedures contain very large leading
constants. Other general-purpose penalties have been proposed, such as the bootstrap penalties of Efron [26]
and the resampling and V -fold penalties of Arlot [5, 6]. These penalties are essentially resampling estimates of
the di¤erence between the empirical risk and the risk. Arlot [5, 6] proved sharp pathwise oracle inequalities for
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the resampling and V -fold penalties in the case of regression with random design and heteroscedastic noise on
histograms models, and conjectured that the restriction to histograms is mainly technical and that his results
can be extended to more general situations.
Model selection via penalization is not the only method which provides sharp oracle inequalities for the

estimation of a nonparametric regression function. Indeed, aggregation techniques and PAC-Bayesian bounds
also allow to obtain nearly optimal constants in the oracle inequalities. Bunea et al. [21] derived some sharp
oracle inequalities for di¤erent aggregation tasks by means of a single unifying procedure. However, the authors
asked for a �xed design and homoscedastic Gaussian noise. By using aggregation with exponential weights,
Dalalyan and Tsybakov obtained in [25] oracle inequalities of a PAC-Bayesian �avor with leading constant
one and optimal rate of the remainder term for the estimation of a regression function with deterministic
design and homoscedastic errors. Furthermore, these authors allowed error distributions which are symmetric
or n-divisible. PAC-Bayesian methods are systematically investigated in Catoni, [23]. The work of Lecué
and Mendelson [29] concerning the aggregation by empirical risk minimization of a �nite family of functions
seems to handle the case of a random design and heteroscedastic noise, even if this example is not explicitly
developed. The oracle inequalities obtained by Lecué and Mendelson are sharp and valid with probability
close to one. In particular, they are related to oracle inequalities obtained, in expectation, by Catoni in [23].

A di¤erence between aggregation and model selection studies, is that in most aggregation results, the
estimators at hand are considered as deterministic functions. However, notable exceptions are the following.
Leung and Barron [32] proved sharp oracle inequalities for the aggregation of projection estimators in the
Gaussian sequence model. Rigollet and Tsybakov [35] recently showed sharp bounds for the aggregation of some
linear estimators, including projection estimators, in a regression setting, with �xed design and homoscedastic
Gaussian noise. More general PAC-Bayesian type inequalities were also recently obtained by Dalalyan and
Salmon [24], considering the aggregation of a¢ne estimators in heteroscedastic regression, with Gaussian noise
and �xed design.
Birgé and Massart [18] discovered, in a generalized linear Gaussian model setting, that the optimal penalty

is closely related to the minimal one. An optimal penalty is a penalty which gives an oracle inequality with
leading constant converging to one when the sample size tends to in�nity. The minimal penalty is de�ned
to be the maximal penalty under which the procedure totally misbehaves (in a sense to be speci�ed below).
Birgé and Massart [18] proved sharp upper and lower bounds for the minimal penalty. These authors also
showed that the optimal penalty is twice the minimal one, both for small and large collections of models.
These facts are called the slope heuristics. The authors also exhibited a jump in the dimension of the selected
model occurring around the value of the minimal penalty, and used it to estimate the minimal penalty from
the data. Taking a penalty equal to twice the previous estimate then gives a nonasymptotic quasi-optimal
data-driven model selection procedure. The algorithm proposed by Birgé and Massart [18] to estimate the
minimal penalty relies on the previous knowledge of the shape of the latter, which is a known function of the
dimension of the models in their setting. Thus, their procedure gives a data-driven calibration of the minimal
penalty.
Considering the case of Gaussian least-squares regression with unknown variance, Baraud et al. [10] have

also derived lower bounds on the penalty terms for small and large collections of models. In the setting of
maximum likelihood estimation of density on histograms, Castellan [22] obtained a lower bound on the penalty
term, in the case of small collections of models.
The slope heuristics has been then extended by Arlot and Massart [9] in a bounded regression framework,

with heteroscedastic noise and random design. The authors considered least-squares estimators on a �small�
collection of histograms models. Their analysis di¤ers from the one of Birgé and Massart [18] in an important
way. Indeed, Arlot and Massart [9] did not assume a particular shape of the penalty term. As a matter of
fact, the penalties considered by Birgé and Massart [18] were known functions of the dimension of the models,
whereas heteroscedasticity of the noise allowed Arlot and Massart to consider situations where the shape of
the penalty is not even a function of the dimension of the models. In such general cases, the authors proposed
to estimate the shape of the penalty by using Arlot�s resampling or V -fold penalties, proved to be e¢cient in
their regression framework by Arlot [5, 6].
The approach developed in [9] is more general than the histogram case, except for some identi�ed technical

parts of the proofs, thus providing a general framework that can be applied to other problems. The authors
have also identi�ed, in the case of histograms, the minimal penalty as the mean of the empirical excess loss on
each model, and the ideal penalty to be estimated as the sum of the empirical excess loss and true excess loss
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on each model. The slope heuristics then heavily relies on the fact that the empirical excess loss is equivalent
to the true excess loss for models of reasonable dimensions.
Arlot and Massart [9] conjectured that this equivalence between the empirical and true excess loss is a

quite general fact in M-estimation. A general result supporting this conjecture is the high dimensional Wilks�
phenomenon investigated by Boucheron and Massart [20] in the setting of bounded contrast minimization. The
authors derive in [20] concentration inequalities for the empirical excess loss, under some margin conditions
(called �noise conditions� by the authors) and when the considered model satis�es some general �complexity
condition� on the �rst moment of the supremum of the empirical process on localized slices of variance in the
loss class. The latter assumption can be explicated under suitable covering entropy conditions on the model.
Lerasle [31] proved the validity of the slope heuristics in a least-squares density estimation setting, under

rather mild conditions on the considered linear models. The approach developed by the author in this frame-
work allows sharp computations and the empirical excess loss is shown to be exactly equal to the true excess
loss. Lerasle [31] also proved in the least-squares density estimation setting the e¢ciency of Arlot�s resampling
penalties. Moreover, Lerasle [30] generalized the previous results to weakly dependent data. Arlot and Bach
[8] recently considered the problem of selecting among linear estimators in nonparametric regression. Their
framework includes model selection for linear regression, the choice of a regularization parameter in kernel
ridge regression or spline smoothing, and the choice of a kernel in multiple kernel learning. In such cases, the
minimal penalty is not necessarily half the optimal one, but the authors propose to estimate the unknown
variance by the minimal penalty and to use it in a plug-in version of Mallows� CL. The latter penalty is proved
to be optimal by establishing a nonasymptotic oracle inequality with constant close to one, converging to one
when the sample size tends to in�nity.
In this paper, we prove the validity of the slope heuristics in the framework of bounded regression with

random design and heteroscedastic noise. This is done by considering a �small� collection of �nite-dimensional
linear models of piecewise polynomial functions. This setting extends the case of histograms already treated
by Arlot and Massart [9]. An interesting consequence is that piecewise polynomial functions are known to
have good approximation properties in Besov spaces and can lead to minimax rates of convergence, see for
instance [11, 37]. As a matter of fact, histograms allow minimax procedures only on Hölder spaces.
Our validation of the slope heuristics is of asymptotic nature. However, the complexity of the collection of

models as well as their dimensions are not constant terms in our analysis. These quantities are indeed allowed
to depend on the sample size n.
If the noise is homoscedastic, then the shape of the ideal penalty is known, and is linear in the dimension

of the models as in the case of Mallows� Cp. However, if the noise is heteroscedastic, then Arlot [7] showed
that the ideal penalty is not even a function of the linear dimensions of the models. So, it is necessary to give
a suitable estimator of this shape. As emphasized by Arlot [5, 6], V -fold and resampling penalties are good,
natural candidates for this task. In this paper, we show that a hold-out penalty - which is closely related to a
special case of resampling penalty - is indeed asymptotically optimal under very mild conditions on the data
split. As a matter of fact, a half-and-half split leads to an optimal penalization. It is worth noticing that
hold-out type procedures have also been exploited in Chapter 8 of Massart [34] as simple tools to overcome
the margin adaptivity issue in classi�cation.
The paper is organized as follows. In Section 2, we describe the statistical framework. The slope heuristics

is presented in Section 3, and the hold-out penalization is considered in Section 4. The proofs are collected in
Section 5.

2 Statistical framework

2.1 Penalized least-squares model selection

Let us take n independent observations �i = (Xi; Yi) 2 X�R with common distribution P . In Sections 2.2,
3.2-4 the feature space X = [0; 1]. The marginal distribution of Xi is denoted by PX . We assume that the
data satisfy the following relation

Yi = s� (Xi) + � (Xi) "i ; (1)

where s� 2 L2
�
PX
�
. Conditionally to Xi, the residual "i is assumed to have zero mean and variance equal

to one. The function � : X !R+ is the unknown heteroscedastic noise level. A generic random variable with
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distribution P , independent of the sample (�1; :::; �n), is denoted by � = (X;Y ).
It follows from (1) that s� is the unknown regression function of Y with respect toX. Our aim is to estimate

s� from the sample. To do so, we are given a �nite collection of models Mn, with cardinality depending on
the sample size n. Each model M 2 Mn is assumed to be a �nite-dimensional vector space. We denote by
DM the linear dimension of M . In the main part of this paper, we focus on models of piecewise polynomial
functions, that are introduced in Section 2.2 below.
We denote by ksk2 =

�R
X
s2dPX

�1=2
the usual norm in L2

�
PX
�
and by sM the linear projection of s�

onto M in the Hilbert space
�
L2
�
PX
�
; k�k2

�
. For a function f 2 L1 (P ), we write P (f) = Pf = E [f (�)]. By

setting K : L2
�
PX
�
! L1 (P ) the least-squares contrast, de�ned by

K (s) : (x; y) 7! (y � s (x))2 , s 2 L2
�
PX
�
, (2)

the regression function s� satis�es
s� = arg min

s2L2(PX)
P (K (s)) . (3)

For the linear projections sM we get
sM = arg min

s2M
P (K (s)) . (4)

For each model M 2Mn, we consider a least-squares estimator sn (M) (possibly non unique), satisfying

sn (M) 2 arg min
s2M

fPn (K (s))g

= arg min
s2M

(
1

n

nX

i=1

(Yi � s (Xi))
2

)
,

where Pn = n�1
Pn

i=1 E�i is the empirical measure built from the data.
In order to avoid cumbersome notations, we will often write Ks in place of K (s) for the image of a suitable

function s by the contrast K. We measure the performance of the least-squares estimators by their excess loss,

` (s�; sn (M)) := P (Ksn (M)�Ks�) = ksn (M)� s�k22 .

