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Abstract

In this paper, we address 3D+t shape recovery from 3D spktialand 2D+t temporal sequences.
This reconstruction is particularly challenging due to ¢neat deal of in-depth information loss
observed on the 2D+t temporal sequence. To handle thisarltick of information, we use a
geometrical local constraint defined by a spherical topplagsing in number of computer vi-
sion applications. Our approach consists in gradual 2BBgestoration by motion compensation
using a brightness constancy constraint and a spatialagtyutriterion. Data prior geometri-
cal model implies that structures of interest evolve on agphl support. Motion has then only
two degrees of liberty. We build then an adapted 2D modelénstirface domain, where move-
ment assumptions are more relevant, using a spherical paiaation. We restore 2D+t surfaces
parametrized by spherical angular coordinates that wéayisising an adapted visualization tool.

Keywords

3D+t reconstruction, optical flow, spherical parametiat

Resune

Le probEme de la reconstruction de formes 3D en temmpsirtir d'une 8quence d’'images 2D et
d’'une image 3D statique est abérdCe proldme est difficile en raison de la perte d’'information
de profondeur engengle par le proece 2D d'acquisition des images. Ce manque d’'information
est comperts par I'utilisation d'une contraintegpnétrique induite par la topologie sphique
des objets rencoréis dans certaines images issues de I'imagerie biologiqaes Nro&dons par
compensation du motion entre I'image 3D reconstruite aptepecedant et I'image 2D obsegv

au moyen d'unéquation 2D de transport de la luminésitLe moale est paragtriss en coor-
donrees sphriques ce qui permet de formuler le préle en 2D. Les surfaces ainsi reconstruites
sont visualiges en utilisant un outil de visualisation adapt

Mots clés

Reconstruction 3D+t, flot opique, paratrisation sparique.

1 Introduction

In some computer vision applications, we deal with voluietre. 3D, acquisitions framing tem-
poral,i.e. 2D+t, ones (Fig. 1). First type of acquisitions provides adaiiption of the 3D scene
geometry, thus, purely spatial information. Second onesnies 2D object motion providing
temporal and partial spatial information. A possible apjgioto mine exhaustively these comple-
mentary datasets is to carry out a complete spatio-tempoeBD+t scene reconstruction. 3D+t
sequences are restored by recovering the 3D original voftoneeach 2D frame belonging to the
2D+t sequence.

As the matter of fact, 3D reconstruction is an inverse prnoblén this particular case, it is
also an ill-posed problem since a single 2D frame is hardfficgent to recover the 3D original
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2D Projections
(3D) (3D) 3D+t full sequence

Figure 1. Recovering a 3D+t sequence from a couple of 3D imfgesing a
series of 2D projections.

volume. Indeed, this frame exhibits a great deal of spatsbdions and in-depth loss of infor-
mation caused by the projective transformation that resitiee 3D real structure into a 2D image.
To handle this critical lack of information, we introduce r@op data model. It consists in a geo-
metrical constraint defined on a spherical topology. Dateobng locally spheric shaped objects
can be issued from remote sensing acquisitions and edyeniateteorology, from astronomical
ones focusing on the Sun and in bio-cellular microscopig@ma A relevant biologic application
is described in [9] where biologists study dynamic of stuoes of interest evolving on a spherical
cell simulation surface. In this context, for instance,tgpalatasets consist in multi-focus acqui-
sitions. Hence, they are not actual 3D images since theycaneefl by a series of equal sized
slices, where signal in each slice is bothered by luminasitying from adjacent ones. A spatial
deconvolution stage is therefore needed when biologiditsrate correctly the video microscopy
system to cell wall simulation experiments. Due to this tation and to respect generality, we use
synthetic data to validate our algorithm.

Our approach uses this geometrical prior constraint inrotoleselect a relevant reconstruction
strategy. In the context of locally spheric shaped datairtteemation of interest is embedded on
the outer curved surface. This allows the 3D-to-2D tramsfdion to be modeled simply with a
surface based reconstruction approach. On one hand, én8Brsestoration is performed gradu-
ally by motion compensation involving a spatial reguladititerion that balances the in-depth loss
of information. On the other hand, since movement has ontyangular degrees of liberty, we
opt for a spherical parametrisation to investigate motiothie surface domain instead of build-
ing a 3D model. For the latter, computation of spatial defres is incoherent and noisy, mainly
with reference to the normal to the surface. Besides movenmrstraints are not relevant. We
restore then spherical surfaces, parameterized by angpoadinates, that we display directly by
an adapted visualisation tool, called MAPVIS [8].

