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Abstract can be of interest for other applications in parallel comput-
ing, where the graph will represent for example the prece-
Let 2 be a family of dipaths. The load of an arc is the dence graph of a program or for scheduling complex op-
number of dipaths containing this arc. LetG, &2) be the erations on pipelined operators. A generic problem in the
maximum of the load of all the arcs and tetG, &?) be the design of optical networks, [11, 13]), consists of satisfying
minimum number of wavelengths (colors) needed to colora family of requests (or a traffic matrix) under various con-
the family of dipaths? in such a way that two dipaths with ~ straints like capacity constraints. The optimization problem
the same wavelength are arc-disjoint. associated consists in designing, for a given family of re-
Let G be a DAG (Directed Acyclic Graph). An internal quests, a network optimizing some criteria, such as mini-
cycle is an oriented cycle such that all the vertices have at mizing the number of wavelengths or the number of ADMs
least one predecessor and one successa iisaid other-  (Add Drop Multiplexers).

wise every cycle contain neither a source nor a sink/pf A request is satisfied by assigning to it a dipath in the net-

Here we prove that ity is @ DAG without internal cycle,  \york. A family of requests is satisfied, if we can route them
then for any family of dipaths?, w(G, ) = =(G, 2). in such a way that the capacity constraints of the network
On the opposite we give examples of DAGs with internal 5r¢ satisfied. This is known as the routing problem. For a
cycles such that the ratio betweerG;, #) and (G, &) given routing let us define the load of an arc as the number
cannot be bounded. of routes (dipaths) containing it and the load of the routing
We also consider an apparently new class of DAGs, a5 the maximum load of the arcs. Typically one wants either

which is of interest in itself, those for which there is at g insure that the load of an arc does not exceed the capacity
most one dipath from a vertex to another. We call these qf thjs arc or to minimize the load of a routing satisfying a
digraphs UPP-DAGs. For these UPP-DAGs we show that given family of requests.

the load is equal to the maximum size of a clique of the )

conflict graph. We show that if an UPP-DAG has only one  Many backbone networks are now WDM optical ones.
internal cycle, then for any family of dipaths(G, %) = Indeed wavelength division multiplexing (WDM) enables
[47r(G @)] and we exhibit an UPP-DAG and a family of to use the bandwidth of an optical fiber by dividing it in mul-
diSpaths reaching the bound. We conjecture that the ratio tiple non overlapping frequencies or wavelength channels.

betweens (G, 2) andr (G, ) cannot be bounded. Satisfying a request in a WDM optical network consists in
’ ’ assigning to it a route (dipath), but also a wavelength, which

shall stay unchanged if no conversion is allowed. There-
_ fore the constraint is now that two requests, having the same
1. Introduction wavelength, have to be routed by two arc disjoint dipaths or,
equivalently, two requests whose associated dipaths share
The problem we consider is motivated by routing, wave- an arc, have to be assigned different wavelengths. Hence
length assignment and grooming in optical networks. But it the scarce resource is the number of available wavelengths.
For a given traffic matrix, either one wants to insure that the
1-4244-0910-1/07/$20.0@)2007 IEEE. family of requests can be satisfied with the available num-




ber of wavelengths or one wants to minimize the number of bottom where they go right and up till they arrive at the des-
wavelengths used. This problem is known in the literature tination¢;. Any two dipaths intersect so the conflict graph
as the RWA (Routing and Wavelength Assignment) prob- is complete and we neddcolors. However the load of an
lem. arc is at most 2.

Note that requests are satisfied on a virtual (logical) net-
work which is itself embedded in the physical network (in
fact there might be many layers). It is the case for exam-
ple when considering SONET/WDM rings or in MPLS over
WDM networks; in the latter case the RWA problem has to
be considered for the lightpaths [6, 7]. Anyway, at the con-  Here we consider the class of Directed Acyclic Graphs,
ceptual level of modeling of this article, the problems are DAGs, which plays a central role in Parallel and Distributed
the same and we will use the word request to indicate aComputing. Part of our motivation came when we tried to
connection at the upper level. extend the results obtained in [4] for paths motivated by

Minimizing the load or/and the number of wavelengths 9rooming problems for the paths ([3, 7]). In fact, we first
is a difficult problem and in general an NP-hard problem. Proved that for rooted trees (directed trees where there is a
These problems have been extensively studied in the liter-unique dipath from the root to any vertex), for any family
ature for various topologies or special families of requests f requests, the minimum number of wavelengths is equal
like multicast or all-to-all (see for example the survey [1] or 0 the load.