We have the following decomposition,

` (s�; sn (M)) = ` (s�; sM ) + ` (sM ; sn (M)) ,

where

` (s�; sM ) := P (KsM �Ks�) = ksM � s�k22 and ` (sM ; sn (M)) := P (Ksn (M)�KsM ) � 0 .

The quantity ` (s�; sM ) is called the bias of the model M and ` (sM ; sn (M)) is the excess loss of the least-
squares estimator sn (M) on the model M . By the Pythagorean identity, we have

` (sM ; sn (M)) = ksn (M)� sMk22 .

Given the collection of models Mn, an oracle model M� is de�ned as a minimizer of the losses - or
equivalently excess losses - of the estimators at hand,

M� 2 arg min
M2Mn

f` (s�; sn (M))g . (5)

The associated oracle estimator sn (M�) thus achieves the best performance in terms of excess loss among the
collection fsn (M) ;M 2Mng. The oracle model is a random quantity because it depends on the data and it
is also unknown as it depends on the distribution P of the data. We propose to estimate the oracle model by
a penalization procedure.
Given some known penalty pen, that is a function fromMn to R, we consider the following data-dependent

model, also called selected model,

cM 2 arg min
M2Mn

fPn (Ksn (M)) + pen (M)g : (6)
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Our aim is then to �nd a good penalty, such that the selected model cM satis�es an oracle inequality of the
form

`
�
s�; sn

�
cM
��
� C � ` (s�; sn (M�)) ,

with some positive constant C as close to one as possible and with probability close to one, typically more
than 1� Ln�2 for some positive constant L.

2.2 Piecewise polynomial functions

Let us take X = [0; 1] the unit interval and P a �nite partition of X . For a positive integer r and any
(I; j) 2 P�f0; :::; rg, we set

pI;j : x 2 X 7! xj1I (x) .

De�nition 1 A �nite dimensional vector space M is said to be a model of piecewise polynomial functions,
with respect to the �nite partition P of X = [0; 1] and of degrees not larger than r 2 N, if

M = Span fpI;j ; (I; j) 2 P�f0; :::; rgg .

The linear dimension of M is then equal to (r + 1) jPj.

Notice that models of histograms on the unit interval are exactly models of piecewise polynomial functions
with degrees not larger than 0. In [36], it is shown that models of piecewise polynomial functions have nice
analytical and statistical properties. Let us recall two of them.
In Lemma 8 of [36], it is proved that if the distribution PX has a density with respect to the Lebesgue

measure Leb on X = [0; 1] which is uniformly bounded away from zero and if the considered partition P is
lower regular with respect to Leb - that is there exists a positive constant c such that jPj infI2P Leb (I) � c > 0
- then the associated model of piecewise polynomial functions is equipped with a localized orthonormal basis
in L2

�
PX
�
. For a formal de�nition of a localized basis, see Section 5 below. Since the pioneering work of

Birgé and Massart [19, 16, 34], the property of localized basis is known to play a key role in M-estimation and
model selection using vector spaces or more general sieves.
Considering models of piecewise polynomial functions on the unit interval, where the density of PX with

respect to Leb is both uniformly bounded and bounded away from 0 and where the underlying partition is
lower regular with respect to Leb, it is shown in Lemma 9 of [36] that the least-squares estimator sn (M)
converges in sup-norm to the linear projection sM of the regression function s�.
Assumptions of lower regularity of the considered partitions as well as the existence of a uniformly bounded

density of PX with respect to the Lebesgue measure on X , will thus naturally arise when dealing with
least-squares model selection using piecewise polynomial functions - see Section 3.2 below. Furthermore, the
interested reader will �nd in Section 5 a more general version of our results, available for linear models equipped
with a localized basis and where least-squares estimators converge in sup-norm to the linear projections of the
regression function onto the models.

3 The slope heuristics

3.1 Underlying concepts

In order to clarify our approach and to highlight the connection of the present paper with the results previously
established in [36], we �rst give a brief heuristic explanation of the major mathematical facts underlying the
slope phenomenon.
We rewrite the de�nition of the oracle model M� given in (5). For any M 2 Mn, the excess loss

` (s�; sn (M)) = P (Ksn (M))�P (Ks�) is the di¤erence between the loss of the estimator sn (M) and the loss
of the target s�. As P (Ks�) is independent of M varying inMn, it holds

M� 2 arg min
M2Mn

fP (Ksn (M))g

= arg min
M2Mn

fPn (Ksn (M)) + penid (M)g ,

5



where for all M 2Mn,
penid (M) := P (Ksn (M))� Pn (Ksn (M)) .

The penalty function penid is called the ideal penalty - as it allows to select the oracle - and is unknown
because it depends on the distribution of the data. As pointed out by Arlot and Massart [9], the main idea of
penalization in the e¢ciency problem is to give some sharp estimate, up to a constant, of the ideal penalty. This
would yield an (asymptotically) unbiased - or uniformly biased over the collection of modelsMn - estimation
of the loss. Such a penalization would lead to a sharp oracle inequality for the selected model.
A penalty term penopt is said to be optimal if it achieves an oracle inequality with leading constant

converging to one when the sample size n tends to in�nity.
Concerning the estimation of the optimal penalty, Arlot and Massart [9] conjectured that the mean of

the empirical excess loss E [Pn (KsM �Ksn (M))] satis�es the following slope heuristics in a quite general
M-estimation framework:

(i) If a penalty pen :Mn �! R+ is such that, for all models M 2Mn,

pen (M) � (1� E)E [Pn (KsM �Ksn (M))]

with E > 0, then the dimension of the selected model cM is �very large� and the excess loss of the selected

estimator sn
�
cM
�
is �much larger� than the excess loss of the oracle.

(ii) If pen � (1 + E)E [Pn (KsM �Ksn (M))] with E > 0, then the corresponding model selection procedure
satis�es an oracle inequality with a leading constant C (E) < +1 and the dimension of the selected
model is �not too large�. Moreover,

penopt (M) � 2E [Pn (KsM �Ksn (M))]

is an optimal penalty.

The mean of the empirical excess loss on M , when M varies in Mn, is thus conjectured to be the maximal
value of penalty under which the model selection procedure totally misbehaves or, equivalently, the minimum
value of penalty above which the procedure achieves an oracle inequality. It is called the minimal penalty,
denoted by penmin:

for all M 2Mn, penmin (M) = E [Pn (KsM �Ksn (M))] .

The optimal penalty is then close to twice the minimal one,

penopt � 2 penmin . (7)

Let us now brie�y explain the points (i) and (ii) above. We give in Section 3.3 precise results which validate
the slope heuristics for models of piecewise polynomial functions.
If the chosen penalty is less than the minimal one, pen = (1� E) penmin with E 2 [0; 1], the algorithm

minimizes overMn,

Pn (Ksn (M)) + pen (M)� Pn (Ks�)
= P (KsM �Ks�) + (Pn � P ) (KsM �Ks�)� Pn (KsM �Ksn (M)) + pen (M)
= P (KsM �Ks�) + (Pn � P ) (KsM �Ks�)� EPn (KsM �Ksn (M))
+ (1� E) (E [Pn (KsM �Ksn (M))]� Pn (KsM �Ksn (M)))

� ` (s�; sM )� EPn (KsM �Ksn (M)) .

In the latter identity, we neglect the di¤erence between the empirical and true loss of the projections sM
and the deviations of the empirical excess loss Pn (KsM �Ksn (M)). Indeed, as shown by Boucheron and
Massart [20], the empirical excess loss satis�es a concentration inequality in a general framework, which allows
to neglect the di¤erence with its mean, at least for models that are not too small.
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As the empirical excess loss is increasing and the excess loss of the projection sM is decreasing with respect
to the complexity of the models, the penalized criterion is (almost) decreasing with respect to the complexity
of the models, and the selected model is among the largest of the collection.
On the contrary, if the chosen penalty is greater than the minimal one, pen = (1 + E) penmin with E > 0,

then by the same kind of manipulations, the selected model minimizes the following criterion, for allM 2Mn,

Pn (Ksn (M)) + pen (M)� Pn (Ks�) � ` (s�; sM ) + EPn (KsM �Ksn (M)) . (8)

The selected model thus achieves a trade-o¤ between the bias of the models which decreases with the complexity
and the empirical excess loss which increases with the complexity of the models. The selected dimension would
then be reasonable, and the trade-o¤ between the bias and the complexity of the models is likely to give some
oracle inequality.
Finally, if we take E = 1 in the latter case, pen = 2 � penmin, and if we assume that the empirical excess

loss is equivalent to the excess loss,

Pn (KsM �Ksn (M)) � P (Ksn (M)�KsM ) , (9)

then according to (8) the selected model almost minimizes

P (KsM �Ks�) + Pn (KsM �Ksn (M)) � ` (s�; sM ) + P (Ksn (M)�KsM ) � ` (s�; sn (M)) .

Hence,

`
�
s�; sn

�
cM
��
� ` (s�; sn (M�))

and the procedure is nearly optimal.
One can �nd in [36] some results showing that (9) is a quite general fact in least-squares regression and is in

particular satis�ed when considering models of piecewise polynomial functions. Thus, these results represent
a preliminary material for the present study, and we shall base our arguments on the results exposed in [36].

3.2 Assumptions and comments

We take X = [0; 1], Leb is the Lebesgue measure on X , and linear models M 2 Mn are models of piecewise
polynomial functions. We denote by PM the partition of X underlying the model M .

Set of assumptions for piecewise polynomial functions: (SAPP)

(P1) there exist two positive constants cM; BM such that Card (Mn) � cMnBM :

(P2) there exists a positive constant AM;+ such that for every M 2Mn; 1 � DM � AM;+n (lnn)
�2 � n :

(P3) there exist crich > 0, Arich > 0 and M0;M1 2 Mn such that DM0
2
h
n1=(1+C+); crichn

1=(1+C+)
i
and

DM1
� Arichn (lnn)

�2, where C+ is de�ned in (Apu).

