
HAL Id: hal-00512286
https://hal.science/hal-00512286

Submitted on 29 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gathering algorithms on paths under interference
constraints

Jean-Claude Bermond, Ricardo Correa, Min-Li Yu

To cite this version:
Jean-Claude Bermond, Ricardo Correa, Min-Li Yu. Gathering algorithms on paths under interference
constraints. CTAC06, May 2006, Roma, Italy. pp.115-126. �hal-00512286�

https://hal.science/hal-00512286
https://hal.archives-ouvertes.fr

Gathering Algorithms on Paths under

Interference Constraints

Jean-Claude Bermond?1, Ricardo Corrêa??2, and Minli Yu? ? ?3

1 MASCOTTE, joint project CNRS-INRIA-UNSA, 2004 Route des Lucioles, BP 93,
F-06902 Sophia-Antipolis, France

bermond@sophia.inria.fr
2 Universidade Federal do Ceará, Departamento de Computação, Campus do Pici,

Bloco 910, 60455-760 Fortaleza, CE, Brazil
correa@lia.ufc.br

3 University College of the Fraser Valley, Department of Mathematics and Statistics,
Abbotsford, BC, Canada V2S 4N2

joseph.yu@ucfv.ca

Abstract. We study the problem of gathering information from the
nodes of a multi-hop radio network into a pre-determined destination
node under interference constraints which are modeled by an integer
d ≥ 1, so that any node within distance d of a sender cannot receive calls
from any other sender. A set of calls which do not interfere with each
other is referred to as a round. We give algorithms and lower bounds on
the minimum number of rounds for this problem, when the network is
a path and the destination node is either at one end or at the center of
the path. The algorithms are shown to be optimal for any d in the first
case, and for 1 ≤ d ≤ 4, in the second case.
Key words: Gathering, interference, multi-hop radio network, path.

1 Introduction

1.1 Problem statement

The problem that we consider in this paper was motivated by a question asked
by France Telecom about “how to provide Internet to villages” (see [3]) and
is related to the following scenario. Suppose we are given a set of communication
devices (for instance, network interfaces that connect computers to the Internet)
which are placed in houses in a village. They require access to a gateway (for in-
stance, a satellite antenna) to send and receive data through a multi-hop wireless
network. The nodes communicate exclusively by means of radio transmissions,

? Partially supported by the CRC CORSO with France Telecom, by the european
FET project AEOLUS, by the cooperation with Brazil project REGAL and by the
INRIA associated team RESEAUXCOM with S.F.U.

?? Partially supported by the Conselho Nacional de Desenvolvimento Cient́ıfico e Tec-
nológico, CNPq, Brazil.

? ? ? Partially supported by the INRIA associated team RESEAUXCOM.

referred to as calls. A call involves two nodes, the sender and the receiver, and
is subject to the following constraints:

Reachability constraint: since every node has limited transmission power,
the receiver must be close enough to the sender.

Interference constraint: unlike wired networks, a call can interfere with re-
ception at certain nodes beyond the receiver. A node that is within interfer-
ence distance of one call cannot be the receiver of another call.

Considering these two constraints, a message transmitted in a call can only
be properly received if the receiver is reachable from the sender and there is
no interference by another message being simultaneously transmitted. In this
context, we study the following problem:

t-gathering problem: suppose each node of the network has a piece of infor-
mation. The t-gathering problem consists of collecting (gathering) all these
pieces of information into a special node t, called the gathering node.

In this paper, we propose solutions to this problem for the particular case of a
path. Before going into details about our results, let us introduce the mathemat-
ical formulation of the problem.

1.2 Model and assumptions

According to the model adopted in [1], the network described above is repre-
sented by an undirected graph G = (V, E), where V is the set of nodes, each
of them representing a communication device that is able to send and receive
messages, and E is the set of edges, representing the possible communications.
Let dG(s, r) indicate the distance in G, defined as the length of a shortest path
between s and r. We model the reachability and the interference constraints by
two positive integers dT ≥ 1 and dI ≥ dT . A node r ∈ V is reachable from s ∈ V
if and only if dG(r, s) ≤ dT . An important case is dT = 1, which means that a
node is able to communicate only with its neighbors in the graph. The second
parameter dI models the interference constraint as follows: if s sends a message
to r, then no node w ∈ V such that dG(s, w) ≤ dI can receive another message.