[10, 12]). Many particular cases where the minimum num-  The example given above in Figure 1 being a DAG there
ber of Wavelgngths is equal to the minimum routing load g o hope to bound ratio betweerG, ) andr (G, 2).
have _been given. For example, in [2] it is shown that for |, this paper we fully characterize when(G, 2) =
any digraph and for a multicast instance (all the requests . (¢ %) for a DAG. In fact the necessary and sufficient
have the same origin), there is equality and both problemscqition is that' does not contain what we call an inter-
can be solved in polynomial time. For some topologies the 5| cycle, i.e. an oriented cycle, such that all the vertices
load might be easily computed, but the minimum number ,ye 4t least one predecessor and one succeséb(said

of wavelengths is NP-hard to compute as itis related to col- oihenyise all cycles contain neither a source nor a sink).
oring problems. This is the case for symmetric trees (see

the survey [5]). However, for symmetric trees it has been = We also consider an apparently new class of DAGs,
proved that there is equality for the all to all instance ([9]) Which is of interest in itself, those for which there is at
and approximation a|gorithms have been given ([5, 8]) most one dipath from a vertex to another. We call this prop-

As the RWA problem is very difficult to solve, it is of- erty the UPP (Unique diPath Property) and call these di-
ten split into two separate problems. First one solves the9raPhs UPP-DAGs. For these UPP-DAGs we show that the

routing problem by determining dipaths which minimize 102d is equal to the maximum size of a clique of the con-

the load or are easy to compute like shortest paths. Thenflict graph. We show that if an UPP-DAG has only one
nternal cycle, then for any family of dipaths(G, &7) =
4

the routing being given, the wavelength assignment prob-! o ;
lem is solved. In that case the input of the problem is not a [EW(G’ 2)] and we exhibit an UPP-DAG and a family of
dipaths reaching the bound. We conjecture that the ratio

family of requests but a family of dipath®’. We will de-
note by (G, 2) the maximum of the load of all the arcs Petweenw(G, &) andr (G, &) cannot be bounded.

of the digraphG for the family £2. Determining the min-
imum numbernv (G, &) of wavelengths (colors) needed to
color a family of dipaths?? in such a way that two dipaths

Note that, if the original digraph has the property that for
any requestz, y) there is a unique dipath fromto y, then
it is equivalent to consider a family of requests or a family
of dipaths.

with the same wavelength are arc-disjoint is still NP-hard s . .
. . . . . S_ 7 7 7 7 t4
in that case. Indeed it corresponds to finding the chromatic Yy .1 Yy . ¢ \ L\
number of the conflict graph whose vertices represent the A 74 A7 d BT

. . .. . & S 4 S AN A t3
dipaths and where two vertices are joined if the correspond- 7 \1 A7 S A7
ing dipaths intersect. — \J_ﬁ/j_gv 1
, d‘!’hetrhe are.examples ?é to;o)logi;; vt\)/h;arehthere are at (rjnost Se—> A ,j—LE, I b t,

ipaths using an arer(G, = 2), but where we nee = I —>

as many wavelengths as we want (see Figure 1 for the ex- S§,—— e > b'ﬁ,—" e >— t;

ample for 4 wavelengths) and so for these digraphs there is

no ratio betweenv(G, &) andn (G, &2). In the example

we considek dipaths froms; to ¢;. The dipaths starts is;,

then go alternatively right and down till they arrive at the Figure 1. A pathological example
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2. Definitions 1ttt a,b,d,
We model the network by a digrafgh Theoutdegreeof c.de, b,d,e,
1

