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Abstract

We consider the estimation of a bounded regression function with nonparametric heteroscedastic noise.
We are interested by the true and empirical excess risks of the least-squares estimator on a finite-dimensional
vector space. For these quantities, we give upper and lower bounds in probability that are optimal at the
first order. Moreover, these bounds show the equivalence between the true and empirical excess risks
when, among other things, the least-squares estimator is consistent in sup-norm towards the projection of
the regression function onto the considered model. Consistency in sup-norm is then proved for suitable
histogram models and more general models of piecewise polynomials that are endowed with a localized
basis structure.

keywords: Least-squares regression, Heteroscedasticity, Excess risk, Lower bounds, Empirical process,
M-estimation.

1 Introduction

This article is devoted to least-squares estimation of a regression function on a finite dimensional linear model.
We derive sharp upper and lower bounds in probability for the true and empirical excess risks of the least-
squares estimator. We only focus on the “stochastic” parts of the excess risks and we do not discuss on the
possible behaviors of the bias of the model, neither on the trade-off that can be achieved between the bias
and the variance terms. However, our framework is closely related to the method of sieves and particularly
to the work of Birgé and Massart [6]. The leading idea of the sieve method is to replace a complicated set of
parameters by a more tractable one having good approximation properties, an idea that goes back to Cencov
[9], considering orthogonal series for density estimation, and to Le Cam [17] where the author investigate
the relationship between the metric structure of the parameter space and the rate of optimal estimators,
see also Le Cam [18] Section 16.5 and Le Cam and Yang [19] Section 6.5. Since the formalization of the
sieve method by Grenander [12], many authors have considered this method for MLEs or more general M-
estimators. Inspired by a work of van de Geer [31] in regression, Birgé and Massart [5] proposed to study
minimum of contrast estimation on general parameter spaces under entropy with bracketing conditions, and
proved that sub-optimality of M-estimators can happen when the parameter space is too large. The entropy
with bracketing covering property has then been a central tool for studying minimum contrast estimation on
general sieves in Shen and Wong [25], Wong and Shen [36] and van de Geer [32]. Van de Geer [33] more recently
considers M-estimation with convex loss functions, a situation that allows to “localize” the problem to a small
neighborhood in the parameter space. In a series of papers that started with Stone [27], Stone extensively
studied log-spline density estimation and spline regression, see [26], [28], [29] and Stone and Kooperberg [16].

Birgé and Massart [6] introduced metric properties on the sieves relating the Lo-structure to the Leo-
structure, and which involve covering numbers related to both Ls and L., norms. These metric conditions
are satisfied for linear sieves commonly used in practice, such as Fourier expansions, piecewise polynomials
and wavelet expansions, but also for non-linear sieves, which can have better approximation properties, and
that include finite linear combinations of D sigmoidal functions related to neural networks, see also Barron



[2], and histograms generated by any partition on [0, 1] into D subintervals. Birgé and Massart [6] pointed out
that the use of covering numbers, even in the case of linear sieves, is quite natural since linearity is lost on the
contrasted functions for a non-linear contrast such as in the regression and maximum likelihood estimation
contexts. This allows them to derive sharp exponential bounds and rates of convergence for the excess risk
on such sieves, using in particular a Talagrand’s concentration inequality for the supremum of the empirical
process.

The starting point of our method is to remark that the least-squares contrast in regression can be expanded
to the sum of a linear part and a quadratic part. This allows us to recover some linearity on the contrasted
functions and avoid the use of entropy methods to control the empirical process on a linear model. The gain
is that we achieve optimal rates of convergence for the true and empirical excess risks with exact constants,
for models of reasonable dimension. In our study, the metric properties defined by Birgé and Massart in [6]
play a center role, in particular the notion of localized basis. In addition, we point out the importance of the
behavior in sup-norm of the least-squares estimator and we have to assume its consistency in sup-norm towards
the linear projection of the regression function onto the model. We show that such a condition is satisfied by
histograms and piecewise polynomial models when they are endowed with a localized basis structure, which
corresponds in that case to a lower regularity assumption on the considered partition. By doing so, we recover
some recent results of Arlot and Massart [1] on the empirical and true excess risk for least-squares estimator
on histogram models, and extend them to the case of piecewise polynomials.

Altough we do not make an explicit use of the margin conditions that can hold in the context of bounded
regression, this property also connects our work with the statistical learning theory. The margin conditions
were first introduced by Mammen and Tsybakov [22] in the context of discrimination analysis. They allow to
get faster rates of convergence than the pioneering bounds of Vapnik and Cervonenkis, see [35] and [34], using
“localization” techniques. Under entropy with bracketing conditions, Tsybakov [30] shows some fast rates in
the binary classification setting, and these results have been recovered and extended by Massart and Nédélec
[24], Koltchinskii [15] and by Giné and Koltchinskii [11], where the authors also give asymptotic results for
ratio type empirical processes. The obtained bounds are proved to be optimal in a minimax sense in [24], up
to a logarithmic factor shown by Massart and Nédélec to be unavoidable for “rich” VC-classes. This analysis
is refined in [11] by the use of localized Ly (P)-envelopes of the models, allowing to remove the logarithmic
factor in good cases.

The main tools in [24], [15] and [11] are Talagrand’s type concentration inequalities for the supremum of
the empirical process and the slicing or pealing technique through the use of ratio type empirical processes.
The slicing technique consists in considering subsets of the model, called the slices, and that are localized
in terms of excess risk, a quantity that is related to the variance of the empirical process through margin
conditions. Our method of proof may be viewed as a variant of the technique of slicing that allows to avoid
the use of ratio type empirical processes, where in general sharp constants are lost due to the use of chaining
techniques. The very first lines of our proofs differ from those of [24], [15] and [11], and permit in particular
to relate both upper and lower bounds for the excess risks of the M-estimator to the behavior of the empirical
process indexed by contrasted functions on localized slices of excess risk. This rewriting of the problem of
upper and lower bounds for the excess risks is closely related to the work of Bartlett and Mendelson [3], where
a “direct” approach of the empirical minimization algorithm is proposed, and proved to lead to more accurate
bounds than the traditional “structural” approach developed in [24], [11] or [15].

Finally, it should be said that, in a quite unusual manner, we not only focus on the (true) excess risk of the
least-squares estimator, which corresponds to the quadratic loss, but we also give attention on the empirical
excess risk. While the true excess risk was extensively studied in the last decade as mentioned above, much
less is known about the empirical excess risk. In fact, the study of the latter quantity is motivated by some
recent advances in model selection theory that are due to Birgé and Massart [4], followed by Arlot and Massart
[1]. More precisely, Birgé and Massart [4] have focused on optimality of penalization methods in a generalized
linear Gaussian framework and have proposed the so-called slope heuristics, which is a practical method of
data-driven and efficient calibration of penalties. Then, Arlot and Massart [1] extended this method to more
general bounded M-estimation problems, proved its efficiency on heteroscedastic regression, and pointed out
that the empirical excess risk on a fixed model was a fundamental quantity in this problem, in the sense that
its equivalence with the true excess risk is the keystone to prove the slope phenomenon. Hopefully, the main
result of the present paper shows that this equivalence is a quite general fact in regression, when using linear
models. We also notice that we avoid the use of Boucheron and Massart results, recently exposed in [7], that



establish concentration inequalities for the empirical excess risk, in some general bounded M-estimation setting
with generalized margin conditions that they call low noise conditions,

The article is organized as follows. We present the statistical framework in Section 2 where we show in
particular the existence of an expansion of the least-squares regression contrast into the sum of a linear and a
quadratic part. We then derive general results for models of reasonable dimensions and also for small models
in Section 3. General results are then applied in the case of histograms and piecewise polynomials in Section
4 and 5 respectively, where explicit rates of convergence in sup-norm are derived. Finally, the proofs are
postponed to the end of the article.

2 Regression framework and notations

2.1 Least-squares estimator

Let (X, 7x) be a measurable space and set Z = X' xR. We assume that {; = (X, Y;) € xR, i € {1,...,n} are
n ii.d. observations with law P. The marginal law of X; is denoted by P*X. We assume that the data satisfy

the following relation
Y =s5.(X;)+o0(X)e; (1)

where s, € Lo (PX ), ¢; are i.i.d. random variables with mean 0 and variance 1 conditionally to X; and o :
X —R is an heteroscedastic noise level. A generic random variable of law P, independent of (&4, ...,£,,), is
denoted by £ = (XY).

Hence, s, is the regression function of Y with respect to X, that we want to estimate. Given a finite dimensional
linear vector space M, we denote by sj; the linear projection of s, onto M in L? (PX ) and by D the linear
dimension of the model M.

We consider on M a least-squares estimator s,, (possibly non unique), defined as follows

So, if we denote by
1 n
Py =~ 25(&%)
the empirical distribution of the data and by K : Lo (PX ) — L; (P) the least-squares contrast, defined by
K(s)=(z,y) € Z— (y—s(x)®, s€Ly(PY)
we then remark that s, belongs to the general class of M-estimators, as it satisfies

Sp € arg glenj\r/} {Pn (K (8))} . (3)

2.2 Excess risk and contrast

As defined in (3), s, is the empirical risk minimizer of the least-squares contrast. The regression function s,
can be defined as the minimizer in Lo (PX ) of the mean of the contrast over the unknown law P,

5. = arg SGE%%X)PK (s) ,

where
PK (s) = P(Ks) = PKs = E[K (s) (X,Y)] = E [(Y s (X))Q]

is called the risk of the function s. In particular we have PKs, = E [0? (X)]. We first notice that for any

s € L? (PX), if we denote by
1/2
o= ( [ ar¥)
x



its quadratic norm, then we have, by (1) above,
PKs— PKs, = P (Ks— Ks,)
=B |(Y = (X)) = (V = s, (X))?
= B(s. = ) (X) (Y = 5. (X)) + (5. — 5) (X))

:E[(s* —)2(X)| + 2B | (5. — ) (X)B[Y — 5, (X) |X]

=0

2
=lls = s3>0,

and PKs — PKs, is called the excess risk of s. So if we denote by sj; the linear projection of s, onto M in
L% (P¥), we have
PKsy — PKs, = in]‘f/[{PstPKs*} , (4)
IS

and for all s € M
PX(s-(spr—5+))=0. (5)

From (4), we deduce that
Spm = argmij\r}PK (s) .
s€

Our goal is to study the performance of the least-squares estimator, that we measure by its excess risk. So we
are mainly interested by the random quantity P (Ks, (M) — Ks.). Moreover, as we can write

P(Ks,(M)—Ks,)=P(Ks, (M)— Ksy)+ P (Ksy — Ksy)

we naturally focus on the quantity
P(Ksp(M)—Ksp)>0

that we want to upper and lower bound in probability. Abusively we will often call this last quantity the
excess risk of the estimator on M or the true excess risk of s, (M), in opposition to the empirical excess risk
for which the expectation is taken over the empirical measure,

P, (Ksy — Ksy, (M)) > 0.

The following lemma establishes the key expansion of the regression contrast around s;; on M. This expansion
exhibits a linear part and a quadratic part.

Lemma 1 We have, for every z = (z,y) € Z,

(Ks) (2) = (Ksar) (2) = P10 (2) (s = sar) () + 2 ((s = 500) (2)) (6)
with ¥y a (2) = =2 (y — sy (@) and by (t) = t2, for all t € R. Moreover, for all s € M,
Py a-8)=0. (7

Proof. Start with

(Ks) (2) — (Ksar) (2)
=(y—s()" = (y—sum (2))°
= ((s =sm) () ((s = sm) (x) = 2(y = sm (2)))
= =2y — sur (2)) ((s = sa) (2)) + ((s = s21) ()",

which gives (6). Moreover, observe that for any s € M,

P ¥y 8) = —2B[(Y — 5. (X)) s (X)] + 2B [s (X) (50 — 5:) (X)] - (8)



We have

E[(Y = 5. (X)) s (X)) =B |B[(Y — 5. (X)) | X]s(X)| =0. (9)

=0

and, by (5),
B s (X) (sa1 — 52) (X)] = PX (s (537 — 5)) = 0. (10)

Combining (8), (9) and (10) we get that for any s € M, P (¢, 5, - s) = 0. This concludes the proof. B

3 True and empirical excess risk bounds

In this section, we show that under assumptions that extend a previous work of Arlot and Massart [1], the
true excess risk is equivalent to the empirical one for models of reasonable dimension.

More precisely, we assume that M is a linear model with a localized basis in Ly (P) and that the least-squares
estimator is consistent in sup-norm towards the linear projection sp; on M of the target s, when the dimension
of the model is not too heavy. This is a natural generalization of the case of histograms studied by Arlot and
Massart in [1], since the assumption of lower regularity of the partitions made in their work indeed provides
the histograms with a structure of localized basis in Ly (P), see Lemma 5. We further show in Lemma 6 that
the assumption of consistency is satisfied for histograms.

3.1 Main assumptions

We turn now to the statement of some assumptions that will be needed to derive our results in Section 3.2.
These assumptions will be further discussed in Section 3.3.

Boundedness assumptions :

e (H1) The data and the linear projection of the target onto M are bounded : a positive finite constant
A exists such that

Y| < A a.s. (11)
and
[smllg <A (12)
Hence, from (H1) we deduce that
[s:lloe = IBY | X ="]ll, < A (13)
and that there exists a constant op,.x > 0 such that
0% (X;) <02, < A? as. (14)

Moreover, as ¥, (2) = =2 (y — sm (x)) for all z = (z,y) € Z, we also deduce that
|y (X3, Y5)| <4A aus. (15)

e (H2) The heteroscedastic noise level o is uniformly bounded from below : a positive finite constant o,
exists such that
O0<omn <o (Xl) a.s.

Models with localized basis in Ly (PX) :

Let us define a function ¥y, on X, that we call the unit envelope of M, such that

1
Uy () = — su s(x)| . 16
M (%) \/ﬁseM,Hg‘zgll ()] (16)

As M is a finite dimensional real vector space, the supremum in (16) can also be taken over a countable subset
of M, so W, is a measurable function.



e (H3) The unit envelope of M is uniformly bounded on X : a positive constant Ag as exists such that

||\If]u||oo < A37M < 0.

The following assumption is stronger than (H3).

e (H4) Existence of a localized basis in (M, ||-||,) : there exists an orthonormal basis ¢ = (gpk)szl in

(M, ||-||5) that satisfies, for a positive constant ras (¢) and all 8 = (Bk)szl € RP,

D
Zﬂk@k
k=1

where |3| = max{|5,];k € {1,...,D}} is the sup-norm of the D-dimensional vector f3.

<ru(p) VDBl .

o0

Remark 2 (HY) implies (H3) and in that case Az pr = 7ar (@) is convenient.

The assumption of consistency in sup-norm :

In order to handle second order terms in the expansion of the contrast (6) we assume that the least-squares
estimator is consistent for the sup-norm on the space X'. More precisely, this requirement can be stated as
follows.
e (H5) Assumption of consistency in sup-norm : for any A, > 0, if M is a model of dimension D satisfying
n

(Inn)?

then for every a > 0, we can find a positive integer n; and a positive constant A.,,s satisfying the
following property : there exists R,, po > 0 depending on D, n and «, such that

D<A,

)

Acons
Rn o S cons 17
D, — (17)
and by setting
Qoo,a = {Hsn - SMHOO < Rn,D,a} ) (18)
it holds for all n > nq,
PQeal >1—n"". (19)

3.2 Theorems
We state here the general results of this article, that will be applied in Section 4 and 5 in the case of piecewise
constant functions and piecewise polynomials respectively.