2 State-of-the-art

In the literature, a wide scope of approaches addressedxtmec®nstruction problem. Volume
based methods aim at restoring an accurate descriptiommandsity in each voxel of the 3D re-
constructed image, while surface based ones provide a 32Inobdhe object of interest. This
model requires shape and texture recovery of the outeleisithe of the observed object. Namely,
tomographic reconstruction [7] focuses on restoring thgimal volume from multiple projective
views. Stereo-vision [4] approaches make use in generdieofrtangulation principle in order
to recover the surface shape of selected targets. MoreBietp-3D registration methods re-
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construct 3D features from only one projective view. Thigistration consists in identifying a
geometrical transformation that aligns 2D frames with 3Eadats often issued from a different
modality of acquisition. This alignment determines thelative position and orientation and then
locates them in the coordinate system of the 3D images. It ggawving interest in the medical
imaging field mainly to register 3D pre-operative imageke(IMRI or CT images) into 2D se-
ries of intra-operative frames acquired during a surgiti@rivention. Registration may operate on
feature-based methods or intensity based ones. Readésriedeto [2, 6]. Tomography and stere-
ovison, namely, require multiple projective views to agki¢he reconstruction task. Therefore,
approaches aligning 2D projection images to 3D datasetsaaip be adapted to the context of
our study. However these approaches fit into a registratenédwork rather than a reconstruction
one, unless other projective views are available, whiclhuiequnusual. They can be used alterna-
tively for a preprocessing stage for some aforementiongticgtions. We then build an adapted
reconstruction model involving a prior geometrical coastt.

3 Reconstruction by motion compensation

Our approach is based on the existence and the knowledgeunfciidnalp that reduces every
volumetric structure at each instant into a 2D frame. Thdrekrdea is to carry out the 3D+t
reconstruction using a couple of 3D data acquired at tweddfit instants as well as the 2D+t
sequence acquired meanwhile. Since the intermediary @elgoence presents an interesting tem-
poral resolution, we propose to restore the underlying 3iicire of each of its frame. The latter
provides only a partial description of the real 3D structilna we aim to estimate at a given in-
stantt. We attempt to compensate this lack of information by themwaa matching procedure
with the 3D volumetric image estimatediat 1. For this purpose, we compute a displacement
field matching both 3D structures. We introduce, consedyemtmotion hypothesis expressing
the assumption that a moving voxel keeps the same gray va#irdime. It is identical to the well
known optical flow constraint [3]. It leads to a fundamentaliation that we solve gradually in
order to rebuild the whole 3D+t sequence, using the coupd®dadata as initial border conditions.

3.1 Modeling, assumptions

We carry out the 3D+t reconstruction using a series of 2Déle@isequence acquisitions inter-
sected with 3D volumetric ones. We opt for the following rtimtas for the remainder of the paper:

e X a 3D vector positioni,e. X = (z,y, 2);
e x a 2D vector positioni,.e. x = (z,y);

e ‘W a 3D vector fieldj.e. W = (u, v, w);
e J(X,t)a 3D+t sequence;

e In(x,t) a 2D+t sequence;

e I(X,t) the estimation of at(X,?);
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Concretely, we have two 3D structures at two different intstal ' = (X, ¢1) andI? = [ (X, t5).
Betweent = ¢; andt = t2, we also dispose of a video sequerdgs(x, t) describing all the 2D
reductions of the/ (X, ¢) structures evolving in this duration. Each 2D frafg is a projective
sight, at a given instant, of a 3D original volume. This projection only depends on tla¢a
acquisition mechanism. We model it by a linear and statyptr@nsformation, called projection
p, given by:

p((e) = [ T2l @

R

whereh(z) is a function describing the interaction between obsenigdobs and the input light
signal.p integrates contributions of all 3D slices to produce a uaigD image. It introduces then
an important loss of information in the—direction. In order to reconstruct gradually the 3D+t
sequence, we estimate the 3D structure at a given instasing the datd,(x, t) extracted from
the 2D+t sequence. We then minimize the discrepancy betw(eferand L. A straightforward
data model equation is: R

p(I)(x,t) — Ip(x,t) =0, Vit € [t1,12] (2)

Since objects of interest evolve slowly frano ¢ — 1, we can match (X, ) with the 3D structure

I(X,t — 1) known at the previous instant. This matching is quantifiettims of a displacement
vector fieldW between both images. It expresses the assumption that agnevxel keeps the
same gray value over time yielding the following motion doaisit, similar to optical flow one:

(X, t) = (X +W,t—1) 3)

We estimate a retrogress vector field defining voxel dispfecd from¢ — 1 to ¢ for notation
conveniences (we represeAaW in Section 4). Expanding the left-hand side of Equation (3 i
first order Taylor series leads to:

I(X,t) = VI(X,t —1).W + I(X,t — 1), (4)

whereV = (£, 8%, &) is the gradient operator. Singeis a linear operator, injection of the

Equation (4) in the earlier data model constraint (2) presithe 2D data motion constraint related
toW:
p(VI(X,t —1).W) +p(I(X,t 1)) — Lo =0 (5)

We compute the velocity vector fieMV at each instant.

