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Abstract

We consider the estimation of a regression function with random design and heteroscedastic noise in
a non-parametric setting. More precisely, we address the problem of characterizing the optimal penalty
when the regression function is estimated by using a penalized least-squares model selection method. In this
context, we show the existence of a minimal penalty, de�ned to be the maximum level of penalization under
which the model selection procedure totally misbehaves. Moreover, the optimal penalty is shown to be twice
the minimal one and to satisfy a nonasymptotic pathwise oracle inequality with leading constant almost
one. When the shape of the optimal penalty is known, this allows to apply the so-called slope heuristics
initially proposed by Birgé and Massart [14], which further provides with a data-driven calibration of
penalty procedure. Finally, the use of the results obtained in [30], considering the least-squares estimation
of a regression function on a �xed �nite-dimensional linear model, allows us to go beyond the case of
histogram models, which is already treated by Arlot and Massart in [6].

Keywords: Optimal model selection, Slope heuristics, Heteroscedastic regression, data-driven penalty.

1 Introduction

Model selection by penalization has been the object of intensive research in the last decades. Given a collection
of models and associated estimators, two di¤erent tasks can be tackled: �nd out the smallest true model
(consistency problem), or select an estimator achieving the best performance according to some criterion, called
a risk (e¢ ciency problem). We only focus on the e¢ ciency problem, where the leading idea of penalization,
that goes back to early works of Akaike [1], [2] and Mallows [27], is to perform an unbiased estimation of
the risk of the estimators. FPE and AIC procedures proposed by Akaike respectively in [1] and [2], as well
as Mallows�Cp or CL [27], aim to do so by adding to the empirical risk a penalty which depends on the
dimension of the models. But the �rst analysis of such procedures had the drawback to be fundamentally
asymptotic, considering in particular that the number of models as well as their dimensions are �xed while
the number of data tends to in�nity. As explained for example in Massart [28], various statistical situations
require to let these quantities depend on the number of data. Pointing out the importance of Talagrand�s type
concentration inequalities in this nonasymptotic approach, Birgé and Massart [13], [15] and Barron, Birgé and
Massart [8] have thus been able to build nonasymptotic oracle inequalities for penalization procedures that take
into account the complexity of the collection of models. In an abstract risk minimization framework, which
includes statistical learning problems such as classi�cation or regression, many distribution-dependent and
data-dependent penalties have been proposed, from the more general and thus less accurate global penalties,
see Koltchinskii [22], Bartlett & al. [9], to the re�ned local Rademacher complexities in the case where some
margin relations hold (see for instance Bartlett, Bousquet and Mendelson [10], Koltchinskii [23]). But as a prize
to pay for generality, the above penalties su¤er from their dependence on unknown or unrealistic constants.
They are very di¢ cult to implement and calibrate in practice and satisfy oracle inequalities with possibly
huge leading constants. In the general purpose, there are other penalties such as the bootstrap penalties
of Efron [19] and the resampling and V -fold penalties of Arlot [4] and [3]. These penalties are essentially
resampling estimates of the di¤erence between the empirical risk and the risk and can be used in practice
since, in particular, they avoid the practical drawbacks of the local Rademacher complexities. Arlot [4], [3]
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also proves sharp pathwise oracle inequalities for the resampling and V -fold penalties in the case of regression
with random design and heteroscedastic noise on histograms models, and conjectures that the restriction on
histograms is mainly technical and that his results can be extended to more general situations.
We address in this article the problem of optimal model selection, in a bounded heteroscedastic with random

design regression setting. A penalty will be said to be optimal if it achieves a nonasymptotic oracle inequality
with leading constant almost one, i.e. converging to one when the number of data tends to in�nity. In the
following we restrict ourselves to �small�collections of models, where the number of models is not more than
polynomial in the number of data, a case where such an optimal penalty can exist. In more general settings,
where the collection of models is large, one should gather the models of equal or equivalent complexity and
derive an oracle inequality with respect to the in�mum of the risk on the union of models with the same
complexities, as explained in Birgé and Massart [14]. This would allow to consider optimal penalties for large
collections of models, but this problem is anyway beyond the scope of this article. Birgé and Massart [14]
have discovered in a generalized linear Gaussian model setting, that the optimal penalty is closely related to
the minimal one, de�ned to be the maximal penalty under which the procedure totally misbehaves. They
prove sharp upper and lower bounds for the minimal penalty and show that the optimal penalty is two times
the minimal one, both for small and large collections of models. These facts are called by the authors the
slope heuristics. The authors also exhibit a jump in the dimension of the selected model occurring around the
value of the minimal penalty, and use it to estimate the minimal penalty from the data. Taking a penalty
equal to two times the previous estimate then gives a nonasymptotic quasi-optimal data-driven model selection
procedure. The algorithm proposed by Birgé and Massart [14] to estimate the minimal penalty relies on the
previous knowledge of the shape of the latter, which is a known function of the dimension of the models in their
setting, and thus their procedure gives a data-driven calibration of the minimal penalty. Considering the case
of Gaussian least-squares regression with unknown variance, Baraud, Giraud and Huet [7] have also derived
lower bounds for the penalty terms for small and large collection of models, as well as Castellan [18] in the case
of maximum likelihood estimation of density on histograms where a lower bound on the penalty term is given
only for small collections of models. Then the slope phenomenon has been extended by Arlot and Massart [6] in
a bounded heteroscedastic with random design regression framework. They consider least-squares estimators
on a �small�collection of histograms models. Heteroscedasticity of the noise allows them to validate the slope
heuristics without assuming a particular shape of the penalty, and in particular to consider situations where
the shape of the penalty is not a function of the dimension of the models. In such general cases, the authors
propose to estimate the shape of the penalty by using Arlot�s resampling or V -fold penalties, proved to be
e¢ cient in their regression framework by Arlot [3] and [4], in order to derive an accurate data-driven calibration
of the optimal penalty. Moreover, their approach is more general than the histogram case, except for some
identi�ed technical parts of their proofs, thus providing with some quite general algebra that can be applied in
other frameworks to derive sharp model selection results. The authors have also identi�ed the minimal penalty
as the mean of the empirical excess risk on each model, and the ideal penalty to be estimated as the sum of
the empirical excess risk and true excess risk on each model. The slope heuristics then heavily relies on the
fact that the empirical excess risk is equivalent to the true excess risk for models of reasonable dimensions.
Arlot and Massart [6] conjecture that this equivalence between the empirical and true excess risk is a quite
general fact in M-estimation, as well as, by rather direct consequence, the slope phenomenon for models not
too badly chosen in terms of approximation properties. A general result supporting this conjecture is the
high dimensional Wilks�phenomenon discovered by Boucheron and Massart [16] in the setting of bounded
contrast minimization under margin conditions, where the authors derive concentrations inequalities for the
true and empirical excess risk when the considered model satis�es some general condition on the moment of
�rst order of the surpremum of the empirical process on localized slices of variance in the loss class. This
assumption can be explicated under suitable covering entropy conditions on the model. Lerasle [25] proved the
validity of the slope heuristics in a least-squares density estimation setting, under rather mild conditions on
the considered linear models. The approach developed by Lerasle in this framework allows sharp computations
and the empirical excess risk is shown by the author to be exactly equal to the true excess risk. Moreover,
some improvements comparing to the technology of proofs given by Arlot and Massart [6] can be found in
[25], where Lerasle considers comparison between all pairs of models, allowing in particular a more re�ned use
of the bias of the models. Lerasle also proves in the least-squares density estimation setting the e¢ ciency of
Arlot�s resampling penalties, and generalizes these results for weakly dependent data, see [26]. Arlot and Bach
[5] recently consider the problem of selecting among linear estimators in non-parametric regression. Their
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framework includes model selection for linear regression, the choice of a regularization parameter in kernel
ridge regression or spline smoothing, and the choice of a kernel in multiple kernel learning. In such cases, the
minimal penalty is not necessarily half the optimal one, but the authors propose to estimate the unknown
variance by the minimal penalty and to use it in a plug-in version of Mallows�CL. The latter penalty is proved
to be optimal by establishing a nonasymptotic oracle inequality with constant almost one.
In this article, we prove the validity of the slope heuristics in a bounded heteroscedastic with random

design regression framework, by considering a �small�collection of �nite-dimensional linear models, a setting
that extends the case of histograms already treated by Arlot and Massart [6]. Two main assumptions must be
satis�ed. First, we require that the models have a uniform localized orthonormal basis structure in L2

