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Abstract

We consider the estimation of a bounded regression function with nonparametric heteroscedastic noise.
We are interested by the true and empirical excess risks of the least-squares estimator on a �nite-dimensional
vector space. For these quantities, we give upper and lower bounds in probability that are optimal at the
�rst order. Moreover, these bounds show the equivalence between the true and empirical excess risks
when, among other things, the least-squares estimator is consistent in sup-norm towards the projection of
the regression function onto the considered model. Consistency in sup-norm is then proved for suitable
histogram models and more general models of piecewise polynomials that are endowed with a localized
basis structure.

keywords: Least-squares regression, Heteroscedasticity, Excess risk, Lower bounds, Empirical process,
M-estimation.

1 Introduction

This article is devoted to least-squares estimation of a regression function on a �nite dimensional linear model.
We derive sharp upper and lower bounds in probability for the true and empirical excess risks of the least-
squares estimator. We only focus on the �stochastic�parts of the excess risks and we do not discuss on the
possible behaviors of the bias of the model, neither on the trade-o¤ that can be achieved between the bias
and the variance terms. However, our framework is closely related to the method of sieves and particularly
to the work of Birgé and Massart [6]. The leading idea of the sieve method is to replace a complicated set of
parameters by a more tractable one having good approximation properties, an idea that goes back to Cencov
[9], considering orthogonal series for density estimation, and to Le Cam [17] where the author investigate
the relationship between the metric structure of the parameter space and the rate of optimal estimators,
see also Le Cam [18] Section 16.5 and Le Cam and Yang [19] Section 6.5. Since the formalization of the
sieve method by Grenander [12], many authors have considered this method for MLEs or more general M-
estimators. Inspired by a work of van de Geer [31] in regression, Birgé and Massart [5] proposed to study
minimum of contrast estimation on general parameter spaces under entropy with bracketing conditions, and
proved that sub-optimality of M-estimators can happen when the parameter space is too large. The entropy
with bracketing covering property has then been a central tool for studying minimum contrast estimation on
general sieves in Shen and Wong [25], Wong and Shen [36] and van de Geer [32]. Van de Geer [33] more recently
considers M-estimation with convex loss functions, a situation that allows to �localize�the problem to a small
neighborhood in the parameter space. In a series of papers that started with Stone [27], Stone extensively
studied log-spline density estimation and spline regression, see [26], [28], [29] and Stone and Kooperberg [16].
Birgé and Massart [6] introduced metric properties on the sieves relating the L2-structure to the L1-

structure, and which involve covering numbers related to both L2 and L1 norms. These metric conditions
are satis�ed for linear sieves commonly used in practice, such as Fourier expansions, piecewise polynomials
and wavelet expansions, but also for non-linear sieves, which can have better approximation properties, and
that include �nite linear combinations of D sigmoidal functions related to neural networks, see also Barron
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[2], and histograms generated by any partition on [0; 1] into D subintervals. Birgé and Massart [6] pointed out
that the use of covering numbers, even in the case of linear sieves, is quite natural since linearity is lost on the
contrasted functions for a non-linear contrast such as in the regression and maximum likelihood estimation
contexts. This allows them to derive sharp exponential bounds and rates of convergence for the excess risk
on such sieves, using in particular a Talagrand�s concentration inequality for the supremum of the empirical
process.
The starting point of our method is to remark that the least-squares contrast in regression can be expanded

to the sum of a linear part and a quadratic part. This allows us to recover some linearity on the contrasted
functions and avoid the use of entropy methods to control the empirical process on a linear model. The gain
is that we achieve optimal rates of convergence for the true and empirical excess risks with exact constants,
for models of reasonable dimension. In our study, the metric properties de�ned by Birgé and Massart in [6]
play a center role, in particular the notion of localized basis. In addition, we point out the importance of the
behavior in sup-norm of the least-squares estimator and we have to assume its consistency in sup-norm towards
the linear projection of the regression function onto the model. We show that such a condition is satis�ed by
histograms and piecewise polynomial models when they are endowed with a localized basis structure, which
corresponds in that case to a lower regularity assumption on the considered partition. By doing so, we recover
some recent results of Arlot and Massart [1] on the empirical and true excess risk for least-squares estimator
on histogram models, and extend them to the case of piecewise polynomials.
Altough we do not make an explicit use of the margin conditions that can hold in the context of bounded

regression, this property also connects our work with the statistical learning theory. The margin conditions
were �rst introduced by Mammen and Tsybakov [22] in the context of discrimination analysis. They allow to
get faster rates of convergence than the pioneering bounds of Vapnik and µCervonenkis, see [35] and [34], using
�localization�techniques. Under entropy with bracketing conditions, Tsybakov [30] shows some fast rates in
the binary classi�cation setting, and these results have been recovered and extended by Massart and Nédélec
[24], Koltchinskii [15] and by Giné and Koltchinskii [11], where the authors also give asymptotic results for
ratio type empirical processes. The obtained bounds are proved to be optimal in a minimax sense in [24], up
to a logarithmic factor shown by Massart and Nédélec to be unavoidable for �rich�VC-classes. This analysis
is re�ned in [11] by the use of localized L2 (P )-envelopes of the models, allowing to remove the logarithmic
factor in good cases.
The main tools in [24], [15] and [11] are Talagrand�s type concentration inequalities for the supremum of

the empirical process and the slicing or pealing technique through the use of ratio type empirical processes.
The slicing technique consists in considering subsets of the model, called the slices, and that are localized
in terms of excess risk, a quantity that is related to the variance of the empirical process through margin
conditions. Our method of proof may be viewed as a variant of the technique of slicing that allows to avoid
the use of ratio type empirical processes, where in general sharp constants are lost due to the use of chaining
techniques. The very �rst lines of our proofs di¤er from those of [24], [15] and [11], and permit in particular
to relate both upper and lower bounds for the excess risks of the M-estimator to the behavior of the empirical
process indexed by contrasted functions on localized slices of excess risk. This rewriting of the problem of
upper and lower bounds for the excess risks is closely related to the work of Bartlett and Mendelson [3], where
a �direct�approach of the empirical minimization algorithm is proposed, and proved to lead to more accurate
bounds than the traditional �structural�approach developed in [24], [11] or [15].
Finally, it should be said that, in a quite unusual manner, we not only focus on the (true) excess risk of the

least-squares estimator, which corresponds to the quadratic loss, but we also give attention on the empirical
excess risk. While the true excess risk was extensively studied in the last decade as mentioned above, much
less is known about the empirical excess risk. In fact, the study of the latter quantity is motivated by some
recent advances in model selection theory that are due to Birgé and Massart [4], followed by Arlot and Massart
[1]. More precisely, Birgé and Massart [4] have focused on optimality of penalization methods in a generalized
linear Gaussian framework and have proposed the so-called slope heuristics, which is a practical method of
data-driven and e¢ cient calibration of penalties. Then, Arlot and Massart [1] extended this method to more
general bounded M-estimation problems, proved its e¢ ciency on heteroscedastic regression, and pointed out
that the empirical excess risk on a �xed model was a fundamental quantity in this problem, in the sense that
its equivalence with the true excess risk is the keystone to prove the slope phenomenon. Hopefully, the main
result of the present paper shows that this equivalence is a quite general fact in regression, when using linear
models. We also notice that we avoid the use of Boucheron and Massart results, recently exposed in [7], that
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establish concentration inequalities for the empirical excess risk, in some general bounded M-estimation setting
with generalized margin conditions that they call low noise conditions,
The article is organized as follows. We present the statistical framework in Section 2 where we show in

particular the existence of an expansion of the least-squares regression contrast into the sum of a linear and a
quadratic part. We then derive general results for models of reasonable dimensions and also for small models
in Section 3. General results are then applied in the case of histograms and piecewise polynomials in Section
4 and 5 respectively, where explicit rates of convergence in sup-norm are derived. Finally, the proofs are
postponed to the end of the article.

2 Regression framework and notations

2.1 Least-squares estimator

Let (X ; TX ) be a measurable space and set Z = X�R. We assume that �i = (Xi;Yi) 2 X�R, i 2 f1; :::; ng are
n i.i.d. observations with law P . The marginal law of Xi is denoted by PX : We assume that the data satisfy
the following relation

Yi = s� (Xi) + � (Xi) "i ; (1)

where s� 2 L2
�
PX
�
, "i are i.i.d. random variables with mean 0 and variance 1 conditionally to Xi and � :

X �!R is an heteroscedastic noise level. A generic random variable of law P , independent of (�1; :::; �n), is
denoted by � = (X;Y ) :
Hence, s� is the regression function of Y with respect toX, that we want to estimate. Given a �nite dimensional
linear vector space M , we denote by sM the linear projection of s� onto M in L2

�
PX
�
and by D the linear

dimension of the model M .
We consider on M a least-squares estimator sn (possibly non unique), de�ned as follows

sn 2 arg min
s2M

(
1

n

nX
i=1

(Yi � s (Xi))
2

)
: (2)

So, if we denote by

Pn =
1

n

nX
i=1

�(Xi;Yi)

the empirical distribution of the data and by K : L2
�
PX
�
�! L1 (P ) the least-squares contrast, de�ned by

K (s) = (x; y) 2 Z ! (y � s (x))2 , s 2 L2
�
PX
�

we then remark that sn belongs to the general class of M-estimators, as it satis�es

sn 2 arg min
s2M

fPn (K (s))g : (3)

2.2 Excess risk and contrast

As de�ned in (3), sn is the empirical risk minimizer of the least-squares contrast. The regression function s�
can be de�ned as the minimizer in L2

�
PX
�
of the mean of the contrast over the unknown law P ,

s� = arg min
s2L2(PX)

PK (s) ;

where
PK (s) = P (Ks) = PKs = E [K (s) (X;Y )] = E

h
(Y � s (X))2

i
is called the risk of the function s. In particular we have PKs� = E

�
�2 (X)

�
. We �rst notice that for any

s 2 L2
�
PX
�
, if we denote by

ksk2 =
�Z

X
s2dPX

�1=2
3



its quadratic norm, then we have, by (1) above,

PKs� PKs� = P (Ks�Ks�)

= E
h
(Y � s (X))2 � (Y � s� (X))2

i
= E [(s� � s) (X) (2 (Y � s� (X)) + (s� � s) (X))]

= E
h
(s� � s)2 (X)

i
+ 2E

24(s� � s) (X)E [Y � s� (X) jX ]| {z }
=0

35
= ks� s�k22 � 0 ;

and PKs� PKs� is called the excess risk of s. So if we denote by sM the linear projection of s� onto M in
L2
�
PX
�
, we have

PKsM � PKs� = inf
s2M

fPKs� PKs�g ; (4)

and for all s 2M
PX (s � (sM � s�)) = 0 : (5)

From (4), we deduce that
sM = arg min

s2M
PK (s) :

Our goal is to study the performance of the least-squares estimator, that we measure by its excess risk. So we
are mainly interested by the random quantity P (Ksn (M)�Ks�) : Moreover, as we can write

P (Ksn (M)�Ks�) = P (Ksn (M)�KsM ) + P (KsM �Ks�)

we naturally focus on the quantity
P (Ksn (M)�KsM ) � 0

that we want to upper and lower bound in probability. Abusively we will often call this last quantity the
excess risk of the estimator on M or the true excess risk of sn (M), in opposition to the empirical excess risk
for which the expectation is taken over the empirical measure,

Pn (KsM �Ksn (M)) � 0:

The following lemma establishes the key expansion of the regression contrast around sM onM . This expansion
exhibits a linear part and a quadratic part.

Lemma 1 We have, for every z = (x; y) 2 Z;

(Ks) (z)� (KsM ) (z) =  1;M (z) (s� sM ) (x) +  2 ((s� sM ) (x)) (6)

with  1;M (z) = �2 (y � sM (x)) and  2 (t) = t2, for all t 2 R: Moreover, for all s 2M ,

P
�
 1;M � s

�
= 0 : (7)

Proof. Start with

(Ks) (z)� (KsM ) (z)
= (y � s (x))2 � (y � sM (x))2

= ((s� sM ) (x)) ((s� sM ) (x)� 2 (y � sM (x)))
= �2 (y � sM (x)) ((s� sM ) (x)) + ((s� sM ) (x))2 ,

which gives (6). Moreover, observe that for any s 2M ,

P
�
 1;M � s

�
= �2E [(Y � s� (X)) s (X)] + 2E [s (X) (sM � s�) (X)] : (8)
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We have

E [(Y � s� (X)) s (X)] = E

24E [(Y � s� (X)) jX ]| {z }
=0

s (X)

35 = 0 : (9)

and, by (5),
E [s (X) (sM � s�) (X)] = PX (s � (sM � s�)) = 0 : (10)

Combining (8), (9) and (10) we get that for any s 2M , P
�
 1;M � s

�
= 0. This concludes the proof. �

3 True and empirical excess risk bounds

In this section, we show that under assumptions that extend a previous work of Arlot and Massart [1], the
true excess risk is equivalent to the empirical one for models of reasonable dimension.
More precisely, we assume that M is a linear model with a localized basis in L2 (P ) and that the least-squares
estimator is consistent in sup-norm towards the linear projection sM onM of the target s� when the dimension
of the model is not too heavy. This is a natural generalization of the case of histograms studied by Arlot and
Massart in [1], since the assumption of lower regularity of the partitions made in their work indeed provides
the histograms with a structure of localized basis in L2 (P ), see Lemma 5. We further show in Lemma 6 that
the assumption of consistency is satis�ed for histograms.

3.1 Main assumptions

We turn now to the statement of some assumptions that will be needed to derive our results in Section 3.2.
These assumptions will be further discussed in Section 3.3.

Boundedness assumptions :

� (H1) The data and the linear projection of the target onto M are bounded : a positive �nite constant
A exists such that

jYij � A a:s: (11)

and
ksMk1 � A : (12)

Hence, from (H1) we deduce that
ks�k1 = kE [Y jX = � ]k1 � A (13)

and that there exists a constant �max > 0 such that

�2 (Xi) � �2max � A2 a:s: (14)

Moreover, as  1;M (z) = �2 (y � sM (x)) for all z = (x; y) 2 Z, we also deduce that�� 1;M (Xi; Yi)
�� � 4A a:s: (15)

� (H2) The heteroscedastic noise level � is uniformly bounded from below : a positive �nite constant �min
exists such that

0 < �min � � (Xi) a:s:

Models with localized basis in L2
�
PX
�
:

Let us de�ne a function 	M on X , that we call the unit envelope of M , such that

	M (x) =
1p
D

sup
s2M;ksk2�1

js (x)j : (16)

AsM is a �nite dimensional real vector space, the supremum in (16) can also be taken over a countable subset
of M , so 	M is a measurable function.
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� (H3) The unit envelope of M is uniformly bounded on X : a positive constant A3;M exists such that

k	Mk1 � A3;M <1 :

The following assumption is stronger than (H3).

� (H4) Existence of a localized basis in (M; k�k2) : there exists an orthonormal basis ' = ('k)
D
k=1 in

(M; k�k2) that satis�es, for a positive constant rM (') and all � = (�k)
D
k=1 2 RD,

DX
k=1

�k'k


1

� rM (')
p
D j�j1 ,

where j�j1 = max fj�kj ; k 2 f1; :::; Dgg is the sup-norm of the D-dimensional vector �:

Remark 2 (H4) implies (H3) and in that case A3;M = rM (') is convenient.

The assumption of consistency in sup-norm :

In order to handle second order terms in the expansion of the contrast (6) we assume that the least-squares
estimator is consistent for the sup-norm on the space X . More precisely, this requirement can be stated as
follows.