(Apu) there exist C+ > 0 and C+ > 0 such that

` (s�; sM ) � C+D
�C+
M :

(An) There exists a constant �min such that � (Xi) � �min > 0 a:s:

(Ab) There exists a positive constant A, that bounds the data: jYij � A <1:

(AdLeb) P
X has a density f with respect to Leb satisfying for some constants cmin and cmax, that

0 < cmin � f (x) � cmax <1; 8x 2 [0; 1] :
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(Aud) there exists r 2 N� such that, for all M 2Mn, all I 2 PM and all p 2M ,

deg
�
pjI
�
� r :

(Alr) a positive constant cM;Leb exists such that, for all M 2Mn,

0 < cM;Leb � jPM j inf
I2PM

Leb (I) < +1 :

The set of assumptions (SAPP) can be divided into three groups. Firstly, assumptions (P1), (P2), (P3)
and (Apu) are linked to properties of the collection of models Mn. Secondly, assumptions (An), (Ab) and
(AdLeb) give some constraints on the general regression relation stated in (1). Thirdly, assumptions (Aud)
and (Alr) specify some quantities related to the choice of the models of piecewise polynomial functions.
Assumption (P1) states that the collection of models has a �small� complexity, more precisely a polyno-

mially increasing one with respect to the amount of data. For this kind of complexities, if one wants to design
a good model selection procedure for prediction, the chosen penalty should estimate the mean of the ideal
one on each model, up to a constant. Indeed, as Talagrand�s type concentration inequalities for the empirical
process are exponential, they allow to neglect the deviations of the quantities of interest from their mean,
uniformly over the collection of models. This is not the case for large collections of models, where one has
to put an extra-log factor depending on the complexity of the collection of models inside the penalty, see for
instance [15, 11].
We assume in (P3) that the collection of models contains a model M0 of reasonably large dimension

and a model M1 of high dimension, which is necessary since we prove the existence of a jump between high
and reasonably large dimensions. One can notice that in practice, the parameter C+, which depends on the
bias of the model is not known and so the existence of M0 is not straightforward. However, it su¢ces for
the statistician to take at least one model per dimension lower than the chosen upper bound to ensure the
existence of M0 and M1.
We require in (Apu) for the quality of approximation of the collection of models to be good enough in

terms of the quadratic loss. More precisely, we ask for a polynomial decrease of excess loss of linear projections
of the regression function onto the models. It is well-known that piecewise polynomial functions uniformly
bounded in their degrees have good approximation properties in Besov spaces. More precisely, as stated in
Lemma 12 of Barron, Birgé and Massart [11], if X = [0; 1] and the regression function s� belongs to the Besov
space BB;p;1 (X ) (see the de�nition in [11]), then taking models of piecewise polynomial functions of degree
bounded by r > B � 1 on regular partitions with respect to the Lebesgue measure Leb on X , and assuming
that PX has a density with respect to Leb which is bounded in sup-norm, assumption (Apu) is satis�ed.
Assumption (Ab) is rather restrictive, since it excludes Gaussian noise. However, the assumption of

bounded noise is somehow classical when dealing with M-estimation and related procedures. Indeed, a central
tool in this �eld is empirical process theory and more especially, concentration inequalities for the supremum of
the empirical process. We used the classical inequalities of Bousquet, and Klein and Rio in [36]. As a matter
of fact, we do not know yet if an adaptation of our proofs (including results established in [36]) by using
extensions of the latter inequalities to some unbounded cases - as for instance in Adamczak�s concentration
inequalities [1] - would be possible.
The noise restriction stated in (An) is needed to derive our results which are optimal to the �rst order.

More precisely, it allows in [36] to obtain sharp lower bounds for the true and empirical excess losses on a �xed
model. This assumption is also needed in the work of Arlot and Massart [9] concerning the case of histogram
models. As it is noticed in Section 5.3 of [36], assumption (An) could be replaced by the following assumption,
which states that the partitions underlying the models of piecewise polynomial functions are regular from above
with respect to the Lebesgue measure on [0; 1].

(Aur) a positive constant c+M;Leb exists such that, for all M 2Mn,

jPM j sup
I2PM

Leb (I) � c+M;Leb .

8



Assumptions (AdLeb), (Aud) and (Alr) imply several important properties for the models of piecewise
polynomial functions, such as the existence of an orthonormal localized basis in each model or the consistency
in sup-norm of least-squares estimators toward the projections of the target onto the models. See also Sections
2.2 and 5.1 for further comments about these properties.

3.3 Statement of the theorems

We are now able to state our main results leading to the slope heuristics. They describe the behavior of the
penalization procedure de�ned in (6).

Theorem 2 Take a positive penalty: for all M 2 Mn, pen (M) � 0. Suppose that the assumptions (SAPP)
of Section 3.2 hold, and furthermore suppose that for Apen 2 [0; 1) and Ap > 0 the model M1 of assumption
(P3) satis�es

0 � pen (M1) � ApenE [Pn (KsM1
�Ksn (M1))] ; (10)

with probability at least 1 � Apn
�2. Then there exist a constant A1 > 0 only depending on constants in

(SAPP), as well as an integer n0 and a positive constant A2 only depending on Apen and on constants in
(SAPP) such that, for all n � n0, it holds with probability at least 1�A1n�2,

DcM
� A2n ln (n)

�2

and

`
�
s�; sn

�
cM
��
� nC+=(1+C+)

(lnn)
3 inf

M2Mn

f` (s�; sn (M))g ; (11)

where C+ > 0 is de�ned in assumption (Apu) of (SAPP).

Theorem 2 justi�es the �rst part (i) of the slope heuristics exposed in Section 3. As a matter of fact, it shows
that there exists a level such that, if the penalty is smaller than this level for one of the largest models, then
the dimension of the output is among the largest dimensions of the collection and the excess loss of the selected
estimator is much larger than the excess loss of the oracle. Moreover, this level is given by the mean of the
empirical excess loss of the least-squares estimator on each model. Let us also notice that the lower bound
given in (11) gets worse as C+ increases. This is due to the fact that when C+ increases, the approximation
properties of the models improve and the performances in terms of excess loss for the oracle estimator also
improve.
The following theorem validates the second part of the slope heuristics.

Theorem 3 Suppose that the assumptions (SAPP) of Section 3.2 hold, and furthermore suppose that for
some E 2 [0; 1) and Ap; Ar > 0, there exists an event of probability at least 1 � Apn

�2 on which, for every

model M 2Mn such that DM � AM;+ (lnn)
3
, it holds

jpen (M)� 2E [Pn (KsM �Ksn (M))]j � E (` (s�; sM ) + E [Pn (KsM �Ksn (M))]) (12)

together with

jpen (M)j � Ar

 
` (s�; sM )

(lnn)
2 +

(lnn)
3

n

!
. (13)

Then, for any � 2
�
0; C+=

�
1 + C+

��
, there exist an integer n0 only depending on �; E and C+ and on constants

in (SAPP), a positive constant A3 only depending on cM given in (SAPP) and on Ap, two positive constants
A4 and A5 only depending on constants in (SAPP) and on Ar and a sequence

�n �
A4

(lnn)
1=4

(14)

such that it holds for all n � n0, with probability at least 1�A3n�2,

DcM
� n�+1=(1+C+)

9



and

`
�
s�; sn

�
cM
��
�
 
1 + E

1� E +
5�n

(1� E)2

!
` (s�; sn (M�)) +A5

(lnn)
3

n
. (15)

Assume that in addition, the following assumption holds,

(Ap) The bias decreases like a power of DM : there exist C� � C+ > 0 and C+; C� > 0 such that

C�D
�C�
M � ` (s�; sM ) � C+D

�C+
M :

Then it holds for all n � n0
�
(SAPP) ; C�; C�; C+; �; E

�
, with probability at least 1�A3n�2,

AM;+ (lnn)
3 � DcM

� n�+1=(1+C+) (16)

and

`
�
s�; sn

�
cM
��
�
 
1 + E

1� E +
5�n

(1� E)2

!
` (s�; sn (M�)) . (17)

Theorem 3 states that if the penalty is close to twice the minimal one, then the selected estimator satis�es
a pathwise oracle inequality with constant almost one, and so the model selection procedure is approximately
optimal. Moreover, the dimension of the selected model is of reasonable dimension, bounded by a power less
than one of the sample size.
Condition (Ap) allows to remove the remainder terms from the oracle inequality (15) by ensuring that

the selected model is of dimension not too small, as stated in (16). Assumption (Ap) is the conjunction of
assumption (Apu) with a polynomial lower bound of the bias of the models. On histogram models, Arlot
showed in Section 8.10 of [4] that this lower bound is satis�ed for non constant B-Hölder, B 2 (0; 1], regression
functions and for regular partitions.
Finally, from Theorems 2 and 3, we identify the minimal penalty with the mean of the empirical excess

loss on each model,
penmin (M) = E [Pn (KsM �Ksn (M))] ,

thus generalizing the results of Arlot and Massart in [9] to the case of piecewise polynomial functions.

4 Hold-out penalization

The conditions on the penalty given in Theorems 2 and 3 can not be directly checked in practice. Indeed, they
are expressed in terms of the mean of the empirical excess loss on each model, which is an unknown quantity
in general. Nevertheless, in the homoscedastic case, it is easy to see that Mallows� penalty is a nonasymptotic
quasi-optimal penalty. According to Theorem 3, such a penalty is given by twice the mean of the empirical
excess loss. Now, using Theorem 10 of [36], we get (with an explicit control of the second order terms in the
following equivalence),

2E [Pn (KsM �Ksn (M))] �
1

2
K21;M

DM

n
,

where K21;M = 1=DM

PDM

k=1 E

��
 1;M (X;Y ) � 'k (X)

�2�
,  1;M (X;Y ) = �2 (Y � sM (X)) and ('k)DM

k=1 is an

orthonormal basis in (M; k�k2). By easy computations, we deduce that if the noise is homoscedastic, that is
�2 (X) � �2 > 0, it holds

1

2
K21;M

DM

n
= 2�2

DM

n
+ E

"
(s� � sM )2

PDM

i=1 '
2
k

n

#
. (18)

The second term at the right of identity (18) being negligible for models of interest in the conditions of Theorem
3 (thanks to Lemma 7 in [36], which implies that

PDM

i=1 '
2
k � LDM for some constant L > 0), we conclude

that an asymptotically optimal penalty is given by 2�2DM=n, which is Mallows� classical penalty.
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In the case where the noise level is homoscedastic but unknown, Mallows� penalty is only known through
a constant, the noise level, which can be estimated via the slope heuristics (for practical issues about the
slope heuristics, see Baudry et al. [14]). But in the common situation where the noise level is su¢ciently
heteroscedastic, the shape of the ideal penalty is not linear in the dimension of the models and not even a
function of the linear dimensions. In such a case, Arlot [7] proved that any calibration of a linear penalty leads
to a suboptimal procedure, but yet can achieve an oracle inequality with a leading constant more than one.
In order to achieve a nearly optimal selection procedure in the general situation, it remains to estimate the

ideal penalty or, thanks to the slope heuristics, the shape of the ideal penalty. This section is devoted to this
task. We propose a hold-out type penalty that automatically adapts to heteroscedasticity. Let us now detail
our hold-out penalization procedure.
The ideal penalty is de�ned by

penid (M) := P (Ksn (M))� Pn (Ksn (M)) ,

for all M 2 Mn. A natural idea is to divide the data into two groups, indexed by I1 and I2, satisfying
I1 \ I2 = ; and I1 [ I2 = f1; :::; ng and to propose the following hold-out type penalty,

penho;C (M) := C (Pn2 (Ksn1 (M))� Pn1 (Ksn1 (M))) ,

where Pni = 1=ni
P

j2Ii
E�j , ni =Card(Ii), for i = 1; 2, sn1 (M) 2 argmins2M Pn1 (Ks) and C > 0 is a

constant to be determined. Indeed, if n1 is not too small, Pn1 (Ksn1 (M)) is likely to vary like Pn (Ksn (M))
and Pn2 (Ksn1 (M)) is, conditionally to

