Jean-Claude Bermond
email: bermond@sophia.inria.fr

Yu ⋆⋆

Optimal gathering algorithms in multi-hop radio tree-networks with interferences

We study the problem of gathering information from the nodes of a multi-hop radio network into a pre-defined destination node under the interference constraints. In such a network, a message can only be properly received if there is no interference from another message being simultaneously transmitted. The network is modeled as a graph, where the vertices represent the nodes and the edges, the possible communications. The interference constraint is modeled by a fixed integer dI ≥ 1, which implies that nodes within distance dI in the graph from one sender cannot receive messages from another node. In this paper, we suppose that it takes one unit of time (slot) to transmit a unit-length message. A step (or round) consists of a set of non interfering (compatible) calls and uses one slot. We present optimal algorithms that give minimum number of steps (delay) for the gathering problem with buffering possibility, when the network is a tree, the root is the destination and dI = 1. In fact we study the equivalent personalized broadcasting problem instead.

Introduction

Problem statement

The problem we consider in this paper was motivated by a question asked by France Telecom about "how to provide Internet connection to a village" (see [START_REF] Bertin | Accès haut débit en zone rurale: une solution "ad hoc[END_REF]) and is related to the following scenario. Suppose we are given a set of communication devices placed in houses in a village (for instance, network interfaces that connect computers to the Internet). They require access to a gateway (for instance, a satellite antenna) to send and receive data through a multi-hop wireless network. In this network, the devices communicate exclusively by means of radio transmissions, referred to as calls. A call involves a message and two devices, the sender and the receiver. The communication is subject to the following technological constraints:

Reachability constraint: in order to be reached by a call, the receiver of this call must be within reachability distance of the sender. Interference constraint: a call may interfere with calls that are in the neighborhood of the receiver, or a message can be properly received only if no other senders are in the neighborhood of the receiver.

t-gathering problem: suppose each device of the network has a piece of information. The t-gathering consists of collecting (gathering) all these pieces of information into a special device t, called the gathering node, by the means of calls subject to the two constraints described before. The t-gathering problem is to realize such a constrained gathering without concatenating messages and with the minimum delay.

An equivalent formulation is the so-called s-personalized broadcast : here a single device (the gateway in the problem of France Telecom) called source s has a different piece of information to broadcast to every other device in the network by the means of calls subject to the two constraints described before. The s-personalized broadcast is to realize such a constrained gathering without concatenating messages and with the minimum delay.

A slight variation of this problem has received much attention in the context of sensor networks. In such networks, each device contains a sensor and the gathering problem corresponds to the situation where information collected at each sensor has to be gathered to a single central device (base station). However, most of the articles are concerned with minimizing the energy consumption and allow aggregation of data. The work which is most related to ours is [START_REF] Florens | Lower bounds on data collection time in sensory networks[END_REF], in which reachability and interference constraints are also assumed, but most of its results apply for the case of directional antennas.

Model and assumptions

According to the model adopted in [START_REF] Bermond | Hardness and approximation of gathering in static radio networks[END_REF], the network described above is represented by an undirected graph G = (V, E), where V is the set of nodes, each of which representing a communication device, and E is the set of edges, representing the pairs of nodes involved in possible calls. There is a special pre-defined node s called the source (sink in the gathering case). Let d G (u, v) indicate the distance in G, defined as the length of a shortest path between u and v. We model the reachability and the interference constraints by two positive integers, respectively d T ≥ 1 and d I ≥ d T . An important case is d T = 1, which means that a node is able to communicate only with its neighbors in the graph (or equivalently G is the communication graph). The second parameter d I models the interference constraint as follows: if a receiver is within distance d I from a sender, then this node cannot receive any other message. If u sends a message m to v, then the call (u, v) interferes with every node w ∈ V such that d G (u, w) ≤ d I . Two calls are said to be compatible if they do not interfere with each other (otherwise, they are incompatible). More precisely, two calls (s 1 , r 1) and (s 2 , r 2), for

r 1 , r 2 , s 1 , s 2 ∈ V , are compatible if d G (s 1 , r 2) > d I and d G (s 2 , r 1) > d I .
Observe that one of the consequences of the interference constraint is that s 1 = r 2 and s 2 = r 1 , which implies that a node is not able to send and receive messages simultaneously. A step (round) is a set of compatible calls. We assume that every occurrence of a call takes one unit of time (or one slot) and involves a one unit-length message.We also assume that buffering is possible in intermediate nodes.

