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This paper deals with the design of on board networks in satellites (also called Traveling wave tube Amplifiers (TWTA)).
These networks should connect signals arriving on some ports of the satellite to amplifiers, even in case of failures of
some amplifiers. They are made of links and expensive switches each with 4 links. So, the aim is to design networks
having as few switches as possible and satisfying the following property: there exist p edge-disjoint paths from the p
signals arriving on p+λ ports (inputs) to any set of p amplifiers (outputs) chosen from the p+k total number of outputs.
We call such networks valid (p,λ,k)-networks and want to determine the minimum number of switches N (p,λ,k) of
such networks. By symmetry we suppose λ ≤ k. We give tight results for small values of k and asymptotic results when
k = O(log p) which are tight when k = Θ(λ) and when λ = 0.

Keywords: key words : fault tolerant networks, switching networks, routing, TWTA redundancy, expanders, connec-
tivity, disjoint paths.

1 Introduction
Problem and Motivation. The problem we consider here was asked by Alcatel Space Industry. Signals
incoming in a telecommunication satellite have to be routed through an on-board network to amplifiers.
(The satellites under consideration are for example used for TV and video transmission (like the Eutelsat
or Astra series) as well as for private application. This network consists of switches with 4 links and which
can realize the connections displayed in figure 1. The signals enter the network through ports and exit
through amplifiers. In the following ports and amplifiers will be refered as inputs and outputs. They are
respectively represented in figures by arrows (→) and boxes (2) as shown in figure 2. Each input and output
are connected to one of the switches of the network.

The difficulties to design such networks come from two symmetric facts. On one hand the amplifiers
may fail during satellite lifetime and cannot be repaired. So more amplifiers are needed than the number
of signals which have to be routed. On the other hand as the satellite is rotating on itself, all the inputs
are not well oriented to capt the incoming signals. So, at each moment, a lot of inputs are unused. We
want to be able to route the incoming signals from the used inputs to valid amplifiers, that is to find disjoint
paths between the used inputs and valid outputs in the interconnection network. All the amplifiers are
identical so a signal can be routed to any of them. If a network is able to route p signals to amplifiers in
presence of λ useless inputs and of k faulty amplifiers, we will say that this network is a valid (p,λ,k)-fault
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Fig. 1: A switch can use 4 different states.
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Fig. 2: A valid (3,1,1)-network.

tolerant network. An example of a (3,1,1)-fault tolerant network is given in figure 2. As a matter of fact
all the possible configurations for the unused input and the non valid output, the three used inputs can be
connected to the valid outputs. Other examples achieving this bounds are presented in Figure 3. Realizing
such a network is easy, but it is difficult to optimise it. To decrease launch costs, it is crucial to minimise the
network physical weight, i.e. for us, to minimize the number of switches. As launch costs are dramatically
high, it is worth saving even one switch. So our aim will be to construst valid (p,λ,k)-networks with the
minimum number of switches denoted by N (p,λ,k). On one side we consider asymptotic cases. The
networks are large in the sense that p and k go to infinity. For symmetry reasons, we can assume k ≥ λ. We
give results for k = O(log p). On the other side we have also studied exact values for small k.

Related Work. The problem in which all the inputs are used, that is λ = 0, has been introduced in
[BDD02]. In [BPT20] a general theory is introduced for λ = 0 and several results are obtained for small
values of k. For example it is proven that N (p,0,4) = 5p

4 +1. In [BDH+03] and [DHMP05] the case of
switches with 2k > 4 links is considered. In [BHT06] the authors consider a variant of (p,0,k)-networks
where some signals are priorities and should be sent to amplifiers offering the best quality of service.
Finally in [BD99] and [BD02] the authors study the case were all the amplifiers are different. (In this work
we consider that all the amplifiers are identical so we won’t have to care how the signals go through the
switches (indeed if we are in a forbidden state we can exchange the exit of the signals, see [BDD02]).)

2 Formalization
2.1 The Problem

Notations. We introduce some notations we will use throughout this paper. Given a function f , we define
f (A) = ∑a∈A f (a) for any finite set A. For a set W ⊂ V of a graph G = (V,E), let us denote ∆(W ) the set
of edges connecting W and W̄ = V\W , δ(W ) the cardinality of ∆(W ), and Γ(W ) the set of vertices of W
adjacent to a vertex of W.