� (H5) Assumption of consistency in sup-norm : for any A+ > 0, ifM is a model of dimension D satisfying

D � A+
n

(lnn)
2 ;

then for every � > 0, we can �nd a positive integer n1 and a positive constant Acons satisfying the
following property : there exists Rn;D;� > 0 depending on D; n and �, such that

Rn;D;� �
Aconsp
lnn

(17)

and by setting

1;� = fksn � sMk1 � Rn;D;�g ; (18)

it holds for all n � n1,
P [
1;�] � 1� n�� : (19)

3.2 Theorems

We state here the general results of this article, that will be applied in Section 4 and 5 in the case of piecewise
constant functions and piecewise polynomials respectively.

Theorem 3 Let A+; A�; � > 0 and let M be a linear model of �nite dimension D. Assume that (H1), (H2),
(H4) and (H5) hold and take ' = ('k)

D
k=1 an orthonormal basis of (M; k�k2) satisfying (H4). If it holds

A� (lnn)
2 � D � A+

n

(lnn)
2 ; (20)

then a positive �nite constant A0 exists, only depending on �;A� and on the constants A; �min; rM (') de�ned
in the assumptions (H1), (H2) and (H4) respectively, such that by setting

"n = A0max

(�
lnn

D

�1=4
;

�
D lnn

n

�1=4
;
p
Rn;D;�

)
; (21)
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we have for all n � n0 (A�; A+; A;Acons; rM (') ; �min; n1; �),

P
�
P (Ksn �KsM ) � (1� "n)

1

4

D

n
K21;M

�
� 1� 5n�� ; (22)

P
�
P (Ksn �KsM ) � (1 + "n)

1

4

D

n
K21;M

�
� 1� 5n�� ; (23)

P
�
Pn (KsM �Ksn) �

�
1� "2n

� 1
4

D

n
K21;M

�
� 1� 2n�� ; (24)

P
�
Pn (KsM �Ksn) �

�
1 + "2n

� 1
4

D

n
K21;M

�
� 1� 3n�� ; (25)

where K21;M = 1
D

PD
k=1Var

�
 1;M � 'k

�
. In addition, when (H5) does not hold, but (H1), (H2) and (H4)

hold, we still have for all n � n0 (A�; A+; A; rM (') ; �min; �),

P

 
Pn (KsM �Ksn) �

 
1�A0max

(r
lnn

D
;

r
D lnn

n

)!
D

4n
K21;M

!
� 1� 2n�� : (26)

In Theorem 3 above, we achieve sharp upper and lower bounds for the true and empirical excess risks on M .
They are optimal at the �rst order since the leading constants are equal for upper and lower bounds. Moreover,
Theorem 3 states the equivalence with high probability of the true and empirical excess risks for models of
reasonable dimensions. We notice that second orders are smaller for the empirical excess risk than for the true
one. Indeed, when normalized by the �rst order, the deviations of the empirical excess risk are square of the
deviations of the true one. Our bounds also give another evidence of the concentration phenomenon of the
empirical excess risk exhibited by Boucheron and Massart [7] in the slightly di¤erent context of M-estimation
with bounded contrast where some margin condition hold. Notice that considering the lower bound of the
empirical excess risk given in (26), we do not need to assume the consistency of the least-squares estimator sn
towards the linear projection sM .
We turn now to upper bounds in probability for the true and empirical excess risks on models with possibly
small dimensions. In this context, we do not achieve sharp or explicit constants in the rates of convergence.

Theorem 4 Let �;A+ > 0 be �xed and let M be a linear model of �nite dimension

1 � D � A+
n

(lnn)
2 .

Assume that assumptions (H1), (H3) and (H5) hold. Then a positive constant Au exists, only depending on
A;Acons; A3;M and �, such that for all n � n0 (Acons; n1),

P
�
P (Ksn �KsM ) � Au

D _ lnn
n

�
� 3n�� (27)

and

P
�
Pn (KsM �Ksn) � Au

D _ lnn
n

�
� 3n�� : (28)

Notice that on contrary to the situation of Theorem 3, we do not assume that (H2) hold. This assumption
states that the noise level is uniformly bounded away from zero over the space X , and allows in Theorem
3 to derive lower bounds for the true and empirical excess risks, as well as to achieve sharp constants in
the deviation bounds for models of reasonable dimensions. In Theorem 4, we just derive upper bounds and
assumption (H2) is not needed. The price to pay is that constants in the rates of convergence derived in (27)
and (28) are possibly larger than the corresponding ones of Theorem 3, but our results still hold true for small
models. Moreover, in the case of models with reasonable dimensions, that is dimensions satisfying assumption
(20) of Theorem 3, the rate of decay is preserved compared to Theorem 3 and is proportional to D=n.
The proofs of the above theorems can be found in Section 6.3.
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3.3 Some additional comments

Let us �rst comment on the assumptions given in Section 3.1. Assumptions (11) and (H2) are rather mild
and can also be found in the work of Arlot and Massart [1] related to the case of histograms, where they are
respectively denoted by (Ab) and (An). The histogram case will be further commented in Section 4.3.
In assumption (H4) we require that the model M is provided with an orthonormal localized basis in L2

�
PX
�
.

This property is convenient when dealing with the L1-structure on the model, and this allows us to con-
trol the sup-norm of the functions in the model by the sup-norm of the vector of their coordinates in the
localized basis. For examples of models with localized basis, and their use in a model selection framework,
we refer for instance to Section 7.4.2 of Massart [23], where it is shown that models of histograms, piecewise
polynomials and compactly supported wavelets are typical examples of models with localized basis for the
L2 (Leb) structure, considering that X �Rk. In Sections 4 and 5, we show that models of piecewise constant
and piecewise polynomials respectively can also have a localized basis for the L2

�
PX
�
structure, under rather

mild assumptions on PX . Assumption (H4) is needed in Theorem 3, whereas in Theorem 4 we only use the
weaker assumption (H3) on the unit envelope of the model M , relating the L2-structure of the model to the
L1-structure. In fact, assumption (H4) allows us in the proof of Theorem 3 to achieve sharp lower bounds
for the quantities of interest, whereas in Theorem 4 we only give upper bounds in the case of small models.
We ask in assumption (H5) that the M-estimator is consistent towards the linear projection sM of s� onto the
model M , at a rate at least better than (lnn)�1=2 . This can be considered as a rather strong assumption, but
it is essential for our methodology. Moreover, we show in Sections 4 and 5 that this assumption is satis�ed
under mild conditions for histogram models and models of piecewise polynomials respectively, both at the rate

Rn;D;� /
r
D lnn

n
:

Secondly, let us comment on the rates of convergence given in Theorem 3 for models of reasonable dimensions.
As we can see in Theorem 3, the rate of estimation in a �xed model M of reasonable dimension is determined
at the �rst order by a key quantity that relates the structure of the model to the unknown law P of data. We
call this quantity the complexity of the model M and we denote it by CM : More precisely, let us de�ne

CM =
1

4
D �K21;M

where

K1;M =

vuut 1

D

DX
k=1

Var
�
 1;M � 'k

�
for a localized orthonormal basis ('k)

D
k=1 of (M; k�k2) : Notice that K1;M is well de�ned as it does not depend

on the choice of the basis ('k)
D
k=1 : Indeed, since we have P

�
 1;M � 'k

�
= 0, we deduce that

K21;M = P

 
 21;M �

 
1

D

DX
k=1

'2k

!!
:

Now observe that, by using Cauchy-Schwarz inequality in De�nition (16), as pointed out by Birgé and Massart
[6], we get

	2M =
1

D

DX
k=1

'2k (29)

and so

K21;M = P
�
 21;M	

2
M

�
= 4E

h
E
h
(Y � sM (X))2 jX

i
	2M (X)

i
= 4

�
E
�
�2 (X)	2M (X)

�
+ E

h
(sM � s�)2 (X)	2M (X)

i�
: (30)
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On the one hand, if we assume (H1) then we obtain by elementary computations

K1;M � 2�max + 4A � 6A : (31)

On the other hand, (H2) implies
K1;M � 2�min > 0 : (32)

To �x ideas, let us explicitly compute K21;M in a simple case. Consider homoscedastic regression on a histogram
model M , in which the homoscedastic noise level � is such that

�2 (X) = �2 a:s: ,

so that we have
E
�
�2 (X)	2M (X)

�
= �2E

�
	2M (X)

�
= �2 :

Now, under notations of Lemma 5 below,

sM =
X
I2P

E [Y 'I (X)]'I =
X
I2P

E [Y jX 2 I ]1I ;

thus we deduce, by (29) and the previous equality, that

E
h
(sM � s�)2 (X)	2M (X)

i
=

1

jPj
X
I2P

E
h
(sM � s�)2 (X)'2I (X)

i
=

1

jPj
X
I2P

E
�
(E [Y jX 2 I ]� E [Y jX ])2 1X2I

PX (I)

�
=

1

jPj
X
I2P

E
h
(E [Y jX 2 I ]� E [Y jX ])2 jX 2 I

i
=

1

jPj
X
I2P

V [E [Y jX ] jX 2 I ] ;

where the conditional variance V [U jA ] of a variable U with respect to the event A is de�ned to be

V [U jA ] := E
h
(U � E [U jA ])2 jA

i
= E

�
U2 jA

�
� (E [U jA ])2 .

By (30), we explicitly get

K21;M = 4

 
�2 +

1

jPj
X
I2P

V [E [Y jX ] jX 2 I ]
!
: (33)

A careful look at the proof of Theorem 3 given in Section 6.3 show that condition (H2) is only used through
the lower bound (32), and thus (H2) can be replaced by the following slightly more general assumption :

(H2bis) Lower bound on the normalized complexity K1;M : a positive constant Amin exists such that

K1;M � Amin > 0 .

When (H2) holds, we see from Inequality 32 that (H2bis) is satis�ed with Amin = 2�min. For suitable models
we can have for a positive constant A�	 and for all x 2 X ,

	M (x) � A�	 > 0 , (34)

and this allows to consider vanishing noise level, as we then have by (30),

K1;M � 2A�	
p
E [�2 (X)] = 2A�	 k�k2 > 0 .

As we will see in Sections 4 and 5, Inequality (34) can be satis�ed for histogram and piecewise polynomial
models on a partition achieving some upper regularity assumption with respect to the law PX .
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4 The histogram case

In this section, we particularize the results stated in Section 3 to the case of piecewise constant functions. We
show that under a lower regularity assumption on the considered partition, the assumption (H4) of existence
of a localized basis in L2

�
PX
�
and (H5) of consistency in sup-norm of the M-estimator towards the linear

projection sM are satis�ed.

4.1 Existence of a localized basis

The following lemma states the existence of an orthonormal localized basis for piecewise constant functions in
L2
�
PX
�
, on a partition which is lower-regular for the law PX .

Lemma 5 Let consider a linear model M of histograms de�ned on a �nite partition P on X , and write
jPj = D the dimension of M . Moreover, assume that for a positive �nite constant cM;P ,q

jPj inf
I2P

PX (I) � cM;P > 0 : (35)

Set, for I 2 P,
'I =

�
PX (I)

��1=2
1I .

Then the family ('I)I2�M is an orthonormal basis in L2
�
PX
�
and we have,

for all � = (�I)I2P 2 R
D;

X
I2P

�I'I


1

� c�1M;P

p
D j�j1 : (36)

Condition (35) can also be found in Arlot and Massart [1] and is named lower regularity of the partition P for
the law PX . It is easy to see that the lower regularity of the partition is equivalent to the property of localized
basis in the case of histograms, i.e. (35) is equivalent to (36). The proof of Lemma 5 is straightforward and
can be found in Section 6.1.

4.2 Rates of convergence in sup-norm

The following lemma allows to derive property (H5) for histogram models.

Lemma 6 Consider a linear model M of histograms de�ned on a �nite partition P of X , and denote by
jPj = D the dimension of M . Assume that Inequality (11) holds, that is, a positive constant A exists such
that jY j � A a:s: Moreover, assume that for some positive �nite constant cM;P ,q

jPj inf
I2P

PX (I) � cM;P > 0 (37)

and that D � A+n (lnn)
�2 � n for some positive �nite constant A+: Then, for any � > 0 and for all

n � n0 (�; cM;P ; A+), there exists an event of probability at least 1� n�� on which sn exists, is unique and it
holds,

ksn � sMk1 � LA+;A;cM;P ;�

r
D lnn

n
: (38)

In Lemma 6 we thus achieve the convergence in sup-norm of the regressogram sn towards the linear projection
sM at the rate

p
D ln (n) =n . It is worth noticing that for a model of histograms satisfying the assumptions

of Lemma 6, if we set

Acons = LA;cM;P ;�

p
A+ , n1 = n0 (�; cM;P ; A+) and Rn;D;� = LA+;A;cM;P ;�

r
D lnn

n
;

then Assumption (H5) is satis�ed. To derive Inequality (38), we need to assume that the response variable
Y is almost surely bounded and that the considered partition is lower-regular for the law PX . Hence, we �t
again with the framework of [1] and we can thus view the general set of assumptions exposed in Section 3.1
as a natural generalization for linear models of the framework developed in [1] in the case of histograms. The
proof of Lemma 6 can be found in Section 6.1.
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4.3 Bounds for the excess risks

The next theorem is a straightforward application of Lemmas 5, 6 and Theorems 3, 4. Indeed, we recover
results of Theorems 3 and 4 for models of histograms, under the lower regularity assumption on the considered
partition of the space X with respect to the unknown law PX . As seen in Section 4.2, we have in that case

Rn;D;� /
r
D lnn

n
:

Theorem 7 Given A+; A�; � > 0, consider a linear model M of histograms de�ned on a �nite partition P of
X , and write jPj = D the dimension of M . Assume that for some positive �nite constant cM;P , it holdsq

jPj inf
I2P

PX (I) � cM;P > 0 . (39)

If (H1) and (H2) of Section 3.1 are satis�ed and if

A� (lnn)
2 � D � A+

n

(lnn)
2 ;

then there exists a positive �nite constant A0, only depending on �;A; �min; A�; A+; cM;P such that, by setting

"n = A0max

(�
lnn

D

�1=4
;

�
D lnn

n

�1=4)

we have, for all n � n0 (A�; A+; A; ; �min; cM;P ; �),

P
�
(1 + "n)

1

4

D

n
K21;M � P (Ksn �KsM ) � (1� "n)

1

4

D

n
K21;M

�
� 1� 10n�� (40)

and

P
��
1 + "2n

� 1
4

D

n
K21;M � Pn (KsM �Ksn) �

�
1� "2n

� 1
4

D

n
K21;M

�
� 1� 5n�� : (41)

If (39) holds together with (H1) and if we assume that

1 � D � A+
n

(lnn)
2 ,

then a positive constant Au exists, only depending on A; cM;P ; A+ and �, such that for all n � n0 (A; cM;P ; A+; �),

P
�
P (Ksn �KsM ) � Au

D _ lnn
n

�
� 3n��

and

P
�
Pn (KsM �Ksn) � Au

D _ lnn
n

�
� 3n�� :

As announced before, we recover in Theorem 7 the general results of Section 3.2 for the case of histograms
on a lower-regular partition. Moreover, in the case of histograms, assumption (12) which is part of (H1) is a
straightforward consequence of (11). Indeed, we easily see that the projection sM of the regression function
s� onto the model of piecewise constant functions with respect to P can be written

sM =
X
I2P

E [Y jX 2 I ]1I : (42)