In this paper, our aim is to find efficient algorithms that give optimal solutions for the s-personalized broadcast problem when d T = d I = 1 and G is a tree.

Related work

The broadcasting and gossiping problems have been widely studied for wired networks (see [START_REF] Hromkovic | Dissemination of Information in Commmunication Networks: Part I[END_REF]), including models that assume no concatenation of messages (see [START_REF] Bermond | Fast gossiping by short messages[END_REF]). For radio networks, the case when d I = 1 is studied only for broadcasting in [START_REF] Elkin | Logarithmic inapproximability of the radio broadcast problem[END_REF][START_REF] Gaber | Centralized broadcast in multihop radio networks[END_REF] and gossiping in [START_REF] Christersson | Gossiping with bounded size messages in ad-hoc radio networks[END_REF][START_REF] Chrobak | Fast broadcasting and gossiping in radio networks[END_REF][START_REF] Gasieniec | Gossiping with unit messages in known radio networks[END_REF]. Note that broadcasting is different from our problem which is personalized broadcasting, as in the process of broadcast, the same information has to be transmitted to all the other nodes and so flooding techniques can be used. Recently the gathering problem has gained much attention. In [START_REF] Bermond | Hardness and approximation of gathering in static radio networks[END_REF], assuming an arbitrary size of information in each node, a protocol for general graphs with an approximation factor of at most 4 is presented. It is also shown that the problem of finding an optimal gathering protocol does not admit a Fully Polynomial Time Approximation Scheme if d I > d T , unless P=NP, and is NP-hard if d I = d T . In the case where each node has exactly one unit of information to transmit (or to receive which is the case we consider), the problem is NP-hard if d I > d T but the complexity is unknown for d I = d T . An extension of the problem where messages can be released over time is considered in [START_REF] Bonifaci | An approximation algorithm for the wireless gathering problem[END_REF] and a 4-approximation algorithm is presented. In [START_REF] Bermond | Efficient gathering in radio grids with interference[END_REF], optimal solutions are provided for the two-dimensional square grid with d T = 1. In [START_REF] Bermond | Gathering algorithms on paths under interference constraints[END_REF] the case of a path is considered for d T = 1 and any d I . The problem is solved when the sink (source) is at one end of the path and only partly solved when the sink is in the middle of the path.

As mentioned before, sensor networks have been the subject of many papers. But, most of them deal with minimizing the energy consumption or maximizing the life time of the sensor network. In [START_REF] Florens | Lower bounds on data collection time in sensory networks[END_REF] they minimize the delay but their model is slightly different from ours as each node is equipped with directional antennas and no buffering capacity is available in the nodes. Furthermore they only suppose that a node cannot receive and send simultaneously, and more precisely, this corresponds to the case in our model when d T = 1, interference distance is zero and each node is not allowed to receive more than one message at a time. Under their assumptions, they give optimal (polynomial) gathering protocols for path and tree networks. Their work has been extended to general graphs in [START_REF] Gargano | Optimally fast data gathering in sensor networks[END_REF] for unitary messages. In [START_REF] Bermond | Gathering with minimum delay in tree sensor networks[END_REF], a companion paper to that one, the same problem as ours is considered, but no buffering is allowed. Finally, another related model can be found in [START_REF] Klasing | Complexity of bandwidth allocation in radio networks: the static case[END_REF], where the authors study the case in which steady-state flow demands between each pair of nodes have to be satisfied.

Main result

In this paper, we deal with the situation when G is a tree T with N vertices and with a source (or root) s and d T = d I = 1 which can be viewed as a generalization of the results of [START_REF] Florens | Lower bounds on data collection time in sensory networks[END_REF] and [START_REF] Gargano | Optimally fast data gathering in sensor networks[END_REF]. In their case the only constraint is that a node cannot receive and transmit at the same time (which can be viewed as d I = 0). They proved that the minimum number of steps is either N -1 or 2n 1 -1 where n 1 is the size of the biggest subtree.