Denote by Xs,r a call where a node s ∈ V sends message X to node r ∈ V .
We assume that every call takes one unit of time (or one slot) to transmit one
unit-length message. Two calls are said to be compatible if they do not interfere
with each other. More precisely, two calls Xs1,r1

and Ys2,r2
are compatible if

dG(s1, r2) > dI and dG(s2, r1) > dI . Observe that a consequence of the interfer-
ence constraint is that s1 6= r2 and s2 6= r1, which implies that a node is not
able to send and receive messages simultaneously. A round is a set of compatible
calls, whereas an algorithm is a sequence of rounds.

In this paper, our aim is to find a t-gathering protocol using a minimum
number of rounds in the specific case where G is a path. In fact, this stems from
the assumption that the village consists of one main street. To our great surprise,
the gathering problem is not so simple in this case, if one wants to obtain an
exact optimal algorithm.

1

2

3

4

5

6

7

21t = 0 3 4 5 6
2 6

21t = 0 3 4 5 6
3

3

21t = 0 3 4 5 6

21t = 0 3 4 5 6

3

4

4

5

5

5

4

6

21t = 0 3 4 5

21t = 0 3 4 5

8

9

6

6

10

11

12

13

14

15

16

18

21t = 0 3 4 5

21t = 0 3 4 5

21t = 0 3 4 5

21t = 0 3 4 5

21t = 0 3 4 5

21t = 0 3 4 5

21t = 0 3 4 5

17
21t = 0 3 4 5

21t = 0 3 4 5

6

6

6

6

6

6

6

6

6

6

6

6

5

2

1

21t = 0 3 4 5

21t = 0 3 4 5

6

6

4
21t = 0 3 4 5 6

5

6

Fig. 1. Algorithm for a graph of 7 nodes and dI = 2.

In the algorithm shown in Figure 1 (where dT = 1 and dI = 2), the call
11,0 interferes with 44,3 because dG(1, 3) ≤ 2 = dI . This is the reason why they
do not appear in the same round. On the other hand, the calls 11,0 and 55,4

are compatible. All the rounds shown in the figure consist of a single call or
two compatible calls. It will be shown later that the algorithm consisting of this
sequence of 18 rounds is in fact optimal.

A final remark with respect to the model adopted in this paper is that another
possibility would be to represent the radio devices as nodes in the plane, and
to state the reachability and interference constraints according to the euclidean
distances. However, since we only consider paths, the two models are equivalent.

1.3 Related work

The broadcasting and gossiping problems in radio networks with dT = dI = 1
are studied in [6, 8] and [4, 5, 7], respectively. Note that, in a broadcast, the same
information has to be transmitted to all the other nodes and therefore flooding

techniques can be used. When a node needs to send different messages to the
other nodes of the network, we have the personalized broadcasting problem, which
is equivalent to the gathering problem as it suffices to reverse the calls in the
solution of one problem to get a solution of the other one.

Some gathering problems have already been studied. For example, in [2] op-
timal solutions are provided for the two-dimensional square grid. In [1], general
results are given (with the possibility of various sizes of messages in each node);
in particular, an algorithm working on any graph with an approximation factor
of at most 4 is presented. It is also shown that the problem of finding an op-
timal gathering algorithm (one that uses a minimum number of rounds) does
not admit a Fully Polynomial Time Approximation Scheme if dI > dT , unless
P=NP, and is NP-hard if dI = dT . Another related model can be found in [9],
where the authors study the case in which steady-state flow demands between
each pair of nodes have to be satisfied.

1.4 Our results

The results of this paper are presented in the remaining sections as follows. We
assume dT = 1 and denote dI simply by d. In Section 2, we deal with the case
where the gathering node is at one end of the path. This case is simple and
we describe an optimal algorithm. In Section 3, we consider the case where the
gathering node is at the center of the path with 2p + 1 nodes. We first give a
lower bound (this bound is also valid for the flow model of [9]). Then, we design

an algorithm which meets the lower bound for p ≤ p1 = d + 1 + k(k+1)
2 . In the

next subsection, we show how to strengthen the preceding lower bound. In fact,
we show that, for p ≥ d + 2, any algorithm for the path with the gathering node
at the center needs 2b(d−1)/2c+1 more rounds than that for the path of length
p with the gathering node at one end. Our algorithm meets this strengthened
lower bound for d = 1, 2, 3, 4 (which correspond to the practical cases). We close
the paper with some concluding remarks in Section 4.