Definition 1 ((p,λ,k)-network) A (p,λ,k)-network is a triple N = {(V,E), i,o} where G = (V,E) is a graph
and i, o are integral functions defined on V called input and output functions, such that for any v ∈V , i(v) +
o(v) + deg(v) = 4. The total number of inputs is i(V ) = Σv∈V i(v) = p+λ, and the total number of outputs
is o(V ) = Σv∈V o(v) = p+ k

Definition 2 (non-faulty output function) A non-faulty output function is a function o’ defined on V such
that o′(v) ≤ o(v) for any v ∈V and o′(V ) = p.

Definition 3 (used input function) A used input function is a function i’ defined on V such that i′(v)≤ i(v)
for any v ∈V and i′(V ) = p.

Definition 4 (valid (p,λ,k)-network) A (p,λ,k)-network is valid if for any faulty output function o′ and any
used input function i′, there are p edge-disjoint directed paths in G such that each vertex v ∈V is the initial
vertex of i’(v) paths and the terminal vertex of o’(v) paths.

Definition 5 (N (p,λ,k)) Let N (p,λ,k) denotes the minimum number of switches of a valid (p,λ,k)-network.
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Fig. 3: A valid (16,4,4)-network and a valid (24,6,6)-network.

Problem 1 (Design Problem) The design problem consists in determining N (p,λ,k) and in constructing
a minimum (p,λ,k)-network, or at least a valid (p,λ,k)-network with a number of vertices close to the optimal
value.

Problem 2 (Simplified Design Problem) To minimize the length of the signals between the inputs and
the ouputs and to avoid the interferences between the signals of two differents inputs it is better that the
practical networks do not have a vertex either with two inputs or two outputs on it and that the inputs and
the outputs are in one-to-one correspondance on a vertex. To find minimun valid network like this is what
we call the simplified design problem.

2.2 Validity and Cut-criterion

In this subsection, we introduce a criterium that caracterize the validity of our (p,λ,k)-networks. It will be
used for our proofs of validity and to find lower bounds.

Proposition 1 (cut criterion) A (p,λ,k)-network is valid if and only if, for any subset of vertices W ⊂V the
excess of W,

ε(W ) = δ(W )+o(W)−min(i(W ), p)−min(k,o(W ))

satisfies ε ≥ 0.

Proof. The intuition is min(o(W ),k) is the maximum number of faults that can occur in W , so the cut-
criterion simply states that the capacity of the border of W is larger than the difference i(W )− o(W), plus
the maximum number of faults in W . The omitted formal proof reduces to a supply/demand flow problem.
2

3 Results
We obtain the results summarized in the following table and theorems. We present in Appendix proofs of
the asymptotic bounds for the Simplified Design Problem defined in Section 2.1.

Cases (k = O(log p)) Tight? Lower Bound Upper Bound
λ = 0 ** p+ k + 1

2(p+ k) p+ k + 1
2 (p+ k)

Simplified Case ** 2(p+ k) 2(p+ k)
General Case λ = θ(k) * p+ k + 2

3(p+ k) p+ k + 3
4 (p+ k)

General Case p+ k + 1
2(p+ k) p+ k + 3

4 (p+ k)

Theorem 1 N (p,2,1) = N (p,1,2) = N (p,2,2) = p+2
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Theorem 2 For λ or k ∈ {3,4} and λ,k ∈ [|0,4|]

N (p,λ,k) = p+max(λ,k)+
p+max(λ,k)

4

Theorem 3 For λ or k ∈ {5,6} and λ,k ∈ [|0,6|]

N (p,λ,k) ≤ p+max(λ,k)+
p+max(λ,k)

2

Examples of (p,4,4) and (p,6,6) networks are given in 3.

4 Conclusion
It remains a lot of work to do on this general problem for example on small values for specific demands of
Alcatel but also we hope to find a tight asymptotic bound at least when λ = O(1) and k = O(log p). We
already have some results on networks without switches with two outputs or inputs as well as for networks
with as many as possible (ie p + λ) switches with one input and one output and k− λ switches with one
output (extension of the simplified case). For values of λ and k of O(log p) it remains to tighten the bounds.
It will be also interesting to study the case where λ = Θ(p) and k = Θ(p). We have yet only partial results.
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Appendix (for the referees) :

A Preliminary Definitions
Let R be a (p,λ,k)−network, let n = p+ k.