Here we need to consider not only subtrees, but also subsubtrees. Indeed, when d I = 1, two calls in two different branches are incompatible only if they have the same sender. If two calls (s 1 , r 1) and (s 2 , r 2) in the same path are incompatible and the arcs are in the order: s, . . . , s 1 , r 1 , . . . , s 2 , r 2 , . . ., then d(r 1 , s 2) ≤ 1. Otherwise two calls in the same path are compatible if they are separated by at least two arcs.

Here we will have roughly three different forms of trees. Either the tree looks like a path with a big sub-sub-tree formed by the vertices at distance ≥ 2 from s, in which case we will need roughly 3 times the size of this big sub-component. Or the tree has only a big component but inside this component the sub-components are somewhat balanced in which case we need roughly 2 times the size of this big component.In the remaining case (balanced tree an example being a spider (generalized star) we need N -1 steps.

To state more precisely our main result, let assume that deg(s) = m. Let r 1 , r 2 , ..., r m be the neighbors of s, and T i be the subtree of T with root r i , where 1 ≤ i ≤ m. The size of T i is simply |T i | = n i . Similarly let r i,j be the neighbors of r i and T i,j be the subtree with root r i,j . The size of T i,j will be denoted by |T i,j | = n i,j . Furthermore, we will assume that the T i,j 's are ordered according to their sizes. So

n i,1 = max n i,j Let M i = max{2n i -1, n i + 2n i,1 -1}.
For the rest of the paper, subtrees are ordered according to the values of

M i : M 1 ≥ M 2 ≥ M 3 ≥ . . . ≥ M m .
In case of equality the order is determined by the sizes.

Theorem 1. When d T = d I = 1 and T is a tree, the minimum number of steps to complete a personalized broadcasting (or gathering) is equal to max{N -

1, M 1 + ǫ}, where ǫ = 1 if M 1 = M 2 and 0 otherwise.
Although the lower bound is easy to prove and the minimum time can be expressed in a simple formula, in order to obtain optimal algorithms many different situations are needed to be considered and a lot of experiments were performed before the arrival to the final optimal algorithms.

For the rest of the paper we will simply denote by g(T) (instead of g(T, s, d T , d I) used in [START_REF] Bermond | Hardness and approximation of gathering in static radio networks[END_REF]) the minimum number of steps required to complete the personalized broadcast from s (gathering to s) of one unitary message to each node of T under the interference constraint defined by d I = 1.

Lower bounds

. Proposition 1. g(T) ≥ max{N -1, M 1 + ǫ} Proof.
We exhibit different sets of incompatible calls which must be scheduled in different steps (or rounds).

Consider the calls on the arcs (s, r i) and they are all incompatible and there are N -1 of them, as this is the number of messages needed to be sent by the source. So N -1 is a lower bound for g(T).

Similarly, for each i, the n i calls on the arc (s, r i) and the n i -1 arcs leaving r i , are all incompatible. Their number is 2n i -1. So 2n i -1 is a lower bound for g(T).

Consider also the following incompatible calls : those on the arc (s, r i) and there are n i of them, the n i,1 calls on the arc (r i , r i,1), and the n i,1 -1 on the arcs leaving r i,1 . Altogether we have n i + 2n i,1 -1 incompatible calls and this is also a lower bound for g(T).

Hence, M i and therefore M 1 is a lower bound. If M 1 = M 2 , then any algorithm starts calling one of r 1 or r 2 only at step 2 or after, and so it needs at least M 1 + 1 steps.

In the next subsections, we present algorithms that perform personalized broadcasting, which will give optimal solutions when there is only one subtree and will also be used for the general case, in particular when there are two subtrees, by applying them to each subtree. We describe the algorithms for one subtree T i rooted in r i . We call T i a type 1 subtree if M i = 2n i -1. Otherwise, it is called a type 2 subtree.

CASE 1:

T i is a subtree of type 1.