2 Paths with the gathering node at one end

Let Πp be the path of length p (consisting of p edges and p+1 nodes). The nodes
are denoted 0, 1, 2, · · · , p, and the edges are of the type (i, i − 1). Assume that
the gathering node is t = 0. To simplify the notation, we denote the call Xi,i−1

by Xi and the minimum number of rounds by gd(p). The recursive scheduler
depicted in Algorithm 1 is used to prove the result below (see Figure 1 for an
example with p = 6 and d = 2).

Theorem 1. For the path Πp and d ≥ 1,

gd(p) =

{

p(p + 1)/2, if p ≤ d + 1
(d + 2)(2p − d − 1)/2, otherwise

Algorithm 1 Gathering scheduler on Πp

1: if p > 0 then

2: Call recursively the gathering scheduler on Πp−1

3: for j ← p, . . . , d + 3 do

4: Let x = p− (d + 2) and i = j − (d + 2)
5: Schedule Pj in the same round as Xi

6: for j ← min{p, d + 2}, . . . , 1 do

7: Schedule Pj in a new round

Proof. The upper bound is given by Algorithm 1. Suppose that all calls involving
messages smaller then P are scheduled in existing rounds as indicated in line 2.
The calls involving the message P leaving a node j ≥ d + 3 are scheduled as
indicated in lines 3-5. New rounds are then created for the remaining calls. Hence,
proceeding by recurrence, we find that

gd(p) ≤

p
∑

i=1

min{i, d + 2},

which gives the upper bound of the theorem.
To show the lower bound, note that the information X of a node x must be

transmitted via the calls Xj , 1 ≤ j ≤ x. Furthermore, the interference constraint
implies that at most one call Xj , for 1 ≤ j ≤ d + 2, can occur in a round. So, to
send X , for 1 ≤ x ≤ d + 1, from node x to the gathering node, we need at least
x rounds, all containing a call in the interval [0, d+2]. It follows that the rounds
used for two distinct nodes x and x′, 1 ≤ x, x′ ≤ d + 1, are disjoint. Therefore,
if p ≤ d + 1, then at least 1 + 2 + · · · + p = p(p + 1)/2 rounds are required.

Now, consider x ≥ d + 2. To bring X to the gathering node, all the d + 2
calls Xj , 1 ≤ j ≤ d + 2, for X must occur at different rounds. Moreover, these
rounds must be different from those used for Yj , X 6= Y and 1 ≤ j ≤ d + 1.
Consequently, at least (d+2)[p− (d+1)] calls are required for X , d+2 ≤ x ≤ p,
thus we have the lower bound for the case p ≥ d + 2. ut

3 Paths with the gathering node at the center

3.1 Preliminaries

Let us denote by Π−pΠp the path of length 2p with the 2p + 1 nodes −p,−(p−
1), · · · ,−1, 0, 1, 2, · · · , p, and with edges (−i,−(i− 1) and (i, i− 1). Assume that
the gathering node is t = 0. We write d = 2k + 1 or d = 2k + 2, depending
whether d is odd or even, respectively, and denote the minimum number of
rounds by gd(p, p). Clearly, gd(p, p) ≥ gd(p) since Π−pΠp is composed by two
symmetric paths of length p. However, in order to attain any tight lower bound,
it often requires the calls on one side of the paths to be paired with calls on the
other side. When p is small, all the calls are incompatible and every algorithm
is optimal.

Proposition 1. If p ≤ k + 1, then gd(p, p) = 2gd(p) = p(p + 1).