Definition 6 (Doublons, R-Switches) A doublon of R is a vertex with i(v) = o(v) = 1. An R-switch is a
vertex that is not a doublon. Remark that the R-switches and doublons partition R.

Definition 7 (Associated graph G of a network) We build a graph G associated to R . Its vertices are the
R-switches of R . Its edges are of three kinds, repectively E0, E1 and E2: the edges of R between two
R-switches, the edges corresponding in R to a path of length 2 with a doublon in the middle and those
corresponding to a path of length 3 with 2 doublons in the middle. (The cut criterium gives immediately
that edges of other kinds corresponding to paths of length more than 3 with doublons in the middle are
forbidden).

Definition 8 (q-quasi-partition see [DHMP05]) Let G = (V,E) be a graph and q an integer. A q-quasi-
partition of G is a set {A1,A2, . . . ,Am} of subsets of V , such that :

(i) for every 1 ≤ i ≤ m, the subgraph induced by Ai, G[Ai], is connected;

(ii) for every 1 ≤ i ≤ m, q/2 ≤ |Ai| ≤ q;

(iii) V =
Sm

i=1 Ai and ∑m
i=1 |Ai| < |V |+ |{Ai, |Ai| > 2q

3 }|.

Lemma 1 Let q be a real and G be a connected graph of order at least q/2. Then G admits a q-quasi-
partition.

Remark 1 If G has several connected components of size at least q, applying the lemma for each compo-
nent and using additivity of both sides of point 3 gives us a q−quasi-partition of G.

A.1 Simplified Design Problem - Asymptotic Lower Bound

Theorem 4 In a simplified network R , when k → ∞ with k = O(logn), we have

N (p,λ,k) ≥ n+n

(

1− 7
2

1√
k

+O

(

1
k

))

Proof. The idea of the proof is to define large and small H−components of G the associated graph of R .
We then look at the large H−components and we show that the number of their R−switches, s, is bigger
than n when k is big.

Definition 9 [H−component, large and small H−components, adjacent H−components] We consider
a (p,λ,k)−network and its associated graph G. We take H the subgraph of G containing only the edges
E0. An H−component of G is a connected component of H. An H−component is said large (respectively
small) if it has more than or exactly (resp. less than) q switches, with q the greatest integer satisfying

2(q+(2q+2)q)+2≤ k−1. Remark that q ∼
√

k
2 . Two H−components C1 and C2 are said adjacent if there

exists an edge of G with one R−switch in C1 and the other in C2.

Proposition 2 1. A small H−component has no outgoing edges of kind E2.

2. Two small H−components are not adjacent.

Proof. Let C be a small H−component. As k ≤ p and |C| ≤ q ≈
√

k, i(C) = o(C) << k ≤ p. The cut
criterium becomes

δ(C) ≥ i(C)

Let e1 (res. e2) be the number of edges of kind E1 (resp. E2) in C.
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Al Ak

Ai A j

ei

Ni
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1. By definition of a small component δ(C) ≤ e1 + e2. We have i(C) = o(C) = e1 +2e2. So e2 = 0.

2. Let C′ be an other small H−component. If C and C′ are joined. Then let W = C ∩C′. i(W ) =
e1 + e′1−1. δ(W ) ≤ e1 + e′1. Contradiction.

2

According to Lemma 1 and Remark 1, the union of the large H−components of G admits a q−quasi-
partition F = {A1, . . . ,Am}. So each Ai is connected and of size q

2 ≤ |Ai| ≤ q.
Between all edges with doublons we distinguish: the edges of type R between an Ai and a small H−component,

the ones of type M between two large H−components and the ones of type N inside a large H−component.
We introduce the set Bi consisting of Ai union all the small H−components adjacent to it.
Let ri, ei, Mi, Ni be the numbers of edges between Ai and small H-components, outgoing edges of small

components, doublons on the edges of type M and doublons on the edges of type N. Remark that the ri and
ei edges are of type R as two small components can not be adjacent.