We first present an algorithm for a type 1 subtree T i . In this case recall that

M i = 2n i -1.
Let X t denote the set of vertices to which the source has sent a message before step t (that is at the end of step t -1) and let T t i be the subtree obtained from T i by deleting X t . Similarly denote by T t i,j the component obtained from T i,j by deleting the vertices of X t . Let n t i = |T t i | and n t i,j = |T t i,j |. The idea of the algorithm is the following: the source sends every odd step to r i a message destinated to a leaf of a big component of T i , in order to guarantee that at any step there is no component having more than half of the vertices (or n t i,j ≤ n t i /2). Also in two consecutive odd steps, the source will send to different components of T i in order to be able to do compatible calls efficiently in even steps in different components. We first describe the algorithm, then use an example to illustrate it and finally we prove that it is valid and takes M i steps (which is the lower bound as

M i ≥ N -1 = n i -1).
Algorithm A: Personalized broadcasting for a subtree of type 1 At the beginning X 1 = ∅ and

T 1 i = T i . -During an odd step t = 2k -1 , k = 1, 2, . . . , n i
Let T t i,j k be the largest component of T t i not chosen at the preceding odd step (that is j k = j k-1) and let x k be a leaf in this component. The source s sends the message m k for x k on the arc (s, r i). Then we update

X t+1 = X t ∪ x k and T t+1 i = T t i -x k .
During the odd steps, both r i and the r i,j are inactive. Finally any vertex at distance ≥ 3 from the source forwards immediately the message received at the preceding step except when it is the destination, in which case the message is stored (if it is m l with destination x l , then the message is forwarded to its neighbor on the path to x l).

-During an even step t = 2k , k = 1, 2, . . . , n i -1 -r i sends to r i,j k the message m k received at step 2k -1 with the destination x k in T t i,j k . -r i,j k-1 sends the message m k-1 (received at step 2k -2) to its neighbor on the path to x k-1 , except when it is the destination, the message is just stored.

-Any vertex at distance ≥ 3 from the source forwards immediately the message received at the preceding step except when it is the destination, in which case the message is stored.

Example: Table 1 illustrates how algorithm A works when it is applied to the type 1 tree given in Fig. 1.

s r 1 b c d r 1,3 a r 1,1 r 1,2 s r 1 b c d r 1,3 a r 1,1 r 1,2 u w v Fig. 1 Fig. 2 step m1 m2 m3 m4 m5 m6 m7 m8 1 s → r1 2 r1 → r1,1 3 s → r1 4 r1,1 → a r1 → r1,2 5 a → b s → r1 6 r1,2 → d r1 → r1,1 7 s → r1 8 r1,1 → a r1 → r1,2 9 s → r1 10 r1 → r1,1 11 s → r1 12 r1,1 → c r1 → r1,3 13 s → r1 14 r1 → r1,1 15 s → r1
Table 1. personalized broadcasting on the tree in Fig. 1 with source s using Algorithm A.

Here, N = 9, n 1 = 8 and n 1,1 = 4. As M 1 = 15 = 2n 1 -1 = n 1 + 2n 1,1 -1, it is a type 1 tree. At step 1, s sends a message destinated to a leaf in T 1,1 (the largest component), for example x 1 = b (we could have chosen c). So m 1 = m(b), the message destinated to b. At step 2, r 1 sends m 1 to r 1,1 . At step 3, s sends a message destinated to a leaf in the largest component different from T 3 1,1 , namely T 3 1,2 and the only choice is x 2 = d. At step 4, r 1 sends to r 1,2 m 2 = m(d) and r 1,1 sends m 1 to a (its neighbor on the path to b). At step 5, s sends a message destinated to a leaf in T 5 1,1 (the largest component), for example x 3 = a (we could have chosen c). Also a, which is at distance 3 from s, forwards m 1 to b where it is stored. The other steps are described in table 1: we have x 4 = r 1,2 (we could have chosen r 1,3), Proposition 2. Algorithm A is valid, i.e. all the calls are compatible.

Proof. Consider a call with a sender s and it happens in an odd step. As r i and r i,j are inactive, only the source is sending among the vertices at distance at most 2 from s and so this call is compatible with the others calls whose senders are at distance ≥ 3. Now consider a call with a sender r i and it must happen in an even step. Suppose it is a call done at step 2k from r i to r i,j k . This call is compatible with the other calls in the component T i,j k , as they involve senders at distance at least 4 from s. Indeed the preceding messages in T i,j k have been sent at step at most 2k -4 from r i to r i,j k and at step at most 2k -2 from r i,j k to a neighbor and then forwarded. Therefore they either arrived at the destinations or at a vertex with distance at least 4 from s. They are also compatible with the calls in other components as none of them involve r i .

