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modèle de surface.

Wafa Rekik1, Dominique B́eŕeziat2,3, Séverine Dubuisson2.

September 2010

1Present address: wafa.rekik@gmail.fr
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Abstract
In this paper, we address 3D+t shape recovery from 3D spatialdata and 2D+t temporal sequences.
This reconstruction is particularly challenging due to thegreat deal of in-depth information loss
observed on the 2D+t temporal sequence. To handle this critical lack of information, we use a
geometrical local constraint defined by a spherical topology arising in number of computer vi-
sion applications. Our approach consists in gradual 2D-to-3D restoration by motion compensation
using a brightness constancy constraint and a spatial regularity criterion. Data prior geometri-
cal model implies that structures of interest evolve on a spherical support. Motion has then only
two degrees of liberty. We build then an adapted 2D model in the surface domain, where move-
ment assumptions are more relevant, using a spherical parametrization. We restore 2D+t surfaces
parametrized by spherical angular coordinates that we display using an adapted visualization tool.

Keywords
3D+t reconstruction, optical flow, spherical parametrisation.

Résuḿe
Le probl̀eme de la reconstruction de formes 3D en tempsà partir d’une śequence d’images 2D et
d’une image 3D statique est abordé. Ce probl̀eme est difficile en raison de la perte d’information
de profondeur engendrée par le proćed́e 2D d’acquisition des images. Ce manque d’information
est compenśe par l’utilisation d’une contrainte géoḿetrique induite par la topologie sphérique
des objets rencontrés dans certaines images issues de l’imagerie biologique. Nous proćedons par
compensation du motion entre l’image 3D reconstruite au temps pŕećedant et l’image 2D observé
au moyen d’unéequation 2D de transport de la luminosité. Le mod̀ele est paraḿetriśe en coor-
donńees sph́eriques ce qui permet de formuler le problème en 2D. Les surfaces ainsi reconstruites
sont visualiśees en utilisant un outil de visualisation adapté.

Mots clés
Reconstruction 3D+t, flot opique, paramétrisation sph́erique.

1 Introduction
In some computer vision applications, we deal with volumetric, i.e. 3D, acquisitions framing tem-
poral, i.e. 2D+t, ones (Fig. 1). First type of acquisitions provides a description of the 3D scene
geometry, thus, purely spatial information. Second ones observes 2D object motion providing
temporal and partial spatial information. A possible approach to mine exhaustively these comple-
mentary datasets is to carry out a complete spatio-temporalor a 3D+t scene reconstruction. 3D+t
sequences are restored by recovering the 3D original volumefrom each 2D frame belonging to the
2D+t sequence.

As the matter of fact, 3D reconstruction is an inverse problem. In this particular case, it is
also an ill-posed problem since a single 2D frame is hardly sufficient to recover the 3D original
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Volume1
(3D)

2D Projections 
Volume2

(3D) 3D+t full sequence

Figure 1: Recovering a 3D+t sequence from a couple of 3D imagesframing a
series of 2D projections.

volume. Indeed, this frame exhibits a great deal of spatial distortions and in-depth loss of infor-
mation caused by the projective transformation that reduces the 3D real structure into a 2D image.
To handle this critical lack of information, we introduce a prior data model. It consists in a geo-
metrical constraint defined on a spherical topology. Data observing locally spheric shaped objects
can be issued from remote sensing acquisitions and especially in meteorology, from astronomical
ones focusing on the Sun and in bio-cellular microscopic imagery. A relevant biologic application
is described in [9] where biologists study dynamic of structures of interest evolving on a spherical
cell simulation surface. In this context, for instance, spatial datasets consist in multi-focus acqui-
sitions. Hence, they are not actual 3D images since they are formed by a series of equal sized
slices, where signal in each slice is bothered by luminositycoming from adjacent ones. A spatial
deconvolution stage is therefore needed when biologists calibrate correctly the video microscopy
system to cell wall simulation experiments. Due to this limitation and to respect generality, we use
synthetic data to validate our algorithm.
Our approach uses this geometrical prior constraint in order to select a relevant reconstruction
strategy. In the context of locally spheric shaped data, theinformation of interest is embedded on
the outer curved surface. This allows the 3D-to-2D transformation to be modeled simply with a
surface based reconstruction approach. On one hand, inverse 3D restoration is performed gradu-
ally by motion compensation involving a spatial regularitycriterion that balances the in-depth loss
of information. On the other hand, since movement has only two angular degrees of liberty, we
opt for a spherical parametrisation to investigate motion in the surface domain instead of build-
ing a 3D model. For the latter, computation of spatial derivatives is incoherent and noisy, mainly
with reference to the normal to the surface. Besides movement constraints are not relevant. We
restore then spherical surfaces, parameterized by angularcoordinates, that we display directly by
an adapted visualisation tool, called MAPVIS [8].