a vertexz is the number of arcs with initial vertex(that is
the number of verticeg such tha{z, y) is an arc ofz). The
indegreeof a vertexz is the number of arcs with terminal
vertexx (that is the number of verticeg such that(y, x)
is an arc ofz). A sourceis a vertex with indegree 0 and a
sink a vertex with outdegree 0. A dipath is a sequence of
verticeszy, xa, . .., such that(z;, z;41) is an arc ofG.
If 2, = 2, the dipath is called a directed cycle. cycle
A DAG (Directed Acyclic Graph) is a digraph with no
directed cycle.
An (oriented) cycle in a DAG consists therefore of an inge:
even sequence of dipatliy, Ps, .. ., Py, alternating in di-
rection (see Figure 2a). The vertices inside the dipaths have load(G, #,¢) = [{P: P € #;¢ € P}
indegree and outdegree 1; those where there is a change of The |oad ofG for 2 will be the maximum over all the
orientation have either indegree 2 and outdegree O or inde-rcs ofG and we will denote it byr(G, 22). We will say
gree 0 and outdegree 2. that two dipaths are in conflict (or intersect) if they share
An internal cycle of a DAGG is an oriented cycle such  gn arc. We will denote by (G, 2) the minimum number
that all its vertices have i/ an indegree> 0 and an out-  of colors needed to color the dipaths 6f in such a way

degree> 0; said otherwise no vertex is a source or a sink. that two dipaths in conflict (sharing an arc) have different
Hence the vertices where there is a change of orientation incolors. Note thatr (G, 2) < w(G, 2).

Conflict graph

Figure 3. Example for a DAG with an internal

the cycle have a predecessor (resp. a successgrifithey The vertices of theconflict graph associated with
are of indegree 0 (resp. outdegree 0) in the cycle (see Figurgz, 2) are the dipaths of?, two vertices being joined if
2b). their associated dipaths are in conflict.

We will say that a DAG has theJP Property (Unique Thenw is the chromatic number of the conflict graph.

Path Property) if between two vertices there is at most oneNote thatr is only upper bounded by the clique number of
dipath. A digraph satisfying this property will be called an the conflict graph; indeed the dipaths containing an arc
UPP-DAG. e of maximum load are pairwise in conflict. We will show

If G is an UPP-DAG, then any internal cycle contains at later on, that ifG is an UPP-DAG thenr is exactly the
least2k > 4 vertices where there is a change of orientation. cliqgue number of the conflict graph.

Otherwise it will consist of a dipath from to y and a re- As we have seen in the introduction, there exist DAGs for

verse dipath fromy to = and so there will be two dipaths  which there exists a set of dipatl¥8 such thatr (G, &) =

fromz toy. 2 andw(G, &) is as big as we want. These DAGs have
Given a digraphG and a family of dipaths”, the load many internal cycles. In Figure 3, we give an example of

of an arc e is the number of dipaths of the family contain- a DAG with one internal cycle and a set of 5 dipatt®



such thatr (G, &) = 2 andw(G, &) = 3. The dipaths are
ai, bl,Cl ) bl,Cl,dl , C1, dl, e, bl, Cll7 e via the second
dipath fromb, to dy; ay, b1, d; also via this second dipath.

at least one colat: used by two different dipath&, and P;
of #,. Among ther(H, 2) colors choose a colgs not
used forZ;; such a color exists as we have used at most

The load is 2 and the conflict graph is a cycle of length 5 and | 2%y| — 1 < my — 1 colors for the dipaths af?,.

so we need 3 colors to color its vertices. Other examples of

family of dipaths%? with 7(G, &) = 2 andw(G, &) =3
in an UPP-DAG are given in section 4 (Figures 5 and 9).

3. Main result

In this section we characterize the DAGs for which for
any family & of dipaths,w(G, &) = =(G, ).

Theorem 1 Let G be a DAG without internal cycle. Then,
for any family of dipaths?, w(G, &) = n(G, £).

Proof: Itis by induction on the number of arcs (the theo-
rem being trivially true if there is no arc or one arc). The

We will show that we can obtain a valid coloring of the
dipaths of22, such that?, keeps its color, P; gets color3
and the other dipaths o¥? keep their color if it is different
from o« and 5 and get one of the colax and 5 otherwise
(some dipaths initially colored (resp.3) can be recolored
0 (resp.«)). So, we obtain a valid coloring in which the di-
paths of %2, use one color more than in the initial coloring
and we get a contradiction with the hypothesis of maximal-
ity.