Under (11), we have jE [Y jX 2 I ]j � kY k1 � A for every I 2 P and we deduce by (42) that ksMk1 � A:
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4.4 Comments

Our bounds in Theorem 7 are obtained by following a general methodology that consists, among other things,
in expanding the contrast and to take advantage of explicit computations that can derived on the linear part
of the contrast - for more details, see the proofs in Section 6.3 below. It is then instructive to compare them
to the best available results in this special case. Let us compare them to the bounds obtained by Arlot and
Massart in [1], in the case of a �xed model. Such results can be found in Proposition 10, 11 and 12 of [1].
The strategy adopted by the authors in this case is as follows. By remarking that easy bounds are available
for the mean of the empirical excess risk on histograms since it holds

E [Pn (KsM �Ksn)] =
D

4n
K21;M ,

they derive concentration inequalities for the true excess risk and its empirical counterpart to their mean.
They further give upper and lower bounds in terms of E [Pn (KsM �Ksn)] for the mean of the true excess
risk. The deviations in all these inequalities are made of sums of quantities that can not be compared to ours
in a concise manner, as some of them loose compared to our results and some of them gain.
Nevertheless, using our notations, Inequality (34) of Proposition 10 in [1] states that for every x � 0 there
exists an event of probability at least 1� e1�x on which,

jPn (KsM �Ksn)� E [Pn (KsM �Ksn)]j

� Lp
DM

�
P (KsM �Ks�) +

A2E [Pn (KsM �Ksn)]
�2min

�p
x+ x

��
, (43)

for some absolute constant L. We can notice that Inequality (43), which is a special case of general concen-
tration inequalities given by Boucheron and Massart [7], involves the bias of the model P (KsM �Ks�). By
pointing out that the bias term arises from the use of some margin conditions that are satis�ed for bounded
regression, we believe that it can be removed from Proposition 10 of [1], since in the case of histograms models
for bounded regression, some margin-like conditions hold, that are directly pointed at the linear projection
sM . Apart for the bias term, the deviations of the empirical excess risk are then of the order

ln (n)
p
DM

n
;

considering the same probability of event than ours, so it becomes signi�cantly better than Inequality (41) for
large models.
Concentration inequalities for the true excess risk given in Proposition 11 of [1] give a magnitude of deviations
that is again smaller than ours for su¢ ciently large models and that is in fact closer to "2n than "n, where "n is
de�ned in Theorem 7. But the mean of the true excess risk has to be compared to the mean of the empirical
excess risk and it is remarkable that in Proposition 12 of [1] where such a result is given in a way that seems
very sharp, there is a term lower bounded by�

n� inf
I2P

PX (I)

��1=4
/
�
D

n

�1=4
,

due to the lower regularity assumption on the partition. This allows us to conjecture that up to a logarithmic

factor, the term proportional to
�
D lnn
n

�1=4
appearing in "n and also in the deviations of the true excess risk

in Theorem 3 is not improvable in general, and that the empirical excess risk concentrates better around its
mean than the true excess risk in general.
We can conclude that the bounds given in Proposition 10, 11 and 12 of [1] are better than ours, apart for the
bias term involved in concentration inequalities of Proposition 10, but this term could be removed as explained
above. Furthermore, concentration inequalities for the empirical excess risk are signi�cantly better than ours
for large models.
Arlot and Massart [1] also propose generalizations in the case of unbounded noise and when the noise level
vanishes. The unbounded case seems to be beyond the reach of our strategy, due to our repeated use of
Bousquet and Klein-Rio�s inequalities along the proofs. However, we recover the case of vanishing noise level
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for histogram models, when the partition is upper regular with respect to the law PX , a condition also needed
in [1] in this case. Indeed, we have noticed in Section 3.3 that assumption (H2) can be weaken by (H2bis)
where we assume that

K1;M � Amin > 0

for some positive constant Amin: So, if we assume the upper regularity of the partition P with respect to PX ,
that is

jPj sup
I2P

PX (I) � c+M;P < +1 (44)

for a positive constant c+M;P , we then have from identity (30)

K21;M � 4E
�
�2 (X)	2M (X)

�
,

where from identity (29), we have in the case of histograms,

	2M (x) =
1

jPj
X
I2P

1x2I
PX (I)

, for all x 2 X .

Now from inequality (44) we have

	2M (x) �
�
c+M;P

��1
> 0 , for all x 2 X ,

and so Amin = 2
�
c+M;P

��1=2
k�k2 > 0 is convenient in (H2bis).

5 The case of piecewise polynomials

In this Section, we generalize the results given in Section 4 for models of piecewise constant functions to models
of piecewise polynomials uniformly bounded in their degree.

5.1 Existence of a localized basis

The following lemma states the existence of a localized orthonormal basis in (M; k�k2) where M is a model of
piecewise polynomials and X = [0; 1] is the unit interval.

Lemma 8 Let Leb denote the Lebesgue measure on [0; 1]. Let assume that X = [0; 1] and that PX has a
density f with respect to Leb satisfying, for a positive constant cmin,

f (x) � cmin > 0; x 2 [0; 1] :

Consider a linear model M of piecewise polynomials on [0; 1] with degree r or smaller, de�ned on a �nite
partition P made of intervals. Then there exists an orthonormal basis

�
'I;j ; I 2 P; j 2 f0; :::; rg

	
of (M; k�k2)

such that,
for all j 2 f0; :::; rg 'I;j is supported by the element I of P,

and a constant Lr;cmin depending only on r; cmin exists, satisfying for all I 2 P;

max
j2f0;:::;rg

'I;j1 � Lr;cmin
1p

Leb (I)
. (45)

As a consequence, if it holds q
jPj inf

I2P
Leb (I) � cM;Leb (46)

a constant Lr;cmin;cM;Leb
depending only on r; cmin and cM;Leb exists, such that for all � =

�
�I;j

�
I2P;j2f0;:::;rg 2

RD, 
X
I;j

�I;j'I;j


1

� Lr;cmin;cM;Leb

p
D j�j1 (47)

where D = (r + 1) jPj is the dimension of M .
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Lemma 8 states that if X = [0; 1] is the unit interval and PX has a density with respect to the Lebesgue
measure Leb on X uniformly bounded away form zero, then there exists an orthonormal basis in L2

�
PX
�

of piecewise polynomials where the sup-norm of its elements are suitably controlled by (45). Moreover, if we
assume the lower regularity of the partition with respect to Leb then the orthonormal basis is localized, where
the constant of localization in (47) depend on the maximal degree r. We notice that in the case of piecewise
constant functions we do not need to assume the existence of a density for PX or to restrict ourselves to the
unit interval. The proof of Lemma 8 can be found in Section 6.2.

5.2 Rates of convergence in sup-norm

The following lemma allows to derive property (H5) for piecewise polynomials.

Lemma 9 Assume that Inequality (11) holds, that is a positive constant A exists such that jY j � A a:s:
Denote by Leb the Lebesgue measure on [0; 1]. Assume that X = [0; 1] and that PX has a density f with
respect to Leb, satisfying for positive constants cmin and cmax,

0 < cmin � f (x) � cmax < +1; x 2 [0; 1] : (48)

Consider a linear modelM of piecewise polynomials on [0; 1] with degree less than r, de�ned on a �nite partition
P made of intervals, that satis�es for some �nite positive constants cM;Lebq

jPj inf
I2P

Leb (I) � cM;Leb > 0 : (49)

Assume moreover that D � A+n (lnn)
�2 for a positive �nite constant A+: Then, for any � > 0, there exists

an event of probability at least 1 � n�� such that sn exists, is unique on this event and it holds, for all
n � n0 (r;A+; cmin; cM;Leb; �),

ksn � sMk1 � LA;r;A+;cmin;cmax;cM;Leb;�

r
D lnn

n
: (50)

In Lemma 6 we thus obtain the convergence in sup-norm of the M-estimator sn towards the linear projection sM
at the rate

q
D lnn
n . It is worth noticing that for a model of piecewise polynomials satisfying the assumptions

of Lemma 6, if we set

Acons = LA;r;A+;cmin;cmax;cM;Leb;�

p
A+ ; Rn;D;� = LA;r;A+;cmin;cmax;cM;Leb;�

r
D lnn

n
;

n1 = n0 (r;A+; cmin; cM;Leb; �)

then Assumption (H5) is satis�ed. To derive Inequality (38), we need to assume that the response variable
Y is almost surely bounded, we give the conditions to ensure that the model is provided with a localized
basis and also we assume that the density of PX with respect to the Lebesgue measure on the unit interval is
uniformly bounded from above. The proof of Lemma 9 can be found in Section 6.2.

5.3 Bounds for the excess risks

The forthcoming result is a straightforward application of Lemmas 8, 9 and Theorems 3, 4.

Theorem 10 Denote by Leb the Lebesgue measure on [0; 1] and �x some positive �nite constant �. Assume
that X = [0; 1] and that PX has a density f with respect to Leb satisfying, for some positive �nite constants
cmin and cmax,

0 < cmin � f (x) � cmax < +1; x 2 [0; 1] : (51)

Consider a linear modelM of piecewise polynomials on [0; 1] with degree less than r, de�ned on a �nite partition
P made of intervals, that satisfy for a �nite constant cM;Leb,q

jPj inf
I2P

Leb (I) � cM;Leb > 0 : (52)
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Assume that (H1) and (H2) hold. Then, if there exist some positive �nite constants A� and A+ such that

A� (lnn)
2 � D � A+

n

(lnn)
2 ;

then there exists a positive �nite constant A0, depending on �;A; �min; A�; A+; r; cM;Leb; cmin and cmax such
that, by setting

"n = A0max

(�
lnn

D

�1=4
;

�
D lnn

n

�1=4)
we have, for all n � n0 (A�; A+; A; r; �min; cM;Leb; cmin; cmax; �),

P
�
(1 + "n)

1

4

D

n
K21;M � P (Ksn �KsM ) � (1� "n)

1

4

D

n
K21;M

�
� 1� 10n��

and

P
��
1 + "2n

� 1
4

D

n
K21;M � Pn (KsM �Ksn) �

�
1� "2n

� 1
4

D

n
K21;M

�
� 1� 5n�� :

Moreover, if (51) and (52) hold together with (H1) and if we assume that

1 � D � A+
n

(lnn)
2 ,

then a positive constant Au exists, only depending on A+; A; r; cM;Leb; cmin and �, such that for all n �
n0 (A+; A; r; cmin; cmax; cM;Leb; �),

P
�
P (Ksn �KsM ) � Au

D _ lnn
n

�
� 3n��

and

P
�
Pn (KsM �Ksn) � Au

D _ lnn
n

�
� 3n�� :

We derive in Theorem 10 optimal upper and lower bounds for the excess risk and its empirical counterpart in
the case of models of piecewise polynomials uniformly bounded in their degree with reasonable dimension. We
give also upper bounds for models of possibly small dimension, without assumption (H2). Notice that we need
stronger assumptions than in the case of histograms. Namely, we require the existence of a density uniformly
bounded from above and from below for the unknown law PX , with respect to the Lebesgue measure on the
unit interval. However we recover the bounds of Theorem 7 yet with di¤erent constants, since by Lemma 9

we still have Rn;D;� /
q

D lnn
n as in the histogram case.

Moreover, as in the case of histograms, assumption (12) which is part of (H1) is a straightforward consequence
of (11). Indeed, we easily see that the projection sM of the regression function s� onto the model of piecewise
polynomials with respect to P can be written

sM =
X

(I;j)2P�f0;:::;rg

P
�
Y 'I;j

�
'I;j

where 'I;j is the orthonormal basis given in Lemma 8. It is then easy to show, using (45) of Lemma 8 and
(11), that ksMk1 � LA;r;cmin;cmax :
Again, we can consider vanishing noise at the prize to ask that the partition is upper regular with respect to
Leb. By (H2bis) of Section 3.3, if we show that

K1;M � Amin > 0

for a positive constant Amin instead of (H2), then the conclusions of Theorem 10 still hold. Now, from identity
(30) we have

K21;M � 4E
�
�2 (X)	2M (X)

�
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where from identity (29), it holds in the case of piecewise polynomials, for all x 2 X ,

	2M (x) =
1

(r + 1) jPj
X

(I;j)2P�f0;:::;rg

'2I;j �
1

(r + 1) jPj
X
I2P

1x2I
PX (I)

. (53)

Furthermore, if we ask that
jPj sup

I2P
Leb (I) � c+M;P < +1 (54)

for a positive constant c+M;P , then by using (51), (53) and (54), we obtain for all x 2 X ,

	2M (x) �
�
cmax � c+M;P � (r + 1)

��1
> 0 ,

and so Amin = 2
�
cmax � c+M;P � (r + 1)

��1=2p
E [�2 (X)] > 0 is convenient in (H2bis).

6 Proofs

We begin with the simpler proofs of Sections 4 and 5, in Sections 6.1 and 6.2 respectively. The proofs of
Theorems 3 and 4 of Section 3.2 can be found in Section 6.3.

6.1 Proofs of Section 4

Proof of Lemma 5. It su¢ ces to observe thatX
I2P

�I'I


1

� j�j1 sup
I2P

k'Ik1

= j�j1 sup
I2P

�
PX (I)

��1=2
� c�1M;P

p
D j�j1 :

�
We now intend to prove (38) under the assumptions of Lemma 6.

Proof of Lemma 6. Along the proof, we denote by misuse of notation, for any I 2 P,

P (I) := P (I � R) = PX (I) and Pn (I) := Pn (I � R) .