Theorem 3 Let Ay, A_,a > 0 and let M be a linear model of finite dimension D. Assume that (H1), (H2),
(H4) and (H5) hold and take p = (‘%)1?:1 an orthonormal basis of (M, ||-||5) satisfying (H4). If it holds

n

(Inn)*

then a positive finite constant Ay exists, only depending on o, A_ and on the constants A, omin, 7 (@) defined
in the assumptions (H1), (H2) and (H}) respectively, such that by setting

Inn 1/4 Dlnn 1/4
€n = Ap max <D> , ( ) ,m ; (21)

n

A_(Inn)> <D< A, , (20)




we have for alln > ng (A—, Ay, A, Acons, ™ (9) s Omin, 1, Q)

1D -

P[P(Ksn Ksy) > (1—en)fglCiM >1—-5m“, (22)
1D 2 ] —«

P|P(Ks,— Kspy) < (1+€n)*E/C1,M >1-5n"°, (23)
2 1D 2 ] —a

P|P, (Ksy — Ksy) > (1—¢2) Zﬁ’cl»M >1-2n"%, (24)
2 1D 2 ] —a

PP, (Ksy — Ksyp) < (1+5n) ZH’CLM >1-3n"%, (25)

where IClM =5 Zk L Var (v¥y ar - i) In addition, when (H5) does not hold, but (H1), (H2) and (H})

)

hold, we still have for alln > ng (A, Ax, A, rar (), Omin, @

P (Pn (Ksy — Ksp) > (1—A0max{,/ln" Dln"}) 1M> >1-2n7" . (26)

In Theorem 3 above, we achieve sharp upper and lower bounds for the true and empirical excess risks on M.
They are optimal at the first order since the leading constants are equal for upper and lower bounds. Moreover,
Theorem 3 states the equivalence with high probability of the true and empirical excess risks for models of
reasonable dimensions. We notice that second orders are smaller for the empirical excess risk than for the true
one. Indeed, when normalized by the first order, the deviations of the empirical excess risk are square of the
deviations of the true one. Our bounds also give another evidence of the concentration phenomenon of the
empirical excess risk exhibited by Boucheron and Massart [7] in the slightly different context of M-estimation
with bounded contrast where some margin condition hold. Notice that considering the lower bound of the
empirical excess risk given in (26), we do not need to assume the consistency of the least-squares estimator s,
towards the linear projection sj;.

We turn now to upper bounds in probability for the true and empirical excess risks on models with possibly
small dimensions. In this context, we do not achieve sharp or explicit constants in the rates of convergence.

Theorem 4 Let a, Ay > 0 be fized and let M be a linear model of finite dimension

1 <D<A+(lnn)2 :

Assume that assumptions (H1), (H3) and (H5) hold. Then a positive constant A,, exists, only depending on
A, Acons, Az m and «, such that for all m > no (Acons, 1),

DVI1
P {P (Ksp — Ksyr) > Auvnnn} <30 (27)

and Dyl
P {Pn (Ksy — Ksy) > Auvnn”} <3no. (28)

Notice that on contrary to the situation of Theorem 3, we do not assume that (H2) hold. This assumption
states that the noise level is uniformly bounded away from zero over the space X', and allows in Theorem
3 to derive lower bounds for the true and empirical excess risks, as well as to achieve sharp constants in
the deviation bounds for models of reasonable dimensions. In Theorem 4, we just derive upper bounds and
assumption (H2) is not needed. The price to pay is that constants in the rates of convergence derived in (27)
and (28) are possibly larger than the corresponding ones of Theorem 3, but our results still hold true for small
models. Moreover, in the case of models with reasonable dimensions, that is dimensions satisfying assumption
(20) of Theorem 3, the rate of decay is preserved compared to Theorem 3 and is proportional to D/n.

The proofs of the above theorems can be found in Section 6.3.



3.3 Some additional comments

Let us first comment on the assumptions given in Section 3.1. Assumptions (11) and (H2) are rather mild
and can also be found in the work of Arlot and Massart [1] related to the case of histograms, where they are
respectively denoted by (Ab) and (An). The histogram case will be further commented in Section 4.3.

In assumption (H4) we require that the model M is provided with an orthonormal localized basis in Ly (P~).
This property is convenient when dealing with the L,-structure on the model, and this allows us to con-
trol the sup-norm of the functions in the model by the sup-norm of the vector of their coordinates in the
localized basis. For examples of models with localized basis, and their use in a model selection framework,
we refer for instance to Section 7.4.2 of Massart [23], where it is shown that models of histograms, piecewise
polynomials and compactly supported wavelets are typical examples of models with localized basis for the
Ly (Leb) structure, considering that X CR*. In Sections 4 and 5, we show that models of piecewise constant
and piecewise polynomials respectively can also have a localized basis for the Lo (PX ) structure, under rather
mild assumptions on PX. Assumption (H4) is needed in Theorem 3, whereas in Theorem 4 we only use the
weaker assumption (H3) on the unit envelope of the model M, relating the Lo-structure of the model to the
Loo-structure. In fact, assumption (H4) allows us in the proof of Theorem 3 to achieve sharp lower bounds
for the quantities of interest, whereas in Theorem 4 we only give upper bounds in the case of small models.
We ask in assumption (H5) that the M-estimator is consistent towards the linear projection sy of s, onto the
model M, at a rate at least better than (In n)_l/ 2 | This can be considered as a rather strong assumption, but
it is essential for our methodology. Moreover, we show in Sections 4 and 5 that this assumption is satisfied
under mild conditions for histogram models and models of piecewise polynomials respectively, both at the rate

Dlnn
Rn,D,a 0.8 .
n

Secondly, let us comment on the rates of convergence given in Theorem 3 for models of reasonable dimensions.
As we can see in Theorem 3, the rate of estimation in a fixed model M of reasonable dimension is determined
at the first order by a key quantity that relates the structure of the model to the unknown law P of data. We
call this quantity the complexity of the model M and we denote it by Cps. More precisely, let us define

1

where

D
1
Kiv = ) kzz:lvar (V1,01 - ©1)

for a localized orthonormal basis (‘Pk)kD:1 of (M, |-||5) . Notice that i as is well defined as it does not depend
on the choice of the basis (g@k)szl . Indeed, since we have P (1/11!M . <pk) = 0, we deduce that

D
1
IC%,M =P <¢§,M : <D Z‘Pi)) .
k=1

Now observe that, by using Cauchy-Schwarz inequality in Definition (16), as pointed out by Birgé and Massart
[6], we get

D
1
‘I’?\/f - D Z 90% (29)
k=1
and so

K%,M =P (w%M\I@W)
= 4B [B (v - su (X))’ X | 93, (X)]

—4 (]E (0% (X) W2, (X)] + B [(sM — )2 (X) T2, (X)D . (30)



On the one hand, if we assume (H1) then we obtain by elementary computations
Kim < 20max +4A4 <64 . (31)

On the other hand, (H2) implies
’CI,M > 20min > 0. (32)

To fix ideas, let us explicitly compute ICi u in a simple case. Consider homoscedastic regression on a histogram
model M, in which the homoscedastic noise level ¢ is such that

o?(X)=0% as.,

so that we have
B [o? (X) U3, (X)] = o?B [¥2, (X)] = o .
Now, under notations of Lemma 5 below,
su=Y BYo,(X)]g;=> EY|Xel]l,,
IeP Icp

thus we deduce, by (29) and the previous equality, that

B (s = ) (%) ¥, ()] = 7 S8 [(sar =27 () o ()]
Iep
_ 1 [ B 2 lxer
— |P|I%;E (EY|X elI]-E[Y|X]) PX(I)}
= 5 B [EY X e 1) -B[Y |X)? (X e 1]
IeP

:%ZV[E[Y\XHXEI] ,
IeP

where the conditional variance V [U | A] of a variable U with respect to the event A is defined to be
V[UIA] =E[(U -B[U|A)? |A] =B [U2]4] - B[V |4])? .

By (30), we explicitly get

K2, =4 02+LZV[E[Y|X]|XGI] . (33)
’ Pl i

A careful look at the proof of Theorem 3 given in Section 6.3 show that condition (H2) is only used through
the lower bound (32), and thus (H2) can be replaced by the following slightly more general assumption :

(H2bis) Lower bound on the normalized complexity Kq s @ a positive constant A, exists such that

ICLM > Amin >0.

When (H2) holds, we see from Inequality 32 that (H2bis) is satisfied with Ain = 20min. For suitable models
we can have for a positive constant Ay and for all x € X,

and this allows to consider vanishing noise level, as we then have by (30),

Kim 2244 VE[0? (X)] =24y |lof, >0 .

As we will see in Sections 4 and 5, Inequality (34) can be satisfied for histogram and piecewise polynomial
models on a partition achieving some upper regularity assumption with respect to the law PX .



4 The histogram case

In this section, we particularize the results stated in Section 3 to the case of piecewise constant functions. We
show that under a lower regularity assumption on the considered partition, the assumption (H4) of existence
of a localized basis in Lo (PX ) and (H5) of consistency in sup-norm of the M-estimator towards the linear
projection s, are satisfied.

4.1 Existence of a localized basis

The following lemma states the existence of an orthonormal localized basis for piecewise constant functions in
Lo (PX ), on a partition which is lower-regular for the law PX.

Lemma 5 Let consider a linear model M of histograms defined on a finite partition P on X, and write
|P| = D the dimension of M. Moreover, assume that for a positive finite constant cy p,

|P‘}2£PX(I)ZCM,P>0- (35)

Set, for I € P,
—1/2
or=(PX (D) 11

Then the family (¢1);cy,, 8 an orthonormal basis in Lo (PX) and we have,

Z Brer

1eP

for all 8= (B;);cp € RP, < ¢y pVDIBl, - (36)

oo

Condition (35) can also be found in Arlot and Massart [1] and is named lower regularity of the partition P for
the law PX. It is easy to see that the lower regularity of the partition is equivalent to the property of localized
basis in the case of histograms, i.e. (35) is equivalent to (36). The proof of Lemma 5 is straightforward and
can be found in Section 6.1.

4.2 Rates of convergence in sup-norm

The following lemma allows to derive property (H5) for histogram models.

Lemma 6 Consider a linear model M of histograms defined on a finite partition P of X, and denote by
|P| = D the dimension of M. Assume that Inequality (11) holds, that is, a positive constant A exists such
that |Y| < A a.s. Moreover, assume that for some positive finite constant cpr,p,

P 1127f> PX(I) > emp >0 (37)

and that D < Ain (lnn)_2 < n for some positive finite constant Ay. Then, for any o > 0 and for all
n > ng (o, cam,p, Ay), there exists an event of probability at least 1 —n~ on which s, exists, is unique and it
holds,

Dlnn

||Sn - SM”oo < LA+,A,CM,P,C¥ n . (38)

In Lemma 6 we thus achieve the convergence in sup-norm of the regressogram s, towards the linear projection
sy at the rate /Dln(n) /n . It is worth noticing that for a model of histograms satisfying the assumptions
of Lemma 6, if we set

[Dlnn
Acons = LA,CM’P,OC V AJr , i1 = No (a7 CM,P7A+) and Rn,D,a = LAJNA,CM,p,a Ty

then Assumption (H5) is satisfied. To derive Inequality (38), we need to assume that the response variable
Y is almost surely bounded and that the considered partition is lower-regular for the law PX. Hence, we fit
again with the framework of [1] and we can thus view the general set of assumptions exposed in Section 3.1
as a natural generalization for linear models of the framework developed in [1] in the case of histograms. The
proof of Lemma 6 can be found in Section 6.1.
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4.3 Bounds for the excess risks

The next theorem is a straightforward application of Lemmas 5, 6 and Theorems 3, 4. Indeed, we recover
results of Theorems 3 and 4 for models of histograms, under the lower regularity assumption on the considered
partition of the space X with respect to the unknown law PX. As seen in Section 4.2, we have in that case

Dlnn
Rn,D,a X .
n

Theorem 7 Given A,, A_,«a > 0, consider a linear model M of histograms defined on a finite partition P of
X, and write |P| = D the dimension of M. Assume that for some positive finite constant cpr,p, it holds

|IP|]12’£PX (I)ZCM’I:)>O (39)

If (H1) and (H2) of Section 3.1 are satisfied and if

(Inn)?

A_ (lnn)2 <D<A,

)

then there exists a positive finite constant Ag, only depending on o, A, omin, A—, Ay, car,p such that, by setting

{(11171)1/4 <Dlnn)1/4}
€n = Ag max —_— )
D n

we have, fOT’ all n > no (A—a A+a Aa » Omin, CM,P, a);

1D 1D
P [(1 +&en) ZE’C%M > P(Ks, — Ksy) > (1—¢p) MICiM] >1—10n"" (40)

and
1D 1D
P [(1 +¢2) ZEK%M > P, (Ksy — Ksp) > (1—¢2) 4nICiM} >1-5m~%. (41)

If (89) holds together with (H1) and if we assume that

1§D§A+L

(lnn)*’

then a positive constant A, exists, only depending on A, cpyr,p, Ay and o, such that for alln > ng (A, e p, Aty @),

DV1
P {P (Ksn — Ksy) > Auvn”} < 3n~°
n
and Dyl
P {Pn (Ksn — Ks,) > Auvnn”} <3ne.

As announced before, we recover in Theorem 7 the general results of Section 3.2 for the case of histograms
on a lower-regular partition. Moreover, in the case of histograms, assumption (12) which is part of (H1) is a
straightforward consequence of (11). Indeed, we easily see that the projection sjps of the regression function
s, onto the model of piecewise constant functions with respect to P can be written

sy=>» BY[Xelll. (42)
IeP

Under (11), we have |[E[Y | X € I]| < ||V, < A for every I € P and we deduce by (42) that |[sa]|,, < A.
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4.4 Comments

Our bounds in Theorem 7 are obtained by following a general methodology that consists, among other things,
in expanding the contrast and to take advantage of explicit computations that can derived on the linear part
of the contrast - for more details, see the proofs in Section 6.3 below. It is then instructive to compare them
to the best available results in this special case. Let us compare them to the bounds obtained by Arlot and
Massart in [1], in the case of a fixed model. Such results can be found in Proposition 10, 11 and 12 of [1].
The strategy adopted by the authors in this case is as follows. By remarking that easy bounds are available
for the mean of the empirical excess risk on histograms since it holds

D
B[Py (Ksar — Ksn)] = T-Kia

they derive concentration inequalities for the true excess risk and its empirical counterpart to their mean.
They further give upper and lower bounds in terms of E [P, (Ksy — Ks,)] for the mean of the true excess
risk. The deviations in all these inequalities are made of sums of quantities that can not be compared to ours
in a concise manner, as some of them loose compared to our results and some of them gain.

Nevertheless, using our notations, Inequality (34) of Proposition 10 in [1] states that for every z > 0 there
exists an event of probability at least 1 — e'~® on which,

|P, (Ksy — Ksy) — B[P, (Ksy — Ksy)

2
< L | prsy - ks, + ABPFoa = Koo
\% DM O min

for some absolute constant L. We can notice that Inequality (43), which is a special case of general concen-
tration inequalities given by Boucheron and Massart [7], involves the bias of the model P(Ksy; — Ks.). By
pointing out that the bias term arises from the use of some margin conditions that are satisfied for bounded
regression, we believe that it can be removed from Proposition 10 of [1], since in the case of histograms models
for bounded regression, some margin-like conditions hold, that are directly pointed at the linear projection
spyr- Apart for the bias term, the deviations of the empirical excess risk are then of the order

In (n) /D

)
n

(Ve +z)| , (43)

considering the same probability of event than ours, so it becomes significantly better than Inequality (41) for
large models.