�
PX
�
,

where PX is the law of the explicative variable X. This kind of analytical property describing the L1-
structure of the models has already been used in a model selection framework by Birgé and Massart [13] and
Barron, Birgé and Massart [8] (see also Massart [28]). Considering for example the unit cube of Rq and taking
PX = Leb the Lebesgue measure on it, it is shown in Birgé and Massart [13] that the assumption of localized
orthonormal basis are satis�ed for some wavelet expansions and piecewise polynomials uniformly bounded in
their degrees. It is also known, Massart [28], that in the case of histograms the property of localized basis in
L2
�
PX
�
is equivalent to the lower regularity of the considered partition with respect to PX , an assumption

required by Arlot and Massart in [6]. Moreover, we show in [30] that if PX has a density with respect to
the Lebesgue measure on the unit interval that is uniformly bounded away from zero then, assuming the
lower regularity of the partition de�ning piecewise polynomials of uniformly bounded degrees ensures that the
assumption of localized basis is satis�ed for such a model. The second property that must be satis�ed in our
setting is that the least-squares estimators are uniformly consistent over the collection of models and converge
to the orthogonal projections of the unknown regression function. Again, such a property is shown in [30] to
be satis�ed for suitable histograms and more general piecewise polynomial models. This allows us to recover
the results of Arlot and Massart [6] with the same set of assumptions when the noise is uniformly bounded by
upper and by below, and to extend it to models of piecewise polynomials uniformly bounded in their degrees.
Taking advantage of the sharp estimates of the empirical and true excess risks for a �xed model given in [30],
our proofs then rely on the same algebra of proofs as those given in Arlot and Massart [6].
The article is organized as follows. We describe in Section 2 the statistical framework, the slope heuristics

and the subsequent data-driven algorithm of calibration of penalties. We state in Section 3 our main results
and derive their proofs in the remainder of the paper.

2 Statistical framework and the slope heuristics

2.1 Penalized least-squares model selection

We assume that we have n independent observations �i = (Xi;Yi) 2 X�R with common distribution P . The
marginal law of Xi is denoted by PX : We assume that the data satisfy the following relation

Yi = s� (Xi) + � (Xi) "i ; (1)

where s� 2 L2
�
PX
�
, "i are i.i.d. random variables with mean 0 and variance 1 conditionally to Xi and � :

X �!R is an heteroscedastic noise level. A generic random variable of law P , independent of the sample
(�1; :::; �n), is denoted by � = (X;Y ) :
Hence, s� is the regression function of Y with respect to X, that we want to estimate. We are given a �nite
collection of models Mn, with cardinality depending on the number of data n. Each model M 2 Mn is
assumed to be a �nite-dimensional vector space, and we denote by DM its linear dimension and sM the linear
projection of s� onto M in L2

�
PX
�
: Furthermore, by setting K : L2

�
PX
�
�! L1 (P ) the least-squares

contrast, de�ned by
K (s) = (x; y) 7�! (y � s (x))2 , s 2 L2

�
PX
�
,

the regression function s� satisfy
s� = arg min

s2L2(PX)
PK (s)

and for the linear projections sM we have

sM = arg min
s2M

PK (s) .
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For each model M 2Mn, we consider a least-squares estimator sn (M), satisfying

sn (M) 2 arg min
s2M

fPn (K (s))g

= arg min
s2M

(
1

n

nX
i=1

(Yi � s (Xi))2
)

where Pn = n�1
Pn

i=1 �(Xi;Yi) is the empirical measure built from the data. We measure the performance of
the least-squares estimators by their excess risk,

l (s�; sn (M)) := P (Ksn (M)�Ks�) = ksn (M)� s�k22

where ksk2 =
�R
X s

2dPX
�1=2

is the quadratic norm in L2
�
PX
�
. Moreover, we have

l (s�; sn (M)) = l (s�; sM ) + l (sM ; sn (M)) ,

where the quantity
l (s�; sM ) := P (KsM �Ks�) = ksM � s�k22

is called the bias of the model M and l (sM ; sn (M)) := P (Ksn (M)�KsM ) � 0 is the excess risk of the
least-squares estimator sn (M) on M . By the Pythagorean identity, we have

l (sM ; sn (M)) = ksn (M)� sMk22

and we prove sharp bounds for the latter quantity in [30], based on the expansion of the least-squares contrast
to the sum of a linear part and a quadratic part.
Given the collection of modelsMn, an oracle model M� is de�ned to be

M� 2 arg min
M2Mn

fl (s�; sn (M))g (2)

and the associated oracle estimator sn (M�) thus achieves the best performance in terms of excess risk among
the collection fsn (M) ;M 2Mng. Unfortunately, the oracle model is unknown as it depends on the unknown
law P of the data, and we propose to estimate it by a model selection procedure via penalization. Given some
known penalty pen, that is a function fromMn to R+, we thus consider the following data-dependent model,
also called selected model, cM 2 arg min

M2Mn

fPn (Ksn (M)) + pen (M)g : (3)

Our goal is then to �nd a good penalty, such that the selected model cM satis�es an oracle inequality of the
form

l
�
s�; sn

�cM�� � C � ` (s�; sn (M�)) ,

with some positive constant C as close to one as possible and with high probability, typically more than
1� Ln�2 for some positive constant L.

2.2 The slope heuristics

Let us rewrite the de�nition of the oracle model M� given in (2). As for any M 2 Mn, the excess risk
l (s�; sn (M)) = P (Ksn (M))�P (Ks�) is the di¤erence between the risk of the estimator sn (M) and the risk
of the target s�, and as P (Ks�) is a constant of the problem, it holds

M� 2 arg min
M2Mn

fP (Ksn (M))g

= arg min
M2Mn

fPn (Ksn (M)) + penid (M)g

where for all M 2Mn,
penid (M) := P (Ksn (M))� Pn (Ksn (M)) .
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The penalty function penid is called the ideal penalty, as it allows to select the oracle, but it is unknown
because it depends on the distribution of the data. As pointed out by Arlot and Massart [6], the leading idea
of penalization in the e¢ ciency problem is thus to give some sharp estimate of the ideal penalty, in order to
perform an unbiased or asymptotically unbiased estimation of the risk over the collection of models, leading
to a sharp oracle inequality for the selected model. A penalty term penopt is said to be optimal if it achieves
an oracle inequality with constant almost one, tending to one when the number n of data tends to in�nity.
Concerning the estimation of the optimal penalty, Arlot and Massart [6] conjecture that the mean of the em-
pirical excess risk E [Pn (KsM �Ksn (M))] satis�es the following slope heuristics in a quite general framework:

(i) If a penalty pen :Mn �! R+ is such that, for all model M 2Mn,

pen (M) � (1� �)E [Pn (KsM �Ksn (M))]

with � > 0, then the dimension of the selected model cM is �very large�and the excess risk of the selected

estimator sn
�cM� is �much larger�than the excess risk of the oracle.

(ii) If pen � (1 + �)E [Pn (KsM �Ksn (M))] with � > 0, then the corresponding model selection procedure
satis�es an oracle inequality with a leading constant C (�) < +1 and the dimension of the selected
model is �not too large�. Moreover,

penopt � 2E [Pn (KsM �Ksn (M))]

is an optimal penalty.

The mean of the empirical excess risk onM , whenM varies inMn, is thus conjectured to be the maximal value
of penalty under which the model selection procedure totally misbehaves. It is called the minimal penalty,
denoted by penmin :

for all M 2Mn, penmin (M) = E [Pn (KsM �Ksn (M))] .

The optimal penalty is then close to two times the minimal one,

penopt � 2 penmin .

Let us now brie�y explain why points (i) and (ii) below are natural. We give in Section 3 precise results which
validate the slope heuristics for models such as histograms or piecewise polynomials uniformly bounded in
their degrees. If the penalty is the minimal one, then for all M 2Mn,

Pn (Ksn (M)) + penmin (M)

= Pn (Ksn (M)) + E [Pn (KsM �Ksn (M))]
= P (KsM ) + (Pn � P ) (KsM ) + (E [Pn (KsM �Ksn (M))]� Pn (KsM �Ksn (M)))
� P (KsM ) .