If two calls are in different components T i,j , then they are compatible as the distance from a sender to a receiver of the other call is at least 3. Finally two calls with senders in the same component T i,j are compatible and this follows from the fact that they are sent by r i,j within two steps differing by at least 4, as the same component cannot be chosen in two consecutive even steps. Because the distance between two such senders is at least 4, the distance between a sender and the other receiver is at least 3 > 1 = d I .

Proposition 3. At the end of the M i = 2n i -1 steps of the algorithm A all the vertices of T i have received their own messages and so the gathering time is

M i = 2n i -1.
Proof. We first prove that at any step there is no component T t i,j such that n t i,j > n t i 2 . Indeed, it is true at step t = 1 as indeed T i is type 1, 2n 1 i,1 ≤ n i . Suppose that the property is not true and let t 0 = 2k 0 -1 be the first step at which it happens. Then there exists such a component of size strictly bigger than n t 0 i 2 . Hence, in the two preceding odd steps, this component was the biggest one and it should have been chosen in one of these two steps, and therefore, this component was already of size bigger than half at step t 0 -2 = 2k 0 -3 or t 0 -4 = 2k 0 -5 contradicting the choice of k 0 .

Therefore at any step t = 2k -1 there is a new vertex x k to which a message can be sent. Hence, all the messages have been sent by the source at end of step

M i = 2n i -1.
Consider a message m k which is sent by s at step 2k -1. If k = n i this is the last message with destination r i and it arrives at step 2n i -1 = M i .

Otherwise r i sends m k at step 2k to r i,j k . If r i,j k is its destination, then it arrives at step 2k ≤ 2n i -2 < M i , as k < n i . Otherwise, m k is sent by r i,j k on the path to x k at step 2k + 2 and then forwarded immediately till it reaches x k . Let d(s, x k) be the distance between s and x k . Note that d(s, x k) ≥ 3. The messages with destination on the path from s to x k are all sent after x k (otherwise we would have not chosen a leaf contradicting the algorithm). Therefore k

≤ n i -d(s, x k) + 1. Finally m k is received by x k at step 2k + d(s, x k) -1 ≤ 2n i -d(s, x k) + 1 ≤ 2n i -2 = M i -1 as d(s, x k) ≥ 3.

CASE 2:

T i is a subtree of type 2.

Here M i = n i + 2n i,1 -1. So there is a component T i,1 such that 2n i,1 > n i . The idea consists in considering a set of vertices S i in this component such that the subtree T * i obtained by deleting them is of type 1 and then to apply algorithm A to T * i = T i -S i . For the vertices of S i note that, in the formula for M i , they are counted for 3. So we will send the messages destinated to them each 3 steps.

A natural way will be to send to the vertices of S i during the first 3|S i | steps of the algorithm: the source sends first a message to them at steps 3h, where 0 ≤ h ≤ n i -n * i -1 and then the message is forwarded immediately till it reaches the destination. This algorithm can be also viewed in an inductive fashion: take a leaf u in T i,1 ; at step 1, the source sends to r i the message to u and then the message is immediately forwarded; at step 2, (r i sends it to r i,1 and so on); at step 4 we apply the algorithm to the tree Tu using either induction or the algorithm A if Tu is of type 1.

This idea works perfectly for one subtree and will be in fact used later for 3 or more subtrees in Section 4.3. But unfortunately it does not lead to a solution in all the cases. For example suppose we have two subtrees. If T 1 is of type 1, then the source will send every odd step. Assume that T 2 is of type 2 with M 2 = M 1 -1; so the source should first send to it at step 2. But then after 3 steps, the source has to send again at step 5. however, s is in fact busy sending to T 1 in this step.

So we will proceed in a different manner by first sending to vertices in T * i using Algorithm A, and then use what we call a 3-step extension to send to the rest of vertices by pushing the messages along some paths. So, messages arrive in the leaves only at the last steps of the algorithm. In fact if one thinks in terms of gathering (where the algorithm is the reverse of that for personalized broadcasting) it is more natural to send first the messages from vertices far away that are those from S i = T i -T * i . We develop an algorithm that proceeds in 2 phases. In the first phase, each vertex receives an integer label which indicates the step in which this message will be sent by the source in the second phase. Therefore, in the second phase, the source will use the information from the labels given in the previous phase to send the proper message at each step. The algorithm is described below and will then be illustrated by an example. We will prove that it is valid and takes M i steps (which is the lower bound as