Let � > 0 be �xed and let � > 0 to be chosen later. We �rst show that, since we have D � A+n (lnn)
�2, it

holds with large probability and for all n su¢ ciently large,

inf
I2P

Pn (I) > 0 :

Since
k1Ik1 � 1 and E

�
12I
�
= P (I)

we get by Bernstein�s inequality (213), for any x > 0 and I 2 P,

P

"
j(Pn � P ) (I)j �

r
2P (I)x

n
+

x

3n

#
� 2 exp (�x) : (55)

16



Further note that by (37), D � c2M;PP (I)
�1

> 0 for any I 2 P, and thus by taking x = � lnn, we easily

deduce from inequality (55) that there exists a positive constant L(1)�;cM;P
only depending on cM;P and � such

that, for any I 2 P,

P

"
j(Pn � P ) (I)j

P (I)
� L

(1)
�;cM;P

r
D lnn

n

#
� 2n�� : (56)

Now, as D � A+n (lnn)
�2 for some positive constant A+, a positive integer n0 (�; cM;P ; A+) exists such that

L
(1)
�;cM;P

r
D lnn

n
� 1

2
, for all n � n0 (�; cM;P ; A+) : (57)

Therefore we get, for all n � n0 (�; cM;P ; A+),

P [8I 2 P; Pn (I) > 0]

� P
�
8I 2 P; P (I)

2
> j(Pn � P ) (I)j

�
� P

"
8I 2 P; j(Pn � P ) (I)j

P (I)
< L

(1)
�;cM;P

r
D lnn

n

#
by (57)

� 1� 2Dn�� :

Introduce the event

+ = f8I 2 P; Pn (I) > 0g :

We have shown that
P [
+] � 1� 2Dn�� : (58)

Moreover, on the event 
+, the least-squares estimator sn exists, is unique and it holds

sn =
X
I2P

Pn (y1x2I)

Pn (I)
1I :

We also have

sM =
X
I2P

P (y1x2I)

P (I)
1I :

Hence it holds on 
+;

ksn � sMk1 = sup
I2P

����Pn (y1x2I)Pn (I)
� P (y1x2I)

P (I)

����
= sup

I2P

������ Pn (y1x2I)

P (I)
�
1 + (Pn�P )(I)

P (I)

� � P (y1x2I)

P (I)

������
� sup

I2P

������ (Pn � P ) (y1x2I)
P (I)

�
1 + (Pn�P )(I)

P (I)

�
������

+ sup
I2P

����P (y1x2I)P (I)

����� sup
I2P

������1� 1

1 + (Pn�P )(I)
P (I)

������ . (59)

Moreover, by Bernstein�s inequality (213), as

ky1x2Ik1 � A and E
h
(Y 1X2I)

2
i
� A2P (I)
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we get for all I 2 P,

P

"
j(Pn � P ) (y1x2I)j �

r
2A2P (I)x

n
+
Ax

3n

#
� 2 exp (�x) :

By putting x = � lnn in the latter inequality and using the fact that D � c2M;PP (I)
�1 it follows that there

exists a positive constant L(2)A;cM;P ;�
only depending on A; cM;P and � such that

P

"
j(Pn � P ) (y1x2I)j

P (I)
� L

(2)
A;cM;P ;�

r
D lnn

n

#
� 2n�� : (60)

Now de�ne


1;2 =
\
I2P

((
j(Pn � P ) (I)j

P (I)
< L

(1)
�;cM;P

r
D lnn

n

)\(
j(Pn � P ) (y1x2I)j

P (I)
< L

(2)
A;cM;P ;�

r
D lnn

n

))
:

Clearly, since D � n we have, by (56) and (60),

P
�

c1;2

�
� 4n��+1 : (61)

Moreover, for all n � n0 (�; cM;P ; A+), we get by (57) that

j(Pn � P ) (I)j
P (I)

<
1

2

on the event 
1;2, and so, for all n � n0 (�; cM;P ; A+), 
1;2 � 
+. Hence, we get that

sup
I2P

������ (Pn � P ) (y1x2I)
P (I)

�
1 + (Pn�P )(I)

P (I)

�
������+ supI2P

����P (y1x2I)P (I)

����� sup
I2P

������1� 1

1 + (Pn�P )(I)
P (I)

������
� 2 sup

I2P

���� (Pn � P ) (y1x2I)P (I)

����+ 2 sup
I2P

����P (y1x2I)P (I)

����� sup
I2P

���� (Pn � P ) (I)P (I)

����
� 2L(2)A;cM;P ;�

r
D lnn

n
+ 2L

(1)
�;cM;P

r
D lnn

n
� sup
I2P

����P (y1x2I)P (I)

���� : (62)

Finally we have, for any I 2 P,
jP (y1x2I)j � P (jyj1x2I) � AP (I) ; (63)

so by (59), (62) and (63) we �nally get, on the event 
1;2 and for all n � n0 (�; cM;P ; A+),

ksn � sMk1 �
�
2L

(2)
A;cM;P ;�

+ 2AL
(1)
�;cM;P

�rD lnn

n
.

Taking � = �+ 3, we get by (61) for all n � 2, P
�

c1;2

�
� n�� which implies (38).

�

6.2 Proofs of Section 5

Under the assumptions of Lemma 8, we intend to establish (47).
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Proof of Lemma 8. Let I be any interval of [0; 1] and w a positive measurable function on I. Denote by
L2 (I;Leb) the space of square integrable functions on I with respect to the Lebesgue measure Leb and set

L2 (I; w) =
�
g : I �! R ; g

p
w 2 L2 (I;Leb)

	
:

This space is equipped with the natural inner product

hg; hiI;w =
Z
x2I

g (x)h (x)w (x) dx :

Write k:kI;w its associated norm.
Now, consider an interval I of P with bounds a and b, a < b. Also denote by fjI : x 2 I 7�! f (x) the
restriction of the density f to the interval I: We readily have for g; h 2 L2

�
I; fjI

�
;Z

x2I

g (x)h (x) fjI (x)
dx

Leb (I)

=

Z
y2[0;1]

g ((b� a) y + a)h ((b� a) y + a) fjI ((b� a) y + a) dy . (64)

De�ne the function f I from [0; 1] to R+ by

f I (y) = fjI ((b� a) y + a) ; y 2 [0; 1] :

If (pI;0; pI;1; :::pI;r) is an orthonormal family of polynomials in L2
�
[0; 1] ; f I

�
then by setting, for all x 2 I,

j 2 f0; :::; rg,

~'I;j (x) = pI;j

�
x� a
b� a

�
1p

Leb (I)
;

we deduce from equality (64) that
�
~'I;j

�r
j=0

is an orthonormal family of polynomials in L2
�
I; fjI

�
such that

deg
�
~'I;j

�
= deg (pI;j).

Now, it is a classical fact of orthogonal polynomials theory (see for example Theorems 1.11 and 1.12 of [10])
that there exists a unique family (qI;0; qI;1; :::qI;r) of orthogonal polynomials on [0; 1] such that deg (qI;j) = j
and the coe¢ cient of the highest monomial xj of qI;j is equal to 1. Moreover, each qI;j has j distinct real
roots belonging to ]0; 1[. Thus, we can write

qI;j (x) =

jY
k=1

�
x� �kI;j

�
; �kI;j 2 ]0; 1[ and �kI;j 6= �lI;j for k 6= l . (65)

Clearly, kqI;jk1 � 1: Moreover,

kqI;jk2[0;1];fI =
Z
[0;1]

(qI;j)
2
f Idx

� cmin

Z
[0;1]

(qI;j)
2
dx :

Now we set B (�; r) = ]�� r; �+ r[ for � 2 R, so that by (65) we get

8x 2 [0; 1] n [jk=1B
�
�kI;j ; (4j)

�1
�
; jqI;j (x)j � (4j)�j ;

and
Leb

�
[0; 1] n [jk=1B

�
�kI;j ; (4j)

�1
��
� 1

2
:

19



Therefore,

kqI;jk2[0;1];fI � cmin

Z
[0;1]

(qI;j)
2
dx

� cmin

Z
[0;1]n[jk=1B(�kI;j ;(4j)

�1)

(qI;j)
2
dx

� cmin
2
(4j)

�2j
:

Finally, introduce pI;j = kqI;jk�1[0;1];fI qI;j and denote by 'I;j its associated orthonormal family of L2
�
I; fjI

�
:

Then, by considering the extension 'I;j of ~'I;j to [0; 1] by adding null values, it is readily checked that the
family �

'I;j ; I 2 P; j 2 f0; :::; rg
	

is an orthonormal basis of (M; k�k2) : In addition,'I;j1 =
~'I;j1

= kqI;jk�1[0;1];fI kqI;jk1 Leb (I)
�1=2

�
p
2c
�1=2
min (4r)

r
Leb (I)

�1=2 (66)

�
p
2c�1M;Lebc

�1=2
min (4r)

r
(r + 1)

�1=2p
D (67)

where in the last inequality we used the fact thatq
jPj inf

I2P
Leb (I) � cM;Leb and D = (r + 1) jPj :

For all j 2 f0; :::; rg, 'I;j is supported by the element I of P, hence we deduce from (66) that the orthonormal
basis

�
'I;j ; I 2 P; j 2 f0; :::; rg

	
of (M; k�k2) satis�es (45) with

Lr;cmin =
p
2c
�1=2
min (4r)

r
:

To conclude, observe that 
X
I;j

�I;j'I;j


1

= max
I2P

8<:


rX
j=0

�I;j'I;j


1

9=;
� j�j1maxI2P

8<:
rX
j=0

'I;j1
9=;

� (r + 1) j�j1maxI2P
max

j2f0;:::;rg

n'I;j1o
and thus, by plugging (67) into the right-hand side of the last inequality, we �nally obtain that the value

Lr;cmin;cM;Leb
=
p
2c�1M;Lebc

�1=2
min (4r)

r
(r + 1)

1=2

gives the desired bound (47). �
We now turn to the proof of (50) under the assumptions of Lemma 9. The proof is based on concentration
inequalities recalled in Section 6.5 and on inequality (45) of Lemma 8, that allows us to control the sup-norm
of elements of an orthonormal basis for a model of piecewise polynomials.
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Proof of Lemma 9. Let � > 0 be �xed and  > 0 to be chosen later. The partition P associated to M will
be denoted by

P = fI0; :::; Im�1g ,

so that jPj = m and D = (r + 1)m where D is the dimension of the model M . By (45) of Lemma 8 there
exists an orthonormal basis

�
'Ik;j ; k 2 f0; :::;m� 1g ; j 2 f0; :::; rg

	
of
�
M;L2

�
PX
��
such that,

'Ik;j is supported by the element Ik of P, for all j 2 f0; :::; rg

and a constant Lr;cmin depending only on r; cmin and satisfying

max
j2f0;:::;rg

'Ik;j1 � Lr;cmin
1p

Leb (Ik)
, for all k 2 f0; :::;m� 1g . (68)

In order to avoid cumbersome notation, we de�ne a total ordering � on the set

I = f(Ik; j) ; k 2 f0; :::;m� 1g ; j 2 f0; :::; rgg ,

as follows. Let � be a binary relation on I � I such that

(Ik; j) � (Il; i) if (k < l or (k = l and j < i)) ,

and consider the total ordering � de�ned to be

(Ik; j) � (Il; i) if ((Ik; j) = (Il; i) or (Ik; j) � (Il; i)) .

So, from the de�nition of �, the vector � =
�
�Ik;j

�
(Ik;j)2I

2 RD has coordinate �Ik;j at position (r + 1) k+j+1
and when the matrix

A =
�
A(Ik;j);(Il;i)

�
(Ik;j);(Il;i)2I�I

2 RD�D ;

has coe¢ cient A(Ik;j);(Il;i) at line (r + 1) k + j + 1 and column (r + 1) l + i+ 1.
Now, for some s =

P
(Ik;j)2I �Ik;j'Ik;j 2M , we have

Pn (K (s)) = Pn

264
0@y �

0@ X
(Ik;j)2I

�Ik;j'Ik;j (x)

1A1A2
375

= Pny
2 � 2

X
(Ik;j)2I

�Ik;jPn
�
y'Ik;j (x)

�
+

X
(Ik;j);(Il;i)2I�I

�Ik;j�Il;iPn
�
'Ik;j'Il;i

�
:

Hence, by taking the derivative with respect to �Ik;j in the last quantity,

1

2

@

@�Ik;j
Pn

264
0@y �

0@ X
(Ik;j)2I

�Ik;j'Ik;j (x)

1A1A2
375

= �Pn
�
y'Ik;j (x)

�
+

X
(Il;i)2I

�Il;iPn
�
'Ik;j'Il;i

�
. (69)

We see that if �(n) =
�
�
(n)
Ik;j

�
(Ik;j)2I

2 RD is a critical point of

Pn

264
0@y �

0@ X
(Ik;j)2I

�Ik;j'Ik;j (x)

1A1A2
375 ,
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it holds 0B@ @

@�Ik;j
Pn

264
0@y �

0@ X
(Ik;j)2I

�Ik;j'Ik;j (x)

1A1A2
375
1CA��(n)� = 0

and by combining (69) with the fact that

P
�
'Ik;j

�2
= 1 ; for all (Ik; j) 2 I and P

�
'Ik;j'Il;i

�
= 0 if (Ik; j) 6= (Il; i) ,

we deduce that �(n) satis�es the following random linear system,

(ID + Ln;D)�
(n) = Xy;n (70)

whereXy;n =
�
Pn
�
y'Ik;j (x)

��
(Ik;j)2I

2 RD; ID is the identity matrix of dimensionD and Ln;D =
�
(Ln;D)(Ik;j);(Il;i)

�
(Ik;j);(Il;i)2I�I

is a D �D matrix satisfying
(Ln;D)(Ik;j);(Il;i) = (Pn � P )

�
'Ik;j'Il;i

�
:

Now, by inequality (82) in Lemma 11 below, one can �nd a positive integer n0 (r;A+; cmin; cM;Leb; ) such that
on an event 
n of probability at least 1� 3Dn� , we have

kLn;Dk �
1

2
; (71)

where for a D �D matrix L, the operator norm k�k associated to the sup-norm on vectors is

kLk = sup
x6=0

jLxj1
jxj1

:

Then we deduce from (71) that (ID + Ln;D) is a non-singular D � D matrix and, as a consequence, that
the linear system (70) admits a unique solution �(n) on 
n for all n0 (r;A+; cmin; cM;Leb; ). Moreover, since

Pn

�
y �

�P
(Ik;j)2I �Ik;j'Ik;j (x)

��2
is a nonnegative quadratic functional with respect to

�
�Ik;j

�
(Ik;j)2I

2 RD

we can easily deduce that on 
n, �
(n) achieves the unique minimum of Pn

�
y �

�P
(Ik;j)2I �Ik;j'Ik;j (x)

��2
on RD. In other words,

sn =
X

(Ik;j)2I

�
(n)
Ik;j

'Ik;j

is the unique least-squares estimator on M , and by (70) it holds,

�
(n)
Ik;j

0@1 + X
(Il;i)2I

(Pn � P )
�
'Ik;j'Il;i

�1A = Pn
�
y'Ik;j (x)

�
, for all (Ik; j) 2 I. (72)

Now, as 'Ik;j and 'Il;i have disjoint supports when k 6= l, it holds 'Ik;j'Il;i = 0 whenever k 6= l, and so
equation (72) reduces to

�
(n)
Ik;j

�
 
1 +

rX
i=0

(Pn � P )
�
'Ik;j'Ik;i

�!
= Pn

�
y'Ik;j (x)

�
, for all (Ik; j) 2 I . (73)
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Moreover, recalling that sM =
P

(Ik;j)2I P
�
y'Ik;j (x)

�
'Ik;j , it holds

ksn � sMk1 =


X

(Ik;j)2I

�
�
(n)
Ik;j

� P
�
y'Ik;j (x)

��
'Ik;j


1

� max
k2f0;:::;m�1g


rX
j=0

�
�
(n)
Ik;j

� P
�
y'Ik;j (x)

��
'Ik;j


1

� (r + 1) max
k2f0;:::;m�1g

��
max

j2f0;:::;rg

����(n)Ik;j
� P

�
y'Ik;j (x)

�����
� max
j2f0;:::;rg

'Ik;j1� (74)

where the �rst inequality comes from the fact that 'Ik;j and 'Il;i have disjoint supports when k 6= l. We next
turn to the control of the right-hand side of (74). Let the index (Ik; j) be �xed. By subtracting the quantity�
1 +

Pr
i=0 (Pn � P )

�
'Ik;j'Ik;i

��
� P

�
y'Ik;j (x)

�
in each side of equation (73), we get

�
�
(n)
Ik;j

� P
�
y'Ik;j (x)

��
�
 
1 +

rX
i=0

(Pn � P )
�
'Ik;j'Ik;i

�!