In the above lines, we neglect (Pn � P ) (KsM ) as it is a centered quantity and if the empirical excess risk
Pn (Ksn (M)�KsM ) is close enough to its expectation, then the selected model almost minimizes its bias,
and so its dimension is among the largest of the models and the excess risk of the selected estimator blows
up. As shown by Boucheron and Massart [16], the empirical excess risk satis�es a concentration inequality in
a general framework, which allows to neglect the di¤erence with its mean, at least for models that are not too
small.
Now, if the chosen penalty is less than the minimal one, pen � (1� �) penmin with � 2 (0; 1), the algorithm
minimizes overMn,

Pn (Ksn (M)) + pen (M)

� P (KsM )� �Pn (KsM �Ksn (M)) + (Pn � P ) (KsM )
+ (1� �) (E [Pn (KsM �Ksn (M))]� Pn (KsM �Ksn (M)))

� P (KsM )� �Pn (KsM �Ksn (M)) ,
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where in the last identity we neglect the deviations of the empirical excess risk and the di¤erence between
the empirical and true risk of the projections sM . As the empirical excess risk is increasing and the risk
of the projection sM is decreasing with respect to the complexity of the models, the penalized criterion is
decreasing with respect to the complexity of the models, and the selected model is again among the largest of
the collection.
If on the contrary, the chosen penalty is more than the minimal one, pen � (1 + �) penmin with � > 0, then
the selected model minimizes the following criterion, for all M 2Mn,

Pn (Ksn (M)) + pen (M)� Pn (Ks�)
� ` (s�; sM ) + �Pn (KsM �Ksn (M)) + (Pn � P ) (KsM �Ks�)
+ (1 + �) (E [Pn (KsM �Ksn (M))]� Pn (KsM �Ksn (M)))

� ` (s�; sM ) + �Pn (KsM �Ksn (M)) , (4)

So the selected model achieves a trade-o¤ between the bias of the models which decreases with the complexity
and the empirical excess risk which increases with the complexity of the models. The selected dimension will
be then reasonable, and the trade-o¤ between the bias and the complexity of the models is likely to give some
oracle inequality.
Finally, if we take � = 1 in the above case, that is pen � 2�penmin and if we assume that the empirical excess
risk is equivalent to the excess risk,

Pn (KsM �Ksn (M)) � P (Ksn (M)�KsM ) , (5)

then according to (4) the selected model almost minimizes

P (KsM �Ks�) + Pn (KsM �Ksn (M)) � ` (s�; sM ) + P (Ksn (M)�KsM ) � ` (s�; sn (M)) .

Hence,

`
�
s�; sn

�cM�� � ` (s�; sn (M�))

and the procedure is nearly optimal. We give in [30] some results showing that (5) is a quite general fact in
least-squares regression.

2.3 A data-driven calibration of penalty algorithm

The slope heuristics stated in points (i) and (ii) in Section 2.2, include that a jump in the dimensions of the
selected models should occur around the minimal penalty, which can be used to estimate the minimal penalty
and by consequence, the optimal one. Let us denote by penshape the shape of the minimal penalty which is,
according to the slope heuristics, equal to the shape of the optimal penalty. Thus, for two unknown positive
constants Amin and A� depending on the unknown distribution of the data, we have

penmin = Amin penshape and penopt = A� penshape ,

where
A� = 2�Amin

whenever the optimal penalty is twice the minimal one. We assume now that the shape of the minimal penalty
is known, from some prior knowledge or because it has been estimated from the data, for example by using
Arlot�s resampling and V -fold penalties as suggested in Arlot and Massart [6]. Then, Arlot and Massart [6]
propose to calibrate the optimal penalty by the following procedure and by doing so, they extend to general
penalty shapes a previous algorithm proposed by Birgé and Massart [14].

Algorithm of data-driven calibration of penalties :

1. Compute the selected model cM (A) as a function of A > 0;

cM (A) 2 arg min
M2Mn

�
PnK (sn (M)) +Apenshape (M)

	
:
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2. Find Âmin > 0 such that the dimension DcM(A)
is �very large�for A < Âmin and �reasonably small�for

A > Âmin:

3. Select the model cM = cM �
2Âmin

�
:

In this paper, since our aim is not to apply the above algorithm in practice, we refer to Arlot and Massart
[6] for a detailed presentation of the algorithm and to Baudry, Maugis and Michel [12] for an overview on
the slope heuristics and further discussions on implementation issues. Data-driven calibration of penalties
algorithms have already been applied successively in many statistical frameworks such as mixture models [29],
clustering [11], spatial statistics [31], estimation of oil reserves [24] and genomics [32], to name but a few.
These applications tend to support the conjecture of Arlot and Massart [6] that the slope heuristics is valid in
a quite general framework.

3 Main Results

We state here our results that theoretically validate the slope heuristics in our bounded heteroscedastic re-
gression setting. In particular, we recover the results stated in Theorems 2 and 3 of Arlot and Massart [6] for
histogram models and extend them to models of piecewise polynomials uniformly bounded in their degrees.
The proofs are postponed to the end of the paper, and heavily rely on results obtained in [30] where we consider
a �xed model, and on the general algebra of proofs developed by Arlot and Massart [6]. We state now the
assumptions required to derive our results.

3.1 Main assumptions

Let us begin with the set of assumptions needed in the general case of models that are provided with localized
basis in L2

�
PX
�
.

General set of assumptions : (GSA)

(P1) Polynomial complexity ofMn: Card (Mn) � cMn�M :

(P2) Upper bound on dimensions of models inMn: there exists a positive constant AM;+ such that for every
M 2Mn; 1 � DM � AM;+n (lnn)

�2 � n :

(P3) Richness ofMn: there exist M0;M1 2 Mn such that DM0
2 [
p
n; crich

p
n] and DM1 � Arichn (lnn)

�2

:

(Ab) A positive constant A exists, that bounds the data and the projections sM of the target s� over the
models M of the collectionMn: jYij � A <1; ksMk1 � A <1 for all M 2Mn:

(An) Uniform lower-bound on the noise level: � (Xi) � �min > 0 a:s:

(Apu) The bias decreases as a power of DM : there exist �+ > 0 and C+ > 0 such that

` (s�; sM ) � C+D
��+
M :

(Alb) Each model is provided with a localized basis: there exists a constant rM such that for each M 2Mn

one can �nd an orthonormal basis ('k)
DM

k=1 satisfying that, for all (�k)
DM

k=1 2 RDM ;
DMX
k=1

�k'k


1

� rM
p
DM j�j1 ;

where j�j1 = max fj�kj ; k 2 f1; :::; DMgg.
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(Ac1) Consistency in sup-norm of least-squares estimators: an event 
1 of probability at least 1�n�2��M ,
a positive constant Acons, a positive integer n1 and a collection of positive numbers (Rn;DM

)M2Mn
exist,

such that

sup
M2Mn

Rn;DM
� Aconsp

lnn
(6)

and for all M 2Mn it holds on 
1, for all n � n1,

ksn (M)� sMk1 � Rn;DM
: (7)

We turn now to the set of assumptions needed for histogram models and models by piecewise polynomials,
respectively.

Set of assumptions for histogram models :

Given some linear histogram model M 2Mn, we denote by PM the associated partition of X .
Take assumptions (P1), (P2), (P3), (An) and (Apu) from the general set of assumptions. Assume moreover
that the following conditions hold true:

(Ab�) A positive constant A exists, that bounds the data: jYij � A <1:

(Alrh) Lower regularity of the partitions: there exists a positive constant chM;P such that,

for all M 2Mn;
r
jPM j inf

I2PM
PX (I) � chM;P > 0 .

Set of assumptions for piecewise polynomials models :

In this case we take X = [0; 1], Leb is the Lebesgue measure on X , and given a linear model M 2 Mn of
piecewise polynomials, we denote by PM the associated partition of X .
Take assumptions (P1), (P2), (P3), (An) and (Apu) from the general set of assumptions. Assume moreover
that the following additional conditions hold.

(Ab�) A positive constant A exists, that bounds the data: jYij � A <1:

(Aud) Uniformly bounded degrees: there exists r 2 N� such that, for allM 2Mn, all I 2 PM and all p 2M ,

deg
�
pjI
�
� r :

(AdLeb) Density bounded from upper and from below: PX has a density f with respect to Leb satisfying for
some constants cmin and cmax, that

0 < cmin � f (x) � cmax <1; 8x 2 [0; 1] :

(Alrpp) Lower regularity of the partition: a positive constant cppM;P exists such that, for all M 2Mn,

0 < cppM;Leb �
q
jPM j inf

I2PM
Leb (I) < +1 :

The sets of assumptions will be discussed in Section 3.3.

8



3.2 Statement of the theorems

Theorem 1 Under the general set of assumptions (GSA) of Section 3.1, for Apen 2 [0; 1) and Ap > 0; we
assume that with probability at least 1�Apn�2 we have

0 � pen (M1) � ApenE [Pn (KsM �Ksn (M1))] ; (8)

where the model M1 is de�ned in assumption (P3) of (GSA). Then there exist two positive constants A1; A2
independent of n such that, with probability at least 1�A1n�2; we have, for all n � n0 ((GSA) ; Apen),

DcM � A2n ln (n)�2

and
`
�
s�; sn

�cM�� � ln (n) inf
M2Mn

f` (s�; sn (M))g : (9)

Moreover, in the case of histograms and piecewise polynomials models, taking their respective set of assumptions
de�ned in Section 3.1 yields the same results.