�
�j
�
j2I1

, an unbiased estimate of P (Ksn1 (M)), which again is likely
to vary like P (Ksn (M)). Moreover, we see from Theorem 10 in [36] that when the model M is �xed, the
quantities Pn (Ksn (M)) and P (Ksn (M)) are almost inversely proportional to n, so a good constant in front
of the hold-out penalty should be Copt = n1=n.
The previous observation is justi�ed by the following theorem, where for the sake of clarity we �xed

n1 = n2 = n=2. For a more general version of Theorem 4, see Section 5.3. We set

penho (M) =
1

2
(Pn2 (Ksn1 (M))� Pn1 (Ksn1 (M))) and cM1=2 2 arg min

M2Mn

fPn (Ksn (M)) + penho (M)g .
(19)

Theorem 4 Consider the procedure de�ned in (19), with n1 = n2 = n=2. Suppose that the assumptions
(SAPP) of Section 3.2 hold. Then, for any � 2

�
0; C+=

�
1 + C+

��
, there exist an integer n0 only depending

on � and on constants in (SAPP), a positive constant A6 only depending on cM given in (SAPP), two

positive constants A7 and A8 only depending on constants in (SAPP) and a sequence �n � A7 (lnn)
�1=4

such
that it holds for all n � n0, with probability at least 1�A6n�2,

DcM1=2
� n�+1=(1+C+)

and

`
�
s�; sn

�
cM1=2

��
� (1 + �n) ` (s�; sn (M�)) +A8

(lnn)
3

n
. (20)

Assume that in addition (Ap) holds (see Theorem 3). Then it holds for all n � n0
�
(SAPP) ; C�; C�; �

�
, with

probability at least 1�A6n�2,
AM;+ (lnn)

3 � DcM1=2
� n�+1=(1+C+)

and
`
�
s�; sn

�
cM1=2

��
� (1 + �n) inf

M2Mn

f` (s�; sn (M))g . (21)

Theorem 4 shows the asymptotic optimality of the hold-out penalization procedure, for a half-and-half split
of the data. This is a remarkable fact compared to the classical hold-out, de�ned by

cMho 2 arg min
M2Mn

fPn2 (Ksn1 (M))g . (22)
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Indeed, the choice n1 = n=2 in (22) is likely to lead to an asymptotically suboptimal procedure, as the criterion
is close in expectation to P

�
Ksn=2 (M)

�
, and so is close to the oracle, but for n=2 data points. The hold-out

penalization allows us to overcome this di¢culty. Arlot [5, 6] described similar advantages for resampling and
V -fold penalties.
Notice also that the random hold-out penalty proposed by Arlot [6] is proportional to the mean along

the splits of our hold-out penalty, providing thus a �stabilization e¤ect� in practice. This should bring
some improvement compared to our unique split, at the price of increased computational cost. However, the
stabilization e¤ect seems more di¢cult to study mathematically, and our results provide a �rst step toward
the study of the more complicated resampling penalties.

5 Proofs

We �rst present in Section 5.1 some �structural� properties of models, denoted (GSA), that are su¢cient for
our needs and that are satis�ed for models of piecewise polynomial functions considered in (SAPP). Then
in Sections 5.2 and 5.3 respectively, we prove the results stated in Sections 3.3 and 4, for (GSA) instead of
(SAPP).

5.1 A more general setting

General set of assumptions: (GSA)

Assume (P1), (P2), (P3), (An) and (Apu) of (SAPP). Furthermore suppose that,

(Ab�) A positive constant A exists, such that for all M 2Mn, jYij � A <1; ksMk1 � A <1:

(Alb) there exists a constant rM such that for each M 2 Mn one can �nd an orthonormal basis ('k)
DM

k=1

satisfying, for all (Ck)
DM

k=1 2 RDM ;

DDDDD
DMX

k=1

Ck'k

DDDDD
1

� rM
p
DM jCj1 ;

where jCj1 = max fjCkj ; k 2 f1; :::; DMgg.

(Ac1) a positive integer n1 exists such that, for all n � n1, there exist a positive constant Acons and an event
A1 of probability at least 1� n�2�BM , on which for all M 2Mn,

ksn (M)� sMk1 � Acons

r
DM lnn

n
: (23)

Notice that the covariate space X is general in (GSA). Let us explain how assumptions (Ab�), (AdLeb),
(Aud) and (Alr) of (SAPP) allow to recover (Ab), (Alb) and (Ac1) of (GSA) in the special case of models
of piecewise polynomial functions.
Assumption (Ab�) only di¤ers from (Ab) by the fact that the projections of the target onto the models are

uniformly bounded in sup-norm. In the general case, this is indeed not guaranteed, but considering piecewise
polynomial functions uniformly bounded in their degrees, this follows from simple computations (see Section
5.3 in [36]). Then, assumption (Alb) requires the existence of a localized orthonormal basis for each model. In
the case of piecewise polynomial functions, this is ensured by (AdLeb), (Aud)and (Alr), see Lemma 8 of [36].
Finally, assumption (Ac1) states the consistency of each estimator for the sup-norm. Again, this is satis�ed
for models of piecewise polynomial functions under assumptions (AdLeb), (Aud) and (Alr). This result is
established in Lemma 9 of [36].
Let us now describe a set of assumptions, less restrictive than (SAPP), that allows to recover (GSA)

when considering histogram models. Lemma 5 and 6 of [36] allow to recover (GSA) from (SAH) for models
of histograms.

12



Set of assumptions for histogram models: (SAH)

Given some linear histogram model M 2Mn, we denote by PM the associated partition of X .
Take assumptions (P1), (P2), (P3), (An), (Ab) and (Apu) from (SAPP). Assume moreover,

(Alrh) there exists a positive constant chM;P such that,

for all M 2Mn; 0 < chM;P � jPM j inf
I2PM

PX (I) .

Theorems 2 and 3 would also be valid when replacing the set of assumptions (SAPP) by (SAH). This would
lead to the (almost exact) recovering of the assumptions and results described in Theorems 2 and 3 of [9],
concerning the selection of least-squares estimators among histogram models.

5.2 Proofs related to Section 3.3

The following remark will be useful.

Remark 5 Since constants in (GSA) are uniform over the collectionMn, we deduce from Theorem 2 of [36]
applied with B = 2 + BM and A� = A+ = AM;+ that if assumptions (P2), (Ab�), (An), (Alb) and (Ac1)
hold, then a positive constant A0 exists, depending on BM; AM;+ and on the constants A; �min and rM de�ned
in (GSA), such that for all M 2Mn satisfying

0 < AM;+ (lnn)
2 � DM ;

by setting

"n (M) = A0max

(�
lnn

DM

�1=4
;

�
DM lnn

n

�1=4)
(24)

we have, for all n � n0 (AM;+; A;Acons; n1; rM; �min; BM),

P

�
(1� "n (M))

1

4

DM

n
K21;M � P (Ksn (M)�KsM ) � (1 + "n (M))

1

4

DM

n
K21;M

�
� 1� 10n�2�BM (25)

and

P

��
1� "2n (M)

� 1
4

DM

n
K21;M � Pn (KsM �Ksn (M)) �

�
1 + "2n (M)

� 1
4

DM

n
K21;M

�
� 1� 5n�2�BM (26)

where K21;M = 1=DM

PDM

k=1 E

��
 1;M (X;Y ) � 'k (X)

�2�
,  1;M (X;Y ) = �2 (Y � sM (X)) and ('k)DM

k=1 is an

orthonormal basis in (M; k�k2). Moreover, for all M 2 Mn, we have by Theorem 3 of [36], for a positive
constant Au depending on A;Acons; rM and BM and for all n � n0 (Acons; n1),

P

�
P (Ksn (M)�KsM ) � Au

DM _ lnn
n

�
� 3n�2�BM (27)

and

P

�
Pn (KsM �Ksn (M)) � Au

DM _ lnn
n

�
� 3n�2�BM : (28)

Two technical lemmas are needed. In the �rst lemma, we intend to evaluate the minimal penalty
E [Pn (KsM �Ksn (M))] for models of dimension not too small.
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Lemma 6 Assume (P2), (Ab�), (An), (Alb) and (Ac1) of (GSA). Then, for every model M 2 Mn of
dimension DM such that

0 < AM;+ (lnn)
2 � DM ,

we have for all n � n0 (AM;+; A;Acons; n1; rM; �min; BM),

�
1� LAM;+;A;�min;rM;BM"

2
n (M)

� DM

4n
K21;M � E [Pn (KsM �Ksn (M))] (29)

�
�
1 + LAM;+;A;�min;rM;BM"

2
n (M)

� DM

4n
K21;M , (30)

where "n (M) = A0max

��
lnn
DM

�1=4
;
�
DM lnn

n

�1=4�
is de�ned in Remark 5.