= (Pn � P )
�
y'Ik;j (x)

�
�
 

rX
i=0

(Pn � P )
�
'Ik;j'Ik;i

�!
� P

�
y'Ik;j (x)

�
: (75)

Moreover, by Inequality (83) of Lemma 11, we have for all n � n0 (r;A+; cmin; cM;Leb; ),

rX
i=0

��(Pn � P ) �'Ik;j'Ik;i��� � Lr;A+;cmin;cM;Leb;

s
lnn

nLeb (Ik)
� 1

2
(76)

on the event 
n. We thus deduce that�������(n)Ik;j
� P

�
y'Ik;j (x)

��
�
 
1 +

rX
i=0

(Pn � P )
�
'Ik;j'Ik;i

�!����� � 1

2

����(n)Ik;j
� P

�
y'Ik;j (x)

���� (77)

and�����
 

rX
i=0

(Pn � P )
�
'Ik;j'Ik;i

�!
� P

�
y'Ik;j (x)

������ � Lr;A+;cmin;cM;Leb;

s
lnn

nLeb (Ik)
�
��P �y'Ik;j (x)��� . (78)

Moreover, by (11), (48) and (68) we have��P �y'Ik;j (x)��� � A
'Ik;j1 P (Ik)

� Acmax
'Ik;j1 Leb (Ik)

� AcmaxLr;cmin
p
Leb (Ik)

� LA;r;cmin;cmax
p
Leb (Ik) : (79)

Putting inequality (79) in (78) we obtain�����
 

rX
i=0

(Pn � P )
�
'Ik;j'Ik;i

�!
� P

�
y'Ik;j (x)

������ � Lr;A+;cmin;cmax;cM;Leb;

r
lnn

n
. (80)

Hence, using inequalities (77), (80) and inequality (84) of Lemma 11 in equation (75), we obtain that����(n)Ik;j
� P

�
y'Ik;j (x)

���� � LA;r;A+;cmin;cmax;cM;Leb;

r
lnn

n
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on 
n. Since the constant LA;r;A+;cmin;cmax;cM;Leb; does not depend on the index (Ik; j) we deduce by (68)
that �

max
j2f0;:::;rg

����(n)Ik;j
� P

�
y'Ik;j (x)

������ max
j2f0;:::;rg

'Ik;j1
� LA;r;A+;cmin;cmax;cM;Leb;

r
lnn

n
� max
j2f0;:::;rg

'Ik;j1
� LA;r;A+;cmin;cmax;cM;Leb;

s
lnn

nLeb (Ik)
. (81)

Finally, by using (49) and (81) in (74), we get for all n � n0 (r;A+; cmin; cM;Leb; ), on the event 
n of
probability at least 1� 3Dn� ,

ksn � sMk1 � (r + 1) max
k2f0;:::;m�1g

��
max

j2f0;:::;rg

����(n)Ik;j
� P

�
y'Ik;j (x)

������ max
j2f0;:::;rg

'Ik;j1�
� LA;r;A+;cmin;cM;Leb;

r
lnn

n
max

k2f0;:::;m�1g

1p
Leb (Ik)

� LA;r;A+;cmin;cM;Leb;

r
jPj lnn
n

� LA;r;A+;cmin;cM;Leb;

r
D lnn

n
:

To conclude, simply take  = ln 3
ln 2 + �+ 1, so that it holds for n � 2, P [


c
n] � n�� which implies (50).

It remains to prove the following lemma that has been used all along the proof.

Lemma 11 Recall that Ln;D =
�
(Ln;D)(Ik;j);(Il;i)

�
(Ik;j);(Il;i)2I�I

is a D �D matrix such that for all (k; l) 2

f0; :::;m� 1g2 , (j; i) 2 f0; :::; rg2 ,

(Ln;D)(Ik;j);(Il;i) = (Pn � P )
�
'Ik;j'Il;i

�
.

Also recall that for a D �D matrix L, the operator norm k�k associated to the sup-norm on the vectors is

kLk = sup
x6=0

jLxj1
jxj1

:

Then, under the assumptions of Lemma 9, a positive integer n0 (r;A+; cmin; cM;Leb; ) exists such that, for all
n � n0 (r;A+; cmin; cM;Leb; ), the following inequalities hold on an event 
n of probability at least 1�3Dn� ,

kLn;Dk � Lr;A+;cmin;cM;Leb;

r
D lnn

n
� 1

2
(82)

and for all k 2 f0; :::;m� 1g ;

max
j2f0;:::;rg

(
rX
i=0

��(Pn � P ) �'Ik;j'Ik;i���
)
� Lr;A+;cmin;cM;Leb;

s
lnn

nLeb (Ik)
� 1

2
, (83)

max
j2f0;:::;rg

��(Pn � P ) �y'Ik;j (x)��� � LA;A+;r;cmin;cM;Leb;

r
lnn

n
. (84)

Proof of Lemma 11. Let us begin with the proof of inequality (84). Let the index (Ik; j) 2 I be �xed. By
using Bernstein�s inequality (213) and observing that, by (11),

Var
�
y'Ik;j (x)

�
� P

h�
y'Ik;j (x)

�2i � kY k21 � A2
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and, by (11), (68) and (49), Y 'Ik;j (X)1 � A
'Ik;j (X)1

� ALr;cmin
1p

Leb (Ik)

� LA;r;cmin;cM;Leb

p
jPj

� LA;r;cmin;cM;Leb

p
D ,

we get

P

"��(Pn � P ) �y'Ik;j (x)��� �r2A2 xn + LA;r;cmin;cM;Leb

p
D

3n
x

#
� 2 exp (�x) : (85)

By taking x =  lnn in inequality (85), we obtain that

P

"��(Pn � P ) �y'Ik;j (x)��� �
r
2A2

lnn

n
+
LA;r;cmin;cM;Leb

p
D lnn

3n

#
� 2n� : (86)

Now, asD � A+n (lnn)
�2, we deduce from (86) that for some well chosen positive constant LA;A+;r;cmin;cM;Leb; ,

we have

P

"��(Pn � P ) �y'Ik;j (x)��� � LA;A+;r;cmin;cM;Leb;

r
lnn

n

#
� 2n�

and by setting


(1)n =
\

(Ik;j)2I

(��(Pn � P ) �y'Ik;j (x)��� � LA;A+;r;cmin;cM;Leb;

r
lnn

n

)
we deduce that

P
�

(1)n

�
� 1� 2Dn� . (87)

Hence the expected bound (84) holds on 
(1)n , for all n � 1.
We turn now to the proof of inequality (83). Let the index (Ik; j) 2 I be �xed. By Cauchy-Schwarz inequality,
we have

rX
i=0

��(Pn � P ) �'Ik;j'Ik;i��� � pr + 1
vuut rX

i=0

�
(Pn � P )

�
'Ik;j'Ik;i

��2
. (88)

Let write

�Ik;j =

vuut rX
i=0

�
(Pn � P )

�
'Ik;j'Ik;i

��2
and BIk =

(
rX
i=0

�Ik;i'Ik;i ;
�
�Ik;i

�r
i=0

2 Rr+1 and
rX
i=0

�2Ik;i � 1
)
.

By Cauchy-Schwarz inequality again, it holds

�Ik;j = sup
s2BIk

��(Pn � P ) �'Ik;js��� .
Then, Bousquet�s inequality (214), applied with " = 1 and F =BIk , implies that

P
�
�Ik;j � E

�
�Ik;j

�
�
r
2�2Ik;j

x

n
+ E

�
�Ik;j

�
+
4

3

bIk;jx

n

�
� exp (�x) (89)

where, by (68),

�2Ik;j = sup
s2BIk

Var
�
'Ik;js

�
�
'Ik;j21 � Lr;cmin

Leb (Ik)
(90)
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and
bIk;j � 2 sup

s2BIk

'Ik;js1 � 2
'Ik;j1 sup

s2BIk

ksk1 : (91)

Moreover, for s =
Pr

i=0 �Ik;i'Ik;i 2 BIk , we have maxi
���Ik;i�� �qPr

i=0 �
2
Ik;i

� 1, so by (68),

sup
s2BIk

ksk1 �
rX
i=0

'Ik;i1 � Lr;cminp
Leb (Ik)

and injecting the last bound in (91) we get

bIk;j �
'Ik;j1 Lr;cminp

Leb (Ik)
� Lr;cmin
Leb (Ik)

: (92)

In addition, we have

E
�
�Ik;j

�
�
r
E
h
�2Ik;j

i
=

sPr
i=0Var

�
'Ik;j'Ik;i

�
n

�
'Ik;j1

vuutPr
i=0 P

�
'2Ik;i

�
n

=
'Ik;j1

r
r + 1

n

� Lr;cmin

s
1

nLeb (Ik)
: (93)

Therefore, combining (90), (92), (93) and (89) while taking x =  lnn, we get

P

"
�Ik;j � Lr;cmin;

 s
1

nLeb (Ik)
+

s
lnn

nLeb (Ik)
+

lnn

nLeb (Ik)

!#
� n� . (94)

Now, since by (49) and the fact that D � A+n (lnn)
�2 we have

1

Leb (Ik)
� c�2M;LebD � c�2M;LebA+

n

(lnn)
2 ,

we obtain from (94) that a positive constant Lr;A+;cmin;cM;Leb; exists, depending only on ; r; A+; cmin and
cM;Leb such that

P

"
�Ik;j � Lr;A+;cmin;cM;Leb;

s
lnn

nLeb (Ik)

#
� n� . (95)

Finally, de�ne


(2)n =
\

(Ik;j)2I

(
�Ik;j � Lr;A+;cmin;cM;Leb;

s
lnn

nLeb (Ik)

)
.

For all n � n0 (r;A+; cmin; cM;Leb; ), we have

p
r + 1� Lr;A+;cmin;cM;Leb;

s
lnn

nLeb (Ik)

� Lr;A+;cmin;cM;Leb;

r
D lnn

n

� Lr;A+;cmin;cM;Leb;
1p
lnn

� 1

2
. (96)
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Moreover by (95) it holds

P
�

(2)n

�
� 1�Dn� (97)

and, by (88), the expected bound (83) holds on 
(2)n , for all n � n0 (r;A+; cmin; cM;Leb; ).
Next, notice that for a D�D matrix L =

�
L(Ik;j);(Il;i)

�
(Ik;j);(Il;i)2I�I

we have the following classical formula,

kLk = max
(Ik;j)2I

X
(Il;i)2I

��L(Ik;j);(Il;i)�� :
Applied to the matrix of interest Ln;D , this gives

kLn;Dk = max
(Ik;j)2I

X
(Il;i)2I

��(Pn � P ) �'Ik;j'Il;i���
= max

k2f0;:::;m�1g
max

j2f0;:::;rg

8<: X
(Il;i)2I

��(Pn � P ) �'Ik;j'Il;i���
9=; : (98)

Thus, using formula (98), inequalities (83), (49) and (96) give that for all n � n0 (r;A+; cmin; cM;Leb; ), we
have on 
(2)n ,

kLn;Dk � Lr;A+;cmin;cM;Leb;

r
D lnn

n
� 1

2
:

Finally, by setting 
n = 

(1)
n
T


(2)
n , we have P (
n) � 1 � 3Dn� , and inequalities (83), (82) and (84) are

satis�ed on 
n for all n � n0 (r;A+; cmin; cM;Leb; ), which completes the proof of Lemma 11. �

6.3 Proofs of Section 3

In order to express the quantities of interest in the proofs of Theorems 3 and 4, we need preliminary de�nitions.
Let � > 0 be �xed and for Rn;D;� de�ned in (H5), see Section 3.1, we set

~Rn;D;� = max

(
Rn;D;� ; A1

r
D lnn

n

)
(99)

where A1 is a positive constant to be chosen later. Moreover, we set

�n = max

(r
lnn

D
;

r
D lnn

n
; Rn;D;�

)
: (100)

Thanks to the assumption of consistency in sup-norm (H5), our analysis will be localized in the subset

B(M;L1)

�
sM ; ~Rn;D;�

�
=
n
s 2M; ks� sMk1 � ~Rn;D;�

o
of M .
Let us de�ne several slices of excess risk on the model M : for any C � 0,

FC = fs 2M;P (Ks�KsM ) � Cg
\
B(M;L1)

�
sM ; ~Rn;D;�

�
F>C = fs 2M;P (Ks�KsM ) > Cg

\
B(M;L1)

�
sM ; ~Rn;D;�

�
and for any interval J � R;

FJ = fs 2M;P (Ks�KsM ) 2 Jg
\
B(M;L1)

�
sM ; ~Rn;D;�

�
:
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We also de�ne, for all L � 0,

DL = fs 2M;P (Ks�KsM ) = Lg
\
B(M;L1)

�
sM ; ~Rn;D;�

�
:

Recall that, by Lemma 1 of Section 2.2, the contrasted functions satisfy, for every s 2M and z = (x; y) 2 X�R;

(Ks) (z)� (KsM ) (z) =  1;M (z) (s� sM ) (x) +  2 ((s� sM ) (x))

where  1;M (z) = �2 (y � sM (x)) and  2 (t) = t2, for all t 2 R: For convenience, we will use the following
notation, for any s 2M ,

 2 � (s� sM ) : x 2 X 7�! 2 ((s� sM ) (x)) .

Note that, for all s 2M ,
P
�
 1;M � s

�
= 0 (101)

and by (H1) inequality (15) holds true, that is 1;M1 � 4A : (102)

Also, for K1;M de�ned in Section 3.3, we have

K1;M =

vuut 1

D

DX
k=1

Var
�
 1;M � 'k

�
for any orthonormal basis ('k)

D
k=1 of (M; k�k2) : Moreover, inequality (31) holds under (H1) and we have

K1;M � 2�max + 4A � 6A . (103)

Assuming (H2), we have from (32)
0 < 2�min � K1;M . (104)

Finally, when (H3) holds (it is the case when (H4) holds), we have by (16),

sup
s2M; ksk2�1

ksk1 � A3;M
p
D (105)

and so, for any orthonormal basis ('k)
D
k=1 of (M; k�k2), it holds for all k 2 f1; :::; Dg, as P

�
'2k
�
= 1,

k'kk1 � A3;M
p
D . (106)

6.3.1 Proofs of the theorems

The proof of Theorem 3 relies on Lemmas 18, 19 and 20 stated in Section 6.4, and that give sharp estimates
of suprema of the empirical process on the constrasted functions over slices of interest.