In the sequel, we consider p > k + 1, in which case an optimal algorithm
requires some compatible calls to be appropriately paired. Special attention
needs to be devoted to the critical calls, that is the calls in the critical interval
[−(d+2), d+2] of nodes. A round is called an obstruction if it contains only one
critical call. Like in the previous section, write Xi and −Xi for the calls Xi,i−1

and −X−i,−(i−1), respectively.
In the critical interval, two calls Xi and Yj interfere, and so do two calls −Xi

and −Yj . Moreover, two calls −Xi and Yj interfere if and only if i + j ≤ d + 1
because the distance between −i and j − 1 is i + j − 1. For example, a call −X1

can be paired only with calls Yd+1 or Yd+2. Consequently, every round contains
at most two critical calls and, in addition, a round contains two critical calls
−Xi and Yj only if i + j ≥ d + 2.

Let

A+ =
k+1
⋃

i=1

{Xi | i ≤ x ≤ p} and A− = {−Xi | Xi ∈ A+}. (1)

Observe that these two sets are such that a call in A+ cannot be paired with
any call in A−. The remaining critical calls define the sets

B+ =

p′

⋃

i=d−k+1

{Xi | i ≤ x ≤ p} and B− = {−Xi | Xi ∈ B+}, (2)

where p′ = min{p, d + 2}. When d is odd, these sets partition the set of possible
calls. But when d is even, there are also all the calls −Xk+2 and Xk+2. Observe
that two critical calls can be paired only if one of them belongs to neither A+

nor A−.

3.2 A lower bound when p ≥ k + 2

Let us turn our attention to a lower bound which will turn to be optimal when
p is not too large.

Theorem 2. gd(p, p) ≥ p(k + 2) + bd/2c (p − k − 1).

Proof. To obtain the lower bound, we count the maximum number M of pairs
{−Xi, Yj} which can be formed and we get gd(p, p) ≥ 2gd(p) − M . It can be
checked from (1) and (2) that |A−| ≥ |B+| and |A+| ≥ |B−|. Since the calls of
A− (resp. A+) can only be paired with calls in B+ (resp. B−), the maximum
number of pairs involving calls in A+ , A−, B+ and B− occurs when all calls
in B+ and B− are paired with A− and A+, respectively. In addition, if d is
even, we can also pair −Xk+2 with Xk+2 , for k + 2 ≤ x ≤ p. Thus, M =
|B+| + |B−| + (d − 2k − 1)(p − k − 1).

First consider the case p ≤ d + 1. Then gd(p) = p(p+1)
2 by Theorem 1.

If d is odd, then |B+| = |B−| =
∑

k+2≤i≤p p − i + 1 = (p−k−1)(p−k)
2 and so

2gd(p)−M = p(p + 1)− (p− k− 1)(p− k) = p(k + 2) + k(p− k − 1). Otherwise,

d is even, and |B+| = |B−| =
∑

k+3≤i≤p p − i + 1 = (p−k−2)(p−k−1)
2 . This leads

to M = (p− k − 1)2 and 2gd(p)−M = p(p + 1)− (p− k − 1)2 = p(k + 2) + (k +
1)(p − k − 1).

For the case p ≥ d + 2, we have to use the value of gd(p) given in Theorem 1
and observe that gd(p) increases by d + 2 as p increases by 1. To compute M ,
we also observe that now p′ = d + 2. So, when p increases by 1, |B+| increases
by k + 2 and M by d + 3. Therefore, 2gd(p)−M increases by d + 1 = k + bd/2c,
ending the proof. ut

3.3 An optimal algorithm

In this subsection, we present an algorithm whose number of rounds meets the
lower bound described in the previous subsection. This algorithm corresponds
to the sequence of rounds obtained with Algorithm 2. In the next subsection,
we will show that this algorithm also gives optimal solution for larger values of
p and 1 ≤ d ≤ 4.