3.2 Formulation in the spherical context

Let us point out that, in the context of spherical shaped dbtervations, structures of interest
evolve on the surface of a ball of constant ray. Even-thobghstipport is embedded on a 3D-
space, movement has only two degrees of liberty. It is theavaat to estimate the vector field
using a spherical surface parametrisation. Let’'s estaldguations formulated in the previous
section in the spherical context. For this purpose, we dtce two 2D image$® and s, defined
by the following substitutions (see Fig. 2):

Is(a’govt) = I(x(@,gp),y(ﬁ,ap),z(@,gp),t) (6)
I;D(G,@,t) = IZD(x(Ha(P)vy(ev‘p)’t) (7)

5
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with the following parametrisation:

z(0,¢0) = Rcos(y)sin(0)
y(0,9) = Rsin(p)sin(0)
2(0,9) = Rcos(d)

The spherical coordinates and 6 respectively stand for the longitude and co-latitude asmgle
Equation|(6) expresses merely passage from cartesianioates to spherical ones. Equation (7)
involves the mapping of the 2D frame texture into a hemisphéth same diameter that the 3D
known balls. Data model constraint (2) becomes:

p(fs)(ev 2 t) - I;D(aa 2 t) =0 ®)

Let's now set upp in the sphere reference mark schemed in Fig. 2. Operatategrates, in a
plane including both geographical poles, contributionfafital and dorsal hemispheres.

g
o A

7 P

%

~— |

x/
Yy

Figure 2: System of spherical coordinates. The projectlangcorresponding to
pisP = (C,Y' 7).

Assuming that frontal and dorsal interactions with the idjght signal are the same,is defined
by:

p([s)(e,tp) = 18(97¢)+IS(977T_¢) )

Matching betweet*(., t) andI*(., t—1) are now expressed as performed in the cartesian parametri-
sation by Equation (3). According to Fig. 2 notations, theifon of a moving point on the spher-

ical surface is determined by the couple of angtes) and the following equality CM = Re;,
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where R is the sphere radius an@;, ey, a;) the Frenet local coordinate system relatedifo
Thus:

I°(Re;,t) = I°(Re, + ORe, ,t — 1), (10)
wheree, +0Re,. is the elementary displacementf?g, after the duratio®t. SinceR is constant,
de,. is defined by :

de,. = 000¢eg + sin(0)dpde,, (11)
Inserting right-hand side of Equatidn (11) in the equalit§)(leads to, for a unit spher&(= 1):
I*(e),t) = I*(e) + 0005 + sin(0)dpde,, t — 1) (12)

The right member of Equatioh (12) is linearized using a firgeo Taylor expansion. It yields the
following equation:

oI°(6,p,t —1) 90
90 ot
OI*(6,p,t — 1) Oy
dp ot

fs(07(pat) = Its—l(aa(pvt - 1) +
(13)
+sin(6)

Inserting second member of Equation (13) in (8) and usinegliity of the transformatiop leads
to:

p(LS(" t=1)2% sin(6)

OIs(.,t — 1)%)(9, )

00 ot Oy ot 14
(L) (8, t — 1) — Iip(8,0,8) = O (14)
b
Finally, the data model constraint in the spherical context
or(,t—-1)090 . oI°(,t —1) 9p s
(g5 gy om0 90 o)t =0 (15)
3.3 Numerical Resolution
We compute an angular velocity field defined by the couple ghiar variations(é, o)
o o=
: 8t (16)
{ ¢ = 5
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For this sake, we have to solve the motion constraint givé@3). Let us introduce the aforemen-
tionedp expression in Equation (15):