Thus, Theorem 1 justi�es the �rst part (i) of the slope heuristics exposed in Section 2.2. As a matter of fact,
it shows that there exists a level such that if the penalty is smaller than this level for one of the largest models,
then the dimension of the output is among the largest dimensions of the collection and the excess risk of the
selected estimator is much bigger than the excess risk of the oracle. Moreover, this level is given by the mean
of the empirical excess risk of the least-squares estimator on each model.
The following theorem validates the second part of the slope heuristics.

Theorem 2 Assume that the general set of assumptions (GSA) of Section 3.1 hold.
Moreover, for some � 2 [0; 1) and Ap; Ar > 0, assume that an event of probability at least 1�Apn�2 exists on
which, for every model M 2Mn such that DM � AM;+ (lnn)

3, it holds

(2� �)E [Pn (KsM �Ksn (M))] � pen (M) � (2 + �)E [Pn (KsM �Ksn (M))] (10)

together with

pen (M) � Ar
(lnn)

3

n
(11)

for every model M 2 Mn such that DM � AM;+ (lnn)
3. Then, for 1

2 > � >
�
1� �+

�
+
=2, there exist a

positive constant A3 only depending on cM given in (GSA) and on Ap, a positive constant A4 only depending
on constants in the set of assumptions (GSA), a positive constant A5 only depending on constants in the set
of assumptions (GSA) and on Ar and a sequence

�n = A4 sup
M2Mn

n
"n (M) ; AM;+ (lnn)

3 � DM � n�+1=2
o
�
A4
�
1 _

p
Acons

�
(lnn)

1=4
(12)

such that with probability at least 1�A3n�2, it holds for all n � n0 ((GSA) ; �; �),

DcM � n�+1=2

and

`
�
s�; sn

�cM�� �
0@1 + �
1� � +

5
�
(lnn)

�2
+ �n

�
(1� �)2

1A ` (s�; sn (M�)) +A5
(lnn)

3

n
. (13)

Assume that in addition, the following assumption holds,

(Ap) The bias decreases like a power of DM : there exist �� � �+ > 0 and C+; C� > 0 such that

C�D
���
M � ` (s�; sM ) � C+D

��+
M :

9



Then it holds with probability at least 1�A3n�2, for all n � n0
�
(GSA) ; C�; ��; �; �

�
,

AM;+ (lnn)
3 � DcM � n�+1=2

and

`
�
s�; sn

�cM�� �  1 + �
1� � +

5�n

(1� �)2

!
` (s�; sn (M�)) . (14)

Likewise, in the case of models of histograms and piecewise polynomials, taking their respective set of assump-
tions de�ned in Section 3.1, together with assumption (10) and, for the second part of the theorem, assumption
(Ap), yields the same results.

The quantity "n (M) used in (12) controls the deviations of the true and empirical excess risks on the model
M and is more precisely de�ned in Remark 3 above. From Theorems 1 and 2, we identify the minimal penalty
with the mean of the empirical excess risk on each model,

penmin (M) = E [Pn (KsM �Ksn (M))] :

Moreover, Theorem 2 states in particular that if the penalty is close to two times the minimal procedure,
then the selected estimator satis�es a pathwise oracle inequality with constant almost one, and so the model
selection procedure is approximately optimal.

3.3 Comments on the sets of assumptions

Let us now explain the sets of assumptions given in Section 3.1. Assumption (P1) states that the collection
of models has a small complexity, more precisely a polynomially increasing one with respect to the amount of
data. For this kind of complexities, if one wants to perform a good model selection procedure for prediction,
the chosen penalty should estimate the mean of the ideal one on each model. Indeed, as Talagrand�s type
inequalities for the empirical process are pre-Gaussian, they allow to neglect the deviations of the quantities of
interest from their mean, uniformly over the collection of models. This is not the case for too large collections
of models, where one has to put an extra-log factor depending on the complexity of the collection of models
inside the penalty (see for example [13] and [8]). In assumption (P2) we restrict the dimensions of the models
by upper, in a way that is not too restrictive since we allow the dimension to be of the order of the amount
of data within a power of a logarithmic factor. We assume in (P3) that the collection of models contains
a model M0 of reasonably large dimension and a model M1 of high dimension, which is necessary since we
prove the existence of a jump between high and reasonably large dimensions. We demand in (Apu) that
the quality of approximation of the collection of models is good enough in terms of bias. More precisely,
we require a polynomially decreasing of excess risk of linear projections of the regression function onto the
models. Assumptions (Ab), (An), (Alb) and (Ac1) essentially allow us to apply results of Section ??, as
further explained in Remark 3 below. The assumption (Ab) is also necessary to control in the proofs the
empirical bias term centered by the true bias by using Bernstein�s inequality (see Lemma 5).
Assumption (Ab�) implies in the histogram case assumption (Ab), see Section 4 of [30]. Moreover, assumption
(Alrh) allows us in this case to deduce assumptions (Alb) and (Ac1) of the general set of assumptions (see
Lemma 5 and 6 of [30]). Moreover, using Lemma 6, it is straightforward to see that in the histogram case we
have

Rn;DM
� Acons

r
DM lnn

n
,

where Acons is a uniform positive constant over the models of Mn: We obtain in the case of histograms the
same set of assumptions as given in Arlot and Massart [6]. Arlot and Massart [6] also notice that they can
weaken assumptions (Ab�) and (An), for example by assuming conditions on the moment of the noise instead
of considering that this quantity is bounded in sup-norm. This latter improvement seems to be beyond the
reach of our method, due to the use of Talagrand�s type inequalities that require conditions in sup-norm. Arlot
and Massart [6] also show that the condition (Apu) is satis�ed when X �Rk and the regression function s� is
�-Hölderian. Moreover, they show that (Ap) is satis�ed when in addition, s� is non-constant with respect to
the sup-norm.

10



As in the case of histogram models, assumption (Ab�) implies in the piecewise polynomial case assumption
(Ab), see Section 5 of [30]. Assumptions (Aud), (AdLeb) and (Arpp) allow us to guaranty the statements
(Alb) and (Ac1) of the general set of assumptions in this case (see Lemmas 8 and 9 of [30]). Moreover, we
still have

Rn;DM
/
r
DM lnn

n
,

within a uniform constant over the models of Mn: It is well-known that piecewise polynomials uniformly
bounded in their degrees have good approximation properties in Besov spaces. More precisely, as stated in
Lemma 12 of Barron, Birgé and Massart [8], if X = [0; 1] and the regression function s� belongs to the Besov
space B�;p;1 (X ) (see the de�nition in [8]), then taking models of piecewise polynomials of degree bounded by
r > �� 1 on regular partitions with respect to the Lebesgue measure Leb on X , and assuming that PX has a
density with respect to Leb which is bounded in sup-norm, assumption (Apu) is satis�ed. It remains to �nd
conditions in this context such that the lower bound on the bias in (Ap) is also satis�ed.

Remark 3 Since constants in the general set of assumptions (GSA) made above are uniform over the col-
lection Mn, we deduce from Theorem 3 of [30] applied with � = 2 + �M and A� = A+ = AM;+ that if
assumptions (P2), (Ab), (An), (Alb) and (Ac1) hold, then a positive constant A0 exists, depending on
�M; AM;+ and on the constants A; �min and rM de�ned in the general set of assumptions, such that for all
M 2Mn satisfying

0 < AM;+ (lnn)
2 � DM ;

by setting

"n (M) = A0max

(�
lnn

DM

�1=4
;

�
DM lnn

n

�1=4
;
p
Rn;DM

)
(15)

we have, for all n � n0 (AM;+; A;Acons; n1; rM; �min; �M),

P
�
(1� "n (M))

1

4

DM
n
K21;M � P (Ksn (M)�KsM ) � (1 + "n (M))

1

4

DM
n
K21;M

�
� 1� 10n�2��M (16)

and

P
��
1� "2n (M)

� 1
4

DM
n
K21;M � Pn (KsM �Ksn (M)) �

�
1 + "2n (M)

� 1
4

DM
n
K21;M

�
� 1� 5n�2��M : (17)

Moreover, for allM 2Mn, we have by Theorem 4 of [30], for a positive constant Au depending on A;Acons; rM
and �M and for all n � n0 (Acons; n1),

P
�
P (Ksn (M)�KsM ) � Au

DM _ lnn
n

�
� 3n�2��M (18)

and

P
�
Pn (KsM �Ksn (M)) � Au

DM _ lnn
n

�
� 3n�2��M : (19)

The remainder of this paper is devoted to the proofs.