Algorithm 2 Gathering scheduler for Π−pΠp

1: if p > 0 then

2: Call recursively the gathering scheduler for Π
−(p−1)Πp−1

3: for j ← p, . . . , d + 3 do

4: Let x = p− (d + 2) and i = j − (d + 2)
5: Schedule Pj in the same round as Xi

6: Schedule −Pj in the same round as −Xi

7: for j ← min{p, d + 2}, . . . , k + 2 do

8: if There is obstruction compatible with Pj then

9: Schedule Pj in the smallest round that is compatible with Pj

10: else

11: Schedule Pj in a new round

12: Schedule −Pj in the smallest round that is compatible with −Pj

13: for j ← min{p, k + 1}, . . . , 1 do

14: Schedule Pj in a new round
15: Schedule −Pj in a new round

Algorithm 2 schedules the calls in a sequence of pairs of symmetric rounds
in such a way that, if a pair of compatible critical calls {Xi,−Yj}, with x 6= y,
is scheduled in a certain round, then the round immediately after consists of
the symmetric counterpart {−Xi, Yj}. Similarly, if a round consists of a single
positive call Xi, the next round consists of the single negative call −Xi. The
algorithm for d = 3 and d = 4 are illustrated in Table 1 and 2, respectively.

The rounds in Algorithm 2 are scheduled recursively in the sense that the
rounds involving the calls Pj and −Pj , for all j ∈ {1, 2, . . . , p}, are scheduled
after all the calls associated with the path consisting of p−1 positive and negative

Round p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10 p = 11

1 11 −44 66 −99 1111

3 22 −33 77 −88

5 21 −55 76 −1010

7 32 −43 87 −98

9 31 −54 86 −109

11 42 −53 97 −108

13 41 −65 96 −1110

15 52 −64 107 −119

17 51 −75 106

19 {−63, 63} {−118, 118}

20 62 −74 117

22 61 −85 116

24 {−73, 73}

25 72 −84

27 71 −95

Table 1. Pairs and obstructions in the rounds derived from Algorithm 2 for d = 3. For
every round shown in the table but those between horizontal lines, the algorithm also
includes its symmetric counterpart.

nodes are scheduled in line 2. This is done without modifying the order of rounds,
but only by including the new calls in existing rounds, when possible, or creating
new pairs and obstructions. In addition, the new calls are scheduled greedly in
lines 9 and 12. More precisely, for the new calls outside the critical interval, they
are included in existing rounds. Then, the critical calls are handled. First, the call
Pmin{p,d+2} is paired with the first available and compatible obstruction −Xi.
Next, the symmetric counterpart is created by pairing −Pmin{p,d+2} with Xi. The
call Pmin{p,d+2}−1 is then paired with the next available and compatible positive
obstruction and so on, until −Pk+2 is paired with either the first available and
compatible obstruction (which will turn to be (P − 1)d−k) or with −Pk+2.

Algorithm 2 leads to the following upper bound for gd(p, p).

Theorem 3. gd(p, p) ≤ p(k+2)+bd/2c (p−k−1)+max{0, p−p1}, for p ≥ k+1,

where p1 = d + 1 + k(k+1)
2 .

Sketch of the proof. To prove the theorem, we count the number rd(p) of rounds
scheduled with Algorithm 2. First let us consider the odd case d = 2k + 1. The
proof is by induction on p. We indicate only half of the rounds (the other being
obtained by symmetry) which consist either of an obstruction or of a pair of
critical calls exclusively. The calls outside the critical interval are easily handled
in lines 5 and 6.

If p = k + 1, all rounds are scheduled in lines 13-15. So, rd(k + 1) = (k +
1)(k + 2). Next, we consider p ≥ k + 2 and give the sequence Ap

d of obstructions
left after line 2 which have to be paired with the sequence

〈−P`,−P`−1, . . . ,−Pk+2〉, ` = min{p, d + 2}.

Round p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9

1 11 −55 77

3 22 −44 88

5 21 −66 87

7 {−33, 33} {−99, 99}

8 32 −54 98

10 31 −65 97

12 {−43, 43}

13 42 −64

15 41 −76

17 {−53, 53}

18 52 −75

20 51 −86

22 {−63, 63}

23 62 −74

25 61 −85

27 {−73, 73}

28 72 −84

30 71 −96

32 {−83, 83}

33 82 −95

35 81

37 {−94, 94}

38 {−93, 93}

39 92

41 91

Table 2. Similar to Table 1, but for d = 4.

The first element of Ap
d is paired with −P`, the second with −P`−1 and so on.

When p is large enough (as can be seen in Table 1) the last element of Ap
d is not

an obstruction at step p − 1 but, in fact, Pk+2 which is paired with −Pk+2.