Proof of Theorem 3. Let � > 0 be �xed and let ' = ('k)
D
k=1 be an orthonormal basis of (M; k�k2) satisfying

(H4). We divide the proof of Theorem 3 into four parts, corresponding to the four Inequalities (22), (23), (24)
and (25). The values of A0 and A1, respectively de�ned in (21) and (99), will then be chosen at the end of
the proof.
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Proof of Inequality (22). Let r 2 (1; 2] to be chosen later and C > 0 such that

rC =
D

4n
K21;M : (107)

By (H5) there exists a positive integer n1 such that it holds, for all n � n1,

P (P (Ksn �KsM ) � C) � P
�
fP (Ksn �KsM ) � Cg

\

1;�

�
+ n�� (108)

and also

P
�
fP (Ksn �KsM ) � Cg

\

1;�

�
� P

�
inf
s2FC

Pn (Ks�KsM ) � inf
s2F>C

Pn (Ks�KsM )
�

� P
�
inf
s2FC

Pn (Ks�KsM ) � inf
s2F(C;rC]

Pn (Ks�KsM )
�

= P

 
sup
s2FC

Pn (KsM �Ks) � sup
s2F(C;rC]

Pn (KsM �Ks)
!
: (109)

Now, by (107) and (104) we have

D

2n
�2min � C � (1 +A4�n)2

D

4n
K21;M

where A4 is de�ned in Lemma 18. Hence we can apply Lemma 18 with � = �, Al = �2min=2 and A3;M = rM ('),
by Remark 2. Therefore it holds, for all n � n0 (A1; Acons; A+; �min; �),

P

"
sup
s2FC

Pn (KsM �Ks) �
�
1 + LA1;A;rM (');�min;A�;� � �n

�rCD

n
K1;M � C

#
� 2n�� : (110)

Moreover, by using (104) and (103) in (107) we get

D

n
�2min � rC � D

n
(�max + 2A)

2
:

We then apply Lemma 20 with

� = �; Al = �2min; Au = (�max + 2A)
2

and
A1 � 64

p
2B2A (�max + 2A)�

�1
minrM (') ; (111)

so it holds for all n � n0 (A�; A+; A;A1; Acons; B2; rM (') ; �max; �min; �),

P

 
sup

s2F(C;rC]
Pn (KsM �Ks) �

�
1� LA�;A;A1;�max;�min;rM (');� � �n

�rrCD

n
K1;M � rC

!
� 2n�� : (112)

Now, from (110) and (112) we can �nd a positive constant ~A0, only depending on A�; A;A1; �max; �min; rM (')
and �, such that for all n � n0 (A�; A+; A;A1; Acons; B2; rM (') ; �max; �min; �), there exists an event of
probability at least 1� 4n�� on which

sup
s2FC

Pn (KsM �Ks) �
�
1 + ~A0�n

�rCD

n
K1;M � C (113)
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and

sup
s2F(C;rC]

Pn (KsM �Ks) �
�
1� ~A0�n

�rrCD

n
K1;M � rC : (114)

Hence, from (113) and (114) we deduce, using (108) and (109), that if we choose r 2 (1; 2] such that�
1 + ~A0�n

�rCD

n
K1;M � C <

�
1� ~A0�n

�rrCD

n
K1;M � rC (115)

then, for all n � n0 (A�; A+; A;A1; Acons; B2; rM (') ; �max; �min; n1; �) we have

P (Ksn �KsM ) � C

with probability at least 1� 5n��. Now, by (107) it holdsr
rCD

n
K1;M = 2rC =

1

2

D

n
K21;M ,

and as a consequence Inequality (115) is equivalent to�
1� 2 ~A0�n

�
r � 2

�
1 + ~A0�n

�p
r + 1 > 0 : (116)

Moreover, we have by (100) and (H5), for all n � n0

�
A+; A�; Acons; ~A0; �

�
,

~A0�n �
1

4
(117)

and so, for all n � n0

�
A+; A�; Acons; ~A0; �

�
, simple computations involving (117) show that by taking

r = 1 + 48

q
~A0�n (118)

inequality (116) is satis�ed. Notice that, for all n � n0

�
A+; A�; Acons; ~A0; �

�
we have 0 < 48

p
~A0�n < 1, so

that r 2 (1; 2). Finally, we compute C by (107) and (118), in such a way that for all n � n0

�
A+; A�; Acons; ~A0; �

�
,

C =
rC

r
=

1

1 + 48
p
~A0�n

1

4

D

n
K21;M �

�
1� 48

q
~A0�n

�
1

4

D

n
K21;M > 0 (119)

which yields the result by noticing that the dependence on �max can be released in n0 and ~A0 since by (H1)
we have �max � A.

Proof of Inequality (23). Let C > 0 and � 2
�
0; 12
�
to be chosen later in such a way that

(1� �)C = D

4n
K21;M (120)

and

C � 1

4
(1 +A5�n)

2 D

n
K21;M , (121)

where A5 is de�ned in Lemma 19. We have by (H5), for all n � n1;

P (P (Ksn �KsM ) > C) � P
�
fP (Ksn �KsM ) > Cg

\

1;�

�
+ n�� (122)
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and also

P
�
fP (Ksn �KsM ) > Cg

\

1;�

�
� P

�
inf
s2FC

Pn (Ks�KsM ) � inf
s2F>C

Pn (Ks�KsM )
�

= P

 
sup
s2FC

Pn (KsM �Ks) � sup
s2F>C

Pn (KsM �Ks)
!

� P

0@ sup
s2F
(C2 ;(1��)C]

Pn (KsM �Ks) � sup
s2F>C

Pn (KsM �Ks)

1A : (123)

Now by (121) we can apply Lemma 19 with � = � and we obtain, for all n � n0 (A1; Acons; A+; �),

P

"
sup

s2F>C
Pn (KsM �Ks) � (1 +A5�n)

r
CD

n
K1;M � C

#
� 2n�� (124)

where A5 only depends on A;A3;M ; A1; �min; A� and �. Moreover, we can take A3;M = rM (') by Remark 2.
Also, by (120), (104) and (103) we can apply Lemma 20 with the quantity C in Lemma 20 replaced by C=2,
� = �, r = 2 (1� �), Au = (�max + 2A)2, Al = �2min and the constant A1 satisfying

A1 � 64
p
2B2A (�max + 2A)�

�1
minrM (') ; (125)

and so it holds, for all n � n0 (A�; A+; A;A1; Acons; B2; rM (') ; �max; �min; �),

P

0@ sups2F
(C2 ;(1��)C]

Pn (KsM �Ks)

�
�
1� LA�;A;A1;�max;�min;rM (');� � �n

�q (1��)CD
n K1;M � (1� �)C

1A � 2n�� : (126)

Hence from (124) and (126), we deduce that a positive constant �A0 exists, only depending onA�; A;A1; �max; �min; rM (')
and �, such that
for all n � n0 (A�; A+; A;A1; Acons; B2; rM (') ; �max; �min; �) it holds on an event of probability at least
1� 4n��,

sup
s2F
(C2 ;(1��)C]

Pn (KsM �Ks) �
�
1� �A0�n

�r (1� �)CD
n

K1;M � (1� �)C (127)

and

sup
s2F>C

Pn (KsM �Ks) �
�
1 + �A0�n

�rCD

n
K1;M � C . (128)

Now, from (127) and (128) we deduce, using (122) and (123), that if we choose � 2
�
0; 12
�
such that (121) and

�
1 + �A0�n

�rCD

n
K1;M � C <

�
1� �A0�n

�r (1� �)CD
n

K1;M � (1� �)C (129)

are satis�ed then, for all n � n0 (A�; A+; A;A1; Acons; B2; rM (') ; �max; �min; n1; �),

P (Ksn �KsM ) � C ,

with probability at least 1� 5n��: By (120) it holdsr
(1� �)CD

n
K1;M = 2 (1� �)C = 1

2

D

n
K21;M ,

and by consequence, inequality (129) is equivalent to�
1� 2 �A0�n

�
(1� �)� 2

�
1 + �A0�n

�p
1� � + 1 > 0 . (130)
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Moreover, we have by (100) and (H5), for all n � n0
�
A+; A�; Acons; �A0; A5; �

�
,

�
�A0 _A5

�
�n <

1

72
(131)

and so, for all n � n0
�
A+; A�; Acons; �A0; �

�
, simple computations involving (131) show that by taking

� = 6

�q
�A0 _

p
A5

�
p
�n , (132)

inequalities (130) and (121) are satis�ed and � 2
�
0; 12
�
. Finally, we can compute C by (120) and (132), in

such a way that for all n � n0
�
A+; A�; Acons; �A0; �

�
0 < C =

(1� �)C
(1� �) =

1

(1� �)
1

4

D

n
K21;M �

�
1 + 12

�q
�A0 _

p
A5

�
p
�n

�
1

4

D

n
K21;M ; (133)

which yields the result by noticing that the dependence on �max can be released from n0 and �A0 since by (H1)
we have �max � A.

Proof of Inequality (24). Let C = D
8nK

2
1;M > 0 and let r = 2. By (103) and (104) we have

D

n
�2min � rC =

D

4n
K21;M � D

n
(�max + 2A)

2

so we can apply Lemma 20 with � = �, Al = �2min and Au = (�max + 2A)
2. So if

A1 � 64
p
2B2A (�max + 2A)�

�1
minrM (') ; (134)

it holds, for all n � n0 (A�; A+; A;A1; Acons; B2; rM (') ; �max; �min; �),

P

 
sup

s2F(C;rC]
Pn (KsM �Ks) �

�
1� LA�;A;A1;�max;�min;rM (');� � �n

�rrCD

n
K1;M � rC

!
� 2n�� : (135)

Since rC = D
4nK

2
1;M , if we set Â0 = 2LA�;A;A1;�max;�min;rM (');� with LA�;A;A1;�max;�min;rM (');� the constant

in (135), we get

P

 
sup

s2F(C;rC]
Pn (KsM �Ks) �

�
1� Â0�n

� D
4n
K21;M

!
� 2n�� : (136)

Notice that
Pn (KsM �Ksn) = sup

s2M
Pn (KsM �Ks) � sup

s2F(C;rC]
Pn (KsM �Ks)

so from (136) we deduce that

P
�
Pn (KsM �Ksn) �

�
1� Â0�n

� D
4n
K21;M

�
� 1� 2n�� : (137)
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Remark 12 Notice that in the proof of inequality (24), we do not need to assume the consistency of the
least-squares estimator sn towards the projection sM . Straightforward adaptations of Lemma 20 allow to take

~�n = max

(r
lnn

D
;

r
D lnn

n

)

instead of the quantity �n de�ned in (100). This readily gives the expected bound (26) of Theorem 3.

Proof of Inequality (25). Let

C =
1

4
(1 +A5�n)

2 D

n
K21;M > 0 (138)

where A5 is de�ned in Lemma 19 applied with � = �. By (H5) we have

P (Pn (KsM �Ksn) > C) � P
�
fPn (KsM �Ksn) > Cg

\

1;�

�
+ n�� . (139)

Moreover, on 
1;�, we have

Pn (KsM �Ksn) = sup
s2B(M;L1)(sM ; ~Rn;D;�)

Pn (KsM �Ks)

= sup
s2F>0

Pn (KsM �Ks) (140)

and by (198) of Lemma 19 applied with � = � it holds, for all n � n0 (A1; Acons; A+; �),

P

 
sup
s2F>0

Pn (KsM �Ks) > C

!
� 2n�� . (141)

Finally, using (140) and (141) in (139) we get, for all n � n0 (A1; Acons; n1; A+; �),

P (Pn (KsM �Ksn) > C) � 3n�� .

Conclusion. To complete the proof of Theorem 3, just notice that by (111), (125) and (134) we can take

A1 = 64
p
2B2A (�max + 2A)�

�1
minrM (')

and by (119), (133), (137) and (138),

A0 = max

�
48

q
~A0; 12

�q
�A0 _

p
A5

�
;

q
Â0;

p
A5

�
is convenient. �

Proof of Theorem 4. We localize our analysis in the subset

B(M;L1) (sM ; Rn;D;�) = fs 2M; ks� sMk1 � Rn;D;�g �M .

33



Unlike in the proof of Theorem 3, see (99), we need not to consider the quantity ~Rn;D;�, a radius possibly
larger than Rn;D;�. Indeed, the use of ~Rn;D;� rather than Rn;D;� in the proof of Theorem 3 is only needed
in Lemma 14, where we derive a sharp lower bound for the mean of the supremum of the empirical process
indexed by the contrasted functions centered by the contrasted projection over a slice of interest. To prove
Theorem 4, we just need upper bounds, and Lemma 14 is avoided as well as the use of ~Rn;D;�.
Let us de�ne several slices of excess risk on the model M : for any C � 0,

GC = fs 2M;P (Ks�KsM ) � Cg
\
B(M;L1) (sM ; Rn;D;�) ,

G>C = fs 2M;P (Ks�KsM ) > Cg
\
B(M;L1) (sM ; Rn;D;�) .

We also de�ne, for all U � 0,

DU = fs 2M;P (Ks�KsM ) = Ug
\
B(M;L1) (sM ; Rn;D;�) :

I. Proof of Inequality (27). Let C1 > 0 to �xed later, satisfying

C1 �
D

n
=: C� > 0 . (142)

We have by (H5), for all n � n1;

P (P (Ksn �KsM ) > C1) � P
�
fP (Ksn �KsM ) > C1g

\

1;�

�
+ n�� (143)

and also

P
�
fP (Ksn �KsM ) > C1g

\

1;�

�
� P

�
inf

s2GC1
Pn (Ks�KsM ) � inf

s2G>C1
Pn (Ks�KsM )

�
= P

 
sup
s2GC1

Pn (KsM �Ks) � sup
s2G>C1

Pn (KsM �Ks)
!

� P
 
0 � sup

s2G>C1
Pn (KsM �Ks)

!
: (144)

Moreover, it holds

sup
s2G>C1

Pn (KsM �Ks)

= sup
s2G>C1

�
Pn
�
 1;M � (sM � s)�  2 � (s� sM )

�	
= sup

s2G>C1

�
(Pn � P )

�
 1;M � (sM � s)

�
� (Pn � P ) ( 2 � (s� sM ))� P (Ks�KsM )

	
= sup

s2G>C1

�
(Pn � P )

�
 1;M � (sM � s)

�
� P (Ks�KsM )� (Pn � P ) ( 2 � (s� sM ))

	
= sup

U>C1

sup
s2DU

�
(Pn � P )

�
 1;M � (sM � s)

�
� U � (Pn � P ) ( 2 � (s� sM ))

	
� sup

U>C1

8<:pU
vuut DX

k=1

(Pn � P )2
�
 1;M � 'k

�
� U + sup

s2GU
j(Pn � P ) ( 2 � (s� sM ))j

9=; . (145)

Now, from inequality (164) of Lemma 13 applied with � = �, we get

P

24
vuut DX

k=1

(Pn � P )2
�
 1;M � 'k

�
� LA;A3;M ;�

r
D _ lnn

n

35 � n�� . (146)
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In addition, we handle the empirical process indexed by the second order terms by straightforward modi�cations
of Lemmas 16 and 17 as well as their proofs. It thus holds, by the same type of arguments as those given in
Lemma 16,

E

"
sup
s2GC1

��(Pn � P ) � s2;M � (s� sM )
���# � 8rCD

n
Rn;D;� : (147)

Moreover, using (147), the same type of arguments as those leading to inequality (191) of Lemma 17, allow to
show that for any q � 1 and j 2 N�, for all x > 0;

P

24 sup
s2GqjC�

j(Pn � P ) ( 2 � (s� sM ))j � 16
r
qjC�D

n
Rn;D;� +

s
2R2n;D;�q

jC�x

n
+
8

3

R2n;D;�x

n

35
� exp (�x) : (148)

Hence, taking x =  lnn in (148) and using the fact that C� = Dn�1 � n�1, we get

P

24 sup
s2GqjC�

j(Pn � P ) ( 2 � (s� sM ))j � LAcons;Rn;D;�

r
qjC� (D _ lnn)

n

35 � n� : (149)

Now, by straightforward modi�cations of the proof of Lemma 17, we get that for all n � n0 (Acons),

P

"
8U > C�; sup

s2GU
j(Pn � P ) ( 2 � (s� sM ))j � LAcons;�Rn;D;�

r
U (D _ lnn)

n

#
� 1� n�� : (150)

Combining (145), (146) and (150), we have on an event of probability at least 1�2n��, for all n � n0 (Acons),

sup
s2G>C1

Pn (KsM �Ks) � sup
U>C1

(
LA;A3;M ;�

r
U (D _ lnn)

n
� U + LAcons;�Rn;D;�

r
U (D _ lnn)

n

)

� sup
U>C1

(
LA;Acons;A3;M ;� (1 +Rn;D;�)

r
U (D _ lnn)

n
� U

)
. (151)

Now, as Rn;D;� � Acons (lnn)
�1=2, we deduce from (151) that for

C1 = LA;Acons;A3;M ;�
D _ ln (n)

n
> C� (152)

with LA;Acons;A3;M ;� large enough, it holds with probability at least 1� 2n�� and for all n � n0 (Acons),

sup
s2G>C1

Pn (KsM �Ks) < 0 ,

and so by using (143) and (144), this yields inequality (27).