2 State-of-the-art
In the literature, a wide scope of approaches addresses the 3D reconstruction problem. Volume
based methods aim at restoring an accurate description of luminosity in each voxel of the 3D re-
constructed image, while surface based ones provide a 3D model of the object of interest. This
model requires shape and texture recovery of the outer visible side of the observed object. Namely,
tomographic reconstruction [7] focuses on restoring the original volume from multiple projective
views. Stereo-vision [4] approaches make use in general of the triangulation principle in order
to recover the surface shape of selected targets. Moreover,2D-to-3D registration methods re-
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construct 3D features from only one projective view. This registration consists in identifying a
geometrical transformation that aligns 2D frames with 3D datasets often issued from a different
modality of acquisition. This alignment determines their relative position and orientation and then
locates them in the coordinate system of the 3D images. It is of growing interest in the medical
imaging field mainly to register 3D pre-operative images (like MRI or CT images) into 2D se-
ries of intra-operative frames acquired during a surgical intervention. Registration may operate on
feature-based methods or intensity based ones. Reader is referred to [2, 6]. Tomography and stere-
ovison, namely, require multiple projective views to achieve the reconstruction task. Therefore,
approaches aligning 2D projection images to 3D datasets appear to be adapted to the context of
our study. However these approaches fit into a registration framework rather than a reconstruction
one, unless other projective views are available, which is quite unusual. They can be used alterna-
tively for a preprocessing stage for some aforementioned applications. We then build an adapted
reconstruction model involving a prior geometrical constraint.

3 Reconstruction by motion compensation
Our approach is based on the existence and the knowledge of a functionalp that reduces every
volumetric structure at each instant into a 2D frame. The central idea is to carry out the 3D+t
reconstruction using a couple of 3D data acquired at two different instants as well as the 2D+t
sequence acquired meanwhile. Since the intermediary videosequence presents an interesting tem-
poral resolution, we propose to restore the underlying 3D structure of each of its frame. The latter
provides only a partial description of the real 3D structurethat we aim to estimate at a given in-
stantt. We attempt to compensate this lack of information by the mean of a matching procedure
with the 3D volumetric image estimated att − 1. For this purpose, we compute a displacement
field matching both 3D structures. We introduce, consequently, a motion hypothesis expressing
the assumption that a moving voxel keeps the same gray value over time. It is identical to the well
known optical flow constraint [3]. It leads to a fundamental equation that we solve gradually in
order to rebuild the whole 3D+t sequence, using the couple of3D data as initial border conditions.

3.1 Modeling, assumptions
We carry out the 3D+t reconstruction using a series of 2D+t video sequence acquisitions inter-
sected with 3D volumetric ones. We opt for the following notations for the remainder of the paper:

• X a 3D vector position,i.e. X = (x, y, z);

• x a 2D vector position,i.e. x = (x, y);

• W a 3D vector field,i.e. W = (u, v, w);

• I(X, t) a 3D+t sequence;

• I2D(x, t) a 2D+t sequence;

• Î(X, t) the estimation ofI at (X, t);
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Concretely, we have two 3D structures at two different instants:I1 = I(X, t1) andI2 = I(X, t2).
Betweent = t1 andt = t2, we also dispose of a video sequenceI2D(x, t) describing all the 2D
reductions of theI(X, t) structures evolving in this duration. Each 2D frameI2D is a projective
sight, at a given instantt, of a 3D original volume. This projection only depends on thedata
acquisition mechanism. We model it by a linear and stationary transformation, called projection
p, given by:

p(I)(x, y) =

∫

R
I(x, y, z)h(z)dz, (1)

whereh(z) is a function describing the interaction between observed objects and the input light
signal.p integrates contributions of all 3D slices to produce a unique 2D image. It introduces then
an important loss of information in thez−direction. In order to reconstruct gradually the 3D+t
sequence, we estimate the 3D structure at a given instantt, using the dataI2D(x, t) extracted from
the 2D+t sequence. We then minimize the discrepancy betweenp(Î) andI2D. A straightforward
data model equation is:

p(Î)(x, t) − I2D(x, t) = 0, ∀t ∈ [t1, t2] (2)