First assume that p ≤ 2k + 2 = d + 1. It turns out that

rd(p) = rd(p − 1) + 2 (p − |Ap
d|) . (3)

Let p = k + 1 + i, where 1 ≤ i ≤ k + 1. Then,

Ak+1+i
d = 〈(k − i + 2)k−i+2, (k − i + 4)k−i+3, ..., (k + i)k+1〉,

which gives |Ap
d| = p − k − 1 and rd(p) = rd(p − 1) + 2 (k + 1).

When p ≥ d + 2, write s = k(k − 1)/2 and let ⊕ denote a concatenation of
sequences. In the two cases considered in the sequel, we replace 2 (p − |Ap

d|) by
2 (d + 2 − |Ap

d|) in (3) and obtain |Ap
d| = k + 2, as follows:

1. 2k + 3 ≤ p ≤ 2k + 2 + s. Let p = 2k + 2 + i, where 1 ≤ i ≤ s. The definition
of Ap

d in this case is recursive:

A2k+2+i
d =







〈21, 31, 42〉, if p = 5 and d = 3
〈(P − 2)1, (P − 1)2, P3〉, if p ≥ 6 and d = 3

A2k+i
d−2 ⊕ 〈(2k + 1 + i)k+1〉, otherwise

The recurrence for the number of elements in A2k+2+i
d is

|Ap
d| =

{

3, if p ≥ 5 and d = 3

|Ap−2
d−2| + 1, otherwise

whose solution gives the desired result.
2. 2k + 3 + s ≤ p ≤ 3k + 2 + s = p1. Let p = 2k + 2 + s + i, where 1 ≤ i ≤ k.

Then, the cardinality of Ap
d follows directly from

A2k+2+i
d = 〈(s + k + i)1, (s + k + 1 + i)2, ..., (s + 2k)k−i+1〉⊕

〈(s + 2k + 1)k−i+1, (s + 2k + 2)k−i+2, ..., (s + 2k + i + 1)k+1〉.

Finally, assume p ≥ 3k + 3 + s, in which case we write p = 3k + 2 + s + i,
where i ≥ 1. In this case, the last element of Ap

d is Pk+2, which is paired with
−Pk+2. Then, rd(p) = rd(p − 1) + 2 (d + 2 − |Ap

d|) + 1 and

Ap
d = 〈(s + 2k + i + 1)1, (s + 2k + i + 2)2, ..., (s + 3k + i + 2)k+2〉.

Putting the pieces together, we get the recurrence

rd(p) ≤







(k + 1)(k + 2), if p = k + 1
rd(p − 1) + d + 1, if k + 1 < p ≤ p1

rd(p − 1) + d + 2, if p > p1.
(4)

When d is even (d = 2k + 2, illustrated in Table 2), we obtain the result
from the case d − 1 odd. First, observe that, if p < 3k + 3 + s, then Ap

2k+2 =

Ap−1
2k+1 ⊕ 〈Pk+2〉. Otherwise, Ap

d includes Pk+2 and pairs kept from Ap−1
2k+1 and

Ap
2k+1 depending on the call Xk+2, where x = 3k + 3 + s. A call Yj is kept

from Ap−1
2k+1 if y < x or (y = x and j > k + 2), and from Ap

2k+1 otherwise. The
recurrence is then the same as above. The solution of (4) concludes the proof. ut

Combining Theorem 2 and Theorem 3, we get

Theorem 4. gd(p, p) = p(k + 2) + bd/2c (p − k − 1), for k + 1 ≤ p ≤ p1, where

p1 = d + 1 + k(k+1)
2 .

3.4 A lower bound for p ≥ d + 2

Both Algorithm 1 and Algorithm 2 have a common property: Xi (resp. −Xi)
appears in a round occurring before that of Xj (resp. −Xj) if i > j, and Xi

(resp. −Xi) appears after Yi (resp. −Yi) if x > y. Indeed, one can easily modify
any algorithm in order to satisfy such a property. For this reason, and without
loss of generality, we suppose that the obstructions are maximal in the following
sense.

Assumption 1 If Xi (resp. −Xi) is an obstruction, then the following condi-
tions hold:

1. either x = p or (X + 1)i (resp. −(X + 1)i) is an obstruction; and
2. either i = 1 or −Xi−1 (resp. −Xi−1) is an obstruction.