For that purpose, let us change the caloof P; to .

If the coloring obtained is valid we are done. Otherwise
that means thaP; intersects some dipaths with col6g
note that these dipaths are not4#, as color3 was not

idea consists in coloring the arcs of the graph obtained byused. Recolor with colox the family &2, consisting of
deleting one arc and shrinking the dipaths containing this &l the dipaths of colog intersectingP. If we obtain a
arc in such a way that the shrinked dipaths have all different Valid coloring we are done ; otherwise that means that some

colors and then to extend this coloring to the original graph.

Suppose that the theorem is true for all DAGs wiith
arcs and letd be a DAG withm + 1 arcs and? be a fam-
ily of dipaths of H. Let (xg,yo) be an arc off such that
d~H(zp) = 0 (z¢ is a source ir). Let G be the digraph
obtained fromH by deleting the ar¢zo, yo) and letZ” be
the family of dipaths of7 obtained from2 as follows. If
@ belongs to2 and does not contaifx, i), we putQ in
Z2; otherwise ifQ) containg(zy, yo) we put in&? the dipath
Q@ — (z0,y0) Obtained by deleting the afe, yo). In par-
ticular, if Q was reduced to the afa,, yo) then we do not
consider it.

We have (G, %) < =n(H,Z2). More precisely,
m(H, 2) = max(n(G, £); ), wherery denotes the load
of the arc(xo, yo) in H. mo = load(H, 2, (x0,y0))-

Let 2, be the family of dipaths af2 containing(xo, yo)
and let#2, be the family of non empty dipaths associated
with 2, (obtained by deleting the arfag, yo)). Note that
mo = |2p| and thereforerg > | #| (there are in facty —
| Z,| dipaths inZ, reduced to the artrg, yo)).

By induction hypothesis we can color the fami¥ of
dipaths inG with =(G, &?) colors. If all the dipaths of
Z, have different colors, we can extend the coloring to
the family 2 as follows. If a dipathQ is in 2, and if
P = Q—(z0,y0) isnon empty (i.eP in #,), then colorQ
with the color of P. Finally color the remaining dipaths of
2y, namely the ar¢xg, yo) with the remainingry — | 2|

dipaths of & colored initially « intersect some dipaths of
P,. Let P35 be the family of all these dipaths. Then recolor
them and so on. If at step, we have recolored a family
&, from colory (wherey is o or §) to 4’ (wherey' is the
other color), we recolor at stgp+ 1 the family &7, of all
the dipaths of coloty intersecting some dipaths o?,,.

We continue the process till we arrive to one of the fol-
lowing situations :

Case A : we have obtained a valid coloring and then our
claim is proved

Case B : we have to recolor a dipath already recolored
at a preceding step (said otherwise the farni#ty and &,
intersect for some indicesandg).

Case C: we have to recoldy,.

Let us show that case B cannot happen. Indeed suppose
at stepp we have recolored a dipatR, of color v with
color+’; then suppose at a further stg¢pve want to recolor
P,. That implies that at step — 1 P,, which is at this
step of colory’, intersected a dipat®,_; which has been
recolored from color to 4/. But this implies that in the
initial coloring bothP, and P,_; were of the same coloy,
contradicting the validity of the initial coloring.

Suppose now case C happens, then we will exhibit an
internal cycle, therefore contradicting the hypothesis that
there is no internal cycle and proving the theorem.