Proof. As explained in Remark 5, for all n � n0 (AM;+; A;Acons; n1; rM; �min; BM), we thus have on an
event A1 (M) of probability at least 1� 5n�2�BM ,

(1� "n (M))
1

4

DM

n
K21;M � Pn (KsM �Ksn (M)) � (1 + "n (M))

1

4

DM

n
K21;M , (31)

where "n (M) = A0max

��
lnn
DM

�1=4
;
�
DM lnn

n

�1=4�
: Moreover, as jYij � A a:s: and ksMk1 � A by (Ab�), it

holds

0 � Pn (KsM �Ksn (M)) � PnKsM =
1

n

nX

i=1

(Yi � sM (XI))
2 � 4A2 (32)

and as DM � 1, we have

"n (M) = A0max

(�
lnn

DM

�1=4
;

�
DM lnn

n

�1=4)
� A0n

�1=8 . (33)

We also have

E [Pn (KsM �Ksn (M))] = E
�
Pn (KsM �Ksn (M))1A1(M)

�
+ E

�
Pn (KsM �Ksn (M))1(A1(M))c

�
: (34)

Now notice that by (An) we have K1;M � 2�min > 0. Hence, as DM � 1, it comes from (32) and (33) that

0 � E
�
Pn (KsM �Ksn (M))1(A1(M))c

�
� 20A2n�2�BM � 80A2

A20�
2
min

"2n (M)
DM

4n
K21;M . (35)

Moreover, we have "n (M) < 1 for all n � n0 (A0; AM;+; Acons), so by (31),

0 <
�
1� 5n�2�BM

� �
1� "2n (M)

� DM

4n
K21;M � E

�
Pn (KsM �Ksn (M))1A1(M)

�
(36)

�
�
1 + "2n (M)

� DM

4n
K21;M : (37)

Finally, noticing that n�2�BM � A�20 "2n (M) by (33), we use (35), (36) and (37) in (34) to conclude by
straightforward computations that

LAM;+;A;�min;rM;BM =
80A2

A20�
2
min

+ 5A�20 + 1

is convenient in (29) and (30), as A0 only depends on BM; AM;+; A; �min and rM. �
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Lemma 7 Let B > 0. Assume that (Ab�) of (GSA) is satis�ed. Then there exists a positive constant Ad,
depending only in A; AM;+; �min and B such that, by setting �E (M) = (Pn � P ) (KsM �Ks�), we have for
all M 2Mn,

P

 
CC�E (M)

CC � Ad

 r
` (s�; sM ) lnn

n
+
lnn

n

!!
� 2n�B : (38)

If moreover, assumptions (P2), (An), (Alb) and (Ac1) of (GSA) hold, then for all M 2 Mn such that

AM;+ (lnn)
2 � DM and for all n � n0 (AM;+; A;Acons; n1; rM; �min; B), we have

P

�CC�E (M)
CC � ` (s�; sM )p

DM

+Ad
lnnp
DM

E [p2 (M)]

�
� 2n�B , (39)

where p2 (M) := Pn (KsM �Ksn (M)) � 0.

Proof. We set

Ad = max

(
4A
p
B;

8A2

3
B;

8A2Bp
AM;+�2min

+
16A2B

3AM;+�min

)
. (40)

Since by (Ab�) we have jY j � A a:s: and ksMk1 � A, it holds ks�k1 = kE [Y jX ]k1 � A, and so
ksM � s�k1 � 2A:Next, we apply Bernstein�s inequality (see Proposition 2.9 of [34]) to �E (M) = (Pn � P ) (KsM �Ks�) :
Notice that

K (sM ) (x; y)�K (s�) (x; y) = (sM (x)� s� (x)) (sM (x) + s� (x)� 2y) ;

hence kKsM �Ks�k1 � 8A2: Moreover, as E [Y � s� (X) jX ] = 0 and E
h
(Y � s� (X))2 jX

i
� (2A)2

4 = A2

we have

E

h
(KsM (X;Y )�Ks� (X;Y ))2

i

= E
h�
4 (Y � s� (X))2 + (sM (X)� s� (X))2

�
(sM (X)� s� (X))2

i

� 8A2E
h
(sM (X)� s� (X))2

i
= 8A2` (s�; sM ) ;

and therefore, by Bernstein�s inequality we have for all x > 0;

P

 
CC�E (M)

CC �
r
16A2` (s�; sM )x

n
+
8A2x

3n

!
� 2 exp (�x) :

By taking x = B lnn, we then have

P

 
CC�E (M)

CC �
r
16A2B` (s�; sM ) lnn

n
+
8A2B lnn

3n

!
� 2n�B , (41)

which gives the �rst part of Lemma 7 for Ad given in (40). Now, by noticing the fact that 2
p
ab � a� + b��1

for all � > 0, and using it in (41) with a = ` (s�; sM ), b = 4A2B lnn
n and � = D

�1=2
M , we obtain

P

�CC�E (M)
CC � ` (s�; sM )p

DM

+

�
4
p
DM +

8

3

�
A2B lnn

n

�
� 2n�B : (42)

Then, for a model M 2 Mn such that AM;+ (lnn)
2 � DM , we apply Lemma 6 and by (29), it holds for all

n � n0 (AM;+; A;Acons; n1; rM; �min; BM),

�
1� LAM;�;A;�min;rM;BM"

2
n (M)

� DM

4n
K21;M � E [p2 (M)] (43)
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where "n (M) = A0max

��
lnn
DM

�1=4
;
�
DM lnn

n

�1=4�
. Moreover, asDM � AM;+n (lnn)

�2 by (P2) andAM;+ (lnn)
2 �

DM , we deduce that for all n � n0 (AM;+; A;Acons; rM; �min; BM),

LAM;�;A;�min;rM;BM"
2
n (M) � 1=2 .

Now, since K1;M � 2�min > 0 by (An), we have by (43), E [p2 (M)] � �2min
2

DM

n for all
n � n0 (AM;+; A;Acons; n1; rM; �min; BM). This allows, using (42), to conclude the proof for the value of Ad
given in (40) by simple computations. �

In order to avoid cumbersome notations in the proofs of Theorems 3 and 2, when generic constants L and n0
depend on constants de�ned in the general set of assumptions stated in Section 5.1, we will note L(GSA) and
n0 (GSA). The values of these constants may change from line to line.

Proof of Theorem 3. From the de�nition of the selected model cM given in (6), cM minimizes

crit (M) := Pn (Ksn (M)) + pen (M) , (44)

over the models M 2Mn. Hence, cM also minimizes

crit0 (M) := crit (M)� Pn (Ks�) , (45)

over the collectionMn. Let us write

` (s�; sn (M)) = P (Ksn (M)�Ks�)
= Pn (Ksn (M)) + Pn (KsM �Ksn (M)) + (Pn � P ) (Ks� �KsM )
+ P (Ksn (M)�KsM )� Pn (Ks�) :

By setting
p1 (M) = P (Ksn (M)�KsM ) ,
p2 (M) = Pn (KsM �Ksn (M)) ,
�E (M) = (Pn � P ) (KsM �Ks�)

and
pen0id (M) = p1 (M) + p2 (M)� �E (M) ,

we have
` (s�; sn (M)) = Pn (Ksn (M)) + p1 (M) + p2 (M)� �E (M)� Pn (Ks�) (46)

and by (45),
crit0 (M) = ` (s�; sn (M)) + (pen (M)� pen0id (M)) . (47)

As cM minimizes crit0 overMn, it is therefore su¢cient by (47), to control pen (M)�pen0id (M) - or equivalently
crit0 (M) - in terms of the excess loss ` (s�; sn (M)), for every M 2Mn, in order to derive oracle inequalities.
Let An be the event on which:

F For all models M 2Mn of dimension DM such that AM;+ (lnn)
3 � DM , (12) holds and

jp1 (M)� E [p2 (M)]j � L(GSA)"n (M)E [p2 (M)] (48)

jp2 (M)� E [p2 (M)]j � L(GSA)"
2
n (M)E [p2 (M)] (49)

CC�E (M)
CC � ` (s�; sM )p

DM

+ L(GSA)
lnnp
DM

E [p2 (M)] (50)

CC�E (M)
CC � L(GSA)

 r
` (s�; sM ) lnn

n
+
lnn

n

!
(51)

16



F For all models M 2Mn of dimension DM such that DM � AM;+ (lnn)
3, (13) holds together with

CC�E (M)
CC � L(GSA)

 r
` (s�; sM ) lnn

n
+
lnn

n

!
(52)

p2 (M) � L(GSA)
DM _ lnn

n
� L(GSA)

(lnn)
3

n
(53)

p1 (M) � L(GSA)
DM _ lnn

n
� L(GSA)

(lnn)
3

n
(54)

By (25), (26), (27) and (28) in Remark 5, Lemma 6, Lemma 7 applied with B = 2+BM, and since (12) holds
with probability at least 1�Apn�2, we get for all n � n0 (GSA),

P (An) � 1�Apn�2 � 24
X

M2Mn

n�2�BM � 1� LAp;cMn
�2 :

Control on the criterion crit0 for models of dimension not too small:

We consider models M 2 Mn such that AM;+ (lnn)
3 � DM . Notice that (50) implies by (24) that, for all

M 2Mn such that AM;+ (lnn)
3 � DM , for all n � n0 (GSA),

CC�E (M)
CC � L(GSA)

 
(lnn)

3

DM
� lnn
DM

!1=4
� E [` (s�; sM ) + p2 (M)]

� L(GSA)"n (M)E [` (s�; sM ) + p2 (M)] ,

so that on An we have, for all models M 2Mn such that AM;+ (lnn)
3 � DM ,

jpen0id (M)� pen (M)j
� jp1 (M) + p2 (M)� pen (M)j+

CC�E (M)
CC

� jp1 (M) + p2 (M)� 2E [p2 (M)]j+
�
L(GSA)"n (M) + E

�
E [` (s�; sM ) + p2 (M)]

�
�
E + L(GSA)"n (M)

�
E [` (s�; sM ) + p2 (M)] : (55)

Now notice that using (P2) in (24) gives that for all models M 2 Mn such that AM;+ (lnn)
3 � DM and for

all n � n0 (GSA), 0 < L(GSA)"n (M) � 1
2 . As ` (s�; sn (M)) = ` (s�; sM ) + p1 (M), we thus have on An, for

all n � n0 (GSA),

0 � E [` (s�; sM ) + p2 (M)]
� ` (s�; sn (M)) + jp1 (M)� E [p2 (M)]j

� ` (s�; sn (M)) +
L(GSA)"n (M)

1� L(GSA)"n (M)
p1 (M) by (48)

� 1 + L(GSA)"n (M)

1� L(GSA)"n (M)
` (s�; sn (M))

�
�
1 + L(GSA)"n (M)

�
` (s�; sn (M)) . (56)

Hence, using (56) in (55), we have on An for all models M 2 Mn such that AM;+ (lnn)
3 � DM and for all

n � n0 (GSA),
jpen0id (M)� pen (M)j �

�
E + L(GSA)"n (M)

�
` (s�; sn (M)) . (57)

Consequently, for all models M 2 Mn such that AM;+ (lnn)
3 � DM and for all n � n0 (GSA), it holds on

An, using (47) and (57),
�
1� E � L(GSA)"n (M)

�
` (s�; sn (M)) � crit0 (M) �

�
1 + E + L(GSA)"n (M)

�
` (s�; sn (M)) . (58)

17



Control on the criterion crit0 for models of small dimension:

We consider models M 2 Mn such that DM � AM;+ (lnn)
3. By (13), (52) and (53), it holds on An, for any

� > 0 and for all M 2Mn such that DM � AM;+ (lnn)
3,

jpen0id (M)� pen (M)j
� p1 (M) + p2 (M) + jpen (M)j+

CC�E (M)
CC

� L(GSA)
(lnn)

3

n
+Ar

` (s�; sM )

(lnn)
2 +Ar

(lnn)
3

n
+ L(GSA)

 r
` (s�; sM ) lnn

n
+
lnn

n

!