Since objects of interest evolve slowly fromt to t− 1, we can matcĥI(X, t) with the 3D structure
I(X, t − 1) known at the previous instant. This matching is quantified interms of a displacement
vector fieldW between both images. It expresses the assumption that a moving voxel keeps the
same gray value over time yielding the following motion constraint, similar to optical flow one:

Î(X, t) = I(X + W, t − 1) (3)

We estimate a retrogress vector field defining voxel displacement fromt − 1 to t for notation
conveniences (we represent−W in Section 4). Expanding the left-hand side of Equation (3) in a
first order Taylor series leads to:

Î(X, t) = ∇I(X, t − 1).W + I(X, t − 1), (4)

where∇ = ( ∂
∂x

, ∂
∂y

, ∂
∂z

) is the gradient operator. Sincep is a linear operator, injection of the
Equation (4) in the earlier data model constraint (2) provides the 2D data motion constraint related
to W:

p(∇I(X, t − 1).W) + p(I(X, t − 1)) − I2D = 0 (5)

We compute the velocity vector fieldW at each instantt.

3.2 Formulation in the spherical context
Let us point out that, in the context of spherical shaped dataobservations, structures of interest
evolve on the surface of a ball of constant ray. Even-though the support is embedded on a 3D-
space, movement has only two degrees of liberty. It is then relevant to estimate the vector field
using a spherical surface parametrisation. Let’s establish equations formulated in the previous
section in the spherical context. For this purpose, we introduce two 2D imagesIs andIs

2D defined
by the following substitutions (see Fig. 2):

Is(θ, ϕ, t) = I(x(θ, ϕ), y(θ, ϕ), z(θ, ϕ), t) (6)

Is
2D(θ, ϕ, t) = I2D(x(θ, ϕ), y(θ, ϕ), t) (7)
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with the following parametrisation:

x(θ, ϕ) = R cos(ϕ) sin(θ)

y(θ, ϕ) = R sin(ϕ) sin(θ)

z(θ, ϕ) = R cos(θ)

The spherical coordinatesϕ and θ respectively stand for the longitude and co-latitude angles.
Equation (6) expresses merely passage from cartesian coordinates to spherical ones. Equation (7)
involves the mapping of the 2D frame texture into a hemisphere with same diameter that the 3D
known balls. Data model constraint (2) becomes:

p(Îs)(θ, ϕ, t) − Is
2D(θ, ϕ, t) = 0 (8)

Let’s now set upp in the sphere reference mark schemed in Fig. 2. Operatorp integrates, in a
plane including both geographical poles, contributions offrontal and dorsal hemispheres.

Y ′
C

ϕ

X ′

Y ′

M1

M2

π − ϕ

P

Z ′

Z ′

Y

X

Z

O

Figure 2: System of spherical coordinates. The projection plane corresponding to
p is P = (C, Y ′, Z ′).

Assuming that frontal and dorsal interactions with the input light signal are the same,p is defined
by:

p(Is)(θ, ϕ) = Is(θ, ϕ) + Is(θ, π − ϕ) (9)

Matching between̂Is(., t) andIs(., t−1) are now expressed as performed in the cartesian parametri-
sation by Equation (3). According to Fig. 2 notations, the position of a moving point on the spher-
ical surface is determined by the couple of angles(θ, ϕ) and the following equality :

−−→
CM = R−→er ,
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whereR is the sphere radius and(−→er ,−→eθ ,−→eϕ) the Frenet local coordinate system related toM .
Thus:

Îs(R−→er , t) = Is(R−→er + ∂R−→er , t − 1), (10)

where−→er +∂R−→er is the elementary displacement atR−→er after the duration∂t. SinceR is constant,
∂−→er is defined by :

∂−→er = ∂θ∂−→eθ + sin(θ)∂ϕ∂−→eϕ (11)

Inserting right-hand side of Equation (11) in the equality (10) leads to, for a unit sphere (R = 1):

Îs(−→er , t) = Is(−→er + ∂θ∂−→eθ + sin(θ)∂ϕ∂−→eϕ, t − 1) (12)

The right member of Equation (12) is linearized using a first order Taylor expansion. It yields the
following equation:

Îs(θ, ϕ, t) = Is
t−1

(θ, ϕ, t − 1) +
∂Is(θ, ϕ, t − 1)