II. Proof of Inequality (28). Let C2 > 0 to �xed later, satisfying

C2 �
D

n
= C� > 0 . (153)

We have by (H5), for all n � n1;

P (Pn (KsM �Ksn) > C2) � P
�
fPn (KsM �Ksn) > C2g

\

1;�

�
+ n�� . (154)

Moreover, we have on 
1;�,

Pn (KsM �Ksn) = sup
s2B(M;L1)(sM ;Rn;D;�)

Pn (KsM �Ks)

= max

(
sup
s2GC1

Pn (KsM �Ks) ; sup
s2G>C1

Pn (KsM �Ks)
)
, (155)
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where C1 is de�ned in the �rst part of the proof dedicated to the establishment of inequality (27). Moreover,
let us recall that in the �rst part of the proof, we have proved that an event of probability at least 1� 2n��
exists, that we call 
1, such that it holds on this event, for all n � n0 (Acons),vuut DX

k=1

(Pn � P )2
�
 1;M � 'k

�
� LA;A3;M ;�

r
D _ lnn

n
, (156)

8U > C�; sup
s2GU

j(Pn � P ) ( 2 � (s� sM ))j � LAcons;�Rn;D;�

r
U (D _ lnn)

n
, (157)

and
sup

s2G>C1
Pn (KsM �Ks) < 0 . (158)

By (155) and (158), we thus have on 
1;�

T

1, for all n � n0 (Acons),

0 � Pn (KsM �Ksn) = sup
s2GC1

Pn (KsM �Ks) . (159)

In addition, it holds

sup
s2GC1

Pn (KsM �Ks)

= sup
s2GC1

�
Pn
�
 1;M � (sM � s)�  2 � (s� sM )

�	
= sup

s2GC1

�
(Pn � P )

�
 1;M � (sM � s)

�
� (Pn � P ) ( 2 � (s� sM ))� P (Ks�KsM )

	
� sup

s2GC1

�
(Pn � P )

�
 1;M � (sM � s)

�	
+ sup
s2GC1

j(Pn � P ) ( 2 � (s� sM ))j . (160)

Now, we have on 
1, for all n � n0 (Acons),

sup
s2GC1

�
(Pn � P )

�
 1;M � (sM � s)

�	
�

p
C1

vuut DX
k=1

(Pn � P )2
�
 1;M � 'k

�
� LA;A3;M ;�

r
C1 (D _ lnn)

n
by (156)

= LA;Acons;A3;M ;�
D _ ln (n)

n
by (152) , (161)

and also, by (157) and (152),

sup
s2GC1

j(Pn � P ) ( 2 � (s� sM ))j � LAcons;�Rn;D;�

r
C1 (D _ lnn)

n

� LA;Acons;A3;M ;�Rn;D;�
D _ ln (n)

n
. (162)

Finally, as Rn;D;� � Acons (lnn)
�1=2, we deduce from (159), (160), (161) and (162), that it holds on 
1;�

T

1,

for all n � n0 (Acons),

Pn (KsM �Ksn) � LA;Acons;A3;M ;�
D _ ln (n)

n
,

and so, this yields to inequality (28) by using (154) and this concludes the proof of Theorem 4. �
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6.4 Technical Lemmas

We state here some lemmas needed in the proofs of Section 6.3. First, in Lemmas 13, 14 and 15, we derive some
controls, from above and from below, of the empirical process indexed by the �linear parts�of the contrasted
functions over slices of interest. Secondly, we give upper bounds in Lemmas 16 and 17 for the empirical process
indexed by the �quadratic parts� of the contrasted functions over slices of interest. And �nally, we use all
these results in Lemmas 18, 19 and 20 to derive upper and lower bounds for the empirical process indexed by
the contrasted functions over slices of interest.

Lemma 13 Assume that (H1), (H2) and (H3) hold. Then for any � > 0; by setting

�n = LA;A3;M ;�min;�

 r
lnn

D
_
p
lnn

n1=4

!
;

It holds, for any orthonormal basis ('k)
D
k=1 of (M; k�k2),

P

24
vuut DX

k=1

(Pn � P )2
�
 1;M � 'k

�
� (1 + �n)

r
D

n
K1;M

35 � n�� : (163)

If (H1) and (H3) hold, then for any � > 0; it holds

P

24
vuut DX

k=1

(Pn � P )2
�
 1;M � 'k

�
� LA;A3;M ;�

r
D _ lnn

n

35 � n�� : (164)

Proof. By Cauchy-Schwarz inequality we have

�M :=

vuut DX
k=1

(Pn � P )2
�
 1;M � 'k

�
= sup

s2M , ksk2�1

���(Pn � P ) � 1;M � s
���	 :

Hence, we get by Bousquet�s inequality (215) applied with F =
�
 1;M � s ; s 2M; ksk2 � 1

	
, for all x > 0,

� > 0;

P
�
�M �

r
2�2

x

n
+ (1 + �)E [�M ] +

�
1

3
+
1

�

�
bx

n

�
� exp (�x) (165)

where
�2 � sup

s2M; ksk2�1
P
h�
 1;M � s

�2i �  1;M21 � 16A2 by (102)

and
b � sup

s2M; ksk2�1

 1;M � s� P
�
 1;M � s

�
1 � 4A

p
DA3;M by (101), (102) and (105).

Moreover,

E [�M ] �
q
E [�2M ] =

r
D

n
K1;M :

So, from (165) it follows that, for all x > 0, � > 0;

P

"
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r
32A2

x

n
+ (1 + �)

r
D

n
K1;M +

�
1

3
+
1

�

�
4A
p
DA3;Mx

n

#
� exp (�x) : (166)

Hence, taking x = � lnn, � =
p
lnn
n1=4

in (166), we derive by (104) that a positive constant LA;A3;M ;�min;� exists
such that

P

"
�M �

 
1 + LA;A3;M ;�min;�
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lnn

D
_
p
lnn
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!!r
D

n
K1;M

#
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which yields inequality (163). By (103) we have K1;M � 6A, and by taking again x = � lnn and � =
p
lnn
n1=4

in
(166), simple computations give

P

24
vuut DX

k=1

(Pn � P )2
�
 1;M � 'k

�
� LA;A3;M ;�

 r
D

n
_
r
lnn

n
_
r
D lnn

n3=2

!35 � n�� ;

and by consequence, (164) follows. �
In the next lemma, we state sharp lower bounds for the mean of the supremum of the empirical process on
the linear parts of constrasted functions of M belonging to a slice of excess risk. This is done for a model of
reasonable dimension.

Lemma 14 Let r > 1 and C > 0. Assume that (H1), (H2), (H4) and (17) hold and let ' = ('k)
D
k=1 be an

orthonormal basis of (M; k�k2) satisfying (H4). If positive constants A�; A+; Al; Au exist such that

A+
n

(lnn)
2 � D � A� (lnn)

2 and Al
D

n
� rC � Au

D

n
;

and if the constant A1 de�ned in (99) satis�es

A1 � 64B2A
p
2Au�

�1
minrM (') ; (167)

then a positive constant LA;Al;Au;�min exists such that, for all n � n0 (A�; A+; Au; Al; A;B2; rM (') ; �min),

E

"
sup
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(Pn � P )
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 1;M � (sM � s)
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�
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�r
rCD

n
K1;M : (168)

Our argument leading to Lemma 14 shows that we have to assume that the constant A1 introduced in (99)
is large enough. In order to prove Lemma 14 the following result is needed.

Lemma 15 Let r > 1; � > 0 and C � 0. Assume that (H1), (H2), (H4) and (17) hold and let ' = ('k)
D
k=1

be an orthonormal basis of (M; k�k2) satisfying (H4). If positive constants A+; A� and Au exist such that

A+
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2 � D � A� (lnn)

2
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D

n
;
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p
2Au��

�1
minrM (')

then for all n � n0 (A�; A+; A;B2; rM (') ; �min; �), it holds
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35 � 2D + 1
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:

Proof of Lemma 15. By Cauchy-Schwarz inequality, we get

�M =

vuut DX
k=1
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 1;M � 'k

�
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s2SM

��(Pn � P ) � 1;M � s
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where SM is the unit sphere of M , that is
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9=; :
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Thus we can apply Klein-Rio�s inequality (217) to �M by taking F =SM and use the fact that

sup
s2SM

 1;M � s� P
�
 1;M � s

�
1 � 4A

p
DrM (') by (101), (102) and (H4). (169)
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�
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�2 � 16A2 by (101), (102)

and also, by using (169) in Inequality (212) applied to �M , we get that
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We thus obtain by (217), for all "; x > 0;
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So, by taking " = 1
2 and x = � lnn in (170), and by observing that D � A� (lnn)

2 and K1;M � 2�min, we
conclude that, for all n � n0 (A�; A;B2; rM (') ; �min; �),
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r
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#
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Furthermore, combining Bernstein�s inequality (213), with the observation that we have, for every k 2
f1; :::; Dg,  1;M � 'k


1 � 4A

p
DrM (') by (102) and (H4)

P
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n
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and so
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Hence, taking x = � lnn in (172), it comes
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then, by using (171) and (173), we get for all n � n0 (A�; A;B2; rM (') ; �min; �),
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Finally, as A+ n
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and we can check that, since rC � Au
D
n and K1;M � 2�min, if

A1 � 32B2
p
2AuA2��

�1
minrM (')

then, for all n � n0 (A�; A+; A;B2; rM (') ; �min; �),
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which readily gives the result. �
We are now ready to prove the lower bound (168) for the expected value of the largest increment of the
empirical process over F(C;rC]:

Proof of Lemma 14. Let us begin with the lower bound of

E
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�!2
;
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By Lemma 15 we have for all � > 0, ifA1 � 32B2
p
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Moreover, by (H4), we get on the event ~
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1
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As a consequence, by (175) it holds

E
1
2

 
sup

s2F(C;rC]
(Pn � P )

�
 1;M � (sM � s)

�!2

� E 1
2

24 (Pn � P )  1;M �
 

DX
k=1

�k;n'k

!!!2
1~


35
=
p
rC

vuutE" DX
k=1

(Pn � P )2
�
 1;M � 'k

�!
1~


#
: (176)

40



Furthermore, since by (101) P
�
 1;M � 'k

�
= 0 and by (H4) k'kk1 �
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Comparing inequality (177) with (176) and using (174), we obtain the following lower bound for all n �
n0 (A�; A+; A;B2; rM (') ; �min; �),
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We take � = 4, and we must have

A1 � 64AB2
p
2Au�

�1
minrM (') .

Since D � A+n (lnn)
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and so, by combining (178) and (179), for all n � n0 (A�; A+; A;B2; rM (') ; �min), it holds
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Now, as D � A� (lnn)
2 we have for all n � n0 (A�), D�1=2 � 1=2. Moreover, we have K1;M � 2�min by (H2)

and rC � AlDn
�1, so we �nally deduce from (180) that, for all n � n0 (A�; A+; A;B2; Al; rM (') ; �min),

E
1
2

 
sup

s2F(C;rC]
(Pn � P )

�
 1;M � (sM � s)

�!2
� �min

p
Al
D

n
: (181)

We turn now to the lower bound of E
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In the next step, we apply Corollary 27. More precisely, using notations of Corollary 27, we set

F =
�
 1;M � (sM � s) ; s 2 F(C;rC]

	
and
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�1=2
min

�
holds) exists such that,

by setting

{n =
LA;Al;Au;�minp

D

we get, using (183), that, for all n � n0 (A�; A+; Al; Au; A;B2; rM (') ; Acons; �min),

{2nE
�
Z2
�
� �2

n
,

{2n
p
E [Z2] � b

n
.

Furthermore, since D � A� (lnn)
2, we have for all n � n0 (A�; A;Au; Al; �min),

{n 2 (0; 1) :

So, using (182) and Corollary 27, it holds for all n � n0 (A�; A+; Al; Au; A;B2; rM (') ; �min),

E

"
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s2F(C;rC]
(Pn � P )

�
 1;M � (sM � s)

�#

�
�
1� LA;Al;Au;�minp

D

�
E

1
2

 
sup

s2F(C;rC]
(Pn � P )

�
 1;M � (sM � s)

�!2
: (184)

Finally, by comparing (180) and (184), we deduce that for all n � n0 (A�; A+; Al; Au; A;B2; rM (') ; �min),

E

"
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s2F(C;rC]
(Pn � P )

�
 1;M � (sM � s)

�#
�
�
1� LA;Al;Au;�minp

D

�r
rCD

n
K1;M

and so (168) is proved. �
Let us now turn to the control of second order terms appearing in the expansion of the least-squares contrast,
see (6). Let us de�ne


C (x) = sup
s2F(C;rC]

�
j 2 ((s� sM ) (x))�  2 ((t� sM ) (x))j

js (x)� t (x)j ; (s; t) 2 FC ; s (x) 6= t (x)

�
:

42



After straightforward computations using that  2 (t) = t2 for all t 2 R and assuming (H3), we get that, for
all x 2 X ,


C (x) = 2 sup
s2FC

fjs (x)� sM (x)jg (185)

� 2
�
~Rn;D;� ^

p
CDA3;M

�
: (186)

Lemma 16 Let C � 0. Under (H3), it holds

E
�
sup
s2FC

j(Pn � P ) ( 2 � (s� sM ))j
�
� 8
r
CD

n

�
~Rn;D;� ^

p
CDA3;M

�
:

Proof. We de�ne the Rademacher process Rn on a class F of measurable functions from X to R, to be

Rn (f) =
1

n

nX
i=1

"if (Xi) , f 2 F

where "i are independent Rademacher random variables also independent from the Xi. By the usual sym-
metrization argument we have

E
�
sup
s2FC

j(Pn � P ) ( 2 � (s� sM ))j
�
� 2E

�
sup
s2FC

jRn ( 2 � (s� sM ))j
�
:

Taking the expectation with respect to the Rademacher variables, we get

E"
�
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jRn ( 2 � (s� sM ))j
�
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�
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���Rn

�
(s� sM )2

�����
�
�
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C (Xi)

�
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"
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s2FC

����� 1n
nX
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"i'i ((s� sM ) (Xi))

�����
#

(187)

where the functions 'i : R �! R are de�ned by

'i (t) =

�
(
C (Xi))

�1
t2 for jtj � sups2FC fjs (Xi)� sM (Xi)jg = 
C(Xi)

2
1
4
C (Xi) otherwise

Then by (185) we deduce that 'i is a contraction mapping with 'i (0) = 0. We thus apply Theorem 23 to get

E"

"
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s2FC

����� 1n
nX
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#
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s2FC
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#
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s2FC
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and so we derive successively the following upper bounds in mean,

E
�
sup
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jRn ( 2 � (s� sM ))j
�
= E

�
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�
sup
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�����
##

by (187)
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C (Xi)
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jRn (s� sM )j
��

by (188)

= 2E
��
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C (Xi)

�
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jRn (s� sM )j
�

� 2

s
E
�
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2C (Xi)
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We consider now an orthonormal basis of (M; k�k2) and denote it by ('k)
D
k=1. WhencevuutE"� sup

s2FC
jRn (s� sM )j

�2#

�

vuuutE
24 sup(�����

DX
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akRn ('k)

����� ;
DX
k=1

a2k � C

)!235
=
p
C

vuutE" DX
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(Rn ('k))
2

#
=

r
CD

n
;

to complete the proof, it remains to observe that, by (186),s
E
�
max
1�i�n


2C (Xi)

�
� 2

�
~Rn;D;� ^

p
CDA3;M

�
:

�
In the following Lemma, we provide uniform upper bounds for the supremum of the empirical process of second
order terms in the contrast expansion when the considered slices are not too small.