� L(GSA),Ar

 
(lnn)

3

n
+
` (s�; sM )

(lnn)
2

!
+ �` (s�; sM ) +

�
��1 + 1

�
L(GSA)

lnn

n

� L(GSA),Ar

 
(lnn)

3

n
+
` (s�; sM )

(lnn)
2

!
+ �` (s�; sn (M)) +

�
��1 + 1

�
L(GSA)

lnn

n
. (59)

Hence, by taking � = (lnn)�2 in (59) we get that for all M 2 Mn such that DM � AM;+ (lnn)
3, it holds on

An,

jpen0id (M)� pen (M)j � L(GSA),Ar

 
` (s�; sn (M))

(lnn)
2 +

(lnn)
3

n

!
. (60)

Moreover, by (47) and (60), we have on the event An, for all M 2Mn such that DM � AM;+ (lnn)
3,

�
1� L(GSA),Ar

(lnn)
�2
�
` (s�; sn (M))� L(GSA),Ar

(lnn)
3

n
� crit0 (M) (61)

�
�
1 + L(GSA),Ar

(lnn)
�2
�
` (s�; sn (M)) + L(GSA),Ar

(lnn)
3

n
. (62)

Oracle inequalities:

Recall that by the de�nition given in (5), an oracle model satis�es

M� 2 arg min
M2Mn

f` (s�; sn (M))g : (63)

By Lemmas 8 and 9 below, we control on An the dimensions of the selected model cM and the oracle modelM�.
More precisely, by (75) and (77), we have on An, for any � 2

�
0; C+=

�
1 + C+

��
and for all n � n0 ((GSA); �; E),

DcM
� n1=(1+C+)+� , (64)

DM�
� n1=(1+C+)+� : (65)

Now, from (64) we distinguish two cases in order to control crit0
�
cM
�
. If AM;+ (lnn)

3 � DcM
� n1=(1+C+)+�,

we get by (58), for all n � n0 (GSA),

crit0
�
cM
�
�
�
1� E � L(GSA)"n

�
cM
��

`
�
s�; sn

�
cM
��

. (66)

Otherwise, if DcM
� AM;+ (lnn)

3, we get by (61),

�
1� L(GSA),Ar

(lnn)
�2
�
`
�
s�; sn

�
cM
��
� L(GSA),Ar

(lnn)
3

n
� crit0

�
cM
�
. (67)
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Let us denote Sn =
n
M 2Mn; AM;+ (lnn)

3 � DM � n1=(1+C+)+�
o
. In all cases, we have by (66) and (67),

for all n � n0 (GSA),

crit0
�
cM
�
�
�
1� E � L(GSA),Ar

�
(lnn)

�2
+ sup
M2Sn

"n (M)

��
`
�
s�; sn

�
cM
��

�L(GSA),Ar

(lnn)
3

n
. (68)

Similarly, from (65) we distinguish two cases in order to control crit0 (M�). If AM;+ (lnn)
3 � DM�

�
n1=(1+C+)+�, we get by (58), for all n � n0 (GSA),

crit0 (M�) �
�
1 + E + L(GSA)"n (M�)

�
` (s�; sn (M�)) . (69)

Otherwise, if DM�
� AM;+ (lnn)

3, we get by (62),

crit0 (M�) �
�
1 + L(GSA),Ar

(lnn)
�2
�
` (s�; sn (M�)) + L(GSA),Ar

(lnn)
3

n
. (70)

In all cases, we deduce from (69) and (70) that we have for all n � n0 ((GSA),E),

crit0 (M�) �
�
1 + E + L(GSA),Ar

�
(lnn)

�2
+ sup
M2Sn

"n (M)

��
` (s�; sn (M�))

+L(GSA),Ar

(lnn)
3

n
. (71)

Hence, by setting

�n = L(GSA),Ar

�
(lnn)

�2
+ sup
M2Sn

"n (M)

�
,

we have by (24), for all n � n0 ((GSA); �; E),

�n �
L(GSA),Ar

(lnn)
1=4

, �n <
1� E
2

and we deduce from (68) and (71), since 1
1�x � 1 + 2x for all x 2

�
0; 12
�
, that for all n � n0 ((GSA); �; E), it

holds on An,

`
�
s�; sn

�
cM
��
�
�
1 + E + �n
1� E � �n

�
` (s�; sn (M�)) +

L(GSA),Ar

1� E � �n
(lnn)

3

n

�
 
1 + E

1� E +
5�n

(1� E)2

!
` (s�; sn (M�)) + L(GSA),Ar

(lnn)
3

n
. (72)

Inequality (15) is now proved.
It remains to prove the second part of Theorem 3. We assume that assumption (Ap) holds. From Lemmas 8
and 9, we have that for any 1

2 > � >
�
1� C+

�
+
=2 and for all n � n0

�
(GSA); C�; C�; �; E

�
, it holds on An,

AM;+ (lnn)
3 � DcM

� n1=2+� , (73)

AM;+ (lnn)
3 � DM�

� n1=2+� : (74)

Now, using (66) and (69), by the same kind of computations leading to (72), we deduce that it holds on An,
for all n � n0

�
(GSA); C�; C�; �; E

�
,

`
�
s�; sn

�
cM
��
�
�
1 + E + �n
1� E � �n

�
` (s�; sn (M�))

�
 
1 + E

1� E +
5�n

(1� E)2

!
` (s�; sn (M�)) .

Thus inequality (17) is proved and Theorem 3 follows. �

19



Lemma 8 (Control on the dimension of the selected model) Assume that (GSA) holds. Let � 2
�
0; C+=

�
1 + C+

��
.

If n � n0 ((GSA) ; �; E) then, on the event An de�ned in the proof of Theorem 3, we have

DcM
� n1=(1+C+)+� . (75)

If moreover (Ap) holds, then for all n � n0
�
(GSA) ; C�; C�; �; E

�
, we get on the event An,

AM;+ (lnn)
3 � DcM

� n1=(1+C+)+� . (76)

Lemma 9 (Control on the dimension of oracle models) Assume that (GSA) holds. Let � 2
�
0; C+=

�
1 + C+

��
.

If n � n0 ((GSA) ; �) then, on the event An de�ned in the proof of Theorem 3, we have

DM�
� n1=(1+C+)+� . (77)

If moreover (Ap) holds, then for all n � n0
�
(GSA) ; C�; C�; �

�
, we get on the event An,

AM;+ (lnn)
3 � DM�

� n1=(1+C+)+� . (78)

Proof of Lemma 8. Recall that cM minimizes

crit0 (M) = crit (M)� PnKs� = ` (s�; sM )� p2 (M) + �E (M) + pen (M) (79)

over the models M 2Mn:

1. Lower bound on crit0 (M) for small models in the case where (Ap) holds: let M 2 Mn be such that
DM < AM;+ (lnn)

3
: By (13) and (79), it holds

crit0 (M) �
 
1� Ar

(lnn)
2

!
` (s�; sM )� p2 (M) + �E (M)�Ar

(lnn)
3

n
.

We then have on An,

` (s�; sM ) � C�A
�C�
M;+ (lnn)

�3C� by (Ap)

p2 (M) � L(GSA)
(lnn)3

n from (53)

�E (M) � �L(GSA)
�q

`(s�;sM ) lnn
n + lnn

n

�
from (52).

Since by (Ab�), we have 0 � ` (s�; sM ) � 4A2, we deduce that for all n � n0
�
(GSA); C�; C�; Ar

�
,

crit0 (M) �
C�A

�C�
M;+

2
(lnn)

�3C� : (80)

2. Lower bound for large models: let M 2 Mn be such that DM � n1=(1+C+)+�: From (12) and (49) we
have on An, for all n � n0 (AM;+),

pen (M)� p2 (M) � E [p2 (M)]�
�
E + L(GSA)"

2
n (M)

�
(` (s�; sM ) + E [p2 (M)]) .

Using (P2) and the fact that DM � n1=(1+C+)+� in (24), we deduce that for all n � n0
�
(GSA); �; E; C+

�
,

L(GSA)"
2
n (M) � 1

2 (1� E) and as by (An), K1;M � 2�min, we also deduce from Lemma 6 that for all

n � n0 ((GSA); �), E [p2 (M)] � �2min
2

DM

n . Consequently, it holds for all n � n0
�
(GSA); �; E; C+

�
,

pen (M)� p2 (M) �
�2min
4

(1� E) DM

n
� C+D�C+

M � (1� E)L(GSA)n
�

C+
1+C+

+�
(81)

20



From (51) it holds on An,

�E (M) � �L(GSA)
 r

` (s�; sM ) lnn

n
+
lnn

n

!
� �L(GSA)

�
n
�

1+2C+

2(1+C+)
p
lnn+

lnn

n

�
. (82)

Hence, we deduce from (79), (81) and (82) that we have on An, for all n � n0
�
(GSA); �; E; C+

�
,

crit0 (M) � (1� E)L(GSA)n
�

C+
1+C+

+�
: (83)

3. A better model exists for crit0 (M): from (P3), there exists M0 2 Mn such that n
1=(1+C+) � DM0

�
crichn

1=(1+C+): Then, for all n � n0 ((GSA); �),

AM;+ (lnn)
3 � n1=(1+C+) � DM0

� crichn
1=(1+C+) � n1=(1+C+)+� :

Using (Apu),

` (s�; sM0
) � C+n

�C+=(1+C+) : (84)

By (50), we have on An, for all n � n0 ((GSA); �),

CC�E (M0)
CC � ` (s�; sM0

)p
DM0

+ L(GSA)
lnnp
DM0

E [p2 (M0)] � L(GSA)n
�

1+2C+

2(1+C+) ln (n) (85)

and by (12),

pen (M0) � 3 (` (s�; sM0
) + E [p2 (M0)]) � L(GSA)n

�C+=(1+C+) .