Let us now apply the cut criterium to Bi.

δ(Bi)+o(Bi)−min(k,o(Bi))−min(i(Bi), p) ≥ 0

As δ(Bi), o(Bi) and i(A) are of order k, and k is of order log p in the asymptotic case, i(Bi) << p.
If o(Bi) ≥ k, the cut criterium reduces to δ(Bi) ≥ k. Let us look now at δ(Bi). Ai is connected and of

size less than q. So it has at most 2q+2 outgoing edges and the number of small H−components of Bi is
at most 2q+2. As the size of a small H−component is less than q, the number of vertices in Bi is at most
q+(2q+2)q. Hence the number of outgoing edges δ(Bi) is at most 2(q+(2q+2)q)+2. It gives

k ≤ δ(Bi) ≤ k−1

a contradiction.
So o(Bi) < k. The cut criterium becomes δ(Bi) ≥ i(Bi). But δ(Bi) ≤ 2|Ai|+ 2 + ei − ri − 2Ni and

i(Bi) = ei + ri +Mi +Ni. Hence
|Ai|+1 ≥ ri +

Mi

2 +3Ni



Design of Minimal Fault Tolerant Networks

The number of doublons is n. All doublons are of type R, M or N. The doublons in M are counted for
two different Ai and A j. So

m

∑
i=1

ri +
Mi

2 +Ni ≥ n

Hence
m

∑
i=1

Ai +m ≥ n. (1)

As the Ai form a q-quasi-partition of the large H-components and |V (G)| = s the number of R−switches,

m

∑
i=1

Ai ≥ s+ |{Ai, |Ai| >
2q
3 }|.

We note t := |{Ai, |Ai| > 2q
3 }|. As |Ai| ≥ q

2 , m ≤ s+t
q
2

. Hence equation 1 gives

(s+ t)+
2(s+ t)

q
≥ n ⇒ s+ t ≥ q

q+2n

By definition t ≤ s+t
2q
3

, so t < s
2q
3 −1

. And we have

s

(

1+
1

2q
3 −1

)

≥ q
q+2n

s ≥ n
q

q+2
2q−3

2q
= n

(

1− 7
2q+4

)

When k → ∞
s ≥ n

(

1− 7
2
√

k
+O

(

1
k

))

.

We just have to add the n doublons of R to have the result.
2

B Simplified Design Problem - Asymptotic Upper Bound
In this section we give a construction of a valid (n−k,k,k)-network for large n and k of order logn with 2n
switches. It gives us the upper bound of Theorem 5. We use 4-regular expanders to do this.
Definition 10 (E-Expander) An (n,r,c)-E-expander is a finite r-regular graph G = (V,E) which satisfies
the following expansion property : for any set A of vertices of G with |A| ≤ |V |/2 we have δ(A,V \A)≥ c|A|
where δ(A,V \A) denotes the number of edges between A and X \A.

Theorem 5 In a network R , when k → ∞ with k = O(logn), we have

N (p,λ,k) ≤ 2n

Proof. Let G an (n,4,c)-E-expander of girth Θ(logn) and k ≤ cg(G) (for explicit construction see [Mor94]).
Take a family F of disjoint cycles covering all the vertices and add n new vertices by splitting each edge of
this family into two edges. Each of these vertices have an output and n− k +λ of them also have an input.
To prove that this network is valid it is sufficient to verify:
”For every set of k-new vertices with an input and any set of k new vertices with an output we can find k
edge-disjoint paths joining them.”
Let A be a set of vertices of G. We show there are at least min(k, |ΓF(A)|) different edges between A and
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V \A where ΓF(A) are edges of F with an extremity in A. This will prove the above statement.
By symmetry we can suppose |A| ≤ |V |

2 . If |A| ≥ k
c then by the expansion property there are at least k edges

between A and V \A. Now if |A| ≤ k
c ≤ g(G) then Gi[A] is acyclic. We have δ(A,V \A)≥ 2|A|+2 because

Gi is 4-regular and there are at most |A|− 1 edges inside A. Furthermore |ΓF(A)| ≤ 2|A| so δ(A,V \A) ≥
min(k, |ΓF(A)|)

2