Concentration inequalities for the true excess risk given in Proposition 11 of [1] give a magnitude of deviations
that is again smaller than ours for sufficiently large models and that is in fact closer to €2 than &,,, where ¢, is
defined in Theorem 7. But the mean of the true excess risk has to be compared to the mean of the empirical
excess risk and it is remarkable that in Proposition 12 of [1] where such a result is given in a way that seems
very sharp, there is a term lower bounded by

—1/4 D /4
(n x inf PX (I)) x () )
IeP n

due to the lower regularity assumption on the partition. This allows us to conjecture that up to a logarithmic
factor, the term proportional to (%)1/4 appearing in €, and also in the deviations of the true excess risk
in Theorem 3 is not improvable in general, and that the empirical excess risk concentrates better around its
mean than the true excess risk in general.

We can conclude that the bounds given in Proposition 10, 11 and 12 of [1] are better than ours, apart for the
bias term involved in concentration inequalities of Proposition 10, but this term could be removed as explained
above. Furthermore, concentration inequalities for the empirical excess risk are significantly better than ours
for large models.

Arlot and Massart [1] also propose generalizations in the case of unbounded noise and when the noise level
vanishes. The unbounded case seems to be beyond the reach of our strategy, due to our repeated use of
Bousquet and Klein-Rio’s inequalities along the proofs. However, we recover the case of vanishing noise level

12



for histogram models, when the partition is upper regular with respect to the law PX, a condition also needed
in [1] in this case. Indeed, we have noticed in Section 3.3 that assumption (H2) can be weaken by (H2bis)
where we assume that
Kiyv > Amin >0

for some positive constant A,. So, if we assume the upper regularity of the partition P with respect to P¥X,
that is

[Plsup PX (1) < ¢y p < +o00 (44)

IeP

for a positive constant c]\+/[, p» we then have from identity (30)
K2 pr = 4B [0® (X) W3, (X)]

where from identity (29), we have in the case of histograms,

1 1w I
\I/?w(x)zﬁsze(l) , forallz e X .
IeP

Now from inequality (44) we have

-1
\I/?w(x)Z(cL’P) >0, forallz e &,

~1/2
and so Apin = 2 (CMP) |||, > 0 is convenient in (H2bis).

5 The case of piecewise polynomials

In this Section, we generalize the results given in Section 4 for models of piecewise constant functions to models
of piecewise polynomials uniformly bounded in their degree.

5.1 Existence of a localized basis

The following lemma states the existence of a localized orthonormal basis in (M, ||-||,) where M is a model of
piecewise polynomials and X =0, 1] is the unit interval.

Lemma 8 Let Leb denote the Lebesgue measure on [0,1]. Let assume that X =[0,1] and that PX has a
density f with respect to Leb satisfying, for a positive constant cuin,

f(z) > emin >0, z€[0,1] .

Consider a linear model M of piecewise polynomials on [0,1] with degree r or smaller, defined on a finite
partition P made of intervals. Then there exists an orthonormal basis {gplﬁj, IeP, je{0,....r}} of (M,|-]l,)
such that,

for all j €{0,...,7} ¢r,; s supported by the element I of P,

and a constant L depending only on T, cmin exists, satisfying for all I € P,

T,Cmin
max H‘Plj” < Lr,cmiHL . (45)
FISTURS I Leb (1)
As a consequence, if it holds
|P| inf Leb (I) > CM,Leb (46)
IeP
a constant Ly e, ey o, depending only onr, cuin and carLeb exists, such that for all § = (ﬁl’j)IE’P ief0,m} €
RD ) yeees
Zﬁ],j‘pl,j < L"'vcminaCM,Leb\/E ‘ﬂLx; (47)
Ij

(o9}

where D = (r + 1) [P] is the dimension of M.
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Lemma 8 states that if X =[0,1] is the unit interval and PX has a density with respect to the Lebesgue
measure Leb on X uniformly bounded away form zero, then there exists an orthonormal basis in Lo (PX )
of piecewise polynomials where the sup-norm of its elements are suitably controlled by (45). Moreover, if we
assume the lower regularity of the partition with respect to Leb then the orthonormal basis is localized, where
the constant of localization in (47) depend on the maximal degree r. We notice that in the case of piecewise
constant functions we do not need to assume the existence of a density for PX or to restrict ourselves to the
unit interval. The proof of Lemma 8 can be found in Section 6.2.

5.2 Rates of convergence in sup-norm

The following lemma allows to derive property (H5) for piecewise polynomials.

Lemma 9 Assume that Inequality (11) holds, that is a positive constant A exists such that |Y| < A a.s.
Denote by Leb the Lebesgue measure on [0,1]. Assume that X =1[0,1] and that PX has a density f with
respect to Leb, satisfying for positive constants cumin and cpax,

0 < cmin < f(2) < emax < 00, z €[0,1] . (48)

Consider a linear model M of piecewise polynomials on [0, 1] with degree less than r, defined on a finite partition
‘P made of intervals, that satisfies for some finite positive constants cas 1.ep

|P| 1116171; Leb (I) > cpmLeb > 0. (49)

Assume moreover that D < Ayn (In n)72 for a positive finite constant Ay. Then, for any o > 0, there exists
an event of probability at least 1 — n™% such that s, exists, is unique on this event and it holds, for all
n > no (7, A+, Cmin, CM, Leb, &),

Dlnn

||5n - SMHOO < LA7T1A+7Cmin70maxyckl,Leb7O¢ n . (50)

In Lemma 6 we thus obtain the convergence in sup-norm of the M-estimator s,, towards the linear projection s,
at the rate 4/ % . It is worth noticing that for a model of piecewise polynomials satisfying the assumptions
of Lemma 6, if we set

Dlnn

Acons = LA7T7A+>Cn1i111Cmaxch\/I,Leb7a V Ay, RTL,D,OL = LA7T7A+7CminvcmaxycIW,Leb70‘ n )

ny =mno (7“, A+, Cmin, CM,Leb, Oé)

then Assumption (H5) is satisfied. To derive Inequality (38), we need to assume that the response variable
Y is almost surely bounded, we give the conditions to ensure that the model is provided with a localized
basis and also we assume that the density of P¥X with respect to the Lebesgue measure on the unit interval is
uniformly bounded from above. The proof of Lemma 9 can be found in Section 6.2.

5.3 Bounds for the excess risks

The forthcoming result is a straightforward application of Lemmas 8, 9 and Theorems 3, 4.
Theorem 10 Denote by Leb the Lebesque measure on [0,1] and fix some positive finite constant .. Assume
that X =[0,1] and that PX has a density f with respect to Leb satisfying, for some positive finite constants

Cmin 0Nd Cmax,
0 < cmin < f ($) < Cmax < +00, T € [O, 1] . (51)

Consider a linear model M of piecewise polynomials on [0, 1] with degree less than r, defined on a finite partition
‘P made of intervals, that satisfy for a finite constant cpr veb,

|P| Ilél% Leb (I) > CM,Leb > 0. (52)
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Assume that (H1) and (H2) hold. Then, if there exist some positive finite constants A_ and Ay such that
"
(Inn)?

then there exists a positive finite constant Ay, depending on a, A, omin, A—, A4, T, CM Leb) Cmin 0Nd Cmax Such

that, by setting
{(11171)1/4 (Dlnn)1/4}
&n = Apmax — ,
D n

we have, fOT all n Z o (A—a A+a Aa Ty Omin, CM,Leb: Cmin, Cmax, Ot),

A_ (lnn)2 <D<A,

)

1D 1D
P |:(1+€n)4nlciM 2 P(Ksn —KSM) 2 (1 _(C-:TL) 4nICiM:| Z 1—-10n"¢

and
1D 1D
P [(1 +e2) ZE]C%M > P, (Ksy — Ksp) > (1—¢2) 4nICiM} >1-5m"%.

Moreover, if (51) and (52) hold together with (H1) and if we assume that

1<D<A,——
(Inn)

then a positive constant A, exists, only depending on Ay, A, 7, carLebs Cmin and &, such that for all n >
no (A-i-a A7 Ty Cminy Cmax; CM,Lebv Oé),

DVinn
n

]P’{P(Ksn—KsM)>Au } <3n~ ¢

and

P |:Pn (KSM - Ksn) > Aul)\{nhln:| <3n“
We derive in Theorem 10 optimal upper and lower bounds for the excess risk and its empirical counterpart in
the case of models of piecewise polynomials uniformly bounded in their degree with reasonable dimension. We
give also upper bounds for models of possibly small dimension, without assumption (H2). Notice that we need
stronger assumptions than in the case of histograms. Namely, we require the existence of a density uniformly
bounded from above and from below for the unknown law PX, with respect to the Lebesgue measure on the
unit interval. However we recover the bounds of Theorem 7 yet with different constants, since by Lemma 9

% as in the histogram case.

we still have R, p o
Moreover, as in the case of histograms, assumption (12) which is part of (H1) is a straightforward consequence
of (11). Indeed, we easily see that the projection sp; of the regression function s, onto the model of piecewise

polynomials with respect to P can be written

M= Z P(Y<)0[7j) Pr,j
(I1,j)€Px{0,...,r}

where ¢ ; is the orthonormal basis given in Lemma 8. It is then easy to show, using (45) of Lemma 8 and
(11), that 53¢ ]e < Lt reass o

Again, we can consider vanishing noise at the prize to ask that the partition is upper regular with respect to
Leb. By (H2bis) of Section 3.3, if we show that

]Cl,M Z Amin >0

for a positive constant A, instead of (H2), then the conclusions of Theorem 10 still hold. Now, from identity
(30) we have
K3 2 > 4B [0 (X) W3, (X)]
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where from identity (29), it holds in the case of piecewise polynomials, for all z € X,

1 1 Loer
i (2) = <75 > 01> d o (53)
r+DIPL erxtonn (r+DIPl iz P2 (1)
Furthermore, if we ask that
|P|sup Leb (I) < ¢, p < 400 (54)

IeP

for a positive constant CL,P, then by using (51), (53) and (54), we obtain for all x € X,
2 —1
\IJ]\/I (I) Z (Cmax X CJTLP X (T + 1)) >0 s
~-1/2
and s0 Amin = 2 (cmax x CL,P x (r+ 1)) E o2 (X)] > 0 is convenient in (H2bis).

6 Proofs

We begin with the simpler proofs of Sections 4 and 5, in Sections 6.1 and 6.2 respectively. The proofs of
Theorems 3 and 4 of Section 3.2 can be found in Section 6.3.

6.1 Proofs of Section 4

Proof of Lemma 5. It suffices to observe that

Z Brer

IeP

< 1Bloc 51 flerloc

oo

= su X

< ¢y pVDIBly -

—1/2

We now intend to prove (38) under the assumptions of Lemma 6.

Proof of Lemma 6. Along the proof, we denote by misuse of notation, for any I € P,
P(I):=P(I xR)=PX*(I) and P, (I):= P, (I xR) .

Let o > 0 be fixed and let 8 > 0 to be chosen later. We first show that, since we have D < Ay n (In n)72, it
holds with large probability and for all n sufficiently large,

inf P, (I)>0.
IeP
Since
Il <1 and E[12] = P(D)
we get by Bernstein’s inequality (213), for any = > 0 and I € P,
2P(I)x =

(P, — P) ()] > T_‘_Z‘Tn

P < 2exp(—x) . (55)
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''> 0 for any I € P, and thus by taking x = Slnn, we easily

1

B,em, P

MDD 5 P < .

Now, as D < Ay n(In n)72 for some positive constant Ay, a positive integer ng (5, car,p, A+ ) exists such that

Dlnn 1
LglM’P\/T =, for all n > ng (B,carp, Ay) (57)

Therefore we get, for all n > ng (8, car,p, A+),

Further note that by (37), D > ¢4, pP (I)~

deduce from inequality (55) that there exists a positive constant L
that, for any I € P,

only depending on cjs,p and 3 such

P

[\.'J

PNVIeP, P,(I)>0]

>P [w € P, P (P, — P) (I)I]

2
(P —P) (D) () Dlnn
P[VIEP, W<L50MP T by (57)
>1-2Dn""

Introduce the event
Q. ={vIieP, P,(I)>0} .

‘We have shown that
P[Q,]>1-2Dn"" . (58)

Moreover, on the event €2, the least-squares estimator s,, exists, is unique and it holds
_ Z ylze]
IeP

We also have

) (yleI)
M= E ———1;.
’ P(I) !
IeP
Hence it holds on €,

P, (ylxel) P (yleI)

Sp — S|, = sup —
lsn=sloe =50 1= 0~ P )
— sup Pn (ylxel) _ P (ylmeI)
1P| P(D) (14 S 0) - PA)

< sup (Pn = P) (Ylaer)
" 1eP | P(I) (1 4 (Pn;(lj))(l))

1
xsup |l — ———5——
reb| 1y BD

P (y]-mGI)

+ sup P (I)

IepP

Moreover, by Bernstein’s inequality (213), as

IWloerlo <A and B |(Yixe)’] < AP (1)
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we get for all I € P,

2A2P (I)z  Aw
P, — P)(ylyes)| > 522 L 22
(P = P) (yLaer) Ly

P

< 2exp(-2x) .

By putting = Slnn in the latter inequality and using the fact that D > C?w, pP (I )71 it follows that there

exists a positive constant Lf’)CM b B only depending on A, cas, p and § such that

(Pa—P)@lact)l _ 1y [Dln] _. 4
P 50 > L g\ T | <207 (60)
Now define
_ (Pn=P)I)| _ ) Dlnn [(Pp = P) (yleer)| _ 2 Dinn
9172 - ID7 {{ P (I) < LB cMm,p n m P (]) < LA eM, P, n )
Clearly, since D < n we have, by (56) and (60),
P[Qf,] <4n~Ft1. (61)
Moreover, for all n > ng (8, cam,p, A+), we get by (57) that
(P —PY(D| _1
P(I) 2
on the event Q 2, and so, for all n > ng (8, car,p, A1), Q1,2 C 4. Hence, we get that
— P) (yleer) P (yleer) 1
su +sup |————| xsup |l - —————+
rer | P (1 ( + Bh) iep| P | dep| 14 B DD
(Pn — P) (ylaer) P (yleer) (P —P) () ‘
<2su +2sup |—=———+—| X sup |—————+
=Tl PO rep|l P |7 iepl P
(2) Dlnn (1) Dlnn P (yluer)
<2Ly e - + 2LB7¢]\/1,P - X ?gg 0 D (62)
Finally we have, for any I € P,
[P (yLlocr)| < P (lyl 1aer) < AP (1), (63)
so by (59), (62) and (63) we finally get, on the event € o and for all n > ng (8, e p, Ay),
2) 1 [Dlnn
Hsni'SM”OC S ( LE40A4Pﬂ+2ALéiN1P) T ’
Taking 8 = a + 3, we get by (61) for all n > 2, P [Qf ;] < n™* which implies (38).
||

6.2 Proofs of Section 5

Under the assumptions of Lemma 8, we intend to establish (47).
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Proof of Lemma 8. Let I be any interval of [0,1] and w a positive measurable function on I. Denote by
Ls (I, Leb) the space of square integrable functions on I with respect to the Lebesgue measure Leb and set

Ly(I,w)={g: 1 —R; gy/we Ly (I,Leb)} .