M i ≥ N -1 = n i -1).
Algorithm B: Personalized broadcasting for a subtree of type 2 More precisely, let S i be a set of σ i vertices of T i,1 such that, after deletion, we obtain a tree

T * i = T i -S i with n * i = n i -σ i = |T * i | vertices. Now M * i = 2n * i -1 = n * i + 2n * i,1 -1 where n * i,1 = n i,1 -σ i .
Therefore, T * i is a type 1 subtree. Phase 1 : Run the algorithm A on T * i , except that the source sends at step t = 2k -1 just a label of value k (1 ≤ k ≤ n * i) (not the message). Then the source sends successively to each node of S i an unique label (in the range [n * i +1, . . . , n i]) by using σ i times the following "3-step extension" (3σ i more steps). Order the vertices of S i = {s n * i +1+h , 0 ≤ h ≤ n in * i -1} such that the following property is satisfied: for each h, s n * i +1+h is connected to T * ∪ {s n * i +1 , . . . , s n * i +h }. Hence there exists a path from s to s n * i +1+h , where all the nodes except the last one (s n * i +1+h) have already received a label. Let the vertices of this path be

u 0 = s, u 1 = r i , u 2 = r i,1 , u 3 , . . . , u d h = s n * i +1+h , where d h = d(s, s n * i +1+h
). Do the following 3 steps in any order: in one step, do the compatible calls (u 3p , u 3p+1), in the next step, do the compatible calls (u 3p+1 , u 3p+2) and in the last one, do the compatible calls (u 3p+2 , u 3p+3).

During each call, each sender (if it is not the source) sends the label it has stored. Therefore at the end of the "3-step extension" each node has the label of its predecessor on the path. The source sends to r i a new label n * i + 1 + h. Note that the calls in an extension are compatible with the calls of any other extension as they are done at different steps.

Note also that the order in which we organize the 3 steps has no importance. However for the purpose of clarity and using in theorem 4, we do the steps in an order such that the source is always sending at an odd step as soon as it becomes possible. So we do the calls (u 3p , u 3p+1) (including the call with the source as a sender) at step 2n * i + 3h + ǫ, where ǫ = 1 if h is even and 0 if h is odd. Here h ranges from 0 to σ i -1 = n in * i -1. We do the calls (u 3p+1 , u 3p+2) at step 2n * i + 3h + (1ǫ) and the calls (u 3p+2 , u 3p+3) at step 2n * i + 3h + 2. So the source sends at steps 2n * i + 1, 2n * i + 3, 2n * i + 7, . . . , 2n * i + 6q + 1, 2n * i + 6q + 3, . . . and is inactive at steps 2n * i + 6q + 5. At the end of the phase 1 of the algorithm, each node has received exactly one unique integer label ranging from 1 to n i . Let x k be the node which has received the value k.

Phase 2: Run the same algorithm again, but in the first part the source sends at step t = 2k -1, 1 ≤ k ≤ n * i , the message m k destinated to x k , and in the extensions at step 2n * i + 3h + ǫ, where ǫ = 1 if h is even and 0 if h is odd, the message m n * i +1+h to x n * i +1+h , where 0 ≤ h ≤ n in * i -1. (Another way to describe this is that in the steps when the source s sends a message, it is m(v) where v contains the smallest label and m(v) has not been sent.).

Example: Consider the type 2 tree given in Fig. 2 obtained by adding three vertices u, v and w and edges (b, u), (u, w) and (c, v) to the tree in Fig. 1. Here,

n 1 = 11, n 1,1 = 7 and n * 1 = 8. Hence, M 1 = 24 = n 1 + 2n 1,1 -1(> 21 = 2n 1 -1)
. Remember that by deleting the vertices u, v and w, the resulting tree is type 1. Now we illustrate algorithm B by applying it to this tree.

In phase 1, first we apply Algorithm A to the subtree obtained by deleting vertices u, v and w from the given tree (the resulting tree is exactly that of Fig. 1), and send a label to each vertex in this subtree, and this takes 15 steps. The resulting labels which are those obtained in the previous example are given in the first row of Table 3. Then 3-step extension is used to extend the labels to the vertices u, v and w. Note that in this process, the labels given in the first part of 15 rounds will be changed. The 3-step extension is illustrated in Table 2 . For example, steps 16, 17 and 18 are used to extend the labeling to the vertex u by moving the labels from s to u along the path (s, r 1 , r 1,1 , a, b, u). We need 9 steps to complete the labeling of u, v and w, Table 3 gives the labels of vertices at the end of each 3-step extension in the phase 1 of Algorithm B. The source is not sending at step 21.