∂θ

∂θ

∂t

+sin(θ)
∂Is(θ, ϕ, t − 1)

∂ϕ

∂ϕ

∂t

(13)

Inserting second member of Equation (13) in (8) and using linearity of the transformationp leads
to:

p
(∂Is(., t − 1)

∂θ

∂θ

∂t
+ sin(θ)

∂Is(., t − 1)

∂ϕ

∂ϕ

∂t

)

(θ, ϕ)

+ p(Is)(θ, ϕ, t − 1) − Is
2D(θ, ϕ, t)

︸ ︷︷ ︸

I′s

2D

= 0
(14)

Finally, the data model constraint in the spherical contextis:

p
(∂Is(., t − 1)

∂θ

∂θ

∂t
+ sin(θ)

∂Is(., t − 1)

∂ϕ

∂ϕ

∂t

)

+ I ′
s
2D = 0 (15)

3.3 Numerical Resolution
We compute an angular velocity field defined by the couple of angular variations(θ̇, ϕ̇):

{
θ̇ = ∂θ

∂t

ϕ̇ = ∂ϕ
∂t

(16)
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For this sake, we have to solve the motion constraint given in(15). Let us introduce the aforemen-
tionedp expression in Equation (15):

p
(∂Is(., t − 1)

∂θ

∂θ

∂t
+ sin(θ)

∂Is(., t − 1)

∂ϕ

∂ϕ

∂t

)

=

∂Is(θ, ϕ, t)

∂θ
θ̇(θ, ϕ) +

∂Is(θ, π − ϕ, t − 1)

∂θ
θ̇(θ, π − ϕ)+

sin(θ)(
∂Is(θ, ϕ, t − 1)

∂ϕ
ϕ̇(θ, ϕ)+

∂Is(θ, π − ϕ, t − 1)

∂ϕ
ϕ̇(θ, π − ϕ))

(17)

where(θ̇(θ, ϕ), ϕ̇(θ, ϕ)) is the couple of angular velocity fields on the frontal hemisphere and
(θ̇(θ, π − ϕ), ϕ̇(θ, π − ϕ)) the couple of fields on the dorsal one. Equation (15) involvesfour
velocity fields. This is due to the transformationp that introduces a positioning ambiguity. Indeed,
it is not possible to undoubtedly state if the original position of a given point on the projection
plane is in the frontal or the dorsal hemisphere. In order to reduce variable space, we suppose that
these velocity fields are related. Let’s express relation between velocity fields on the frontal as
well as on the dorsal hemisphere. This relation takes into account possible object occlusions. In
fact, objects with same latitude and a double-quadrant adjusted longitude are mapped at exactly
the same position in the projection plane (see Fig. 3). To circumvent this ambiguity of positioning,
we assume that:

{

θ̇(θ, π − ϕ) = θ̇(θ, ϕ)
ϕ̇(θ, π − ϕ) = −ϕ̇(θ, ϕ)

(18)

Y ′

Z ′

C

ϕ

X ′

Y ′

Z ′

P

M1

M2

π − ϕ

Figure 3: Occlusion of objects centered respectively inM1 andM2.

8



Rapport de recherche LIP6

Under this assumption, number of variables is reduced to two. We estimate then velocities on the
upper hemisphere, whereθ has a range from0 to π andϕ from−π

2
to π

2
. For the remainder of the

globe, displacement vectors are issued from the system of equations (18). Data motion constraint
is merely respect tov = (θ̇, ϕ̇):

M(v)(θ̇, ϕ̇, t) = p(
∂Is(., t − 1)

∂θ
)θ̇+

sin(θ)
(∂Is(., t − 1)

∂ϕ
(θ, ϕ) −

∂Is(., t − 1)

∂ϕ
(θ, π − ϕ)

)
ϕ̇

+I ′
s
2D = 0

(19)

Since this equation involves only two variables, we can build a bi-dimensional model to accurately
recover motion. In order to estimate a dense motion field we use a variational formulation. We
build a functional whose minimum, with respect tov, corresponds to the solution of Equation (19):

E1(v) =

∫ π

0

(
∫ π

2

−
π

2

M(v)2dϕ

)

dθ

Since Equation (19) is under-determined, it is necessary touse an additional constraint to solve it.
An obvious way is to constrain the spatial variations ofv using aL2 norm [11]. This regularization
penalizes high spatial deformations ofv and implicitly important variations with reference to the
data known at a previous time:

E2(v) =

∫ π

0

(
∫ π

2

−π

2

(

‖∇θ̇‖2 + ‖∇ϕ̇‖2

)

dϕ

)

dθ

Other types of regularization may be used (L1 norm, image driven norm, ...). Finally, our func-
tional E, is, with respect tov: E = E1 + αE2, whereα is a tuning parameter between the two
terms that weights the importance of the regularization term E2. Differentiation ofE, with refer-
ence toθ̇ andϕ̇ yields a set of Euler-Lagrange equations [1]. Discretization of the latter with finite
differences leads to a linear system, that we solve using a Gauss-Seidel iterative scheme.
Our goal, as schemed in Fig. 1, is to recover a full 3D+t sequence from the 2D+t series of data and
the couple of 3D samples framing the temporal interval. The central idea is to estimate gradually
velocity field between each 2D frame extracted from the 2D+t at a given instantt and the 3D
structure previously estimated att − 1, as detailed in Section 3.1. Under the constant brightness
assumption from timet − 1 to t, an estimation of̂Is(., t) is recovered from the dataIs(., t − 1)
and angular variations(θ̇, ϕ̇) by the following:

Îs(θ, ϕ) = Is(θ + θ̇, ϕ + ϕ̇, t − 1) (20)

However angular coordinatesθ + θ̇ andϕ + ϕ̇, computed from discrete 2D couples, do not
generally correspond to grid-positions in the output sampled image sequenceIs: they yield a set of
scattered data. We attempt, therefore, to fit a smooth surface through the non-uniform distribution
of these data samples. For this purpose, we represent our surface as a sum of weighted and shifted
synthesis functions. B-splines stand apart for a good compromise between quality (namely high
fidelity reconstruction and regularity) and computationalissues, reader is referred to [10]. We then
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use the method introduced in [5] and dedicated to recover such samples. The implemented algo-
rithm makes use of a coarse-to-fine hierarchy of control lattices in order to generate a sequence of
bi-cubic B-spline functions whose sum approaches the desired interpolation function.
In order to restore gradually the complete 3D+t sequence, weadopt a quite simple reconstruction
strategy. We use, respectively, a forward progression procedure taking as first 3D available im-
age,I1 and a backward one using the final 3D available imageI2. Consequently, we generate
two displacement vector fields at the median moment of the temporal interval[t1, t2]. The final
3D image is computed merely using the average of both fields. Let us point out that we restore
surfaces parametrized by angular coordinates(θ, ϕ). To display results, we use an adapted vi-
sualisation tool called, MAPVIS [8], instead of carrying out inverse transformations in cartesian
3D+t grids. This tool displays complex information (scalarand vectorial) lying on real spheroid
surfaces or projected ones. In the 3D case, MAPVIS projects data embedded on the actual globe
observed part. Moreover, it improves visualisation of texture in perspective sight views of spheric
shaped structures. This tool is based on a suitable planar map projection that unrolls the curved
surface around a given origin. Therefore, varying the projection origin around the surface allows
to observe different views of the sphere. Since the selectedmap projection minimizes distortions
around the projection origin, the closer this point the moreaccurate the data recovery. Equato-
rial aspect of map projection, with reference to an origin lying on the equator displays the frontal
hemisphere of the observed globe and polar one, with reference to the north geographical pole
displays information lying on the northern hemisphere.

4 Results
We present, in this Section, a series of experiments in orderto assess the performance of the pro-
posed approach. They consist in computing the displacementvector field matching a 2D frame
with an anterior 3D structure. As real data are not available, we have designed two sets of simple
synthetic data. First one is composed of a couple of spheresI(., t1), I(., t2) holding two squares
lying on respectively the frontal and dorsal hemispheres. From t1 to t2, the frontal square center
moves towards the right-bottom direction and the dorsal square evolves merely downwards. We
simulate the 3D-to-2D transformation ofI(., t2) yielding I2D(., t2) and we compute the spheri-
cal representation ofI andI2D using Equations (6,7). We then determine angular variationfields
(θ̇, ϕ̇) matching dataIs(., t1) with the projectionIs