This space is equipped with the natural inner product
@)= [ s@h@w@ds.
zel

Write ||.[|; ,, its associated norm.
Now, consider an interval I of P with bounds a and b, a < b. Also denote by fj; : © € I — f(z) the
restriction of the density f to the interval I. We readily have for g, h € Lo (I, fll) ,

Jo@h@ @ i
- / g((b—a)y+a)h((b—a)y+a) fir ((b—a)y+a)dy (64)
y€[0,1]

Define the function f! from [0, 1] to R, by
fry) = fir(b—a)y+a), yelo1].

If (pr,0,p11,-.-p1,r) is an orthonormal family of polynomials in Lo ([O, 1] ,fI) then by setting, for all x € I,
j 6 {07""T}7

51 () = prs (33 - a) 1
SOI,.] p[,j b—a /7Leb (I) )
we deduce from equality (64) that (c,b Lj)r o Is an orthonormal family of polynomials in Lo (I i I) such that

j=
deg (¢y,;) = deg (pr,5)-

Now, it is a classical fact of orthogonal polynomials theory (see for example Theorems 1.11 and 1.12 of [10])
that there exists a unique family (qgr.0,¢r,1,...qr,») of orthogonal polynomials on [0, 1] such that deg (gz ;) = j
and the coefficient of the highest monomial z7 of ¢; ; is equal to 1. Moreover, each q; ; has j distinct real
roots belonging to ]0, 1[. Thus, we can write

J
qr,j () = H (z— a’}"j) , o/ﬁj €10,1[ and a’fyj # ale for k#1. (65)
k=1
Clearly, g1, < 1. Moreover,
2 2
lar5ly e = [ (ars)? 7
(0,1]

> Cmin / (QI,j)de-

[0,1]

Now we set B (a,7) = oo — r,a + 7| for @ € R, so that by (65) we get

va € 0,1\ Uy B (af; (49) 1) lars (0)] = (49)7

and

Leb ([0, 1\ Uj_,B (alf,j’ (4]')71)) =
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Therefore,

lgr,5 170,17, g7 = Cmin / (ar,y)° du
[0,1]
2 Cmin / (q1.,)° da
[0,1\U_, B(ak ;,(45)7")
> S5 ()7

Finally, introduce py ; = ||q1,j||[6,11]7f1 q1,; and denote by ¢ ; its associated orthonormal family of Ly (I, fi7) .
Then, by considering the extension ¢; ; of @ ; to [0,1] by adding null values, it is readily checked that the
family

{LpLj, leP, je {0,...,r}}

is an orthonormal basis of (M, ||-||,) . In addition,

lerillo = 125l
—1 —1/2
= llarsllioy o larsll Leb (1)~
< V2e 12 (4r)" Leb (1) Y2 (66)
< V263 Lo i (A1) (r+ 1) VD (67)

where in the last inequality we used the fact that

1P| Ilgf) Leb (I) > carLen and D = (r+1)[P| .

For all j € {0,...,r}, ¢y ; is supported by the element I of P, hence we deduce from (66) that the orthonormal
basis {¢; ;, 1 € P, j€{0,...,r}} of (M,]-||,) satisfies (45) with
=2 2 (4r)"

min

L

T,Cmin

To conclude, observe that

T
> Braergl| =maxq|> B0
I =0

oo oo

r

< |8 max 2;) lrll
J

<(r+1)|8l4 I}lea%jel{%?}.(w} {”SDLJ‘HOO}

and thus, by plugging (67) into the right-hand side of the last inequality, we finally obtain that the value
Lr o on = V231 e (A7) (r + 1)/

gives the desired bound (47). B

We now turn to the proof of (50) under the assumptions of Lemma 9. The proof is based on concentration
inequalities recalled in Section 6.5 and on inequality (45) of Lemma 8, that allows us to control the sup-norm
of elements of an orthonormal basis for a model of piecewise polynomials.
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Proof of Lemma 9. Let o > 0 be fixed and v > 0 to be chosen later. The partition P associated to M will
be denoted by

P = {IO7 ey Im—l} ’

so that |P| = m and D = (r + 1) m where D is the dimension of the model M. By (45) of Lemma 8 there
exists an orthonormal basis {galw-; ke {0,..m—1}, j € {0, ...,r}} of (1\47 L? (PX)) such that,

¢1,.; is supported by the element I, of P, for all j € {0,...,r}

and a constant L, ., depending only on 7, cmin and satisfying

maxr} HSDIMHOO < Lyepin for all k € {0,...,m —1}. (68)

1
j€f{o0,..., Leb (Ik)’

In order to avoid cumbersome notation, we define a total ordering < on the set
T ={(Ix,j);ke€{0,....,m—1}, j€{0,...,r}} ,
as follows. Let < be a binary relation on Z x Z such that
(Ig,7) < (I1;3) if (k< or (k=1 and j<1)),
and consider the total ordering < defined to be
(Ir, 3) = (I,4) it (g, 5) = (I,0) or (I, 5) < (I1,0))

So, from the definition of <, the vector 5 = (ﬁlk ,j)

and when the matrix

(hegyer € RP has coordinate Br, ; at position (r + 1) k+j+1

DxD
A= (A(Ik,j),(lz,i))(Ik,j),(ll,i)ezxz S

has coefficient A;, ;) (1,,4) at line (r + 1)k + j 4 1 and column (r + 1)1 44+ 1.
Now, for some s = Z(Ik)j)ezﬁfmgplk,j € M, we have

2
P, (K (s) =P, Yy— Z ﬂlk,fplk,j ()
(Ix,j)€T
=Py’ —2 Z Br, iPn (yer, () + Z Br. iBr.iPn (1, ;01,) -
(Ix,3)€Z (I1,9),(I1,i)€ETXT

Hence, by taking the derivative with respect to 8, ; in the last quantity,

2
1 0
EWP" Yy — Z Bfk,jsﬂlk,j ()
Tksd (Ix,j3)€T
=-P, (y%’]k,j (z)) + Z Br,,iPn (‘PIk,jSOIZ,i) . (69)
(Il,i)EI

We see that if 8™ = (5(").

€ RP is a critical point of
’“)uk,j)e:f P

Py Y- Z Blkx.jwlk:j (:L.) ’

(Ix,j)ET

21



it holds
2

P, Yy— Z ﬂ[k,jwlkﬁj (z) (ﬁ(n)) =0

(Ik,J)ET

9

and by combining (69) with the fact that
2 . . . .
P(pr, ;) =1, forall (It,j)€Z and P(pp je5,:) =0 if (Ix,j) # (I1,4) ,

we deduce that 8™ satisfies the following random linear system,

(Ip 4 Lnp) B™ = X, (70)

where X, ,, = (Pn (ycplw- (:z:)))(bc et € RP| Ip is the identity matrix of dimension D and L, p = ((Ln,p)(lk I i)>

is a D x D matrix satisfying
(L”vD)(Ik,j),(Il,i) = (Pn - P) (Sﬁlk,fpll,i) .

Now, by inequality (82) in Lemma 11 below, one can find a positive integer ng (7, A4, Cmin, CM,Leb, ) such that
on an event {2, of probability at least 1 — 3Dn~"7, we have

1
where for a D x D matrix L, the operator norm ||-|| associated to the sup-norm on vectors is

L] o

[|L]] = sup ——== .
z#0 |$‘oo

Then we deduce from (71) that (Ip + L, p) is a non-singular D x D matrix and, as a consequence, that
the linear system (70) admits a unique solution B™ on Q, for all ng (ry A4, Cmin, €M Leb, Y). Moreover, since

2
P, (y - (Z(Ik J)ET Br.i®r.j (x))) is a nonnegative quadratic functional with respect to (ﬁlw) (hoj)er € RP

2
we can easily deduce that on €, 8™ achieves the unique minimum of P, (y - (Z([k NeT P iPr. (;U)))

— (n)

(Ix,J)€T

on RP. In other words,

is the unique least-squares estimator on M, and by (70) it holds,

BN+ Y (Pa—P) (e, j004) | = Po ey, (@) , for all (I, 5) € T. (72)
(Il,z')EI

Now, as ¢, ; and ¢y, ; have disjoint supports when k # [, it holds ¢, ¢y ; = 0 whenever k # [, and so
equation (72) reduces to

B x (1 +Y (P~ P) (solk,jsofk,i)> = Po (ypy, ; (x)) , forall (I,5) € T . (73)
1=0
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Moreover, recalling that sy =2, »er P (yer, ; () @1, ; » it holds

lsn = sulle = || S (85 = P vy @) #1,

(Ix,3)ET o

(n)
< el ; (Bh = P (yer, (x))) Or, i

(o]
<(r+1) P { (je{o’ ) ﬁzk = P yer, (@) D

x max e, ||oo} (74)

where the first inequality comes from the fact that ¢, ; and ¢y, ; have disjoint supports when &k # [. We next
turn to the control of the right-hand side of (74). Let the index (I, j) be fixed. By subtracting the quantity

(1 +> (P —P) (<pIk7jg01k,i)) x P (y<p1k’j (3:)) in each side of equation (73), we get

(ﬁg:,)J (ysﬁlk,j (96))) X (1 + Z (P — P) (@Ik,j%k,i)>

i=0
= (P, —P) (ygy, j (x) — (Z (P, — P) (@Ik,j¢1k,i)> x P (ygy, j () - (75)
i=0
Moreover, by Inequality (83) of Lemma 11, we have for all n > ng (7, A+, Cmin, CM,Lebs V)5
(P P <L Inn <3 1 76
; |( w — P) (@Ik,jsﬁzk,iﬂ = Lir Ay emin,Ca,Leb Y m (76)
on the event £2,,. We thus deduce that
u 1
‘(BIW (y%’]k,j (30))) X <1 + Z (Pn— P) ((PIk,j(wpIk, )) =3 ‘51k i (y@1k7.j (ac))‘ (77)
i=0
and
Inn

| <Z (P, — P) (<P1k,j801k,i)> x P (y<PIk,j (z))

=0

S LT7A+7Cmin>CM,Leb7’Y m X |P (ygolkh] (x))| . (78)

Moreover, by (11), (48) and (68) we have
[P (yer,g @)] < Aller ll o P (Tk)
< Acmax H@Ik,j Hoo Leb (Ik)
S Acmaer,cm;n Leb (Ik)
< LA,T,Cmin,Cmax Leb (Ik) . (79)
Putting inequality (79) in (78) we obtain
" Inn
Z (Pn - P) (@I}c,j(plmi) x P (ySDIk,j (.’E)) < LT7A+7CInin)anaxycIW,cha’Y T : (80)
=0

Hence, using inequalities (77), (80) and inequality (84) of Lemma 11 in equation (75), we obtain that

Inn

‘5%)3 - (ﬁU(P],“]‘ (3?))‘ < LA7T7A+)anin7clnaX)CZ\/I,chy’Y n
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on (2,. Since the constant LA, 4., does not depend on the index (Ij,7) we deduce by (68)

Cmin;Cmax,CM,Leb,?Y

that
(a-e?(i?’ir} — P (yer, (x))D X max o,
|
< LA,T,AJr,Cmin,cmax,CM,LebfY % X e?olax HSOIA ’JH

Inn

S LAr Ay cminsComassCr Lebyy wLeb (Iy) ° (81)

Finally, by using (49) and (81) in (74), we get for all n > ng (r, AL, Cmin, CM Leb, Y), On the event 2, of
probability at least 1 —3Dn™"7,

[ S +1
oo = sl < (40, _ o {( x|

< lnn
— A,r, Ay Cmin,C s 5
* e N T e o 1}\/Leb (Ir)

P (yer, (@)D X max ||‘P1k,jHoo}

J€{0,...,r}

|P|lnn
< LA,T',A+7Cmin7C1\4,Leb7'Y n

Dlnn
§ LA,r,A+,cmm,CM,Leb7’Y n :

To conclude, simply take y = 23 4+ « + 1, so that it holds for n > 2, P[Q¢] < n=* which implies (50).

It remains to prove the following lemma that has been used all along the proof.

Lemma 11 Recall that L, p = ((Ln,D)
{Oa sy T — 1}2 ) (]71) € {07 "'7T}2 s

(L”vD)(Ik,j),(Iz,i) = (Pn - P) (Qolk,j('oll,i) :

(Ik,j),(lz,i))(lk D eTxT is a D x D matriz such that for all (k,1) €

Also recall that for a D x D matriz L, the operator norm ||| associated to the sup-norm on the vectors is
Lx
L) = sup F2e
220 7)o

Then, under the assumptions of Lemma 9, a positive integer no (7, A+, Cmin, CM,Leb,Y) €xists such that, for all
n > no (7, A+, Cmin, CM,Leb,Y), the following inequalities hold on an event Q,, of probability at least 1 —3Dn~7,

1
”LmDH < LT7A+7Cmin701\/I,Leb7'Y n < 5 (82)
and for all k € {0,....m — 1},
max il(Pn—P)(cm n )| ¢ < LAy cmme n__ _1 (83)
ie{0,.r} | = ko] Tkt = A i ML TN [ Teb (I) — 2
Inn
s |(Po = P) (yer, 5 (@) < Laasremmertiann\| - (84)

Proof of Lemma 11. Let us begin with the proof of inequality (84). Let the index (I, j) € Z be fixed. By
using Bernstein’s inequality (213) and observing that, by (11),

Var (yey, ; (@) < P | (ver, ; (@)°] < IV < 4%
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and, by (11), (68) and (49),

Yo, ; Ol < Aller; (Ol
1

Leb (1)
< LAarvcminaCIM,Leb \Y |P|
< LAv"'vcmimCI%,Leb\/E )

S ALchmin

we get

L TyCmin,C e \/5
[(Pa = P) (yor, 5 (@)] = /2425 4 ZAmtunive,

P

3

x] < 2exp(—x) . (85)

By taking © = vInn in inequality (85), we obtain that

| Larcoan . vVDyIlnn
(P, = P) (yor, ; (@)] z,/2A2y%+ A e 7 ]gmﬂ. (86)

Now, as D < Ayn (Inn)~ 2, we deduce from (86) that for some well chosen positive constant Laa,,
we have

P

T3Cmin,CM,Leb,7?