Once we have the labels for the vertices, we are able to determine which messages the source should send at different steps. Now we are ready for the second phase of the algorithm. In phase 2, we run again the same algorithm, except this time, instead of labels, at step t = 2k -1, for 1 ≤ k ≤ 8, the source sends the message m(v), where the label of the vertex v from the first phase of the algorithm is k. For example, s sends m 1 = m(w) at the first step as x 1 = w or the label of w is 1, and sends m 2 = m(d) at the third step, as x 2 = d or the label of d is 2 and so on. Then s sends at step 17 m(a) as x 9 = a, at step 19, m(r 1,1) as x 10 = r 1,1 , and at step 23, m(r 1) as x 11 = r 1 . Note that the protocol

step 16 r1 → r1,1 b → u 17 s → r1 a → b 18 r1,1 → a 19 s → r1 c → v 20 r1 → r1,1 21 r1,1 → c 22 r1 → r1,1 b → u 23 s → r1 a → b 24 r1,1 → a u → w
Table 2. 9 steps of 3-step extension to label u, v and w. is exactly the same as that of the previous example for the first 15 steps and so they are omitted in the table 4. In fact, the vertices not in T 1,1 have received their messages at the end of the first 15 steps (they are the messages m 2 = m(d), m 4 = m(r 1,2) and m 6 = m(r 1,3) that have arrived at their destinations). We indicate in the table 4 the steps of transmission of the other messages Proposition 4. Algorithm B is valid and uses M i steps (so g(T i) = M i).

Proof. The algorithm B is valid as during each step we have only compatible calls (that is the case for algorithm A applied to T * i and then the calls of each step of the extension have been designed to be compatible). At the end of the algorithm each vertex has received its message. In fact, a vertex will receive its message in the first part of the algorithm (before the 3-steps extension) if it is in T i,j , where j = 1, and otherwise, in one of the 3-steps of the last extension. The algorithm uses 2n * i -1 steps in the first part and then 3σ i steps for the extensions. Therefore we have altogether 2n

* i + 3σ i -1 = (n * i + σ i) + (n * i + 2σ i) -1 steps. But step m1 m3 m5 m7 m8 m9 m10 m11 16 b → u r1 → r1,1 17 a → b s → r1 18 r1,1 → a 19 c → v s → r1 20 r1 → r1,1 21 r1,1 → c 22 b → u r1 → r1,1 23 a → b s → r1 24 u → w r1,1 → a
n * i + σ i = n i . By definition of T * i , n * i = 2n * i,1 = 2(n i,1 -σ i) so n * i + 2σ i = 2n i,1
and so the number of steps is n i + 2n i,1 -1 = M i .

General Algorithms

We will apply basic algorithms (A or B according to the type of subtrees) first in the case of a single subtree and then of two subtrees. For m ≥ 3, we will use some other techniques and induction; however we will deal first with some special cases. Recall that subtrees are ordered according to the values of M i :

M 1 ≥ M 2 ≥ M 3 ≥ . . . ≥ M m .
In case of equality the order is determined by the sizes.

Case of one subtree.

In that case we apply directly the basic algorithm to the tree and we get Theorem 2. In the case where T consists of one subtree T 1 , g(T) = M 1 > N -1.

Case of two subtrees.

We apply the basic algorithm to the subtree T 1 . All the vertices are informed in M 1 steps. We also apply simultaneously the basic algorithm to the subtree T 2 , but starting at step 2 ; all the steps are translated by one and therefore all vertices of T 2 are informed in M 2 + 1 steps. Theorem 3. In the case where T consists of two subtrees T 1 and T 2 , g(T) = max{M 1 , M 2 + 1} (this value is equal to max{N -1, M 1 + ǫ} where ǫ = 1 if M 1 = M 2 and 0 otherwise).

Proof. Let us first prove that all the calls are compatible. The validity of Algorithm A or B covers the case when two calls belong to the same subtree. That is the case also for the calls having the source as sender; indeed both in algorithm A or B the source is sending only during some odd steps. So here the source sends to r 1 at some odd steps and to r 2 at some even steps. Finally if two calls belong to different subtrees and are not both sent by the source, then the distance between one sender and the other receiver is at least 2.