Suppose at step we have to recolo; this is due to

colors. The rest of the proof consists in showing that, by the fact that at step — 1 some dipathP,_; has been re-
appropriate recoloring, we can always find a coloring of the colored from colorg to color o which was due to the ex-

dipaths of&? such all the dipaths of?, have different col-

istence of a dipathP,_, recolored at step — 2 from «

ors. Suppose this is not the case and consider a coloring ofo 5 and so on. Thus, there exists a sequence of dipaths

& which maximizes the number of colors used by the di-
paths ofZ7,. As the colors are not all different, there exists

P, P,,...,P,_1,P, = Py, alternating in color and such
that P; and P, intersect in some interval, = (z;,y;).
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Consider the closed walk
Pilyo, z1], Palx1, @2, ..., Pilwi—1, 2], . ..

oo Pyifrp—2, xp_1], Polwp—1, 0]

Some of the paths are directed; some are in the revers

orientation. IfP;[x;_1, x;] is directed, then it does not con-
tain I; = (z;,y;); otherwise if P;[x;_1,z;] is in the re-
verse orientation, then it contaids = (z;,y;). Therefore,

if Pjlx;—1,x;] is directed andP;1[x;, z;4+1] IS in the re-
verse orientation the intervd] = (x;,y;) does not belong
to the walk. In contrary, ifP;[z;_1,x;] is in the reverse
orientation andP; 1 [z;,x;+1] is directed then both con-
tain I, = (z;,y;) and in that case we delete the interval
from the paths of the walk in order to obtain a simple cy-
cle (without multiple edges). Let this cycle be of the form
C = (yo,21,22,---,2k Y0), Wherezo,,1 corresponds to
anz;, whereP;[z;_1,x;] is directed andP; 1 [x;, z;41] IS

in the reverse orientation and wherg, ., corresponds to
any;, whereP;[z;_1, z;] is in the reverse orientation and
P;i1[zi, xi41] is directed.C consists of a sequence of di-

rected and in the reverse orientation paths, where all the ver-

tices different from a; have in and outdegree 1. Vertices

of an intervall; = (z;,y;). Similarly verticeszs, 2 have

in the cycle indegree 0 and outdegree 2; bufrithey have
indegree at least 1, as they are terminal vertices of an inter-
val I; = (z;,y;). SoC' is an internal cycle and the theorem

eis proved.(see Figure 4 for an example). 0

Theorem 2 If a DAG G contains an internal cycle there
exists a set# of dipaths such thatr(G, ) = 2 and
w(G, ) = 3.

Proof: Consider an internal cycle consisting2if dipaths
k betweerb; andc¢; andk betweernh; andc;_; (the indices
are taken modulo k). So the, i = 1,2,...,k, have in-
degree 0 in the cycle and the « = 1,2,..., k, have out-
degree 0 in the cycle. As the cycle is internal, there exist
k verticesa;, i = 1,2,...,k joined to theb; and k ver-
ticesd;, i = 1,2,...,k to which are joined the;. The
setZ of dlpaths arei,by,cq ;by,c1,dy;ag,b;, Ci—1, di—1
anda;, b;, ¢;,d; fori =1,2,..., k anday, by, ¢, di. They
form a cycle of odd lengtBk + 1 in the conflict graph and
sow = 3 (see Figure 5). 0

Main Theorem LetG be a DAG. Then, for any family of

zop+1 have in the cycle indegree 2 and outdegree O; but in dipathsZ, w(G, &) = n(G, &) if and only if G does not
G they have outdegree at least 1, as they are initial verticescontain an internal cycle.
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Figure 5. Internal cycle and family of dipaths
with 7 =2 and w = 3.

4. UPP-DAGs

First let us give some nice properties of the conflict graph
associated to a family of dipaths of an UPP-DAG. We will
first show that ifG is an UPP-DAG thenr is exactly the
cligue number of the conflict graph.

Property 3 If G is an UPP-DAG then the dipaths in conflict
have the following Helly property : if a set of dipaths are
pairwise in conflict, then their intersection is a dipath.

Proof: If two dipaths intersect, then their intersection is a
dipath. Indeed suppose the intersection contains two differ-
entdipathgzy,y;) and(x2, y2) in this order. Then between
y1 andzy there are two dipaths, one vig and the other via
P, (see Figure 6 a).

So supposeP; and P, intersect in only one interval
(z1,y1), and Ps intersectsP; in an arc disjoint interval
(u1,v1). W.l.o.g. we may assume that is beforex;. Let
P; intersects?; in the interval(us, v2).

Case 1 :vs is beforeu;. vy cannot be after; on P,
otherwise there will be a directed cycle. 8pis beforex;
on P, and we have two dipaths from to x;, one viaP;
and the other one vi&;s till u; and then viaP; (see Figure
6b).