4 Proofs

Before stating the proofs of Theorems 2 and 1, we need two technical lemmas. In the �rst lemma, we intend
to evaluate the minimal penalty E [Pn (KsM �Ksn (M))] for models of dimension not too large and not too
small.

Lemma 4 Assume (P2), (Ab), (An), (Alb) and (Ac1) of the general set of assumptions de�ned in Section
3.1. Then, for every model M 2Mn of dimension DM such that

0 < AM;+ (lnn)
2 � DM ,

11



we have for all n � n0 (AM;+; A;Acons; n1; rM; �min; �M),�
1� LAM;+;A;�min;rM;�M"

2
n (M)

� DM
4n

K21;M � E [Pn (KsM �Ksn (M))] (20)

�
�
1 + LAM;+;A;�min;rM;�M"

2
n (M)

� DM
4n

K21;M , (21)

where "n (M) = A0max
��

lnn
DM

�1=4
;
�
DM lnn

n

�1=4
;
p
Rn;DM

�
is de�ned in Remark 3.

Proof. As explained in Remark 3, for all n � n0 (AM;+; A;Acons; n1; rM; �min; �M), we thus have on an
event 
1 (M) of probability at least 1� 5n�2��M ,

(1� "n (M))
1

4

DM
n
K21;M � Pn (KsM �Ksn (M)) � (1 + "n (M))

1

4

DM
n
K21;M , (22)

where "n (M) = A0max
��

lnn
DM

�1=4
;
�
DM lnn

n

�1=4
;
p
Rn;DM

�
: Moreover, as jYij � A a:s: and ksMk1 � A

by (Ab), it holds

0 � Pn (KsM �Ksn (M)) � PnKsM =
1

n

nX
i=1

(Yi � sM (XI))2 � 4A2 (23)

and as DM � 1, we have

"n (M) = A0max

(�
lnn

DM

�1=4
;

�
DM lnn

n

�1=4
;
p
Rn;DM

)
� A0n�1=8 . (24)

We also have

E [Pn (KsM �Ksn (M))]
= E

�
Pn (KsM �Ksn (M))1
1(M)

�
+ E

�
Pn (KsM �Ksn (M))1(
1(M))c

�
: (25)

Now notice that by (An) we have K1;M � 2�min > 0. Hence, as DM � 1, it comes from (23) and (24) that

0 � E
�
Pn (KsM �Ksn (M))1(
1(M))c

�
� 20A2n�2��M � 80A2

A20�
2
min

"2n (M)
DM
4n

K21;M . (26)

Moreover, we have "n (M) < 1 for all n � n0 (A0; AM;+; Acons), so by (22),

0 <
�
1� 5n�2��M

� �
1� "2n (M)

� DM
4n

K21;M � E
�
Pn (KsM �Ksn (M))1
1(M)

�
(27)

�
�
1� 5n�2��M

� �
1 + "2n (M)

� DM
4n

K21;M : (28)

Finally, noticing that n�2��M � A�20 "2n (M) by (24), we use (26), (27) and (28) in (25) to conclude by
straightforward computations that

LAM;+;A;�min;rM;�M =
80A2

A20�
2
min

+ 5A�20 + 1

is convenient in (20) and (21), as A0 only depends on �M; AM;+; A; �min and rM. �

12



Lemma 5 Let � > 0. Assume that (Ab) of Section 3.1 is satis�ed. Then a positive constant Ad exists,
depending only in A; AM;+; �min and � such that, by setting �� (M) = (Pn � P ) (KsM �Ks�), we have for
all M 2Mn,

P

 ���� (M)�� � Ad r` (s�; sM ) lnn
n

+
lnn

n

!!
� 2n�� : (29)

If moreover, assumptions (P2), (Ab), (An), (Alb) and (Ac1) of the general set of assumptions de�ned in Sec-
tion 3.1 hold, then for allM 2Mn such that AM;+ (lnn)

2 � DM and for all n � n0 (AM;+; A;Acons; n1; rM; �min; �),
we have

P
����� (M)�� � ` (s�; sM )p

DM
+Ad

lnnp
DM

E [p2 (M)]
�
� 2n�� , (30)

where p2 (M) := Pn (KsM �Ksn (M)) � 0.

Proof. We set

Ad = max

(
4A
p
�;

8A2

3
�;

8A2�p
AM;+�2min

+
16A2�

3AM;+�min

)
. (31)

Since by (Ab) we have jY j � A a:s: and ks�k1 � A, it holds ks�k1 = kE [Y jX ]k1 � A, and so ksM � s�k1 �
2A: Next, we apply Bernstein�s inequality (96) to �� (M) = (Pn � P ) (KsM �Ks�) : Notice that

K (sM ) (x; y)�K (s�) (x; y) = (sM (x)� s� (x)) (sM (x) + s� (x)� 2y) ;

hence kKsM �Ks�k1 � 8A2: Moreover, as E [Y � s� (X) jX ] = 0 and E
h
(Y � s� (X))2 jX

i
� (2A)2

4 = A2

we have

E
h
(KsM (X;Y )�Ks� (X;Y ))2

i
= E

h�
4 (Y � s� (X))2 + (sM (X)� s� (X))2

�
(sM (X)� s� (X))2

i
� 8A2E

h
(sM (X)� s� (X))2

i
= 8A2` (s�; sM ) ;

and therefore, by (96) we have for all x > 0;

P

 ���� (M)�� �r16A2` (s�; sM )x
n

+
8A2x

3n

!
� 2 exp (�x) :

By taking x = � lnn, we then have

P

 ���� (M)�� �r16A2�` (s�; sM ) lnn
n

+
8A2� lnn

3n

!
� 2n�� , (32)

which gives the �rst part of Lemma 5 for Ad given in (31). Now, by noticing the fact that 2
p
ab � a� + b��1

for all � > 0, and by using it in (32) with a = ` (s�; sM ), b = 4A2� lnn
n and � = D�1=2

M , we obtain

P
����� (M)�� � ` (s�; sM )p

DM
+

�
4
p
DM +

8

3

�
A2� lnn

n

�
� 2n�� : (33)

Then, for a model M 2 Mn such that AM;+ (lnn)
2 � DM , we apply Lemma 4 and by (20), it holds for all

n � n0 (AM;+; A;Acons; n1; rM; �min; �M),�
1� LAM;�;A;�min;rM;�M"

2
n (M)

� DM
4n

K21;M � E [p2 (M)] (34)
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where "n = A0max

��
lnn
DM

�1=4
;
�
DM lnn

n

�1=4
;
p
Rn;DM ;�

�
. Moreover as DM � AM;+n (lnn)

�2 by (P2),

Rn;DM
� Acons (lnn)�1=2 by (6) andAM;+ (lnn)

2 � DM , we deduce that for all n � n0 (AM;+; A;Acons; rM; �min; �M),

LAM;�;A;�min;rM;�M"
2
n (M) � 1=2 .

Now, sinceK1;M � 2�min > 0 by (An), we have by (34), E [p2 (M)] � �2min
2

DM

n for all n � n0 (AM;+; A;Acons; n1; rM; �min; �M).
This allows, using (33), to conclude the proof for the value of Ad given in (31) by simple computations. �
In order to avoid cumbersome notations in the proofs of Theorems 2 and 1, when generic constants L and n0
depend on constants de�ned in the general set of assumptions stated in Section 3.1, we will note L(GSA) and
n0 ((GSA)).