Consequently, we have on An, for all n � n0 ((GSA); �),

crit0 (M0) � ` (s�; sM0
) +

CC�E (M0)
CC+ pen (M0)

� L(GSA)n
�C+=(1+C+) . (86)

To conclude, notice that the upper bound (86) is smaller than the lower bound given in (83) for all n �
n0 ((GSA); �; E). Hence, points 2 and 3 above yield inequality (75). Moreover, the upper bound (86) is smaller
than lower bounds given in (80), derived by using (Ap), and (83), for all n � n0

�
(GSA); C�; C�; �; E

�
. This

thus gives (76) and Lemma 8 is proved. �
Proof of Lemma 9. By de�nition, M� minimizes

` (s�; sn (M)) = ` (s�; sM ) + p1 (M)

over the models M 2Mn:

1. Lower bound on ` (s�; sn (M)) for small models: let M 2Mn be such that DM < AM;+ (lnn)
3
: In this

case we have
` (s�; sn (M)) � ` (s�; sM ) � C�A

�C�
M;+ (lnn)

�3C� by (Ap). (87)

2. Lower bound of ` (s�; sn (M)) for large models: let M 2 Mn be such that DM � n1=(1+C+)+�: From
(48) we get on An,

p1 (M) �
�
1� L(GSA)"n (M)

�
E [p2 (M)] .

Using (P2) and the fact that DM � n1=(1+C+)+� in (24), we deduce that for all n � n0 ((GSA); �),
L(GSA)"n (M) � 1

2 and as by (An), K1;M � 2�min we also deduce from Lemma 6 that for all n �
n0 ((GSA); �), E [p2 (M)] � �2min

2
DM

n . Consequently, it holds for all n � n0 ((GSA); �), on the event An,

` (s�; sn (M)) � p1 (M) �
�2min
4

DM

n
� �2min

4
n�C+=(1+C+)+� : (88)
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3. A better model exists for ` (s�; sn (M)): from (P3), there existsM0 2Mn such that n
1=(1+C+) � DM0

�
crichn

1=(1+C+): Moreover, for all n � n0 ((GSA); �),

AM;+ (lnn)
3 � n1=(1+C+) � DM0

� crichn
1=(1+C+) � n1=(1+C+)+� :

Using (Apu),

` (s�; sM0
) � C+n

�C+=(1+C+)

and by (48)
p1 (M0) �

�
1 + L(GSA)"n (M)

�
E [p2 (M0)] .

Hence, as K1;M � 6A by (Ab�) and as, by (24), for all n � n0 (GSA) it holds "n (M) � 1, we deduce
from Lemma 6 that for all n � n0 (GSA), on the event An,

p1 (M0) � L(GSA)
DM

n
� L(GSA)n

�C+=(1+C+) :

Consequently, on An, for all n � n0 ((GSA); �),

` (s�; sn (M0)) = ` (s�; sM0
) + p1 (M0)

� L(GSA)n
�C+=(1+C+) : (89)

The upper bound (89) is smaller than the lower bound (88) for all n � n0 ((GSA); �), and this gives
(77). If (Ap) holds, then the upper bound (89) is smaller than the lower bounds (87) and (88) for all
n � n0

�
(GSA); C�; C�; �

�
, which proves (78) and allows to conclude the proof of Lemma 9. �

Proof of Theorem 2. As in the proof of Theorem 3, we consider the event A0n of probability at least
1� LcM;Ap

n�2 for all n � n0 (GSA), on which: (10) holds and

F For all models M 2Mn of dimension DM such that AM;+ (lnn)
2 � DM ,

jp1 (M)� E [p2 (M)]j � L(GSA)"n (M)E [p2 (M)] , (90)

jp2 (M)� E [p2 (M)]j � L(GSA)"
2
n (M)E [p2 (M)] . (91)

F For all models M 2Mn with DM � AM;+ (lnn)
2,

p2 (M) � L(GSA)
(lnn)

2

n
. (92)

F For every M 2Mn,
CC�E (M)

CC � L(GSA)

 r
` (s�; sM ) lnn

n
+
lnn

n

!
. (93)

Let d 2 (0; 1) to be chosen later.
Lower bound on DcM

. Let us recall that cM minimizes

crit0 (M) = crit (M)� PnKs� = ` (s�; sM )� p2 (M) + �E (M) + pen (M) : (94)

1. Lower bound on crit0 (M) for �small� models: assume that M 2Mn and

DM � dArichn (lnn)
�2

:

We have
` (s�; sM ) + pen (M) � 0 (95)
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and from (93), as ` (s�; sM ) � 4A2 by (Ab�), we get on A0n, for all n � n0 ((GSA),d),

�E (M) � �L(GSA)
 r

` (s�; sM ) lnn

n
+
lnn

n

!

� �L(GSA)
r
lnn

n

� �d�A2Arich (lnn)�2 . (96)

Then, if DM � AM;+ (lnn)
2, as K1;M � 6A by (Ab�) and as, by (24), for all n � n0 (GSA) it holds

L(GSA)"n (M) � 1, we deduce from (91) and Lemma 6 that for all n � n0 ((GSA),d),

p2 (M) � 2E [p2 (M)] � 36A2
DM

n
� d� 36A2Arich (lnn)�2 :

Whenever DM � AM;+ (lnn)
2, (92) gives that, for all n � n0 ((GSA),d), on the event A0n,

p2 (M) � L(GSA)
(lnn)

2

n
� d� 36A2Arich (lnn)�2 :

Hence, we have checked that for all n � n0 ((GSA); d), on the event A0n,

�p2 (M) � �d� 36A2Arich (lnn)�2 ; (97)

and �nally, by using (95), (96) and (97) in (94), we deduce that on A0n, for all n � n0 ((GSA); d),

crit0 (M) � �d� 37A2Arich (lnn)�2 . (98)

2. There exists a better model for crit0 (M). By (P3), for all n � n0 (AM;+; Arich) a model M1 2 Mn

exists such that

AM;+ (lnn)
2 � Arichn

(lnn)
2 � DM1

:

We then have on A0n,

` (s�; sM1
) � A

�C+
rich (lnn)

2C+ n�C+ by (Apu)
p2 (M1) �

�
1� L(GSA)"2n (M1)

�
E [p2 (M1)] by (91)

pen (M1) � ApenE [p2 (M1)] by (10)CC�E (M1)
CC � L(GSA)

p
ln (n) =n by (93) and (Ab�)

and therefore,

crit0 (M1) �
�
�1 +Apen + L(GSA)"2n (M1)

�
E [p2 (M1)] + L(GSA)

r
lnn

n
+A

�C+
rich

(lnn)
2C+

nC+
: (99)

Hence, as �1 +Apen < 0, and as by (24), (An) and Lemma 6 it holds for all n � n0 ((GSA); Apen)

L(GSA)"
2
n (M1) �

1�Apen
2

and E [p2 (M1)] �
�2min
2

DM

n
� �2minArich

2
(lnn)

�2 ,

we deduce from (99) that on A0n, for all n � n0 ((GSA); Apen),

crit0 (M1) � �
1

4
(1�Apen)�2minArich (lnn)�2 : (100)
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Now, by taking

0 < d =

�
1

149
(1�Apen)

��min
A

�2�
^ 1
2
< 1 (101)

and by comparing (98) and (100), we deduce that on A0n, for all n � n0 ((GSA); Apen), for all M 2Mn such
that DM � dArichn (lnn)

�2,
crit0 (M1) < crit

0 (M)

and so
DcM

> dArichn (lnn)
�2

: (102)

Excess Loss of sn

�
cM
�
. We take d with the value given in (101). First notice that for all n � n0 (AM;+; Arich; d) ;

we have dArichn (lnn)
�2 � AM;+ (lnn)

2. Hence, for all M 2 Mn such that DM � dArichn (lnn)
�2, by (24),

(P2), (An) and Lemma 6, it holds on A0n for all n � n0 ((GSA); Apen), using (90),

` (s�; sn (M)) � p1 (M) �
�2min
2

DM

n
� d�2minArich

2
(lnn)

�2
:

By (102), we thus get that on A0n, for all n � n0 ((GSA); Apen),

`
�
s�; sn

�
cM
��
� d�2minArich

2
(lnn)

�2
: (103)

Moreover, the model M0 de�ned in (P3) satis�es, for all n � n0 (GSA),

AM;+ (lnn)
3 � n1=(1+C+) � DM0

� crichn
1=(1+C+)

and so using (Apu),

` (s�; sM0
) � C+n

�C+=(1+C+) .

In addition, by (48),
p1 (M) �

�
1 + L(GSA)"n (M)

�
E [p2 (M)] .

Hence, as K1;M � 6A by (Ab�) and as, by (24), for all n � n0 (GSA) it holds "n (M) � 1, we deduce from
Lemma 6 that for all n � n0 (GSA),

p1 (M) � L(GSA)
DM

n
� L(GSA)n

�C+=(1+C+) :

Consequently, for all n � n0 (GSA),

` (s�; sn (M0)) � L(GSA)n
�C+=(1+C+) (104)

and the ratio between the two bounds (103) and (104) is larger than nC+=(1+C+) (lnn)�3 for all n � n0
�
L(GSA) ; Apen

�
,

which yields (11). �

5.3 Proofs related to Section 4

Theorem 4 is a straightforward consequence of the following result, that will be proved below.

Theorem 10 Assume that (GSA) holds. With the notations of Section 4, assume moreover that there exist
c 2 (0; 1) such that nc � n1 < n and � 2 (1; 3) satisfying n (lnn)� =DM � n2 � n (1� c) for all M 2 Mn

such that AM;+ (lnn)
3 � DM � AM;+n= (lnn)

2
. Take n2 = n (1� c) if DM � AM;+ (lnn)

3
. De�ne for all

M 2Mn,

penho (M) =
n1
n
(Pn2 (Ksn1 (M))� Pn1 (Ksn1 (M))) .

24



Then, for any � 2
�
0; C+=

�
1 + C+

��
, there exist an integer n0 depending on c; � and on constants in (GSA), a

positive constant A6 only depending on cM given in (GSA), two positive constants A7 and A8 only depending
on constants in (GSA) and a sequence

�n �
A7

(lnn)
1=4 ^ (lnn)(��1)=2

such that it holds for all n � n0 ((GSA) ; c; �), with probability at least 1�A6n�2,

DcMn1
� n�+1=(1+C+)

and

`
�
s�; sn

�
cMn1

��
� (1 + �n) ` (s�; sn (M�)) +A8

(lnn)
3

n
. (105)

Assume that in addition (Ap) holds (see Theorem 3). Then it holds for all n � n0
�
(GSA) ; C�; C�; �; c

�
,

with probability at least 1�A6n�2,

AM;+ (lnn)
3 � DcMn1

� n�+1=(1+C+)

and
`
�
s�; sn

�
cMn1

��
� (1 + �n) inf

M2Mn

f` (s�; sn (M))g . (106)

Lemma 11 Assume that (GSA) holds. Let c 2 (0; 1), � 2 (1; 3) and (n1; n2) 2 N
2
�. We assume that

nc � n1 < n and set n2 = n � n1. Then there exists L = L(GSA),c > 0 such that for all M 2 Mn satisfying

DM � AM;+ (lnn)
2
, for all n � n0 ((GSA) ,c), it holds

P

 
jPn2 (Ksn1 (M)�KsM )� P (Ksn1 (M)�KsM )j � L

p
(DM _ lnn) (lnn) ((lnn) (lnn1) + n2)

n2
p
n1

!