Altogether the algorithm uses max{M 1 , M 2 + 1} = M 1 + ǫ steps. We claim that M 1 + ǫ ≥ N -1, which will prove that the lower bound is attained in that case. The claim is true if M 1 ≥ N -1. If M 1 ≤ N -2, then 2n 1 -1 ≤ M 1 ≤ N -2 and 2n 2 -1 ≤ M 2 ≤ N -2. (1) That implies n 1 +n 2 ≤ N -1. But N -1 = n 1 +n 2 and therefore there are equalities everywhere in [START_REF] Bermond | Gathering algorithms on paths under interference constraints[END_REF]; that is n 1 = n 2 = N -1 Due to lack of space the proofs are omitted in this section. Complete proofs can be acessible via the webpage of the first author (http://www-sop.inria.fr/mascotte/personnel/Jean-Claude.Bermond/). We first deal with a special case Theorem 4. Suppose T consists of at least 3 subtrees such that T 1 and T 2 are of different types and M 1 ≥ N -1 and M 2 = M 1 -1. Then g(T) = M 1 .

Then, for the case m > 2, when we are not in the special case of the preceding theorem 4, we apply induction on N and present algorithms which complete the personalized broadcasting in the number of steps that meet the lower bound. Therefore, the exact number of g(T) is determined. We will suppose that the source sends at steps 1 and 2 to two different subtrees. Furthermore, if M 1 ≥ N -1 and T 1 is of type 1, the algorithm used to send messages to T 1 is the basic algorithm A (in particular the source will send to r 1 in all odd steps). We assume that N > 4 otherwise it is trivial and we will distinguish 3 cases getting the following theorems.

Conclusion

In this paper, we present efficient algorithms that give optimal solution for the gathering problem with buffering possibility, when the network is a tree with d I = 1. It should be noted that in our algorithms, the size of our buffers never exceeds 1. However with such a small buffer, we can in some cases decrease considerably the gathering time comparing to the non buffering assumption considered in [START_REF] Bermond | Gathering with minimum delay in tree sensor networks[END_REF]. An extension would be to consider a non uniform distribution of messages. Our algorithm can be easily extended to the case where a node receives or sends w(u) > 0 messages ; indeed it suffices to replace a vertex with w(u) messages by w(u) vertices with one message. However if w(u) is allowed to be 0, then the problem will become much more complicated.

It would also be interesting to investigate this problem for different value of d I or some other structures of networks. In particular it is still an open question to decide if the problem is polynomial for trees in general.

 x 5 = c, x 6 = r 1,3 , x 7 = r 1,1 and x 8 = r 1 . Therefore, m 1 = m(b), m 2 = m(d), m 3 = m(a), m 4 = m(r 1,2), m 5 = m(c), m 6 = m(r 1,3), m 7 = m(r 1,1) and m 8 = m(r 1).

 of the vertices x11 x10 x4 x6 x9 x7 x8 x2 x3 x5 x1

2 and M 1 = 1 3. 3

 2113 M 2 = N -2 and therefore M 1 + ǫ = N -General case: m > 2

Theorem 5 .

 5 Suppose T consists of at least 3 subtrees andN -1 > M 1 . Then g(T) = N -1.Theorem 6. Suppose T consists of at least 3 subtrees and M 1 ≥ N -1 and T 1 is of type 2. Then g(T) = M 1 + ǫ.

Theorem 7 .

 7 Suppose T consists of at least 3 subtrees and M 1 ≥ N -1 and T 1 is of type 1. Then g(T) = M 1 .

Table 3 .

 3 Labels of vertices after the phase 1 of Algorithm B.

Table 4 .

 4 Last 9 steps of phase 2 of Algorithm B.

Acknowledgments

We would like to thank all the persons who help us with fruitful discussions in particular L. Gargano, A. Liestman, J. Peters and S. Perennes.

⋆ Partially supported by the CRC CORSO with France Telecom, by the European FET project AEOLUS, and by the INRIA associated team RESEAUXCOM with S.F.U. ⋆⋆ Partially supported by the Natural Sciences and Engineering Research Council of Canada and by the INRIA associated team RESEAUXCOM with S.F.U.