Proof of Theorem 2. From the de�nition of the selected model cM given in (3), cM minimizes

crit (M) := Pn (Ksn (M)) + pen (M) , (35)

over the models M 2Mn. Hence, cM also minimizes

crit0 (M) := crit (M)� Pn (Ks�) . (36)

over the collectionMn. Let us write

` (s�; sn (M)) = P (Ksn (M)�Ks�)
= Pn (Ksn (M)) + Pn (KsM �Ksn (M)) + (Pn � P ) (Ks� �KsM )
+ P (Ksn (M)�KsM )� Pn (Ks�) :

By setting
p1 (M) = P (Ksn (M)�KsM ) ,

p2 (M) = Pn (KsM �Ksn (M)) ,
�� (M) = (Pn � P ) (KsM �Ks�)

and
pen0id (M) = p1 (M) + p2 (M)� �� (M) ,

we have
` (s�; sn (M)) = Pn (Ksn (M)) + p1 (M) + p2 (M)� �� (M)� Pn (Ks�) (37)

and by (36),
crit0 (M) = ` (s�; sn (M)) + (pen (M)� pen0id (M)) . (38)

As cM minimizes crit0 overMn, it is therefore su¢ cient by (38), to control pen (M)�pen0id (M) - or equivalently
crit0 (M) - in terms of the excess risk ` (s�; sn (M)), for every M 2Mn, in order to derive oracle inequalities.
Let 
n be the event on which:

� For all models M 2Mn of dimension DM such that AM;+ (lnn)
3 � DM , (10) hold and

jp1 (M)� E [p2 (M)]j � L(GSA)"n (M)E [p2 (M)] (39)

jp2 (M)� E [p2 (M)]j � L(GSA)"2n (M)E [p2 (M)] (40)���� (M)�� � ` (s�; sM )p
DM

+ L(GSA)
lnnp
DM

E [p2 (M)] (41)

���� (M)�� � L(GSA)
 r

` (s�; sM ) lnn

n
+
lnn

n

!
(42)
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� For all models M 2Mn of dimension DM such that DM � AM;+ (lnn)
3, (11) holds together with

���� (M)�� � L(GSA)
 r

` (s�; sM ) lnn

n
+
lnn

n

!
(43)

p2 (M) � L(GSA)
DM _ lnn

n
� L(GSA)

(lnn)
3

n
(44)

p1 (M) � L(GSA)
DM _ lnn

n
� L(GSA)

(lnn)
3

n
(45)

By (16), (17), (18) and (19) in Remark 3, Lemma 4, Lemma 5 applied with � = 2+�M, and since (10) holds
with probability at least 1�Apn�2, we get for all n � n0 ((GSA)),

P (
n) � 1�Apn�2 � 24
X

M2Mn

n�2��M � 1� LAp;cMn
�2 :

Control on the criterion crit0 for models of dimension not too small:

We consider models M 2 Mn such that AM;+ (lnn)
3 � DM . Notice that (41) implies by (15) that, for all

M 2Mn such that AM;+ (lnn)
3 � DM , for all n � n0 ((GSA)),

���� (M)�� � L(GSA)

 
(lnn)

3

DM
� lnn
DM

!1=4
� E [` (s�; sM ) + p2 (M)]

� L(GSA)"n (M)E [` (s�; sM ) + p2 (M)] ,

so that on 
n we have, for all models M 2Mn such that AM;+ (lnn)
3 � DM ,

jpen0id (M)� pen (M)j
� jp1 (M) + p2 (M)� pen (M)j+

���� (M)��
� jp1 (M) + p2 (M)� 2E [p2 (M)]j+ �E [p2 (M)] + L(GSA)"n (M)E [` (s�; sM ) + p2 (M)]
� L(GSA)"n (M)E [p2 (M)] + �E [p2 (M)] + L(GSA)"n (M)E [` (s�; sM ) + p2 (M)]
�
�
� + L(GSA)"n (M)

�
E [` (s�; sM ) + p2 (M)] : (46)

Now notice that using (P2) and (6) in (15) gives that for all models M 2 Mn such that AM;+ (lnn)
3 � DM

and for all n � n0 ((GSA)), 0 < L(GSA)"n (M) � 1
2 . As ` (s�; sn (M)) = ` (s�; sM ) + p1 (M), we thus have on


n, for all n � n0 ((GSA)),

0 � E [` (s�; sM ) + p2 (M)]
� ` (s�; sn (M)) + jp1 (M)� E [p2 (M)]j

� ` (s�; sn (M)) +
L(GSA)"n (M)

1� L(GSA)"n (M)
p1 (M) by (39)

�
1 + L(GSA)"n (M)

1� L(GSA)"n (M)
` (s�; sn (M))

�
�
1 + L(GSA)"n (M)

�
` (s�; sn (M)) . (47)

Hence, using (47) in (46), we have on 
n for all models M 2 Mn such that AM;+ (lnn)
3 � DM and for all

n � n0 ((GSA)),
jpen0id (M)� pen (M)j �

�
� + L(GSA)"n (M)

�
` (s�; sn (M)) . (48)

By consequence, for all models M 2 Mn such that AM;+ (lnn)
3 � DM and for all n � n0 ((GSA)), it holds

on 
n, using (38) and (48),�
1� � � L(GSA)"n (M)

�
` (s�; sn (M)) � crit0 (M) �

�
1 + � + L(GSA)"n (M)

�
` (s�; sn (M)) . (49)
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Control on the criterion crit0 for models of small dimension:

We consider models M 2 Mn such that DM � AM;+ (lnn)
3. By (11), (43) and (44), it holds on 
n, for any

� > 0 and for all M 2Mn such that DM � AM;+ (lnn)
3,

jpen0id (M)� pen (M)j
� p1 (M) + p2 (M) + pen (M) +

���� (M)��
� L(GSA)

(lnn)
3

n
+Ar

(lnn)
3

n
+ L(GSA)

 r
` (s�; sM ) lnn

n
+
lnn

n

!

� L(GSA),Ar

(lnn)
3

n
+ �` (s�; sM ) +

�
��1 + 1

�
L(GSA)

lnn

n

� L(GSA),Ar

(lnn)
3

n
+ �` (s�; sn (M)) +

�
��1 + 1

�
L(GSA)

lnn

n
. (50)

Hence, by taking � = (lnn)�2 in (50) we get that for all M 2 Mn such that DM � AM;+ (lnn)
3, it holds on


n,

jpen0id (M)� pen (M)j �
` (s�; sn (M))

(lnn)
2 + L(GSA),Ar

(lnn)
3

n
. (51)

Moreover, by (38) and (51), we have on the event 
n, for all M 2Mn such that DM � AM;+ (lnn)
3,

�
1� (lnn)�2

�
` (s�; sn (M))� L(GSA),Ar

(lnn)
3

n
� crit0 (M) (52)

�
�
1 + (lnn)

�2
�
` (s�; sn (M)) + L(GSA),Ar

(lnn)
3

n
. (53)

Oracle inequalities:

Recall that by the de�nition given in (2), an oracle model satis�es

M� 2 arg min
M2Mn

f` (s�; sn (M))g : (54)

By Lemmas 6 and 7 below, we control on 
n the dimensions of the selected model cM and the oracle modelM�.
More precisely, by (66) and (68), we have on 
n, for any 1

2 > � >
�
1� �+

�
+
=2 and for all n � n0 ((GSA); �; �),

DcM � n1=2+� , (55)

DM� � n1=2+� : (56)

Now, from (55) we distinguish two cases in order to control crit0
�cM�. If AM;+ (lnn)

3 � DcM � n1=2+�, we
get by (49), for all n � n0 ((GSA)),

crit0
�cM� � �1� � � L(GSA)"n �cM�� `�s�; sn �cM�� . (57)

Otherwise, if DcM � AM;+ (lnn)
3, we get by (52),

�
1� (lnn)�2

�
`
�
s�; sn

�cM��� L(GSA),Ar

(lnn)
3

n
� crit0

�cM� . (58)
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In all cases, we have by (57) and (58), for all n � n0 ((GSA)),

crit0
�cM� �  1� � � (lnn)�2 � L(GSA) sup

M2Mn, AM;+(lnn)
3�DM�n1=2+�

"n (M)

!
`
�
s�; sn

�cM��
�L(GSA),Ar

(lnn)
3

n
. (59)

Similarly, from (56) we distinguish two cases in order to control crit0 (M�). If AM;+ (lnn)
3 � DM� � n1=2+�,

we get by (49), for all n � n0 ((GSA)),

crit0 (M�) �
�
1 + � + L(GSA)"n (M�)

�
` (s�; sn (M�)) . (60)

Otherwise, if DM� � AM;+ (lnn)
3, we get by (53),

crit0 (M�) �
�
1 + (lnn)

�2
�
` (s�; sn (M�)) + L(GSA),Ar

(lnn)
3

n
. (61)

In all cases, we deduce from (60) and (61) that we have for all n � n0 ((GSA),�),

crit0 (M�) �
 
1 + � + (lnn)

�2
+ L(GSA) sup

M2Mn, AM;+(lnn)
3�DM�n1=2+�

"n (M)

!
` (s�; sn (M�))

+L(GSA),Ar

(lnn)
3

n
. (62)

Hence, by setting
�n = L(GSA) � sup

M2Mn, AM;+(lnn)
3�DM�n1=2+�

"n (M) ,

we have by (15) and (6), for all n � n0 ((GSA); �; �),

�n �
L(GSA)