O (,t=1)00 . OT(,t—1)dpy
( 7 TR 875) =
OI(0, 0, 1) o1 (0,7 — ot —1)
26 26 an
sn(0)( 2= 0,0+
or (0, m —p,t —1) .
R (0, m —¢))

where (6(0, ), ¢(0, ¢)) is the couple of angular velocity fields on the frontal herhise and
(0(0, 7 — ©), (0,7 — ¢)) the couple of fields on the dorsal one. Equation (15) invofees
velocity fields. This is due to the transformatipthat introduces a positioning ambiguity. Indeed,
it is not possible to undoubtedly state if the original piasitof a given point on the projection
plane is in the frontal or the dorsal hemisphere. In ordeetluce variable space, we suppose that
these velocity fields are related. Let's express relatiawéen velocity fields on the frontal as
well as on the dorsal hemisphere. This relation takes intowatt possible object occlusions. In
fact, objects with same latitude and a double-quadrantsgetjuongitude are mapped at exactly
the same position in the projection plane (seelFig. 3). Tamvent this ambiguity of positioning,
we assume that:

b0 —) = 0(6.9)
{ GOT—9) = —p(6,9) (18)
7' P
_

Figure 3: Occlusion of objects centered respectivelylinand M.
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Under this assumption, number of variables is reduced to YWeestimate then velocities on the
upper hemisphere, whefenas a range frorfi to 7 andy from —7 to 7. For the remainder of the
globe, displacement vectors are issued from the systemuaitiens/(18). Data motion constraint
is merely respect te = (6, ¢):

M), 6.1) = p D)
5111(9)(818(5;_ 1*)( ) — 81—8(5;_ D) 0,7 — 80))95 (19)
+I/;D =0

Since this equation involves only two variables, we candoaibi-dimensional model to accurately
recover motion. In order to estimate a dense motion field veeaugariational formulation. We
build a functional whose minimum, with respecttpcorresponds to the solution of Equation (19):

Ei(v) = [r </gg M(v)2d<p> deo

Since Equation (19) is under-determined, it is necessangdéaan additional constraint to solve it.
An obvious way is to constrain the spatial variationsafsing aL, norm [11]. This regularization
penalizes high spatial deformationswfnd implicitly important variations with reference to the
data known at a previous time:

Bt = [ ( NGNS dw) @

2

Other types of regularization may be usdd form, image driven norm, ...). Finally, our func-
tional E, is, with respect tor: £ = E; + aF>, wherea is a tuning parameter between the two
terms that weights the importance of the regularizatiomtgs. Differentiation of £/, with refer-
ence to andy yields a set of Euler-Lagrange equations [1]. Discretiraif the latter with finite
differences leads to a linear system, that we solve usingua$s&eidel iterative scheme.

Our goal, as schemed in Fig. 1, is to recover a full 3D+t secaiétom the 2D+t series of data and
the couple of 3D samples framing the temporal interval. Térral idea is to estimate gradually
velocity field between each 2D frame extracted from the 20+ given instant and the 3D
structure previously estimatediat- 1, as detailed in Section 3.1. Under the constant brightness
assumption from time — 1 to ¢, an estimation of *(., ) is recovered from the daté (., — 1)
and angular variation(ﬂé, ) by the following:

I(0,0) =I*(0+ 0,0+ ¢, t — 1) (20)

However angular coordinatés+ 6 andy + ¢, computed from discrete 2D couples, do not
generally correspond to grid-positions in the output saehphage sequendé: they yield a set of
scattered data. We attempt, therefore, to fit a smooth sutfeough the non-uniform distribution
of these data samples. For this purpose, we represent dacsas a sum of weighted and shifted
synthesis functions. B-splines stand apart for a good comize between quality (namely high
fidelity reconstruction and regularity) and computatiaealies, reader is referred to [10]. We then

9
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use the method introduced in [5] and dedicated to recovér samples. The implemented algo-
rithm makes use of a coarse-to-fine hierarchy of contrdtkedtin order to generate a sequence of
bi-cubic B-spline functions whose sum approaches the el giterpolation function.

In order to restore gradually the complete 3D+t sequencedeet a quite simple reconstruction
strategy. We use, respectively, a forward progressiongoha@ taking as first 3D available im-
age,I! and a backward one using the final 3D available im&tje Consequently, we generate
two displacement vector fields at the median moment of thgdeah interval[t;, t2]. The final
3D image is computed merely using the average of both fields.uk point out that we restore
surfaces parametrized by angular coordindtes). To display results, we use an adapted vi-
sualisation tool called, MAPVIS [8], instead of carryingtaaverse transformations in cartesian
3D+t grids. This tool displays complex information (scadad vectorial) lying on real spheroid
surfaces or projected ones. In the 3D case, MAPVIS projeatts eémbedded on the actual globe
observed part. Moreover, it improves visualisation oftiegtin perspective sight views of spheric
shaped structures. This tool is based on a suitable planapnegection that unrolls the curved
surface around a given origin. Therefore, varying the mtige origin around the surface allows
to observe different views of the sphere. Since the selauotgulprojection minimizes distortions
around the projection origin, the closer this point the maceurate the data recovery. Equato-
rial aspect of map projection, with reference to an origindyon the equator displays the frontal
hemisphere of the observed globe and polar one, with referemthe north geographical pole
displays information lying on the northern hemisphere.