Lemma 17 Let A+; A�; Al; �; C� > 0, and assume (H3) and (17). If C� � Al
D
n and A+n (lnn)

�2 � D �
A� (lnn)

2, then a positive constant LA�;Al;� exists such that, for all n � n0 (A1; Acons; A+; Al),

P

"
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s2FC
j(Pn � P ) ( 2 � (s� sM ))j � LA�;Al;�

r
CD

n
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#
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Proof. First notice that, as A+n (lnn)
�2 � D, we have by (17),

~Rn;D;� �
max

�
Acons ; A1

p
A+
	

p
lnn

:

By consequence, for all n � n0 (A1; Acons; A+),

~Rn;D;� � 1 : (189)
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Now, since [C>C�FC � B(M;L1)

�
sM ; ~Rn;D;�

�
where

B(M;L1)

�
sM ; ~Rn;D;�

�
=
n
s 2M; ks� sMk1 � ~Rn;D;�

o
;

we have by (189), for all s 2 [C>C�FC and for all n � n0 (A1; Acons; A+),

P (Ks�KsM ) = P
h
(s� sM )2

i
� ks� sMk21
� ~R2n;D;� � 1.

We thus have, for all n � n0 (A1; Acons; A+),[
C>C�

FC =
[

C�^1<C�1
FC

and by monotonicity of the collection FC , for some q > 1 and J =
j
jln(C�^1)j

ln q

k
+ 1, it holds

[
C�^1<C�1

FC �
J[
j=0

FqjC� :

Simple computations show that, since D � 1 and C� � Al
D
n �

Al

n , one can �nd a constant LAl;q such that

J � LAl;q lnn:

Moreover, by monotonicity of C 7�! sups2FC j(Pn � P ) ( 2 � (s� sM ))j, we have uniformly in C 2
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jC�
�
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j(Pn � P ) ( 2 � (s� sM ))j � sup
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Hence, taking the convention sups2? j(Pn � P ) ( 2 � (s� sM ))j = 0, we get for all n � n0 (A1; Acons; A+)
and any L > 0,
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r
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35 :

Now, for any L > 0,

P

248j 2 f1; :::; Jg ; sup
s2FqjC�

j(Pn � P ) ( 2 � (s� sM ))j � L

r
qjC�D

n
~Rn;D;�

35
= 1� P

249j 2 f1; :::; Jg ; sup
s2FqjC�

j(Pn � P ) ( 2 � (s� sM ))j > L

r
qjC�D

n
~Rn;D;�

35
� 1�

JX
j=1

P

24 sup
s2FqjC�
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r
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Given j 2 f1; :::; Jg ; Lemma 16 yields

E
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s2FqjC�

j(Pn � P ) ( 2 � (s� sM ))j

35 � 8rqjC�D

n
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and next, we apply Bousquet�s inequality (215) to handle the deviations around the mean. We have

sup
s2FqjC�

k 2 � (s� sM )� P ( 2 � (s� sM ))k1

� 2 sup
s2FqjC�

(s� sM )2
1
� 2 ~R2n;D;�

and, for all s 2 FqjC� ,
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i
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(s� sM )2

i
� ~R2n;D;�q
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It follows that, for " = 1 and all x > 0;

P
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r
qjC�D

n
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s
2 ~R2n;D;�q

jC�x

n
+
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~R2n;D;�x
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35 � exp (�x) :
(191)

By consequence, as D � A� (lnn)
2 and as ~Rn;D;� � 1 for all n � n0 (A1; Acons; A+), taking x =  lnn in

(191) for some  > 0, easy computations show that a positive constant LA�;Al; independent of j exists such
that for all n � n0 (A1; Acons; A+),

P
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j(Pn � P ) ( 2 � (s� sM ))j � LA�;Al;
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n
~Rn;D;�

35 � 1

n
:

Hence, using (190), we get for all n � n0 (A1; Acons; A+),
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"
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j(Pn � P ) ( 2 � (s� sM ))j � LA�;Al;
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#

� 1� J

n
:

And �nally, as J � LAl;q lnn, taking  = � + 1 and q = 2 gives the result for all n � n0 (A1; Acons; A+; Al).
�

Having controlled the residual empirical process driven by the remainder terms in the expansion of the contrast,
and having proved sharp bounds for the expectation of the increments of the main empirical process on the
slices, it remains to combine the above lemmas in order to establish the probability estimates controlling the
empirical excess risk on the slices.

Lemma 18 Let �;A�; A+; Al; C > 0. Assume that (H1), (H2), (H3) and (17) hold. A positive constant A4
exists, only depending on A;A3;M ; �min; �, such that, if
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Proof. Start with
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where the last bound follows from Cauchy-Schwarz inequality. Hence, we deduce from Lemma 13 that
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(193)
where
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So, injecting (194) in (193) we have
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Moreover, as C � Al
D
n , we derive from Lemma 17 that it holds, for all n � n0 (A1; Acons; A+; Al),
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Finally, noticing that
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and the conclusion follows by making use of (195) and (197) in inequality (192). �
The second deviation bound for the empirical excess risk we need to establish on the upper slice is proved in
a similar way.

Lemma 19 Let �;A�; A+; C � 0. Assume that (H1), (H2), (H3) and (17) hold. A positive constant A5,
depending on A;A3;M ; A1; �min; A� and �, exists such that, if it holds
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Moreover, when we only assume C � 0, we have for all n � n0 (A1; Acons; A+),
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Proof. First observe that
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where the last bound follows from Cauchy-Schwarz inequality. Now, the end of the proof is similar to that of
Lemma 18 and follows from the same kind of computations. Indeed, from Lemma 13 we deduce that
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and, since
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we apply Lemma 17 with Al = �2min, and deduce that, for all n � n0 (A1; Acons; A+),
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Now using (200) and (201) in (199) we obtain, for all n � n0 (A1; Acons; A+),
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and we set A5 = LA;A3;M ;A1;�min;A�;� where LA;A3;M ;A1;�min;A�;� is the constant in (202). For C �
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which gives the �rst part of the lemma. The second part comes from (202) and the fact that, for any value of
C � 0,
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Lemma 20 Let r > 1 and C; � > 0. Assume that (H1), (H2), (H4) and (17) hold and let ' = ('k)
D
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an orthonormal basis of (M; k�k2) satisfying (H4). If positive constants A�; A+; Al; Au exist such that
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Proof. Start with
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By Klein-Rio�s Inequality (217), we get, for all �; x > 0,
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2�21;r;Cx

n
�
�
1 +

1

�

�
b1;r;Cx

n

1A � exp (�x) : (204)

Then, notice that all conditions of Lemma 14 are satis�ed, and that it gives by (168), for all n � n0 (A�; A+; Au; Al; A;B2; rM (') ; �min),

M1;r;C �
�
1� LA;Al;Au;�minp

D

�r
rCD

n
K1;M : (205)

In addition, observe that

�21;r;C � sup
s2F(C;rC]

P
�
 21;M � (sM � s)2

�
� 16A2rC by (102) (206)

and
b1;r;C = sup

s2F(C;rC]

 1;M � (sM � s)

1 � 4ArM (')

p
rCD by (102) and (H4) (207)

Hence, using (205), (206) and (207) in inequality (204), we get for all x > 0 and all n � n0 (A�; A+; Au; Al; A;B2; rM (') ; �min),

P

 
S1;r;C � (1� �)

�
1� LA;Al;Au;�minp

D

�r
rCD

n
K1;M �

r
32A2rCx

n
�
�
1 +

1

�

�
4ArM (')

p
rCDx

n

!
� exp (�x) :

Now, taking x = � lnn, � =
p
lnn
n1=4

and using (104), we deduce by simple computations that for all n �
n0 (A�; A+; Au; Al; A;B2; rM (') ; �min),

P

 
S1;r;C �

 
1� LA;Al;Au;�min;rM (');� �

 r
lnn

D
_
p
lnn

n1=4

!!r
rCD

n
K1;M

!
� n�� (208)
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and as r
lnn

D
_
p
lnn

n1=4
�
r
lnn

D
_
r
D lnn

n
� �n

(208) gives, for all n � n0 (A�; A+; Au; Al; A;B2; rM (') ; �min),

P

 
S1;r;C �

�
1� LA;Al;Au;�min;rM (');� � �n

�rrCD

n
K1;M

!
� n�� : (209)

Moreover, from Lemma 17 we deduce that, for all n � n0 (A1; Acons; A+; Al),

P

"
sup
s2FrC

j(Pn � P ) ( 2 � (s� sM ))j � LA�;Al;�

r
rCD

n
~Rn;D;�

#
� n�� (210)

and noticing that

~Rn;D;� = max

(
Rn;D;� ; A1

r
D lnn

n

)

� LA1;�min max

(
Rn;D;� ;

r
D lnn

n

)
�K1;M by (104)

� LA1;�min � �n �K1;M ,

we deduce from (210) that for all n � n0 (A1; Acons; A+; Al),

P

"
sup
s2FrC

j(Pn � P ) ( 2 � (s� sM ))j � LA�;Al;A1;�min;� � �n �
r
rCD

n
K1;M

#
� n�� : (211)

Finally, using (209) and (211) in (203) we get that,
for all n � n0 (A�; A+; Au; Al; A;A1; Acons; B2; rM (') ; �min),

P

 
sup

s2F(C;rC]
Pn (KsM �Ks) �

�
1� LA�;Al;Au;A;A1;�min;rM (');� � �n

�rrCD

n
K1;M � rC

!
� 2n�� ;

which concludes the proof. �

6.5 Probabilistic Tools

We recall here the main probabilistic results that are instrumental in our proofs.
Let us begin with the Lp-version of Ho¤mann-Jørgensen�s inequality, that can be found for example in [21],
Proposition 6.10, p.157.

Theorem 21 For any independent mean zero random variables Yj ; j = 1; :::; n taking values in a Banach
space (B; k:k) and satisfying E [kYjkp] < +1 for some p � 1; we have

E1=p

nX
j=1

Yj


p

� Bp

0@E

nX
j=1

Yj

+ E1=p
�
max
1�j�n

kYjk
�p1A

where Bp is a universal constant depending only on p.

We will use this theorem for p = 2 in order to control suprema of empirical processes. In order to be
more speci�c, let F be a class of measurable functions from a measurable space Z to R and (X1; :::; Xn) be
independent variables of common law P taking values in Z. We then denote by B = l1 (F) the space of
uniformly bounded functions on F and, for any b 2 B, we set kbk = supf2F jb (f)j. Thus (B; k:k) is a Banach
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space. Indeed we shall apply Theorem 21 to the independent random variables, with mean zero and taking
values in B, de�ned by

Yj = ff (Xj)� Pf; f 2 Fg :
More precisely, we will use the following result, which is a straightforward application of Theorem 21. Denote
by

Pn =
1

n

nX
i=1

�Xi

the empirical measure associated to the sample (X1; :::; Xn) and by

kPn � PkF = sup
f2F

j(Pn � P ) (f)j

the supremum of the empirical process over F .

Corollary 22 If F is a class of measurable functions from a measurable space Z to R satisfying

sup
z2Z

sup
f2F

jf (z)� Pf j = sup
f2F

kf � Pfk1 < +1

and (X1; :::; Xn) are n i.i.d. random variables taking values in Z, then an absolute constant B2 exists such
that,

E1=2
h
kPn � Pk2F

i
� B2

�
E [kPn � PkF ] +

supf2F kf � Pfk1
n

�
: (212)

Another tool we need is a comparison theorem for Rademacher processes, see Theorem 4.12 of [21]. A function
' : R! R is called a contraction if j' (u)� ' (v)j � ju� vj for all u; v 2 R. Moreover, for a subset T � Rn
we set

kh (t)kT = khkT = sup
t2T

jh (t)j :

Theorem 23 Let ("1; :::; "n) be n i.i.d. Rademacher variables and F : R+ �! R+ be a convex and increasing
function. Furthermore, let 'i : R �! R; i � n; be contractions such that 'i (0) = 0. Then, for any bounded
subset T � Rn;

EF

 X
i

"i'i (ti)


T

!
� 2EF

 X
i

"iti


T

!
:

The next tool is the well known Bernstein�s inequality, that can be found for example in [23], Proposition 2.9.

Theorem 24 (Bernstein�s inequality) Let (X1; :::; Xn) be independent real valued random variables and de�ne

S =
1

n

nX
i=1

(Xi � E [Xi]) :

Assuming that

v =
1

n

nX
i=1

E
�
X2
i

�
<1

and
Xi � b a:s:

we have, for every x > 0,

P
�
jSj �

r
2v
x

n
+
bx

3n

�
� 2 exp (�x) : (213)

We now turn to concentration inequalities for the empirical process around its mean. Bousquet�s inequality [8]
provides optimal constants for the deviations above the mean. Klein-Rio�s inequality [13] gives sharp constants
for the deviations below the mean, that slightly improves Klein�s inequality [14].
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Theorem 25 Let (�1; :::; �n) be n i.i.d. random variables having common law P and taking values in a
measurable space Z. If F is a class of measurable functions from Z to R satisfying

jf (�i)� Pf j � b a:s:; for all f 2 F ; i � n;

then, by setting

�2F = sup
f2F

n
P
�
f2
�
� (Pf)2

o
;

we have, for all x � 0,
Bousquet�s inequality :

P
�
kPn � PkF � E [kPn � PkF ] �

r
2 (�2F + 2bE [kPn � PkF ])

x

n
+
bx

3n

�
� exp (�x) (214)

and we can deduce that, for all "; x > 0, it holds

P
�
kPn � PkF � E [kPn � PkF ] �

r
2�2F

x

n
+ "E [kPn � PkF ] +

�
1

"
+
1

3

�
bx

n

�
� exp (�x) : (215)

Klein-Rio�s inequality :

P
�
E [kPn � PkF ]� kPn � PkF �

r
2 (�2F + 2bE [kPn � PkF ])

x

n
+
bx

n

�
� exp (�x) (216)

and again, we can deduce that, for all "; x > 0, it holds

P
�
E [kPn � PkF ]� kPn � PkF �

r
2�2F

x

n
+ "E [kPn � PkF ] +

�
1

"
+ 1

�
bx

n

�
� exp (�x) : (217)

The following result is due to Ledoux [20]. We will use it along the proofs through Corollary 27 which is sated
below. From now on, we set for short Z = kPn � PkF .

Theorem 26 Let (�1; :::; �n) be independent random with values in some measurable space (Z; T ) and F be
some countable class of real-valued measurable functions from Z. Let

�
�01; :::; �

0
n

�
be independent from (�1; :::; �n)

and with the same distribution. Setting

v = E

"
sup
f2F

1

n

nX
i=1

�
f (�i)� f

�
�0i
��2#

then
E
�
Z2
�
� E [Z]2 � v

n
.

Corollary 27 Under notations of Theorem 25, if some {n 2 (0; 1) exists such that

{2nE
�
Z2
�
� �2

n

and

{2n
p
E [Z2] � b

n

then we have, for a numerical constant A1;�,

(1� {nA1;�)
p
E [Z2] � E [Z] :
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Proof of Corollary 27. Just use Theorem 26, noticing the fact thatp
E [Z2]� E [Z] �

p
V (Z)

and that, with notations of Theorem 26,

v � 2�2 + 32bE [Z] .

The result then follows from straightforward calculations. �
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