Case 2 :u, is afterv; on Ps If uy is beforexr; on P,
we have two dipaths from; to z; one viaP; and the other

~U
U

¢

Yi

Va4

~U

Figure 6. Helly property

going fromwv; to uy via P3 and tox; via Ps. If uy is after
11, we have two dipaths from; to u, one viaP; and the
other viaP; till y; and P, (see Figure 6 c and d). 0

Lemma 4 (Crossing lemma)Let G be an UPP-DAG and
let P, and P, be two disjoint dipaths. Considéy; and Q-
two disjoint dipaths intersectinf, and P. If @ intersects
P, before@,, thenQ), intersectsP, before@;.

Proof: Suppose thaf), intersectsP, after@Q,. Two cases
can happen according, intersects first?; (Figure 7 a) or

P, (Figure 7 b). In both cases we get a contradiction; indeed
in case a) we have two dipaths betwegnandz/, and in
case b) two dipaths betwegn andyy.
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Figure 7. Crossing lemma impossibility

Figure 8 shows the only possibility for the 4 dipaths, the
conflict graph associated being’a. O

Corollary 5 LetG be an UPP-DAG. Thenits conflict graph
cannot contain &, 3.

Proof: LetP; P, andP; be two disjoint dipaths. Consider Figure 8. Crossing lemma possibility

@1 and@ two disjoint dipaths, such th&}; intersectspP;.

W.l.0.g.; suppose thap, intersects”; beforeq)s; thenq, e S, to be the set of vertices of G such that there is a
intersectsP, before; and @, intersectsP; before: a dipath fromb to v.

contradiction with the lemma applied €, Q> and P, and

Ps. O Remark thatd, N Sy = 0.

The idea of the proof is first to build an UPP-DAG
We can similarly prove that ifr is an UPP-DAG thenits  without internal cycle, then to apply the result of section 3
conflict graph cannot containf&; minus two independent  to obtain an admissible coloring, which will be updated by

edges. introducing new colors in order to obtain a valid coloring
for G.
In the preceding section we have seen thaf/ifs an Let G be an UPP-DAG built frondy by replacing the arc

UPP-DAG without internal cycle then for any family of ad- (a, b) with two arcs (a,s) and (t,b). The family of dipathg
missible requests = ; indeed the UPP property implies is replaced by where all the dipaths are the same except
that each request can be routed via a unigue dipath. for those which have their initial vertex in A, and their
Now we will study UPP-DAGSs with internal cycles. We terminal vertexy in S,. Such a dipath [xy] is replaced i&?
still do not know if the number of wavelengths is bounded by two dipaths one [xs] from: to s and the other [ty] from
with respect to the load. We strongly conjecture that the ¢ toy . Remark that? has no internal cycle, that the load of
ratio is unbounded. However we will show that for UPP- (a, s) and(t, ) is equal to the load dfu, b) and that the load
DAGs with only one internal cycle there is a tight bound.  of any other arc is unchanged. Hence we can apply theorem
1 to G and obtain a coloring with(G, 2) = (G, 2).

Theorem 6 Let G be an UPP-DAG with only one internal If m(a,b) < w(G,2) we can consider a new set
cycle. Then for any family of dipath#, of dipaths obtained by adding(G, %) — =(a,b) copies
4 of [a,b] to the set of dipaths??. Remark that if we
w(G, Z) < [w(G, 9’)} have a coloring of(G, 2’) with w'(G, #’) colors then

3 w(G,2) < J'(G,2"). Hence in the remaining we as-

sume thatr(a,b) = 7(G, ). Call this loadw and let
{lzoyol, .-, [Tr—1y~—1]}] be the family of the dipaths con-
taining (a,b). It is replaced in by the two families:
e A, to be the set of vertices of G such that thereisa  {[zos], ..., [zx—15]} and{[tyo], ..., [ty=—1]}. These dipaths
dipath fromv toa can be colored using colors since? has no internal cycle.

Proof: Call C the unique internal cycle a@f. Let (a,b) be
an arc ofC' with maximal load (upon the arcs 6f). Define:



Now we will build a valid coloring of(G, &2).