� 12n�2�BM . (107)

Now, let us assume that n (lnn)
�
=DM � n2 � n (1� c) if AM;+ (lnn)

3 � DM � AM;+n= (lnn)
2
and n2 =

n (1� c) if DM � AM;+ (lnn)
3
. If AM;+ (lnn)

3 � DM , then by setting

"1;2n (M) = L
n
p
lnn ((lnn) (lnn1) + n2)

n2
p
n1DM

� L

(lnn)
(��1)=2

, (108)

we have for all n � n0 ((GSA) ; c),

P
�
jPn2 (Ksn1 (M)�KsM )� P (Ksn1 (M)�KsM )j � "1;2n (M)E [p2 (M)]

�
� 12n�2�BM . (109)

If DM � AM;+ (lnn)
3
, we obtain

P

 
jPn2 (Ksn1 (M)�KsM )� P (Ksn1 (M)�KsM )j � L

(lnn)
2

n

!
� 12n�2�BM . (110)

Proof. By Bernstein�s inequality (see Corollary 2.10 in [34]) applied to the sum of (sn1 (M)) (�i) conditionally
to
�
�j
�
j2I1

, we get that for all x > 0, it holds

P
�
jPn2 (Ksn1 (M)�KsM )� P (Ksn1 (M)�KsM )j � x

CC��j
�
; j 2 I1

�
� 2 exp

�
� nx2

2 (v1 + b1x=3)

�
, (111)

where
v1 = E�

h
(Ksn1 (M) (�)�KsM (�))2

i
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and b1 = kKsn1 (M)�KsMk1. We have

v1 = E(X;Y )

h
(2 (Y � sM (X))� sn1 (M) (X) + sM (X))2 (sn1 (M) (X)� sM (X))2

i

� (4A+ ksn1 (M)� sMk1)
2
EX

h
(sn1 (M) (X)� sM (X))2

i

= (4A+ ksn1 (M)� sMk1)
2
P (Ksn1 (M)�KsM ) (112)

and

b1 = k(2 (Y � sM (X))� sn1 (M) (X) + sM (X)) (sn1 (M) (X)� sM (X))k1
� 4A ksn1 (M)� sMk1 + ksn1 (M)� sMk21 . (113)

Now, we set Av = fv1 � Lv (DM _ lnn1) =n1g and Ab =
n
b1 � Lb

p
DM lnn1=n1

o
. By integrating (111), it

comes for all x > 0,

P (jPn2 (Ksn1 (M)�KsM )� P (Ksn1 (M)�KsM )j � x)

� 2E

�
exp

�
� n2x

2

2 (v1 + b1x=3)

�
1Av\Ab

�
+ 2P (Acv) + 2P (A

c
b)

� 2 exp

0
@� n2x

2

2
�
Lv (DM _ lnn1) =n1 + Lbx

p
DM lnn1=n1

�

1
A+ 2P (Acv) + 2P (Acb)

From assumption (Ac1) and inequality (27), it is possible to choose Lv and Lb, depending among other
constants on c, such that for all n � n0 ((GSA); c), 2P (Acv) + 2P (A

c
b) � 10n�2�BM . Thus, we get for L > 0

large enough and for all x > 0,

P (jPn2 (Ksn1 (M)�KsM )� P (Ksn1 (M)�KsM )j � x)

� 2 exp

0
@� n2x

2

L
�
(DM _ lnn1) =n1 + x

p
DM lnn1=n1

�

1
A+ 10n�2�BM . (114)

By taking x =
p
LB lnn (DM _ lnn1) (LB (lnn) (lnn1) + 4n2)=

�
n2
p
n1
�
> 0 in the latter inequality, it comes

P

 
jPn2 (Ksn1 (M)�KsM )� P (Ksn1 (M)�KsM )j � L

p
(DM _ lnn1) (lnn) ((lnn) (lnn1) + n2)

n2
p
n1

!

� 12n�2�BM ,

where L > 0 depends on the constants in (GSA) and on c. Inequalities (109) and (110) then follow from
simple calculations.

Remark 12 It is easy to see that by using the assumption of consistency in sup-norm for a �xed model,
stated as (H5) in [36], instead of (Ac1) and by using Theorem 4 of [36] instead of inequality (27), the results
established in Lemma 11 are valid with probability bounds proportional to n�B, for any B > 0 (in Lemma 11,
we only derive the case B = 2 + BM for convenience).

Proof of Theorem 10. We set pen0 (M) = penho (M)� (n1=n) � (Pn2 (Ks�)� Pn1 (Ks�)). It is worth noting
that Pn2 (Ks�) � Pn1 (Ks�) is a quantity independent of M , when M varies in Mn. Hence, the procedure
de�ned by pen0 gives the same result as the hold-out procedure de�ned by penho. It will be convenient for
our analysis to consider pen0 instead of penho. As a matter of fact, we derive Theorem 10 as a corollary of
Theorem 3 applied with pen � pen0, through the use of Lemma 11.
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We get for all M 2Mn,

pen0 (M) =
n1
n
(Pn2 (Ksn1 (M)�Ks�)� Pn1 (Ksn1 (M)�Ks�))

=
n1
n
(Pn2 (Ksn1 (M)�KsM )� Pn1 (Ksn1 (M)�KsM ))

+
n1
n
((Pn2 � P ) (KsM �Ks�)� (Pn1 � P ) (KsM �Ks�))

=
n1
n

�
pn21 (M) + pn12 (M) + �E

n2 (M)� �En1 (M)
�

where

pn21 (M) = Pn2 (Ksn1 (M)�KsM ) , pn12 (M) = Pn1 (KsM �Ksn1 (M)) , �E
ni (M) = (Pni � P ) (KsM �Ks�) .

Let An be the event on which:

F For all models M 2Mn of dimension DM such that AM;+ (lnn)
3 � DM , it holds

jp1 (M)� E [p2 (M)]j � L(GSA)"n (M)E [p2 (M)] (115)

jp2 (M)� E [p2 (M)]j � L(GSA)"
2
n (M)E [p2 (M)] (116)

together with
CCCCp
n2
1 (M)� n

n1
E [p2 (M)]

CCCC � L(GSA);c
�
"1;2n (M) + "n (M)

�
E [p2 (M)] (117)

CCCCp
n1
2 (M)� n

n1
E [p2 (M)]

CCCC � L(GSA);c"
2
n (M)E [p2 (M)] (118)

CC�En1 (M)
CC � ` (s�; sM )p

DM

+ L(GSA);c
lnnp
DM

E [p2 (M)] (119)

CC�En2 (M)
CC � L(GSA)

0
@
s
` (s�; sM ) lnn2

n2
+
lnn2
n2

1
A (120)

F For all models M 2Mn of dimension DM such that DM � AM;+ (lnn)
3, it holds

CC�En1 (M)
CC � L(GSA);c

 r
` (s�; sM ) lnn

n
+
lnn

n

!
(121)

CC�En2 (M)
CC � L(GSA);c

 r
` (s�; sM ) lnn

n
+
lnn

n

!
(122)

pn12 (M) � L(GSA);c
DM _ lnn

n
� L(GSA);c

(lnn)
3

n
(123)

pn21 (M) � L(GSA);c

 
(lnn)

2

n
+
DM _ lnn

n

!
� L(GSA);c

(lnn)
3

n
(124)

By (25), (26), (27) and (28) in Remark 5, Lemma 6 and Lemma 11, we get for all n � n0 ((GSA); c),

P (An) � 1�Apn�2 � L
X

M2Mn

n�2�BM � 1� LAp;cMn
�2 :

We consider models M 2 Mn such that AM;+ (lnn)
3 � DM . Notice that (119) implies by (24) that, for all

M 2Mn such that AM;+ (lnn)
3 � DM ,

CC�En1 (M)
CC � L(GSA);c

 
(lnn)

3

DM
� lnn
DM

!1=4
� (` (s�; sM ) + E [p2 (M)])

� L(GSA);c"n (M) (` (s�; sM ) + E [p2 (M)]) .
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In addition, from (120), Lemma 6 and the fact that n (lnn)� =DM � n2, we get that for all n � n0 (GSA),

CC�En2 (M)
CC � L(GSA)

0
@
s
` (s�; sM ) lnn2

n2
+
lnn2
n2

1
A

� L(GSA)

 
` (s�; sM )

(lnn)
(��1)=2

+
lnn2
n2

(lnn)
(��1)=2

!

� L(GSA) (lnn)
(1��)=2

(` (s�; sM ) + E [p2 (M)]) .

We deduce that on An we have, for all models M 2 Mn such that AM;+ (lnn)
3 � DM and for all n �

n0 (GSA),

jpen0 (M)� 2E [p2 (M)]j

� n1
n

�CCCCp
n2
1 (M)� n

n1
E [p2 (M)]

CCCC+
CCCCp
n1
2 (M)� n

n1
E [p2 (M)]

CCCC
�

+
CC�En1 (M)

CC+
CC�En2 (M)

CC

�
�
L(GSA);c

�
"1;2n (M) + "n (M) + (lnn)

(1��)=2
��
(` (s�; sM ) + E [p2 (M)]) (125)

Hence, inequality (12) of Theorem 3 is satis�ed on An by taking

E = L(GSA);c

�
"1;2n (M) + "n (M) + (lnn)

(1��)=2
�
.

Moreover, we have E 2 [0; 1) for all n � n0 ((GSA),c; �).
Let us now consider models M 2 Mn such that DM � AM;+ (lnn)

3. By (121), (122), (124) and (123), we
have on An,

jpen0 (M)j =
n1
n

CCpn21 (M) + pn12 (M) + �E
n2 (M)� �En1 (M)

CC

� L(GSA);c

 r
` (s�; sM ) lnn

n
+
(lnn)

3

n

!

� L(GSA);c

 
` (s�; sM )

(lnn)
2 +

(lnn)
3

n

!
(126)

Inequality (126) implies that inequality (13) of Theorem 3 is satis�ed with Ar = L(GSA);c. From (125) and
(126), we thus apply Theorem 3 with Ap = LAp;cM , and this gives Theorem 10 with

�n = L(GSA);c

�
(lnn)

�2
+ (lnn)

(1��)=2
+ sup
M2Mn

n
"n (M) + "

1;2
n (M) ; AM;+ (lnn)

3 � DM � n�+1=(1+C+)
o�

.
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