Inn _
P |(P” - P) (ycpfk,j (:E))‘ 2 LA7A+aermin7C1M,Leb1'Y ’I’L] <2n K
and by setting
(1) lnn
Qn = ﬂ ’(Pn - P) (ygolk,_] (.’,C))‘ S LA,A+7’I‘,C,,,in7cM,LCb,'y T
(Ik,j €z
we deduce that
P (95})) >1-2Dn"7 . (87)

Hence the expected bound (84) holds on Q%l), for all n > 1.
We turn now to the proof of inequality (83). Let the index (Ij,j) € Z be fixed. By Cauchy-Schwarz inequality,
we have

T

ST B = P) (o1, 00,0 | VLD ((Pa = P) (01, 501,.0)" - (88)

=0 i=0

Let write

XIz,j = Z ((Pn - P) (¢1k,j¢lk,i))2 and By, = {Z ﬁfk,z'@lk,i ; (51,9,1')::0 e R™"! and Zﬁ?u < 1} .

i=0 i=0 i=0
By Cauchy-Schwarz inequality again, it holds

X1,,,5 — Sup |(Pn - P) (@lk,j5)| .
sEBy,

Then, Bousquet’s inequality (214), applied with ¢ = 1 and F =By, , implies that
2 X 4 blk JE
PAX5 =B X1 ] 2 4/207, 5= + B X ] + 37| < exp(-a) (89)

2 LTwcmin
O%kyj = Szlg? Var (9011«,]'5) < H(’ka,jHoo < Leb (Ik) (90)
k

where, by (68),
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and
bryj < 252‘;2 len g8/l < 2l S I8l - (91)

Moreover, for s = Y7 87, ;¢1, i € Br,, we have max; |8, ;| < />0, B%m <1, so by (68),

LT ;Cmin

sup || oo < @ ——
ZZ; e Leb (I,
and injecting the last bound in (91) we get
Lr,cm;n LT,Cmin
s < llenslee Leb (I;,) — Leb(Ix) (%2)
In addition, we have
i Var <p ©
E [xr, ;] < 1/]1*] XIM \/Z 0 zw )
Z::OP (‘P%kz)
< Jlopl, | 2
r+1
= llenill n
: (93)

< ch i nLeb (1)
~ ;Cmin n Leb (Ik)

Therefore, combining (90), (92), (93) and (89) while taking z = yInn, we get

1 Inn Inn
P - Lr | < nm . 94
[X],M Z Lreminy (\/nLeb (Ix) + \/n Leb (1) * n Leb (Ik)>‘| =" .

Now, since by (49) and the fact that D < A n (Inn)~> we have

n
- < D<c Al ———
Leb (I1,) CM Leb M Leb“1+ (In n)z )

we obtain from (94) that a positive constant Ly A, c.i..carren,y €Xists, depending only on 7,7, Ay, cymin and
€M Leb Such that

Inn _
P [ka,j 2 LT:A+7CminaCM,Lebg"/ nLeb(Ik)] <n77. (95)

Finally, define
Inn
2
Q) = ﬂ {ka,j < L A4 eminsent,nensy nLeb(Ik)} :
(Ix,3)€T )

For all n > ng (1, A+, ¢min, CM Leb, Y), We have

Inn
vr+1x L, , _
7,A 4 ,Cmin,CM,Leb,Y n Leb (Ik)

Dlnn

S LT7A+aCmin7CM,Leb7'Y n
1 1

< LT7A+1CminyCJW,Lebv"Y <5 (96)
Inn ~ 2
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Moreover by (95) it holds
P (Q;”) >1-Dn™" (97)

and, by (88), the expected bound (83) holds on Qg), for all n > ng (r, A4, Cmins €M, Leb, 7)-

Next, notice that for a D x D matrix L = (L([k 7j)7(Il’i))(Ik (hierxT Ve have the following classical formula,

IL| = max > [Liy jym) -
k (I1i)eT

Applied to the matrix of interest L,, p , this gives

ILnpll= a3 [(Pu= P) (er, 51,)]

(Il,i)EI
= ek max o D [(Pa=P) (erena)l - (98)

(I i)ET

Thus, using formula (98), inequalities (83), (49) and (96) give that for all n > ng (7, AL, Cmin, CM Leb, Y), We

/DlInn
||LTL,D|| < LT)A+)CInin7CIW,LCb7’Y n <

Finally, by setting €,, = Q" ﬂﬂg), we have P (Q,) > 1 —3Dn~ 7, and inequalities (83), (82) and (84) are
satisfied on Q,, for all n > ng (r, A4, Cmin, €M Leb, ), Which completes the proof of Lemma 11. H

have on Qg ) ,

N =

6.3 Proofs of Section 3

In order to express the quantities of interest in the proofs of Theorems 3 and 4, we need preliminary definitions.
Let o > 0 be fixed and for R,, p o defined in (H5), see Section 3.1, we set

Dlnn
Rn,D,a = max {Rn,D,a i Aso } (99)

n

where Ao, is a positive constant to be chosen later. Moreover, we set

Inn Dlnn
n = ) — 5 fn.Da ¢ - 1
v max{\/ i) 1/ - R, p, } (100)

Thanks to the assumption of consistency in sup-norm (HS5), our analysis will be localized in the subset

Bor,no) <5M7Rn7D7a) = {8 € M,|ls —smll < Rn7D7a}

of M.
Let us define several slices of excess risk on the model M : for any C' > 0,

Fo={se M,P(Ks— Ksy) < C}ﬂB(M,LOO) (3M7Rn,D,a)

‘7:>C = {S S M,P(KS — KSM> > C}mB(M,Lm) (SM7Rn7D7a)
and for any interval J C R,

Fy={s€ M,P(Ks—Ksu) € J} B (SM, Rn,D,a) .
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We also define, for all L > 0,
DL = {S - M,P(KS —KSM) = L}ﬂB(MyLoo) (SM,RH,D,Q) .

Recall that, by Lemma 1 of Section 2.2, the contrasted functions satisfy, for every s € M and z = (z,y) € XXR,

(Ks) (2) = (Ksar) (2) = 10 (2) (s = sar) (2) + P2 ((s — s00) (2))

where ¥y 3/ (2) = =2 (y — su (x)) and ¥, (t) = ¢, for all ¢ € R. For convenience, we will use the following
notation, for any s € M,

oo (s —sm):x€X 1y ((s—su) (2)) -
Note that, for all s € M,
P (10 -5) =0 (101)
and by (H1) inequality (15) holds true, that is

|1 ar], <44 . (102)

Also, for Ky s defined in Section 3.3, we have

D
1
Kim = ) ;V?ﬂ (V100 - 2x)

for any orthonormal basis ((pk)szl of (M, ]|-||l5) - Moreover, inequality (31) holds under (H1) and we have
Kiar < 20max + 44 < 6A . (103)

Assuming (H2), we have from (32)
0 < 20min < Kl,JW . (104)

Finally, when (H3) holds (it is the case when (H4) holds), we have by (16),

sup  |lsllo, < Az VD (105)
seM, sll,<1

and so, for any orthonormal basis (cpk)k[,):l of (M, |-|l,), it holds for all k € {1,...,D}, as P (¢3) =1,
leplloe < As VD . (106)

6.3.1 Proofs of the theorems

The proof of Theorem 3 relies on Lemmas 18, 19 and 20 stated in Section 6.4, and that give sharp estimates
of suprema of the empirical process on the constrasted functions over slices of interest.

Proof of Theorem 3. Let a > 0 be fixed and let ¢ = (@k)kD:l be an orthonormal basis of (M, ||-||,) satisfying
(H4). We divide the proof of Theorem 3 into four parts, corresponding to the four Inequalities (22), (23), (24)
and (25). The values of Ag and A, respectively defined in (21) and (99), will then be chosen at the end of
the proof.
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Proof of Inequality (22). Let r € (1,2] to be chosen later and C' > 0 such that

D
rC = @ICiM . (107)

By (H5) there exists a positive integer ny such that it holds, for all n > nq,
P (P (Ksp — Ksy) < C) <P ({P (Ksn — Ksar) < CY[) va) T (108)
and also
P ({P (K, — Ksar) < CY[) Qoo,a)

§]P’<1nf P,(Ks— Kspy) < inf P, (Ks—KsM))

seFc s€EF>c

§P<inf P, (Ks— Kspy) < inf Pn(KsKsM)>
seFc s€F(c,ro]

=P| sup P, (Ksy — Ks)> sup P, (Ksy—Ks)|. (109)
seFc s€F(c,rc)

Now, by (107) and (104) we have

D o D
% min < C< (1 + A4V7L) %’C%,M

where Ay is defined in Lemma 18. Hence we can apply Lemma 18 with a = 3, A, = 02, /2 and A3 s = ras (),
by Remark 2. Therefore it holds, for all n > ng (Acc, Aconss Aty Omin, @),

/C’D
P | sup P, (Ksy — Ks) > (1 F LA Arai(9),omimAa X l/n) —Kim—C| <2n7. (110)
seFc
Moreover, by using (104) and (103) in (107) we get
D D
— I2nln <rC<— (Umax + 2A)2
n n
We then apply Lemma 20 with
a = ﬂa Al - O—mlnv Au = (O'max + 2A)2
and
Ao > 64V2Bo A (0umax + 24) o trar (9) (111)

so it holds for all n > ng (A—, Ay, A, Ao, Aconss B2, i (©) 5 Omaxs Omin, @),

[rCD
IP’( sup P, (Ksy — Ks) < (1 =LA A A 0masominrar (), X l/n) r K1 —rC’) <2n=%. (112)

SE}—(CJ.C]

Now, from (110) and (112) we can find a positive constant 1210, only depending on A_, A, Ao, Tmaxs Tmins T ()
and «, such that for all n > ng(A_, A4, A, Aso, Acons, B2, " (¢) , Omax, Omin, @), there exists an event of
probability at least 1 — 4n~% on which

D
sup Py (Ksy — Ks) < (1 + Aoun) JLx - (113)
seFc n
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and

- CD
sup P, (Ksy — Ks) > (1 — Aoun) r Kiy—rC . (114)
SE?(CJ.c] n
Hence, from (113) and (114) we deduce, using (108) and (109), that if we choose r € (1, 2] such that
- [CD - CD
(1 + Aolln) 7’C1)M -C< (1 - AOVn) r ICLJM —rC (115)
n n

then, for all n > ng (A—, Ay, A, Ao, Aconss B2, Tar (©) s Omaxs Omin, 11, &) We have

with probability at least 1 — 5n~%. Now, by (107) it holds

[rCD 1D
K =2rC = - —K?
n 1,M r 9 VLM

and as a consequence Inequality (115) is equivalent to

(1—2A0un)r—2(1+210un)\/F+1>0. (116)
Moreover, we have by (100) and (H5), for all n > ng (AJr,A,, Acons, Ao, a),
~ 1
Aovn < — (117)
4
and so, for all n > ng (A+, A_, Acons, Ao, a), simple computations involving (117) show that by taking

r =1+ 48\ Agv, (118)
inequality (116) is satisfied. Notice that, for all n > ng (A+, A_, Aons, Ao, a) we have 0 < 48v/Agv, < 1, so
that r € (1,2). Finally, we compute C by (107) and (118), in such a way that for all n > ng (A+, A, Avons, Ao, a),

1 1D ~ 1D
C = e _ K2, > (1 —48 AoVn> Z;’C%M >0 (119)

P 1448y Ag, 4 Y

which yields the result by noticing that the dependence on o« can be released in ng and Ay since by (H1)
we have 0. < A.

Proof of Inequality (23). Let C > 0 and ¢ € ((), %) to be chosen later in such a way that

D
(1-6)C = ElciM (120)

and ) D
C Z Z (1 + A5Vn)2 glciM 5 (121)

where As is defined in Lemma 19. We have by (H5), for all n > n;,

P (P (Ksy — Ksy) > C) <P <{P (K, — Ksyr) > O} Qoo7a> T (122)
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and also
P ({P (Ks, — Ksy) > C} ﬂﬂwa)

§P(inf P, (Ks— Ksy) > '}_1_f Pn(Ks—KSM))

seFc seFsc

=P| sup P, (Ksy — Ks) < sup P, (Ksy — Ks)
seFc seFsc

<P sup P, (Ksy —Ks)< sup P, (Ksy—Ks) | . (123)

- 36.7:(%7(1_6)0] s€Fsc

Now by (121) we can apply Lemma 19 with o = 8 and we obtain, for all n > ng (Aso, Acons, A+, @),

sEFsc

P [ sup P, (Ksy — Ks) > (1+ Asvp) 1/ C—DICLM - C} <2n ¢ (124)
n

where A5 only depends on A, As ar, Aoo, Omin, A— and a. Moreover, we can take As yr = rar (¢) by Remark 2.
Also, by (120), (104) and (103) we can apply Lemma 20 with the quantity C' in Lemma 20 replaced by C/2,
a=06,r=2(1-9), Ay = (Omax + 2A)2, A; =02, and the constant A, satisfying
Ao > 64V2BoA (0 umax + 24) opiorar (9) (125)
and so it h01d57 for all n > no (A—a A+a Aa A007 A00n57 BQ; M (QO) » Omax; Omin; Oé),
SUD,c £ P, (Ksy — Ks)
S5 0-oe] <2, (126)

S (1= La_ A A 0muesomimrar(@)ia X Vn) \/ U=9CDjec) v~ (1-8)C )

Hence from (124) and (126), we deduce that a positive constant Ay exists, only depending on A_, A, Ao, Cmaxs Omin, M (p)
and «, such that

for all n > ng(A_, AL, A, Ao, Acons, B2, 701 (©) 5 Omaxs Omin, @) it holds on an event of probability at least

1—4n=“

P

)

. 1-6)CD
sup P, (Ksy — Ks) > (1 — Agun) %ICLM -(1-9)C (127)
SE}-(%,(I—S)C]
and
. CD
sup P, (Ksy — Ks) < (1 + A(]l/n) —Kiu—-C. (128)
s€Fsc n

Now, from (127) and (128) we deduce, using (122) and (123), that if we choose 6 € (0, 3) such that (121) and

(14 Aovy) \/CTDICLM —C < (1—Agy) %KLM -(1-90)C (129)
are satisfied then, for all n > ng (A_, A4, A, A, Acons, B2, 71 (©) 5 Omaxs Omin, 71, ),
P(Ks, —Ksy)<C,
with probability at least 1 — 5n~%. By (120) it holds

1-6)CD 1D
L——L—m;Mzzu—aczigxﬁp

and by consequence, inequality (129) is equivalent to

(1—240vy,) (1=6) = 2(1+ Agwn) VI=6+1>0. (130)
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Moreover, we have by (100) and (H5), for all n > ng (A+,A_, Acons, AO,Ag,,oz),

(Ag Vv A5) v, < (131)

1
72
and so, for all n > ng (A+, A_ Aons, Ao, a), simple computations involving (131) show that by taking

5:6<@v@)m, (132)

inequalities (130) and (121) are satisfied and § € (0, 3). Finally, we can compute C' by (120) and (132), in

such a way that for all n > nyg (A+, A_, Acons, Ao, a)

0<0:(11__525)O:(1i5)iDK1M<<+12<\rvf) >1D/c17M, (133)

which yields the result by noticing that the dependence on omax can be released from ng and Ag since by (H1)
we have o < A.

Proof of Inequality (24). Let C = &IC%M > 0 and let r = 2. By (103) and (104) we have
D D
02, <10 = f/c = (Oumax + 24)°
n

so we can apply Lemma 20 with a = 3, 4; = 02, and A, = (0max + 2A)2. So if

AOO Z 64\/532 (Umax + 2A) mmTM (4,0) ) (134)

it hOldS, fOI‘ au n Z no (A—7 A+7 Aa Aooa Aconsa 327 M (90) y Omaxy Omin, O[),

[rCD
IP’( sup P, (Ksy —Ks) < (1 — LA A4 0w ,ominra(9),a X 1/”) TTICLM — rC’) <2n~%. (135)

SEJ:(C.,TC]

Since rC = 2 K2 o i we set Ay = 2L A A, Ao omansomimrar(@)e WILH DA A A oo 5o i(0),a the constant
n (135), we get
D
P sup P, (Ksy — Ks) < (1 — Aol/n) 4—IC%M <2n7%. (136)
SE]“(Cﬂqc] n

Notice that
P, (Ksy — Ksp)=sup P, (Ksyr — Ks) > sup P, (Ksy — Ks)
seM s€F(c,ro]
so from (136) we deduce that

A D
P <Pn (Ksyr — Ksp) > (1 — Aoun) oK M) >1 - (137)
KA
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Remark 12 Notice that in the proof of inequality (24), we do not need to assume the consistency of the
least-squares estimator s, towards the projection sy;. Straightforward adaptations of Lemma 20 allow to take

- Inn Dlnn
Up =max {4/ —, 1/
A D n

instead of the quantity v, defined in (100). This readily gives the expected bound (26) of Theorem 3.