Moreover, the property mentioned above naturally defines a partial order �,
illustrated in Figure 2, in which Xi � Yj if x ≤ y and i ≥ j and −Xi � −Yj if
x ≤ y and i ≥ j. We may use the notation Xi ≺ Yj when x 6= y or i 6= j.

87654321

1

2

3

4

5

6

7

8

−8 −7 −6 −5 −4 −3 −2 −1

−1

−2

−3

−4

−5

−6

−7

−8

B+B−

A− A+

Fig. 2. Partial order � on the calls of an algorithm for p = 8 and d = 3.

In the rest of this subsection, we present a lower bound for p ≥ d + 2. This
lower bound is based on the minimum number of obstructions that are induced
by �. The proofs are omitted due to space limitations.

Lemma 1 (Non-Crossing Lemma). An algorithm cannot have two different
pairs {−Xi, Wj} and {−Yk, Z`} with either −Yk ≺ −Xi and Wj ≺ Z`, or −Xi ≺
−Yk and Z` ≺ Wj .

The previous lemma is applied in the results that follow.

Lemma 2. P1 and −P1 are obstructions.

An immediate consequence is the optimality of Algorithm 2 for d = 1, 2. In
addition, we have

Lemma 3. If p ≥ d + 2, then every algorithm has at least 2k + 1 positive and
2k + 1 negative obstructions.

This leads to our final result

Theorem 5. If p ≥ d + 2, then gd(p, p) = gd(p) + 1, for d = 1, 2 and gd(p, p) =
gd(p) + 3, for d = 3, 4.

4 Concluding remarks

We presented algorithms for gathering information from nodes of a path with
2p+1 nodes to its center or one end node, satisfying reachability and interference
constraints. Optimal solutions are given for the first case, and for the second case
when the interference distance d is at most 4. We conjecture that the algorithm
for the second case is also optimal for larger values of d, leading to gd(p, p) =

gd(p) + (k+1)(k+2)
2 , for p ≥ p1.

The results in this paper can be extended for more general cases; for instance,
when the gathering node is placed anywhere in the path. However, the choice of
the center of the path is the one that minimizes the number of rounds.

Acknowledgements

The two last authors thank the MASCOTTE project where some of the research
was done during their visits. Also, the authors would like to thank the anonymous
referees for the useful suggestions.

References

1. J-C. Bermond, J. Galtier, R. Klasing, N. Morales, and S. Pérennes. Hardness and
approximation of gathering in static radio networks. In FAWN06, Pisa,Italy, March
2006.

2. J.-C. Bermond and J. Peters. Efficient gathering in radio ids with interference. In
AlgoTel’05, pages 103–106, Presqu’le de Giens, May 2005.

3. P. Bertin, J-F. Bresse, and B. Le Sage. Accs haut dbit en zone rurale: une solution
”ad hoc”. France Telecom R&D, 22:16–18, 2005.

4. M. Christersson, L. Gasieniec, and A. Lingas. Gossiping with bounded size messages
in ad-hoc radio networks. In Proceedings of ICALP’02, volume 2380 of LNCS, pages
377–389. Springer-Verlag, 2002.

5. M. Chrobak, L. Gasieniec, and W. Rytter. Fast broadcasting and gossiping in radio
networks. Journal of Algorithms, 43(2):177–189, 2002.

6. M. L. Elkin and G. Kortsarz. Logarithmic inapproximability of the radio broadcast
problem. Journal of Algorithms, 52(1):8–25, 2004.

7. I. Gaber and Y. Mansour. Centralized broadcast in multihop radio networks. Jour-

nal of Algorithms, 46(1):1–20, 2003.
8. L. Gasieniec and I. Potapov. Gossiping with unit messages in known radio networks.

In Proceedings of the IFIP 17th World Computer Congress, pages 193–205. Kluwer,
B.V., 2002.

9. R. Klasing, N. Morales, and S. Pérennes. On the complexity of bandwidth allocation
in radio networks with ste ady traffic demands. Technical report, INRIA Research
Report RR-5432 and I3S Research Report I3S/RR-2 004-40-FR, 2004.