(lnn)
1=4

, (lnn)
�2
+ �n + � < 1 , (lnn)

�2
+ �n <

1� �
2

and we deduce from (59) and (62), since 1
1�x � 1 + 2x for all x 2

�
0; 12
�
, that for all n � n0 ((GSA); �; �), it

holds on 
n,

`
�
s�; sn

�cM�� �  1 + � + (lnn)�2 + �n
1� � � (lnn)�2 � �n

!
` (s�; sn (M�)) +

L(GSA),Ar

1� � � (lnn)�2 � �n
(lnn)

3

n

�

0@1 + �
1� � +

5
�
(lnn)

�2
+ �n

�
(1� �)2

1A ` (s�; sn (M�)) + L(GSA),Ar

(lnn)
3

n
. (63)

Inequality (13) is now proved.
It remains to prove the second part of Theorem 2. We assume that assumption (Ap) holds. From Lemmas 6
and 7, we have that for any 1

2 > � >
�
1� �+

�
+
=2 and for all n � n0

�
(GSA); C�; ��; �; �

�
, it holds on 
n,

AM;+ (lnn)
3 � DcM � n1=2+� , (64)

AM;+ (lnn)
3 � DM� � n1=2+� : (65)

Now, using (57) and (60), by the same kind of computations leading to (63), we deduce that it holds on 
n,
for all n � n0

�
(GSA); C�; ��; �; �

�
,

`
�
s�; sn

�cM�� � �1 + � + �n
1� � � �n

�
` (s�; sn (M�))

�
 
1 + �

1� � +
5�n

(1� �)2

!
` (s�; sn (M�)) .

Thus inequality (14) is proved and Theorem 2 follows. �
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Lemma 6 (Control on the dimension of the selected model) Assume that the general set of assump-
tions (GSA) hold. Let � >

�
1� �+

�
+
=2. If n � n0 ((GSA); �; �) then, on the event 
n de�ned in the proof

of Theorem 2, it holds
DcM � n1=2+� . (66)

If moreover (Ap) holds, then for all n � n0
�
(GSA); C�; ��; �; �

�
, we have on the event 
n,

AM;+ (lnn)
3 � DcM � n1=2+� . (67)

Lemma 7 (Control on the dimension of oracle models) Assume that the general set of assumptions
(GSA) hold. Let � >

�
1� �+

�
+
=2. If n � n0 ((GSA); �) then, on the event 
n de�ned in the proof of

Theorem 2, it holds
DM� � n1=2+� . (68)

If moreover (Ap) holds, then for all n � n0
�
(GSA); C�; ��; �

�
, we have on the event 
n,

AM;+ (lnn)
3 � DM� � n1=2+� . (69)

Proof of Lemma 6. Recall that cM minimizes

crit0 (M) = crit (M)� PnKs� = ` (s�; sM )� p2 (M) + �� (M) + pen (M) (70)

over the models M 2Mn:

1. Lower bound on crit0 (M) for small models in the case where (Ap) hold : let M 2 Mn be such that
DM < AM;+ (lnn)

3
: We then have on 
n,

` (s�; sM ) � C�A
���
M;+ (lnn)

�3�� by (Ap)

pen (M) � 0

p2 (M) � L(GSA)
(lnn)

3

n
from (44)

�� (M) � �L(GSA)

 r
` (s�; sM ) lnn

n
+
lnn

n

!
from (43).

Since by (Ab), we have 0 � ` (s�; sM ) � 4A2, we deduce that for all n � n0
�
(GSA); C�; ��

�
,

crit0 (M) �
C�A

���
M;+

2
(lnn)

�3�� : (71)

2. Lower bound for large models : let M 2 Mn be such that DM � n1=2+�: From (10) and (40) we have
on 
n,

pen (M)� p2 (M) �
�
1� � � L(GSA)"2n (M)

�
E [p2 (M)] .

Using (P2), (6) and the fact that DM � n1=2+� in (15), we deduce that for all n � n0 ((GSA); �; �),
L(GSA)"

2
n (M) � 1

2 (1� �) and as by (An), K1;M � 2�min we also deduce from Lemma 4 that for all

n � n0 ((GSA); �), E [p2 (M)] � �2min
2

DM

n . By consequence, it holds for all n � n0 ((GSA); �; �),

pen (M)� p2 (M) �
�2min
4

(1� �) DM
n

. (72)

From (42) it holds on 
n,

�� (M) � �L(GSA)

 r
` (s�; sM ) lnn

n
+
lnn

n

!
. (73)

Hence, as DM � n1=2+� and as by (Ab), 0 � ` (s�; sM ) � 4A2, we deduce from (70), (72) and (73) that
we have on 
n, for all n � n0 ((GSA); �; �),

crit0 (M) � (1� �)L(GSA)n�1=2+� : (74)
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3. A better model exists for crit0 (M) : from (P3), there exists M0 2Mn such that
p
n � DM0

� crich
p
n:

Then, for all n � n0 ((GSA); �),

AM;+ (lnn)
3 �

p
n � DM0

� crich
p
n � n1=2+� :

Using (Apu),
` (s�; sM0

) � C+n��+=2 : (75)

By (41), we have on 
n, for all n � n0 ((GSA); �),���� (M0)
�� � ` (s�; sM0

)p
DM0

+ L(GSA)
lnnp
DM0

E [p2 (M0)] (76)

and by (10),
pen (M0) � 3E [p2 (M0)] .

Hence, as K1;M � 6A and ` (s�; sM0) � 4A2 by (Ab) and as for all n � n0 ((GSA)) "n (M) � 1, we
deduce from inequalities (75), (76) and Lemma 4 that for all n � n0 ((GSA); �),���� (M0)

�� � L(GSA) �n�(�+=2+1=4) + ln (n)n�3=4�
and

pen (M0) � L(GSA)n�1=2 .

By consequence, we have on 
n, for all n � n0 ((GSA); �),

crit0 (M0) � ` (s�; sM0) +
���� (M0)

��+ pen (M0)

� L(GSA)
�
n��+=2 + n�1=2

�
. (77)

To conclude, notice that the upper bound (77) is smaller than the lower bound given in (74) for all n �
n0 ((GSA); �; �). Hence, points 2 and 3 above yield inequality (66). Moreover, the upper bound (77) is smaller
than lower bounds given in (71), derived by using (Ap), and (74), for all n � n0

�
(GSA); C�; ��; �; �

�
. This

thus gives (67) and Lemma 6 is proved. �
Proof of Lemma 7. By de�nition, M� minimizes

` (s�; sn (M)) = ` (s�; sM ) + p1 (M)

over the models M 2Mn:

1. Lower bound on ` (s�; sn (M)) for small models : let M 2Mn be such that DM < AM;+ (lnn)
3
: In this

case we have
` (s�; sn (M)) � ` (s�; sM ) � C�A

���
M;+ (lnn)

�3�� by (Ap). (78)

2. Lower bound of ` (s�; sn (M)) for large models : let M 2Mn be such that DM � n1=2+�: From (39) we
get on 
n,

p1 (M) �
�
1� L(GSA)"n (M)

�
E [p2 (M)] .

Using (P2), (6) and the fact that DM � n1=2+� in (15), we deduce that for all n � n0 ((GSA); �),
L(GSA)"n (M) � 1

2 and as by (An), K1;M � 2�min we also deduce from Lemma 4 that for all n �
n0 ((GSA); �), E [p2 (M)] � �2min

2
DM

n . By consequence, it holds for all n � n0 ((GSA); �), on the event

n,

` (s�; sn (M)) � p1 (M) �
�2min
4

DM
n

� �2min
4
n�1=2+� : (79)
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3. A better model exists for ` (s�; sn (M)) : from (P3), there exists M0 2 Mn such that
p
n � DM0

�
crich

p
n: Moreover, for all n � n0 ((GSA); �),

AM;+ (lnn)
3 �

p
n � DM0

� crich
p
n � n1=2+� :

Using (Apu),
` (s�; sM0

) � C+n��+=2

and by (39)
p1 (M0) �

�
1 + L(GSA)"n (M)

�
E [p2 (M0)]

Hence, as K1;M � 6A by (Ab) and as, by (6) and (15), for all n � n0 ((GSA)) it holds "n (M) � 1, we
deduce from Lemma 4 that for all n � n0 ((GSA)), on the event 
n,

p1 (M0) � L(GSA)
DM
n

� L(GSA)n�1=2 :

By consequence, on 
n, for all n � n0 ((GSA)),

` (s�; sn (M0)) = ` (s�; sM0
) + p1 (M0)