Proof of Inequality (25). Let
1 D
C=10+ Asvpn)? giciM >0 (138)

where Ay is defined in Lemma 19 applied with 8 = a. By (H5) we have
P (P (Ksy — Ksn) > C) <P ({Py (Ksu — Ksp) > C}H[) Qo) 407 . (139)

Moreover, on {1 o, We have

P, (Ksy — Ksyp) = sup P, (Ksy — Ks)
SGB(J\LLOQ)(SM7R7L,D,Q)
= sup P, (Ksy — Ks) (140)
s€Fso

and by (198) of Lemma 19 applied with o = it holds, for all n > ng (Aso, Acons, 4+, @),

IP’( sup P, (Ksy — Ks) > C) <2n7%. (141)

s€F>o
Finally, using (140) and (141) in (139) we get, for all n > ng (Ao, Acons, 1, Ay, @),

P(P,(Ksy —Ksp) >C)<3n™ <.

Conclusion. To complete the proof of Theorem 3, just notice that by (111), (125) and (134) we can take
Ao = 64V2By A (0 max + 24) o torar ()

and by (119), (133), (137) and (138),

Aozmax{48 Ay, 12 (@v \/A>5), \/ATO, \/Af,}

is convenient. W

Proof of Theorem 4. We localize our analysis in the subset

Bovp)y (8, Rupa) ={s € M,|s = snlloo < Rupa} CM.
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Unlike in the proof of Theorem 3, see (99), we need not to consider the quantity Rn, D,a, & radius possibly
larger than R, p.. Indeed, the use of Rn,p,a rather than R, p . in the proof of Theorem 3 is only needed
in Lemma 14, where we derive a sharp lower bound for the mean of the supremum of the empirical process
indexed by the contrasted functions centered by the contrasted projection over a slice of interest. To prove
Theorem 4, we just need upper bounds, and Lemma 14 is avoided as well as the use of ]?n D,a-

Let us define several slices of excess risk on the model M : for any C' > 0,

Go ={s€ M,P(Ks—Ksy) < C}\Bauro) (sa1, Rupa)
Goc ={s € M,P(Ks— Ksy) > C}( B (5m: Rupa) -
We also define, for all U > 0,
Dy ={s € M,P(Ks— Ksy) =U}( B (5s, Rnpa) -
I. Proof of Inequality (27). Let C; > 0 to fixed later, satisfying
ClzgzzC_>0. (142)
We have by (H5), for all n > nq,
P (P (Ksy — Ksn) > C1) < P ({P (Ksy = Ksur) > Ci}) Qo) #1070 (143)
and also
P ({P (Ksn — Ksy) > Oy} ﬂQw,a)

SP( inf P, (Ks— Ksy)> inf Pn(Ks—KsM))

s€Gcy s€G>cy

P(sup P, (Ksy — Ks) < sup Pn(KsMKs))

s€Gco, s€G> 0y
<P (O < sup P, (Kspy — Ks)) . (144)
S€g>Cl
Moreover, it holds
sup P, (Kspy — Ks)
s€g>c‘1
= S {Pn (1,00 - (smr = 8) = a0 (s —sm)) }
= s {(Py=P) (Urr - (3w = 9)) = (Pu = P) (30 (s = w) = P (K5 = Ksar)}
= s {(B = P) (s (sns = 9)) = P (s = Kang) = (P = P) (1 (s = 3n0)}
= sup sup { P, P)(%M (SM_S))_U_(Pn_P)(%/JzO(S_SM))}
U>C; s€Dy
D
< sup Z Py = P)* (Y101 i) = U+ sup |(Pn = P) (0 (s — sn))| p - (145)
U>Cy 1 seGu

Now, from inequality (164) of Lemma 13 applied with 8 = a, we get

D
DVinn o
Z 1#1 o er) > Laag a\/T <n . (146)

k=1
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In addition, we handle the empirical process indexed by the second order terms by straightforward modifications
of Lemmas 16 and 17 as well as their proofs. It thus holds, by the same type of arguments as those given in
Lemma 16,

E | sup [(P,—P) (V50 - (s —sn)) |1 <84/ CTDRWD@ . (147)

s€Gc,

Moreover, using (147), the same type of arguments as those leading to inequality (191) of Lemma 17, allow to
show that for any ¢ > 1 and j € N*, for all z > 0,

iC_D 2R2 , @'C_x 8R?2, . x
P| sup |(Po—P)(wyo(s—sn))| > 161/ % ——Rupa+t ’D*n +3 71;

s€G o

< exp(—z) . (148)

Hence, taking z = yInn in (148) and using the fact that C_ = Dn=! > n~! we get

JiC_(DV1
Pl sup |(Pa—P) (o (s —sa)) = Lo Rupiay] LOPYII Ly (149

s€9 o n

Now, by straightforward modifications of the proof of Lemma 17, we get that for all n > ng (Acons),

U(DVI
P YU >C_, sup |(Po—P)(ty0(s—sm))| < L. . aBnpa (n“”)] >1-n"%.  (150)
seGu
Combining (145), (146) and (150), we have on an event of probability at least 1 —2n~%, for all n > ng (Acons),
U(DvVI1 U(DVI1
sup Pn (KSM - KS) < sup LA,A3 M,Q w -U+ LAcons,aRn,D,(x w
s€Gsc,y U>C ' n n
U(DV1
< sup {LA,ACO,,LS,A&M,Q (14 Rupa) ) L2V IR0 U} . (151)
U>Cq n
Now, as Ry, p,a < Acons (In n)_l/Q, we deduce from (151) that for
DVin(n
Ci = LAyAcons’Aii,M,ai() >C_ (152)

n

with L a large enough, it holds with probability at least 1 — 2n~* and for all n > ng (Acons),

sup P, (Ksy — Ks) <0,

s€g>01

cons, A3, M,

and so by using (143) and (144), this yields inequality (27).
I1. Proof of Inequality (28). Let Cs > 0 to fixed later, satisfying
022§=0_>o. (153)
We have by (H5), for all n > n;,
P (P, (Ksy — Ksp) > Cs) <P ({Pn (Ksa — Ksp) > Co) ﬂﬂw,a) ey (154)

Moreover, we have on Qg o,

P, (Ksy — Ksyp) = sup P, (Ksy — Ks)

SEB(M,Loo)(5MRn, D o)

=max< sup P, (Ksy —Ks) ; sup P, (Ksy—Ks); (155)
s€Gc, s€G>cy
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where C is defined in the first part of the proof dedicated to the establishment of inequality (27). Moreover

let us recall that in the first part of the proof, we have proved that an event of probability at least 1 — 2n=¢
exists, that we call 1, such that it holds on this event, for all n > ng (Acons)

D

/DVinn
Z wl M Sak) < LaAg e —n (156)
k=1

U(DVI
YU > C_, sup |(Pn — P) (wg o (5 - 5M))| < LAconS,aRn,D,a w

, 157
seGy n ( )
and
sup P, (Ksy — Ks)<0. (158)
S€g>cl
By (155) and (158), we thus have on Quo o () Q1, for all n > ng (Acons)
0<P,(Ksy— Ksp)= sup P, (Ksy —Ks) . (159)
s€gcl
In addition, it holds
sup P, (Ksy — Ks)
s€Gc,
= sup {P (¢1 M (M —8) —Pg0(s— SM))}
s€Gcy
= sup {(P = P) (g (a0 = ) = (P = P) (5.0 s = sw)) = P (s = Ksny )}
s€Yc,
< sup {(Pn—P) (Y10 (sm =)} + sup [(Pn — P) (g0 (s —sm))| - (160)
s€Gc, s€Gcy
Now, we have on 4, for all n > ng (Acons)
D
sup { (P, — P) (1/)1 ac (sar— S))} < Z z/Jl M ‘Pk)
s€Gcoy k=1
Ci(DVinn
< LAyAg,nyoé % by (156)
DVin(n
= LA7Acon57A3,M7aT() by (152) 5 (161)
and also, by (157) and (152),
Ci(DVinn
sup [(Pu = P) (630 (s—=5a0)| < LitsyoiaBonpiy] S-E )
s€Gc, n
DVin(n
S LAyACO’nS7A3,1\/f)aRn7D7a7() . (162)

n

Finally, a5 Ry, p.o < Acons (Inn)~'/%, we deduce from (159), (160, (161) and (162), that it holds on Q.o ()21,
for all n > ng (Acons),
DV Inn)

)

P, (KSM - Ksn) < LA,AConS,As,Mﬂ n

and so, this yields to inequality (28) by using (154) and this concludes the proof of Theorem 4. B
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6.4 Technical Lemmas

We state here some lemmas needed in the proofs of Section 6.3. First, in Lemmas 13, 14 and 15, we derive some
controls, from above and from below, of the empirical process indexed by the “linear parts” of the contrasted
functions over slices of interest. Secondly, we give upper bounds in Lemmas 16 and 17 for the empirical process
indexed by the “quadratic parts” of the contrasted functions over slices of interest. And finally, we use all
these results in Lemmas 18, 19 and 20 to derive upper and lower bounds for the empirical process indexed by
the contrasted functions over slices of interest.

Lemma 13 Assume that (H1), (H2) and (H3) hold. Then for any B > 0, by setting

Inn _ VInn
™ =Lassvowns \\ TV 1m |

It holds, for any orthonormal basis (<pk) _1 of (M, ]l5),

D
P Z ¢1 Moee) = (1+T70) \/f’Cl,M <n7?. (163)

k=1

If (H1) and (H3) hold, then for any 8 > 0, it holds
D DVvinn
P> (Po=P) (Y100 01) = Laagapyf — | = n . (164)
k=1

Proof. By Cauchy-Schwarz inequality we have

D
XM = Z P, — P ¢1,M'<Pk): Sup {’(PH_P) (wl,M'S)‘} :
poet seM, [ls]l,<1
Hence, we get by Bousquet’s inequality (215) applied with F = {4, 5, -s; s € M, |s|, < 1}, for all z > 0,
6 >0,
T 1 1\ bz
Plxar >1/202=+ 1 +0)E[xpy]+ |5+ ) —| <exp(—x) (165)
n 3 40) n
where
o2<  sup P {(%M ) } [y 0] <1642 by (102)
seM, ||s||,<1
and
b<  sup ||y s— P (Y- s)|| . <4AVDAs N by (101), (102) and (105).
sEM, [sll,<1 ’ -
Moreover,

Exml < VE ] = \/f’Cl,M .

So, from (165) it follows that, for all z > 0, § > 0,

D 1 1) 44VDA
P[XM \/:J (1+§)\/7IC1,M+(3+6>\F3’M$
n n

Hence, taking x = flnn, d = ¥ lf}f in (166), we derive by (104) that a positive constant La A, ,/,0m:m,8 €Xists

such that
Inn  +Inn D
P lXM (1 + LA, A3 rr,0min B (\/ZV M)) \ 5, Kum
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<n F,




which yields inequality (163). By (103) we have K1 3 < 64, and by taking again « = Slnn and § = anf}f in
(166), simple computations give

D 9 D Inn Dlnn _3
P Pa=P) (Yrar91) = Laasars [\ VA=V g || <077

k=1

and by consequence, (164) follows. B

In the next lemma, we state sharp lower bounds for the mean of the supremum of the empirical process on
the linear parts of constrasted functions of M belonging to a slice of excess risk. This is done for a model of
reasonable dimension.

Lemma 14 Let r > 1 and C > 0. Assume that (H1), (H2), (H4) and (17) hold and let p = (wk)szl be an
orthonormal basis of (M, ||-||,) satisfying (H4). If positive constants A_, Ay, Aj, A, exist such that

n

Al s >D>A_(Inn)® and AlgnggAuB,
n n

(Inn)

and if the constant Ao, defined in (99) satisfies

Aoo > 64B2 AN/ 24,01 ma () (167)

then a positive constant La A, a exists such that, for alln > ng (A_, Ay, Ay, A1, A, Ba, 771 (9)  Omin ),

w0 min

Laa,Au,om; ) rCD
E su PTL —P - (s — s > 1 _ 5411,y ;0min
p ( ) (Y1ar - (51 ))] > ( NG -

56'7:(0‘7-0]

Kinm - (168)
Our argument leading to Lemma 14 shows that we have to assume that the constant A., introduced in (99)

is large enough. In order to prove Lemma 14 the following result is needed.

Lemma 15 Letr > 1, 8> 0 and C > 0. Assume that (H1), (H2), (H4) and (17) hold and let p = (wk)le
be an orthonormal basis of (M, |-||,) satisfying (H4). If positive constants A, A_ and A, exist such that

A—"_>D>A (mn)?, rC<a?,
n

(Inn)* ~

and if
Aoo > 32B2 AN/2A,Ba ) rar ()
then for allm > no (A—, Ay, A, Bo, 7 (©) , Omin, B), it holds

VrC (P, — P) (¢1,M : @k) R,%D’a 2D +1
max — : > —| <=5
R DY SR (P = PY (baarwy) | "M ()Y

Proof of Lemma 15. By Cauchy-Schwarz inequality, we get

D
Xy = Z(Pn_P)z (¢1,M'Sﬂk) = Ssup |(Pn_P) (1/}1,M'3)} )
=1 SESM
where Sj; is the unit sphere of M, that is

D D
Sy = SEM,8226k@kand Zﬁizl
k=1 k=1
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Thus we can apply Klein-Rio’s inequality (217) to x,, by taking F =Sy, and use the fact that

sup 1,00 -8 = P (Y100 5)|| . S4AVDrar(p) by (101), (102) and (H4). (169)

SESM

sup Var (¢1 M S) = sup P (wl M- 8) <16A? by (101), (102)

SESM se€Snm

and also, by using (169) in Inequality (212) applied to x,;, we get that

We thus obtain by (217), for all ¢,z > 0,

IP’(XM (1—¢)By \f;clM—\/ng—O—H(Hl) )4’4@“1( )>§exp(—x). (170)

So, by taking € = % and x = Blnn in (170), and by observing that D > A_ (lnn)2 and Ky, > 20min, We
conclude that, for all n > ng (A—, A, Ba,rrr (¢) , Omins 8),

B;Y /D
P [XM < % EICI’M

Furthermore, combining Bernstein’s inequality (213), with the observation that we have, for every k €
{1, ..., D},

<n P (171)

le,M . (PkHoo < 4AVDry, (p) by (102) and (HA4)
P (10 o) < |[orn’ <1642 by (102)

we get that, for every > 0 and every k € {1, ..., D},

P \[(Pn = P) (V1,0 - 01) | = 1/32142% + W;] < 2exp(—z)
and so
4AvD
P Le{mﬂ%m [(Po = P) (V101 - 1) | > 1/?,2142% + \F;M(@)ﬂ < 2Dexp () . (172)

Hence, taking = Slnn in (172), it comes

[32A28Inn  4A\Dry () Blnn 2D
g LGFL?).%D} |(Pn -P) (wl’M .ka)| 2 n + 3n - nﬂ ’ (173)

then, by using (171) and (173), we get for all n > ng (A_, A, Ba, 70 (¢) , Omin, 5),

- 8By\/rC ( [32A28Inn N 4AVDryr () Blnn _2D+1
- \/Elcl u n 3n - nf

> D we have, for all n > ng (4, A4, rum (@), 8),

4AVDryr () Blnn < [32A281nn
3n - n
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P max
ke{l,...,D}
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and we can check that, since rC < Au% and Ky > 20min, if