Call #(A,, s) the subset of dipaths starting from a ver-
tex of A, to s and @(t, Sp) the subset of dipaths starting
from ¢ to a vertex ofS, and let? = 2(A,, s) U Z(t, Sy).

The proof relies on the following facts:

- Fact 1: If P is a dipath of2? not in 2 (so a dipath of
G t00), then it intersects at most one dipath%f Indeed
supposeP intersect a dipathe; s] in [u;v;] and then another
dipath[z;s] in [ujv;]. Then we get two dipaths from to s,
one via[z;s] and the other viaP and thenjv, s] contradict-
ing the UPP property. The cases whéténtersect two di-
paths of (¢, ) or one in#(A,, s) and one in?(t, S;)
can be proven in a similar way.

- Fact 2: Suppose there exist two dipathsand @ of
2 not in 2 such thatP intersects a dipath o and Q
intersects another dipath ¢f, then P and Q cannot in-

So all the dipaths colored are pairwise disjoint.

At this stage of the proof we have used one extra color
for each p-tuple of colors id,, with p > 2 and therefore
we have altogethep = |C1|+3|Ca|+. ..+ (p+1)|Cp|+. ..
colors giving a bound oféﬂ colors.

To get the valué*Sﬂ we have to pay more attention to the
colors ofCs.

Suppose we can find a pair of elements(af, «;, 5;,

j = 1,2 and indicesiy;_1,i2;, 7 = 1,2 such that the di-
paths|z;,; ,s| and [ty;, ] have both color; and [z;,, s]
and[ty;,, ,| have both colog;. Then we color the 4 corre-
sponding dipaths i6+ as follows: [x;, y;, ] with @ new color
v; i, yi,] With color 8y; [zi,y:,] with color aw; [z:,v:,]
with color 3s.

All these dipaths have therefore distinct colors. It might
happen that another (unique) dipdthwith color 3; (resp.

tersect. There are different cases according to the kind ofaz, resp. 3z) intersectsty;, | (resp. [ty,], resp[ty;,]. Re-
dipaths they intersect, but in all cases we get a contradictioncolor these dipaths with coley. By Facts 1 and 2 all the

by finding either a directed cycle or two dipaths between
some pair of vertices or an internal cycleGh. As exam-
ple of one possible case, suppd3@tersectsy in [uv] and
then a dipathty;] in [u;v;] and Q intersects aftd? a dipath
[ty;] In [u;v;]; then we have an internal cycle consisting of
the dipath between andu; on P, followed by the reverse
dipath fromu; to ¢ on [ty;], then the dipath fron to u; on
[ty;], and the reverse dipath from} to v on Q.

We can subdivide the set of colors as follows:

We defineC’; as the set of colors, such that there exists
an indexk, such that the dipaths;.s] and[ty,] have both
the colora. In that case we will color the dipafty | with
colora.

We defineCs as the set of pairs of colorsand 3, such
that there exist indicesand; such thafz;s| and[ty;] have
both the colorx and[z;s] and|ty;] have both the colof.

More generally we defin€,, as the set of p-tuples of
colorsa;, j =1,2,...,p, such that there exigtindicesi;,
Jj=1,2,...,p, such that théz;, s] have color; and(ty; |
have colore;; (indices taken modulp).

Thereforer = |C1| + 2|Ca| + ... + p|Cp| + - . ..

Now we will prove that using an extra color for each p-
tuple of C,, for p > 2, we can obtain a valid coloring for
G.

So consider, fop > 2, a p-tuple of colors irC,, «;,
j=1,2,...,p, and thep indicesi;, j = 1,2,...,p, such
that [x;, s] have colore; and [ty;,] have colora;; (in-
dices taken modulp). We color inG the dipath[z;, y;, |
with a new colory and, forj > 2, the dipathgz;, y;,] with
color ;. Doing so all these dipaths have different colors.
It might happen that one dipaih; with color «; intersects
now [ty;,] (previously colored with;, 1); in that case this
dipath is unique by fact 1 and we recolor it with the ex-
tra color~. All these dipaths recoloregl cannot intersect
[x;,v:,] by Fact 1 and cannot intersect pairwise by Fact 2.

dipaths coloredy are pairwise disjoint. So we need only 5
(and not 6 as previously) colors to deal with the 4 dipaths.