� L(GSA)
�
n��+=2 + n�1=2

�
: (80)

The upper bound (80) is smaller than the lower bound (79) for all n � n0 ((GSA); �), and this gives
(68). If (Ap) hold, then the upper bound (80) is smaller than the lower bounds (78) and (79) for all
n � n0

�
(GSA); C�; ��; �

�
, which proves (69) and allows to conclude the proof of Lemma 7. �

Proof of Theorem 1. Similarly to the proof of Theorem 2, we consider the event 
0n of probability at least
1� LcM;Ap

n�2 for all n � n0 ((GSA)), on which: (8) holds and

� For all models M 2Mn of dimension DM such that AM;+ (lnn)
2 � DM it holds

jp1 (M)� E [p2 (M)]j � L(GSA)"n (M)E [p2 (M)] , (81)

jp2 (M)� E [p2 (M)]j � L(GSA)"2n (M)E [p2 (M)] . (82)

� For all models M 2Mn with DM � AM;+ (lnn)
2 it holds

p2 (M) � L(GSA)
(lnn)

2

n
. (83)

� For every M 2Mn, ���� (M)�� � L(GSA)
 r

` (s�; sM ) lnn

n
+
lnn

n

!
. (84)

Let d 2 (0; 1) to be chosen later.
Lower bound on DcM . Remind that cM minimizes

crit0 (M) = crit (M)� PnKs� = ` (s�; sM )� p2 (M) + �� (M) + pen (M) : (85)

1. Lower bound on crit0 (M) for �small�models : assume that M 2Mn and

DM � dArichn (lnn)�2 :

We have
` (s�; sM ) + pen (M) � 0 (86)
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and from (84), as ` (s�; sM ) � 4A2 by (Ab), we get on 
0n, for all n � n0 ((GSA),d),

�� (M) � �L(GSA)

 r
` (s�; sM ) lnn

n
+
lnn

n

!

� �L(GSA)

r
lnn

n

� �d�A2Arich (lnn)�2 . (87)

Then, if DM � AM;+ (lnn)
2, as K1;M � 6A by (Ab) and as, by (6) and (15), for all n � n0 ((GSA)) it

holds L(GSA)"n (M) � 1, we deduce from (82) and Lemma 4 that for all n � n0 ((GSA)),

p2 (M) � 2E [p2 (M)] � 36A2
DM
n

� d� 36A2Arich (lnn)�2 :

Whenever DM � AM;+ (lnn)
2, (83) gives that, for all n � n0 ((GSA),d), on the event 
0n,

p2 (M) � L(GSA)
(lnn)

2

n
� d� 36A2Arich (lnn)�2 :

Hence, we have checked that for all n � n0 ((GSA); d), on the event 
0n,

�p2 (M) � �d� 36A2Arich (lnn)�2 ; (88)

and �nally, by using (86), (87) and (88) in (85), we deduce that on 
0n, for all n � n0 ((GSA); d),

crit0 (M) � �d� 37A2Arich (lnn)�2 . (89)

2. There exists a better model for crit0 (M) : By (P3), for all n � n0 (AM;+; Arich) a model M1 2 Mn

exists such that

AM;+ (lnn)
2 � Arichn

(lnn)
2 � DM1 :

We then have on 
0n,

` (s�; sM1) � A
��+
rich (lnn)

2�+ n��+ by (Apu)

p2 (M1) �
�
1� L(GSA)"2n (M1)

�
E [p2 (M1)] by (82)

pen (M1) � ApenE [p2 (M1)] by (8)���� (M1)
�� � L(GSA)r lnn

n
by (84) and (Ab)

and therefore,

crit0 (M1) �
�
�1 +Apen + L(GSA)"2n (M1)

�
E [p2 (M1)] + L(GSA)

r
lnn

n
+A

��+
rich

(lnn)
2�+

n�+
: (90)

Hence, as �1 +Apen < 0, and as by (6), (15), (An) and Lemma 4 it holds for all n � n0 ((GSA); Apen)

L(GSA)"
2
n (M1) �

1�Apen
2

and E [p2 (M1)] �
�2min
2

DM
n

� �2minArich
2

(lnn)
�2 ,

we deduce from (90) that on 
0n, for all n � n0 ((GSA); Apen),

crit0 (M1) � �
1

4
(1�Apen)�2minArich (lnn)

�2
: (91)
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Now, by taking

0 < d =

�
1

149
(1�Apen)

��min
A

�2�
^ 1
2
< 1 (92)

and by comparing (89) and (91), we deduce that on 
0n, for all n � n0 ((GSA); Apen), for all M 2 Mn such
that DM � dArichn (lnn)�2,

crit0 (M1) < crit
0 (M)

and so
DcM > dArichn (lnn)

�2
: (93)

Excess Risk of sn
�cM�. We take d with the value given in (92). First notice that for all n � n0 (AM;+; Arich; d) ;

we have dArichn (lnn)
�2 � AM;+ (lnn)

2. Hence, for all M 2 Mn such that DM � dArichn (lnn)�2, by (6),
(15), (P2), (An) and Lemma 4, it holds on 
0n for all n � n0 ((GSA); Apen), using (81),

` (s�; sn (M)) � p1 (M) �
�2min
2

DM
n

� d�2minArich
2

(lnn)
�2

:

By (93), we thus get that on 
0n, for all n � n0 ((GSA); Apen),

`
�
s�; sn

�cM�� � d�2minArich
2

(lnn)
�2

: (94)

Moreover, the model M0 de�ned in (P3) satis�es, for all n � n0 ((GSA)),

AM;+ (lnn)
3 �

p
n � DM0

� crich
p
n

and so using (Apu),
` (s�; sM0

) � C+n��+=2 .
In addition, by (39),

p1 (M) �
�
1 + L(GSA)"n (M)

�
E [p2 (M)] .

Hence, as K1;M � 6A by (Ab) and as, by (6) and (15), for all n � n0 ((GSA)) it holds "n (M) � 1, we deduce
from Lemma 4 that for all n � n0 ((GSA))

p1 (M) � L(GSA)
DM
n

� L(GSA)n�1=2 :

By consequence, for all n � n0 ((GSA)),

` (s�; sn (M0)) � L(GSA)
�
n��+=2 + n�1=2

�
(95)

and the ratio between the two bounds (94) and (95) is larger than ln (n) for all n � n0
�
L(GSA) ; Apen

�
, which

yields (9). �

Probabilistic Tools We recall here the main probabilistic results that are instrumental in our proofs.
The following tool is the well known Bernstein�s inequality, that can be found for example in [28], Proposition
2.9.

Theorem 8 (Bernstein�s inequality) Let (X1; :::; Xn) be independent real valued random variables and de�ne

S =
1

n

nX
i=1

(Xi � E [Xi]) :

Assuming that

v =
1

n

nX
i=1

E
�
X2
i

�
<1
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and
Xi � b a:s:

we have, for every x > 0,

P
�
jSj �

r
2v
x

n
+
bx

3n

�
� 2 exp (�x) : (96)

We now turn to concentration inequalities for the empirical process around its mean. Bousquet�s inequality
[17] provides optimal constants for the deviations above the mean. Klein-Rio�s inequality [20] gives sharp
constants for the deviations below the mean, that slightly improves Klein�s inequality [21].

Theorem 9 Let (�1; :::; �n) be n i.i.d. random variables having common law P and taking values in a mea-
surable space Z. If F is a class of measurable functions from Z to R satisfying

jf (�i)� Pf j � b a:s:; for all f 2 F ; i � n;

then, by setting

�2F = sup
f2F

n
P
�
f2
�
� (Pf)2

o
;

we have, for all x � 0,
Bousquet�s inequality :

P
�
kPn � PkF � E [kPn � PkF ] �

r
2 (�2F + 2bE [kPn � PkF ])

x

n
+
bx

3n

�
� exp (�x) (97)

and we can deduce that, for all "; x > 0, it holds

P
�
kPn � PkF � E [kPn � PkF ] �

r
2�2F

x

n
+ "E [kPn � PkF ] +

�
1

"
+
1

3

�
bx

n

�
� exp (�x) : (98)

Klein-Rio�s inequality :

P
�
E [kPn � PkF ]� kPn � PkF �

r
2 (�2F + 2bE [kPn � PkF ])

x

n
+
bx

n

�
� exp (�x) (99)

and again, we can deduce that, for all "; x > 0, it holds

P
�
E [kPn � PkF ]� kPn � PkF �

r
2�2F

x

n
+ "E [kPn � PkF ] +

�
1

"
+ 1

�
bx

n

�
� exp (�x) : (100)
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