Ase > 32B2\/2A4,A%Bo ) ras ()

then, for all n > ng (A—, Ay, A, Ba, 771 (¢) , Omins 8),
S Ao llnin < 2D +1
“ru(@)Von | T 0P
which readily gives the result. B

VrC (P, — P) (1/)1,M‘<Pk)
XM

We are now ready to prove the lower bound (168) for the expected value of the largest increment of the

empirical process over F(c.,.c-

P

max
ke{l,...D}

Proof of Lemma 14. Let us begin with the lower bound of
2

E2 ( sup (P — P) (Va7 (51 — s))) ,

Sef(cﬁrc]
a result that will be need further in the proof. Introduce for all k € {1, ..., D},
VrC (P, — P) (¢1,M : <Pk)
D 2

VEL By = PY (0101 - )

Bkn: )

)

and observe that the excess risk on M of (Eszl Brn®r t SM) € M is equal to rC. We also set

Q _ | ‘ Rn,D,a
ke{l kom rar (¢) VD[~

By Lemma 15 we have for all § > 0, if Ay, > 32B3+/2A4,A2B0 1 ras (¢) then, foralln > ng (A_, Ay, A, Ba,ras (©) , Omins 3),

~ 2D +1
P(Q)zl— Ly (174)
n
Moreover, by (H4), we get on the event €2,
D ~
Zﬁk,Mpk < Rn,D,a ;
k=1 oo
and so, on ,
D
<SM + Zﬁk,ngpk) € f(C,’rC] . (175)
k=1

As a consequence, by (175) it holds

B2 ( sup (P, — P) (107 - (sm — 5))>

> B (( (%M (Zﬁknwk>>>21@

(Z ¢1 M @k)) 1@] . (176)
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Furthermore, since by (101) P (¢ 5 - ) = 0 and by (H4) [lg, ]|, < VDry () for all k € {1,...,D}, we
have

D
Z R CORYR

k=1

<D n{laXD ‘(Pn — P)2 (1/)17M . ‘Pk)‘

= Dk max |P3 (7/11,M ’ Wk)|

< Dk_max ||T/J1 M" ‘Pk”
<16A%2D%*r3, (o)
and it ensures

(Z (P — P)2 (¢1,M ) <P1c)> lg

k=1

E >E _16A2D%2, (@)P{(Q)C] . (177)

<ZD: (Po = P)* (10 - %))

k=1

Comparing inequality (177) with (176) and using (174), we obtain the following lower bound for all n >
No (A—y A+7 Aa B27 M ((p) > Omin, 6)7

Nl

E
SE}‘(c,,,VC]

< sup (Pn—P)(’(/JLM'(SM—S))> ZMJE

<XD: (Po = P)? (1 0 - %)ﬂ

k=1

— 447y (@) DVrCy [P [(Q) C}
>/ T(;;DICLM — 4dry () DVirCy | 22 + L (178)

We take 8 = 4, and we must have
Aoo > 64ABo\/2A,0,1 ma ()

Since D < A;n (In n)_2 and K1 v > 20min under (H2), we get, for all n > ng (A, A1, 727 (¢) , Omin)s

4Ary; (@) DVrCy| ——5— 2D Jr ! S Y. TCD/Q M (179)

and so, by combining (178) and (179), for all n > ng (A—, Ay, A, B2, 70 (), Omin), it holds

B2 ( sup (P — P) (v, - (501 — s))> > (1 — \/15> TCDICLM : (180)

S€EF(c,ro) n

Now, as D > A_ (Inn)® we have for all n > ng (A_), D~/2 < 1/2. Moreover, we have K1.m > 20min by (H2)
and rC > A;Dn~1, so we finally deduce from (180) that, for all n > ng (A_, Ay, A, Ba, A;, 727 (¢) , Omin),

E? ( sup (P — P) (V1 a7 - (51 — s))) > Jminm% . (181)

Se]:(c-,rc]

We turn now to the lower bound of E [supsef(c ol (P, —P) (qpl’M (sm — 3))] . First observe that s € F(¢c rq)
implies that (2sa7 — s) € F(¢,rc), S0 that

E

sup (P — P) (Y107 - (501 — s))] =E

56-7:(0,7‘6']

sup ’(Pn —P) (Y101 - (sm — 9)) ’] . (182)

56?((],7‘0]
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In the next step, we apply Corollary 27. More precisely, using notations of Corollary 27, we set

fz{iﬁl)M . (SM —S) ;S € ]:(C,TC]}

and
Z = sup |(Pn — P) (¢y.01 - (SM_S))| :

Se}—(C,rC]

Now, since for all n > ng (A4, A_, Ao, Acons) we have RmD,a < 1, we get by (101) and (102), for all
n Z no (AJra A,, AOO7ACOnS)7

sup [|[f = Pfllo = sup |[¢ya - (s — 9)|| 4ARy p.o < 44
feF ]

SEJ:(C,TC

we set b = 4A. Since we assume that rC < 4,2, it moreover holds by (102),

D
sup Var (f) < sup P (¢y - (sm — s))2 < 16A%rC < 16A%A,—
feF SG]:(C,TC] ’ n

and so we set 02 = 16A2Au%. Now, by (181) we have, for all n > ng (A_, A4+, A, By, A;, 771 () 5 Omin),
D
VEIZ7] 2 omin VAL (183)

Hence, a positive constant L4 4, 4, om. ( Max (4A\/AUA;1/20_1 ; 2\/214;1/4071/2) holds) exists such that,

by setting
_ LaaiAuomn
sy = ——L o Tmin
VD
we get, using (183), that, for all n > ng (A—, A1, A, Ay, A, Ba, 1o (©) 5 Acons, Omin),

0_2

)

2 2 g
%HE[Z]E -
s /B(Z?] >

Furthermore, since D > A_ (In n)2, we have for all n > ng (A, A, Ay, A, Omin),

Sl

», € (0,1) .

So, using (182) and Corollary 27, it holds for all n > ng (A_, Ay, A;, Ay, A, Ba, 731 (©) , Omin),

E l sup (P — P) (1 5 - (sm — 9))

SE]“(C,T,C]
L 2
A, AL A0 i 1
> 1vlvwmm>]Ez sup P P ¢ sy — s ' 184
( VD <S€f<c,rq( w = P) (Y1 ( ) (184)
Finally, by comparing (180) and (184), we deduce that for all n > ng (A_, Ay, A;, Ay, A, Ba, a1 (¢) , Omin)s
LAy A,0m. rCD
E| sup (P,—P)(® (sm—3))| = (1_ 1At A, ) Ko
Le}‘(c,m] ( ) ( LM ( ))‘| \/ﬁ "

and so (168) is proved. W
Let us now turn to the control of second order terms appearing in the expansion of the least-squares contrast,
see (6). Let us define

Q¢ ()= sup
86.7:(0,,,,0]

{ |99 ((s = sm) (2)) = 5 (£ = s0m) (2))]
| —t

s(x) — t (@) ;@ﬁeﬂmsM¢u@}
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After straightforward computations using that 1, (t) = 2 for all t € R and assuming (H3), we get that, for
allz € &,

Qo (2) = 2:‘61;? {ls () — sar (2)[} (185)

<2( nDaAFASAI) : (186)

Lemma 16 Let C > 0. Under (H3), it holds

E | sup |(Pn—P)(¢20(s—sM))|} <8\/?( nDaAﬁAW) .

seFc

Proof. We define the Rademacher process R,, on a class F of measurable functions from X to R, to be

WDl (%) feF

where ¢; are independent Rademacher random variables also independent from the X;. By the usual sym-
metrization argument we have

B sup (P, = P) (430 (s = sar)l| < 28| sup (R, (40 (5 = sar)

seFc seFc

Taking the expectation with respect to the Rademacher variables, we get

B | sup Ry (1,0 (5~ )|

seFc

5[ o =]
seEFc
< (ggﬁgﬁc (Xi)> e | 3w s sz s —sm) (X ))H (187)
where the functions ¢, : R — R are defined by
oty = Qo7 for It < super {Is (X:) — sar (X[} = 2557
! LOc (X3) otherwise

Then by (185) we deduce that ¢, is a contraction mapping with ¢, (0) = 0. We thus apply Theorem 23 to get

1 n
sup gip; ((s—snm) (X < 2E. | sup |— g; (s —sm) (X;
B. | sip ; 1) X | < 28 | p |23 o= sa0) (X0
= 2E. [sup IRy (s — SM)] (188)
seEFc
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and so we derive successively the following upper bounds in mean,

B | sup R (30 (5~ sar)l| =B [B | sup [Ro (30 5 san)|

seFc seFc

<E (121%}3,,(20 (X,»)) Ee Lgfpc ig&'% ((s = sm) (Xz'))m by (187)
<28 |((max 0 () ) B | sup R, (s = a0 by (188)

=28 [( max Q¢ (Xi)) sup Ry (s — SM)@

1<i<n s€Fco

< 2\/E [1@?3”% (Xi):| E l(sset;_pc R (s — SM)|>2]

We consider now an orthonormal basis of (M, ||-||,) and denote it by (wk)szl. Whence

(=) |

b 2
< |E (sup{ : aiﬁC})
k=1

D
S (R, (sok)f] ~ /<2,

E

D

Z apRn, (‘Pk)

k=1

=VC,|E

n
k=1

to complete the proof, it remains to observe that, by (186),

\/]E Lrg_ag( 0z (X,-)] <2 (RMD@ A \/ODA37M> .

|
In the following Lemma, we provide uniform upper bounds for the supremum of the empirical process of second
order terms in the contrast expansion when the considered slices are not too small.

Lemma 17 Let A, A_, A, 3,C_ >0, and assume (H3) and (17). If C_ > A2 and Ayn (lnn)™>>D >
A_ (In n)z, then a positive constant La_ a, p exists such that, for all n > ng (Aco, Acons, A+, A1),

/CD -~
P|VC >C_, sup |(Pn — P) (¢2 o (S — SM))| < LA,,AL,,B 7RH,D,(¥ >1- n b .
seFco n

Proof. First notice that, as Ay n (Inn)~> > D, we have by (17),

~ max {Acons 5 Aoo V A+}

Rn,D,a S .

vinn
By consequence, for all n > ng (Aco, Acons, A+),
Rn,D,a S 1. (189)
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Now, since Ucsc_Fc C Bar,L..) (SM,R,LD@J where

B(M,LOC) (SMvén,D,a) = {5 S Ma HS - SM”OO < Rn,D,a} 5
we have by (189), for all s € Ugsc_Fe and for all n > ng (Aco, Acons, At),

P(Ks—Ksy) =P [(s—st]
< ls — sull,
<Rl,.,<L

We thus have, for all n > ng (Aoo, Acons, A1),

Us- U =

Cc>C_ C_Al<C<1

and by monotonicity of the collection F¢, for some ¢ > 1 and J = LWJ + 1, it holds

J
U Fo C U qu'C’,-
C_A1<C<1 §=0
Simple computations show that, since D > 1 and C_ > Al% > %, one can find a constant L4, 4 such that
J < Ly qlnn.
Moreover, by monotonicity of C — sup,c . |(P, — P) (¢4 0 (s — sar))|, we have uniformly in C' € (¢/'C_,¢’C_],

sup [(Pn — P) (Yoo (s —sm))| < sup  [(Pn— P) (o0 (s —sm))l -

seFco sequ+107

Hence, taking the convention sup,cy [(Pn — P) (¥50 (s — sm))| = 0, we get for all n > ng (Aoo, Aconss A+)
and any L > 0,

BIVO > O, sup [(Pu— P) (W0 (s —sa0))| < Ly 2 R

seFc

JiC_D -~
>P|Vje{l,..J}, sup |[(Pn—P)(@Wyo(s—sm))|<Ly? e

86‘7:(1_7'07

Now, for any L > 0,

[iC D -
P|vje{l,..,J}, sup |(P,— P) (g0 (s—sm))| <L qC7; R.Do

56.7:{1]'07
JiC_D -~
—1-P|Fe{ldt, s [(Pa=P) (W0 (s—sm))l > Ly "= Rupa
56.7:{1]'07

J ¢#C_D -
>1-Y"P| sup [(Pn—P)(W0(s—sm))|>L Ropal - (190)

j=1 86.7'—{1]‘07 n

Given j € {1,...,J}, Lemma 16 yields
JC_D -~
E| sup [(Po—P)(@y0(s—sa)l| <8y T Rupa.

SE]'_qj c_
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and next, we apply Bousquet’s inequality (215) to handle the deviations around the mean. We have

sup g0 (s —sm) = P (%0 (s —sm))ll

SE]'-qj07

<2 sw |[(s—su)?| <282,
Sequc_ S

and, for all s € Fic_,
Var (1hy 0 (s — snr))
<P [(s - sM)ﬂ
< s = surll% P[5 = sa0)”]
S REL,D,aqjC— .
It follows that, for e = 1 and all z > 0,

iC_D -~ 2R2 | ¢iC_x 8RR,
P| sup KR,fP)Wbo(s—sM»|216Hq ——Rnpa+t ,D%q +3 ’3 <exp(—z) .

Sequ07

(191)
By consequence, as D > A_ (In n)2 and as Ry po < 1 for all n > ng (Aso, Acons; A+ ), taking z = ylnn in
(191) for some v > 0, easy computations show that a positive constant L4 4, independent of j exists such
that for all n > ng (Aso, Aconss A+),

JiC_D ~ 1
P| sup |(Pu—P)(Wyo(s—sa))l = Laan\| " Rupal| < — .
SE]:qj07 n n’)’

Hence, using (190), we get for all n > ng (Aoo, Acons, 4+),

seFc

CD -~
P VO > O, sup [(Py— P) (0 (s — s3))| < La_ i/ an,D,a]

1L

2 o
And finally, as J < La, qInn, taking v = 5+ 1 and ¢ = 2 gives the result for all n > ng (Aoo, Acons; A+, A47).

|

Having controlled the residual empirical process driven by the remainder terms in the expansion of the contrast,
and having proved sharp bounds for the expectation of the increments of the main empirical process on the
slices, it remains to combine the above lemmas in order to establish the probability estimates controlling the
empirical excess risk on the slices.