2D(., t2) in order to estimatêIs(., t2) by motion
compensation. Second set of data is quite identical to the first one, except that squares occlude
each other in the 2D projection. Results are displayed in cartesian coordinates using MAPVIS. We
display in Fig. 4 and 5 motion estimation results for respectively first and second set of synthetic
data. Let us point out that motion computation produces a setof correct vector fields (from ampli-
tude and direction point of views), perfectly tangent to theenclosing spherical surface. Moreover,
our reconstruction method handles ambiguities, due to the 2D data position, by determining which
hemisphere it is evolving in. It is noticeable by visualisation of the difference between the estima-
tion of 3D image and the original one,i.e. I(., t2) − Î(., t2). Performance of our algorithm is not
bothered by the more complex case showing an object occlusion (see Fig. 5) which does not ease
the aforementioned structure distinction problem. However image difference shows also recon-
struction errors, doubtless amplified by the double interpolation procedure involved, first by the
computation of a smooth surface from samples recovered by motion compensation, second by the

10
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(a) From left to right: visualisation of the frontal then dor-
sal hemisphere of the set(I(., t1),W).

(b) From left to right: frontal view of projectionI2D(., t2),
frontal then dorsal hemisphere view of the estimated im-
ageÎ(., t2).

(c) From left to right: frontal then dorsal hemisphere view
of the difference between original image and estimated one
I(., t2) − Î(., t2).

Figure 4: Result on sequence without occluding squares.
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visualization of projective views [8]. These errors are localized in the border of moving objects.
They may be caused by spatial derivative computations. Besides, they are due to the smoothing
of motion discontinuities introduced by the spatial regularization of the estimated displacement
vector field.

5 Conclusion
In this paper, we have presented an original approach dedicated to 3D+t scene reconstruction using
3D temporal data and 2D+t temporal sequences. It is based on motion compensation and involves
a prior surface model. The latter concerns spherical topology arising in number of computer vi-
sion applications. In this context, structures of interestevolve on a spherical support. Although
movement is embedded on a 3D domain, it has only two degrees ofliberty. Consequently, it
is more interesting to investigate motion in the surface domain than to build a 3D model. Con-
sequently, we build a 2D model using a spherical parametrisation in order to compute angular
velocity fields. Three dimensional spherical shapes are gradually restored by estimating angular
variations. Matching is carried out under the assumption that a moving voxel keeps the same
brightness over time. This assumption corresponds to the optical flow constancy constraint. Our
approach recovers reliably the 3D structures and handles possible object occlusions. Thanks to
the 2D modeling, implemented algorithms are not prohibitive compared to a full 3D approach.
Moreover, we use an adapted tool, with relevant visualisation properties, in order to quickly dis-
play the restored surfaces parameterized by spherical angular coordinates. Currently, the whole
sequence is computed frame by frame, causing errors cumulation along the sequence. This limita-
tion could be circumvented using a spatio-temporal smoothness constraint computed globally on
the whole sequence [12]. Discussing other reconstruction issues, it is possible to generalize the
prior geometrical constraint to any regular surface. We propose also in another framework to solve
the 3D+t scene recovery taken lower assumptions related to the data model. Moreover, we plan to
apply our approach based on spherical topology to microscopic cell wall simulation acquisitions
in the context described in [9]. That requires a spatial deconvolution framework to reconstruct
each sphere from the original multi-focus image.
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ageÎ(., t2).

(c) From left to right: frontal then dorsal hemisphere of
the difference between original image and estimated one
I(., t2) − Î(., t2).
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[8] W. Rekik, D. Béŕeziat, and S. Dubuisson. MAPVIS: a map-projection based tool for vi-
sualizing scalar and vectorial information lying on spheroidal surfaces. InProc. of IV05,
London, UK, July 2005.

[9] G. Staneva, M. Angelova, and K. Koumanov. PhospholipaseA2 promotes raft budding and
fission from giant liposomes.Chem Phys Lipids, 129:53–62, 2004.

[10] P. Th́evenaz, T. Blu, and M. Unser. Image interpolation and resampling. In Handbook of
Medical Imaging, volume 2, chapter 25, pages 393–420. Academic Press, 2000.

[11] A. Tikhonov. Regularization of incorrectly posed problems.Sov. Math. Dokl., 4:1624–1627,
1963.

[12] J. Weickert and C. Schnorr. Variational optic flow computation with a spatio-temporal
smoothness constraint.Journal of Mathematical Imaging and Vision, 14(3):245–255, May
2001.

14


	Introduction
	State-of-the-art
	Reconstruction by motion compensation
	Modeling, assumptions
	Formulation in the spherical context
	Numerical Resolution

	Results
	Conclusion