4 Results

We present, in this Section, a series of experiments in dodassess the performance of the pro-
posed approach. They consist in computing the displacewsstor field matching a 2D frame
with an anterior 3D structure. As real data are not availalehave designed two sets of simple
synthetic data. First one is composed of a couple of sphéres ), I(.,¢2) holding two squares
lying on respectively the frontal and dorsal hemispheresnf; to ¢, the frontal square center
moves towards the right-bottom direction and the dorsahssevolves merely downwards. We
simulate the 3D-to-2D transformation &f., ¢5) yielding (., t2) and we compute the spheri-
cal representation af and I, using Equations (6]7). We then determine angular varidtedds
(0, ¢) matching datd*(., ;) with the projection/s, (., t,) in order to estimaté*(., ¢,) by motion
compensation. Second set of data is quite identical to thedire, except that squares occlude
each other in the 2D projection. Results are displayed ires&n coordinates using MAPVIS. We
display in Figl 4 and 5 motion estimation results for respebt first and second set of synthetic
data. Let us point out that motion computation produces afsmirrect vector fields (from ampli-
tude and direction point of views), perfectly tangent to¢helosing spherical surface. Moreover,
our reconstruction method handles ambiguities, due toEhés2a position, by determining which
hemisphere itis evolving in. Itis noticeable by visualisatof the difference between the estima-
tion of 3D image and the original onie. I(., ;) — I(., t,). Performance of our algorithm is not
bothered by the more complex case showing an object ocalfsée Fig. 5) which does not ease
the aforementioned structure distinction problem. Howéwege difference shows also recon-
struction errors, doubtless amplified by the double intlaan procedure involved, first by the
computation of a smooth surface from samples recovered iypmoompensation, second by the

10
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(a) From left to right: visualisation of the frontal then dor
sal hemisphere of the sgf(.,

(b) From left to right: frontal view of projectiofy,s(., t2),
frontal then dorsal hemisphere view of the estimated im-
agel(.,t2).

(c) From left to right: frontal then dorsal hemisphere view
of the difference between original image and estimated one
I(. t2) = I(.; t2).

Figure 4: Result on sequence without occluding squares.
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visualization of projective views [8]. These errors areslied in the border of moving objects.
They may be caused by spatial derivative computations.dBesthey are due to the smoothing
of motion discontinuities introduced by the spatial regaktion of the estimated displacement
vector field.

5 Conclusion

In this paper, we have presented an original approach dedit@3D+t scene reconstruction using
3D temporal data and 2D+t temporal sequences. It is basedtiomtompensation and involves
a prior surface model. The latter concerns spherical tayoérising in number of computer vi-
sion applications. In this context, structures of intemailve on a spherical support. Although
movement is embedded on a 3D domain, it has only two degreibenfy. Consequently, it
is more interesting to investigate motion in the surface aionthan to build a 3D model. Con-
sequently, we build a 2D model using a spherical paramétisén order to compute angular
velocity fields. Three dimensional spherical shapes aréugily restored by estimating angular
variations. Matching is carried out under the assumpti@t ghmoving voxel keeps the same
brightness over time. This assumption corresponds to ttieabflow constancy constraint. Our
approach recovers reliably the 3D structures and handlssilje object occlusions. Thanks to
the 2D modeling, implemented algorithms are not prohibittempared to a full 3D approach.
Moreover, we use an adapted tool, with relevant visuatisgproperties, in order to quickly dis-
play the restored surfaces parameterized by sphericalangpordinates. Currently, the whole
sequence is computed frame by frame, causing errors cuomnuidbng the sequence. This limita-
tion could be circumvented using a spatio-temporal smashiconstraint computed globally on
the whole sequence [12]. Discussing other reconstructisueis, it is possible to generalize the
prior geometrical constraint to any regular surface. Wgpse also in another framework to solve
the 3D+t scene recovery taken lower assumptions relatétddta model. Moreover, we plan to
apply our approach based on spherical topology to microsamh wall simulation acquisitions
in the context described in [9]. That requires a spatial deglution framework to reconstruct
each sphere from the original multi-focus image.
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