Lemma 18 Let 8, A_, Ay, A;,C > 0. Assume that (H1), (H2), (H3) and (17) hold. A positive constant A4
exists, only depending on A, A3 a1, Omin, 8, such that, if
1

n
mmfZDZAJmmz

D D
A—<C< u+@%fgﬁM and A,

where v, = max{\/lnD", g/%, R,L7D7a} is defined in (100), then for all n > ng (Aso, Acons, Ax, Ar),

CD
P | sup Py (Ksn = Ks) 2 (14 Law 4 asromm A Anp X Vn) \| == Kiu = C| <2077

seFc
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Proof. Start with

sup P, (Ksy — Ks) = sup {Pp (Y107 (sm —5) —thy0 (s —sum)) }
seFc seFc

= sw {(Pn = P) (1,00 (sms = 9)) = (P = P) (50 (s = smr)) — P (Ks — Ks) }

< QSGU}P {(Pn - P) (¢1,M ~(sm _3)) _P(KS_KSM)}

+ sup [(Po = P) (30 (s —sm))l- (192)

Next, recall that by definition,

Dy = {s € B (sM, Rn,D,a) , P(Ks— Ksy) = L} ,
so we have

5861.17-P {(Po=P) (1 (s —s)) — P(Ks— Ksu)}

= sup sup {(Pn - P) (7/’1,M (sm — 5)) 7L}
0<L<LC seDp

D
< sup {VL Z(Pn—P)Q(TM,M"Pk)_L

0sL<C ot

where the last bound follows from Cauchy-Schwarz inequality. Hence, we deduce from Lemma 13 that

P | sup {(Pn = P) (Y1 ar- (550 —5)) = P(Ks — Ksp)} > sup {\FL(lJFTn)\/f]CLMLH <n?,

seFc 0<L<C
(193)
where
Inn  +vInn
Tn = LAyAS,I\/IyO'minyB 7 \ W
Inn Dlnn

< LAaAS,M»Uminyﬂ 7 \ n

< LA7A3,1\47‘7min7ﬁ X Vp . (194)

So, injecting (194) in (193) we have

[ supse o, {(Pn— P) (Y1 0r - (511 — 5)) — P(Ks — Ksar) } ]

< niﬁ
> SUPg<r<c {\/z (1 + LA, Ag r1,0min.8 X Vn) \/ %’Cl,M - L}

. 2
and since we assume C' < 1 (1+ LA, Ay 1/ ,00mm,8 X Vn) %K%’M we see that

I D | D
sup {\/E (1 =+ LA7A3,I\47(7min76Vn) EK:L]M — L} = \/5 (1 + LA,Aa,M,Umin,B X Vn) ﬁ’cl’M — C

0<L<ZC

and therefore

/{CD
P [sup {(P,,L - P) (¢17M (s — s)) —P(Ks— KSM)} > (1 +LA7A3,1\410'min;BV”) T/CLM —C| <n P,

seFc
(195)
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Moreover, as C' > Al%, we derive from Lemma 17 that it holds, for all n > ng (Aso, Acons, A+, A1),

CD - _
P lsup (P, — P) (g0 (s —sm))| > La_ a5\ —Rnpa| <n?. (196)
seEFc n
Finally, noticing that

N D1
Rn,D,a = max {Rn,D,aa Aoo nn}

n

D1
< La_,,, max {RH,D,Q, v/ ;”} x K1y by (104)

< Lx X Vp X K101 s

0030 min

we deduce from (196) that, for all n > ng (Acc, Acons, A+, Al),

CD _
P [SU}P (P = P) (¥ 0 (s = sm))| 2 Lawcomina-arg X Va\| = =K | Sn ’ (197)
seFc

and the conclusion follows by making use of (195) and (197) in inequality (192). W
The second deviation bound for the empirical excess risk we need to establish on the upper slice is proved in
a similar way.

Lemma 19 Let 5,A_,A;,C > 0. Assume that (H1), (H2), (H3) and (17) hold. A positive constant As,
depending on A, A3y, Ao, Omin, A~ and B, exists such that, if it holds
n 2

(nn)? >D>A_(Inn)

1 D
c> 1 (14 Asv,)? E’CiM and Ay

where v, = max {\/lr‘D", . Dii”‘, RmD,a} is defined in (100), then for alln > ng (Ao, Acons, A+),

< om P .

D
P l sup P, (Ksy — Ks) > (14 Asvy) 1/%K1,M - C

seFsc

Moreover, when we only assume C > 0, we have for all m > ng (Aco, Acons, A+ ),

P [ sup P, (Ksy — Ks) > 1 (1+ Asvy)? BIC% vl <2n7P . (198)

s€EF>c 4 n '
Proof. First observe that
sup P, (Ksy — Ks)= sup {Pn (1/11’M “(spr—8) — g0 (s— SM))}
sEFsc sEFsc

= s {(Po = P) (¥1,01- (s —8)) = (Po = P) (g0 (s — snr)) — P (Ks — Ksr) }

= s {(Pn = P) (Y101 - (581 = 8)) = P(Ks — Ksy) — (Po — P) (Y90 (s —sm)) }

= Sup sup {(PH_P) (d’l,M'(SM—S)) _L_(Pn_P)(d’QO(S_SM))}
L>C seDy,

D
< sup § VLD (P = P)* (1,00 - 1) = L+ sup |(Po = P) (50 (s = su))|
L>C b1 s€EFL

(199)
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where the last bound follows from Cauchy-Schwarz inequality. Now, the end of the proof is similar to that of
Lemma 18 and follows from the same kind of computations. Indeed, from Lemma 13 we deduce that

D
D
P (Pa = P)* (Y10 08) = (14 L g s omins X Va) | —Kia| <n7? (200)
k=1
and, since
1D
C> 1g’C%,M > oy

— Ymin

3D

)

we apply Lemma 17 with A; = 02, and deduce that, for all n > ng (Ao, Acons, A1),

min>

P

LD
VL >C, sup [(Po—P) (W5 (s—5m))| > LA omma_ s X U/ nKl,M] <n P, (201)

seFL

Now using (200) and (201) in (199) we obtain, for all n > ng (Ao, Acons, A+ ),

LD
]P) [ sup P’L (KSM - KS) Z sup {(1 + LA1A3,1W7A007Umin7A71ﬁ X V”) T’CLM - L}

<2n7%  (202)
se€Fsc L>C

and we set As = Laa,,,A
3L+ Asv)® DKF 5y we get

| D [CD
sup {\/Z(l + A5Vn) f’CLM - L} = (1 + A5Vn) 7’C1’M -C
L>C n n

and by consequence,

A_p where L, Ao omm,A_,p i the constant in (202). For C' >

0030 min,

D
P | sup Pn(KstKs)2(1+A5yn)\/C—ICLMfC’ <o P,
seF>c n

which gives the first part of the lemma. The second part comes from (202) and the fact that, for any value of
C >0,

L>C

D D
sup {\/Z(l + Asvn) A/ 5/C1,M - L} < (14 Asvy)? E’C%,M :
||

Lemma 20 Let r > 1 and C,5 > 0. Assume that (H1), (H2), (H4) and (17) hold and let v = (gok),?zl be
an orthonormal basis of (M, ||-||5) satisfying (H4). If positive constants A_, Ay, Ay, A, exist such that

D

D
s>D>A_(Inn)® and A~ <rC<A,—,
n n

n

A+ (Inn)

and if the constant A, defined in (99) satisfies
Ay > 6485 A/ 2Auor_nilnrM (¢),

then a positive constant Lao_ A, A, A, Ac,omin,ra(0),3 €TISLS such that,
fO’f’ alln 2 no (A,, A+7 Aua Al, A7 Aoov Acon57 B2a M ((P) 7Umin);

s€F(c,ro] n
where v, = max{\/lnD", 1/ DIT’L“", Rn,D,a} is defined in (100).
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Proof. Start with

sup P, (Ksy — Ks)

56]:(C,TC]

= sup {(P,—P)(Ksy—Ks)+P(Ksy —Ks)}
SG‘F(C,TC]

> sup (Po—P)(¥yp-(sm—5)— sup (Po—P)(y0(s—sm))— sup P (Ks—Ksy)
s€F(c,rc) SEF(c,rC) sEF(c,rc]

> sup (Po—P)(¢y - (s —5)) — sup (P, — P) (g0 (s —sm)) —rC (203)
s€F(c,rc) s€Frc

and set

Sirc= sup (P, —P) (7/’1,M (s — 5))

86.7:(017‘0]
Mi,c=E [ sup (P, —P) (1/)17M (sm — 5))]
SG‘F(C,TC]
birc= sup H'(/JLM (s —s8)—P (7/’1,M (s — 5))”00

Sef(c rC]

U%,T,C = sup Var (1/11 M (sar— 3)) .
seF(c, rC|

By Klein-Rio’s Inequality (217), we get, for all §,z > 0,

202 1\ b
P { S0 < (16 Mipo = 20— (14 1) P20 ) <) (201)
n n

Then, notice that all conditions of Lemma 14 are satisfied, and that it gives by (168), foralln > ng (A—, A, Ay, A1, A, B, 1 (¢

L oo rCD
Mo > (1 - A’Ai’/%“’ m’") Vo Kinm . (205)

In addition, observe that

02, 0< sup P (wl u (801 — 5)2) < 1642:C by (102) (206)
éE]“(c rC)
and
birc = JSTUP H’(/JLM (sym— s)||oo <4Ary () vrCD by (102) and (H4) (207)
s€F(c,ro)

Hence, using (205), (206) and (207) in inequality (204), we get for allz > O and alln > ng (A_, A4, Ay, A1, A, Bo, 701 (), Omin),

2
P<S1,T,CS(1—5) (1 LAAu ) \/m ( >4ArM<T>Lwc*Dx>

<exp(—z) .

Now, taking z = fBlon, § = anf}f and using (104), we deduce by simple computations that for all n >

no (A—7 A+7 Au7 Ala A7 327 M (<p) 70min)7
/Inn  VInn [rCD _
P (Sl,T,C < (1 - LA,A[,Au,,omin,TM(SO)ﬂ X ( ? \ nl/a >> n Kl,M) <n o (208)
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and as

(208) gives, for all n > ng (A—, A4, Ay, Aj, A, Ba, 701 (9) , Omin ) s

rCD _
P (51,r,c < (1= LAy Au,ominirar (9,8 X Vn) A/ - ’Cl,M> <n . (209)

Moreover, from Lemma 17 we deduce that, for all n > ng (Aso, Acons, A+, A1),

rCD ~
P [ sup |(Pn — P) (g0 (s —sm))l = La_ a8/ — —fnpa

<nF (210)
seF, c

and noticing that

- D1
Rn,D,a = max {Rn,D,a 5 Aoo nn}
n

Dlnn
n

< LAooao'min max {Rn,D,a ) } X Kl,]\l by (104)

<La, X Vp X K101 s

»Omin

we deduce from (210) that for all n > ng (Ao, Acons, A+, A1),

rCD _
P sup [(Pn = P) (20 (s —sm))l 2 La_ A, Ac,omm6 X Vn X |/ — Kim| =n v (211)

seFrc

Finally, using (209) and (211) in (203) we get that,
for all n > ng (Afa Ay, Ay, A A Aoy Aconss Ba,mu (‘P) ) Umin)7

[rCD
]P) sup Pn (KSM - KS) S (1 - LA*7Al1Au7A7Aoo70'min7/rM(‘19)7B x V”) LKLAI - TC S 27176 )
SE‘F(C,T‘C] n

which concludes the proof. B

6.5 Probabilistic Tools

We recall here the main probabilistic results that are instrumental in our proofs.
Let us begin with the L,-version of Hoffmann-Jgrgensen’s inequality, that can be found for example in [21],
Proposition 6.10, p.157.

Theorem 21 For any independent mean zero random variables Y;, j = 1,...,n taking values in a Banach
space (B, ||.|]) and satisfying E[||Y;||"] < +oo for some p > 1, we have

p
n n p
B |5 <8, (B 1| + B ((max 1)
=1 ==

j=1
where B, is a universal constant depending only on p.

We will use this theorem for p = 2 in order to control suprema of empirical processes. In order to be
more specific, let F be a class of measurable functions from a measurable space Z to R and (X1, ..., X;,) be
independent variables of common law P taking values in Z. We then denote by B = [°° (F) the space of
uniformly bounded functions on F and, for any b € B, we set ||b]| = sup;c £ [0 (f)|. Thus (B, ||.||) is a Banach

o1



space. Indeed we shall apply Theorem 21 to the independent random variables, with mean zero and taking
values in B, defined by
Yy ={f(X;)—Pf, feF}.

More precisely, we will use the following result, which is a straightforward application of Theorem 21. Denote

by
1 n
P,==3 dx,
n
=1

the empirical measure associated to the sample (X7, ..., X,,) and by

| P — Pz = sup (P — P) (f)]
fer
the supremum of the empirical process over F.

Corollary 22 If F is a class of measurable functions from a measurable space Z to R satisfying

sup sup |f (z) = Pf| = sup |[f — Pfll, < +oo
2€Z fEF feF

and (X1,...,Xn) are n i.i.d. random variables taking values in Z, then an absolute constant Ba exists such

that,
supser IS — Pfoo>

p (212)

B (17, - PIE] < B2 (BIIP, - Pl +

Another tool we need is a comparison theorem for Rademacher processes, see Theorem 4.12 of [21]. A function
© : R — R is called a contraction if |¢ (u) — ¢ (v)] < |u — v| for all u,v € R. Moreover, for a subset ' C R
we set

1B Ol = l[hlly = sup |h (@)] -
teT

Theorem 23 Let (g1, ...,e,) be n i.i.d. Rademacher variables and F : Ry — R be a convex and increasing
function. Furthermore, let ¢, : R — R, i < n, be contractions such that p; (0) = 0. Then, for any bounded

subset T C R"™,
EF ( > eipi (k) ) < 2EF (‘ > et ) .
i T i T

The next tool is the well known Bernstein’s inequality, that can be found for example in [23], Proposition 2.9.

Theorem 24 (Bernstein’s inequality) Let (X1, ..., X,,) be independent real valued random variables and define

1 n
S=-) (Xi-E[Xi]).
n -
=1
Assuming that
1 n
v=_ B [(X7] <o
=1
and
X; <b a.s.

we have, for every x > 0,

P [|S > ,/20% + gﬂ < 2exp (—z). (213)

We now turn to concentration inequalities for the empirical process around its mean. Bousquet’s inequality [8]
provides optimal constants for the deviations above the mean. Klein-Rio’s inequality [13] gives sharp constants
for the deviations below the mean, that slightly improves Klein’s inequality [14].
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Theorem 25 Let (&q,...,&,) be n i4.d. random wvariables having common law P and taking values in a
measurable space Z. If F is a class of measurable functions from Z to R satisfying

If (&) —Pf]|<b as., foral feF, i<n,

then, by setting
2 _ P 2\ P 2 ,
oF ;gg{ (1) - (P?}

we have, for all x > 0,
Bousquet’s inequality :

bz |

X
P (12, — Pl ~ BIP, — Plle) 2 203 + 288(1P, — P 2+ 22

< exp (—x) (214)

and we can deduce that, for all e,x > 0, it holds

1 1Y\ bz
P|IPu— Plr=BlIP = Pl 2 2032 4 BUP - PIA+ (4 3) 2] <o) (219)

n-

Klein-Rio’s inequality :

rz  bx]
P |BUIP, - Pl — [P - Pllr 2 263 + 28112, - PILD S+ 2] s () (a6

and again, we can deduce that, for all e,z > 0, it holds

1 b
P |BUP, — Pl = 1P = Pl 2 2035 4 BRI+ (3 41) 2] semi-a). D)

The following result is due to Ledoux [20]. We will use it along the proofs through Corollary 27 which is sated
below. From now on, we set for short Z = || P, — P|| z.

Theorem 26 Let (&4, ...,€,,) be independent random with values in some measurable space (Z,7) and F be
some countable class of real-valued measurable functions from Z. Let (5’1, e 5;) be independent from (&4, ...,§,,)
and with the same distribution. Setting

v=FE sup*Z(f(ﬁi)*f(fli))Z

ferFn

then

IN

E[2%] - E[z)?

Corollary 27 Under notations of Theorem 25, if some s, € (0,1) exists such that

V)

LE[7%] > =
n
and

W2\E[Z2] >

S|o

then we have, for a numerical constant Ay _,

(1 - A1) VE[Z7] < B[Z] .
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Proof of Corollary 27. Just use Theorem 26, noticing the fact that

VE[Z2 -E[2] < V¥V (2)

and that, with notations of Theorem 26,

v < 20% +320E [Z] .

The result then follows from straightforward calculations. B
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