We do this recoloring as soon as we can find distinct pairs
of elements irCs. So if |Cy| = 2h + r, withr = 0 or 1 we
need to recolor the dipaths with colorsah, 5h + 27 colors
a number always: §|Cs|if h > 1.

So, if |C3] > 2 or |Cy] = 0, we are able to colof with
w = |Cy|+ §|Ca| +4|C5|+ ...+ (p+1)|Cp| +. ... colors,
a number always less than or equalfor(G, 2)].

It remains to deal withCs| = 1; if, all C,, are empty for
p > 2, we colorG with w = [C1]| +3 < 3(|Cy] +2) =
%77 colors. Otherwise consider for some> 2, a p-tuple
of colors inCy, o, j = 1,2,...,p, and thep indicesi;,
Jj =1,2,...,p, such that théz;, s| have color; and(ty; |
have colora;; (indices taken modulp). We color inG
the dipath[z;, y;,] with a new colory and, forj > 2, the
dipaths|xz;,y;;] with color ;. Let o and 3 be the colors
of the unique element of’; and let the indices,; and
ip+2 be such thafz; . s] and[ty; ] have both the color
o and|z; ,s] and[ty;,, ] have both the colop. rRcolor
[©i,,,Yi,.,] With colora and[x; ¥, ,] with colora;. So
we use only an extra color for the dipaths associated to the
colors in theC, andC,,. Altogether we havey = |C4| +
24+4|Cs|+. . .4+ (p+1)|Cy|+. .. anumber always less than
orequalto] 37| asm = [C1|+1+3|Cs|+...4+p|Cp|+. . ..

a

The argument of the proof can be repeated in the
case of more than one cycle. This leads to a bound of
[gcn(G, gzﬂ if C' is the number of internal cycles of the
UPP-graphs.

To show that the bound of the theorem is tight we have to
exhibit a family of dipaths reaching the bound. The example
given in Theorem 2 shows that the bound is tightfor 2.



Indeed, fork = 2, we have a grapt and a set of 5 dipaths
such that the conflict graph is@; and thereforav = 3

Replacing each of these dipaths witlidentical dipaths we
obtain a family of5h dipaths withr = 2h andw = [32]

2
giving a ratio ofg which does not reach the bound.

Theorem 7 There exists an UPP- DAG with one internal
cycle and a family?? of dipaths such that

w(G, P) = [gw(G, 9)}

Conflict graph

Figure 9. Example for an UPP-DAG

Proof: The following example is due to Ederic Havet
(private communication). It consists of 8 dipaths generat-
ing the conflict graph consisting of a cycle of length 8 plus

chords between the antipodal vertices. Here agaia 2

andw = 3; but if we replace each of these dipaths with
identical dipaths we obtain a family? of 8k dipaths with

7 = 2h andw = [22]; indeed in the conflict graph an in-
dependent set has at most 3 vertices and so we need at least
% colors. Therefore this family satisfies the theorem.

O
5. Concluding remarks

In this article we have determined when a DAGsatis-
flesw(G, &) = n(G, &) for any family of dipathsZ”.
We have introduced an apparently new family of DAGS
the UPP-DAGS. We believe that they have already been
used in parallel computing but could not find any refer-
ence. Characterization and study of the properties of these
digraphs is of interest in itself. We conjecture that there is
no bouded ratio between the number of wavelengths and
the load in presence of an unlimited number of cycles. It
will be also interesting to find other digraphs which sat-
isfy w(G, ) = n(G, &) for any family & or for some
specific families. Finally the techniques developed here
can help to solve the problem which initially motivated this
study that is to find for a given w the maximum number of
requests (or dipaths in UPP-DAGS) chosen among a given
family of requests that can be satisfied (for example in the
all'to all case, ie one dipath for any possible pair of vertices).
Our theorem shows that we have only to compute the load.
The case of rooted trees appears already as a difficult one.
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