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Abstract— In this paper we look at the problem where we regression equations. Our objective is only concerned with
have two mixed sets of data on the same scatter plot. We the estimation of the local model, the generating switching
want to calculate linear regression lines for each of the two process itself is not here estimated ; however, as it will

sets, but first of all we need to decide which data belong to b lat dt timate th itchi th
which set. We propose one possible solution to this problem € seen later, we need (o estimate the swilching or the

involving data classification and parameters estimation. partitioning of the data. As is evident, if the partitioning
is known, the problem of identifying the local models can

Keywords: scatter plots, switching regression, mixture ofaqjy he solved using standard techniques. However, when

models, change of regime, differential geometry. this partitioning is unknown the problem becomes much
more difficult [12] unless the local models are known.
. INTRODUCTION Our approach deals with a combined estimation allowing

During the last few decades a number of methodologictle partitioning or the data allocation to clusters and the
papers on models with discrete parameter shifts have bdecal model parameters. In the paper, we consider a simpler
published and revised interest in the so-called reginversion of the problem, where the number of local linear
switching model. Since the pioneer work of Quandt (1958)odels and their order are a priori known. The contribution
[11], various attempts have been made to fit data tf the paper is to propose an original approach to solve a
models with changes of regimes. The basic idea of regirakassical problem.
switching models is that the process under considerationThe basic problem that we are looking at then is fairly
is time-invariant conditional on a regime variable whicleasy to state. Quite simply we assume that we are given a
indicates the regime prevailing at each time. This kind &fcatter plot, where there are obviously two fairly distinct
representation has been successfully developed in sevelsth sets. We want to determine which data belong to which
scientific communities and mainly for multi-models [9]set before carrying out a regression analysis.
hybrid systems [3], time-series [8] and mixture models [5], The solution presented in the following section is based
[10]. on ideas from differential geometry and could be thought of

There is a long history of work on change detection ias an information geometry approach to the problem [1].
time-series [2] and many studies assume that within eagbllowing the section 2 where our method is presented,
time-segment, the distribution of data does not depend ghe section 3 is devoted to numerical aspects of the cal-
time. The most widely used assumption is the piecewisglations. Then, in section 4 some examples are presented
linear model in which each segment is described by a linelgsfore looking at conclusions and perspectives in section
regression [4], [8]. In the field of data analysis, the san®& There is also a technical annex to the paper where some
objective is underlying but the time is not a variable thasf the tools from differential geometry are resumed.
can be used to describe the models. In this area, we find
the well known problem of classification for which it is

desired to separate the data into clusters and to describe Il A POSSIBLESOLUTION

each cluster by a model [5]. A more precise statement of the problem is that we
Our paper deals with the second class of problem aade given two data set$; = (x},2?),i € Z; and
we are mainly interested with the problem of mixingS, = (z},27),j € Zc whereZ; = {iy...im,} and



Zo = {j1-.-Jm,} are two subsets of index. The data arevould like to compare them at the origin (the point 0).
mixed together of course and we don’t know the values @his is where the differentialsy;(—t), come in useful,
my andme.. All we know about the data is that they belondecause this operator pulls a tangent vectar;dt)v, (i.e.
to two distinct sets and within each set they are related by («y(t)vg) back to the origint = 0 and we know that
a linear equation: ar(—t)sax(t)x = 1 wherel indicates the identity matrix
P=xrt 46 xzeS, *=X\x'+pu ze€8S (la) [6]. Let
— P S e
where~ andd are unknown but different for each of the a(=2)x = an(=27)e - aa(=20). (6)
two sets. For numerical reasons we assume that the dat¥hen applying operator(—z), on d;¢(z) will pull

are normalised and all lie within the squdfe;|| < € for tangent vectors back to the origin. By repeated application

some parametesr > 0. of the CBH formula we can develop a multinomial approx-
Our idea is very simple, we map the points from the Zmation for any of the columns of the jacobian matrix of

dimensional space where the data lie into a higher dimep-when pulled back to the origin. In our case, the most

sional space, in our case a 4-dimensional space (becagsgplicated expression is fé¢ which is:
we consider two data sets). We then carry out operations

in the higher dimensional space that are designed to give a(—2)s0a = i (z1)ks adb ( i (22)k=
* k!

indications as to whether or not two data points belong Papr P ko!

to the same set. There are, of course, various choices < 3\

of mappings from lower to higher dimensional spaces. adlx(z @adﬁi(advo)))) (7)
We choose a particular type of mapping coming from P k! ’

differential geometry and one that is particularly useful i
nonlinear control theory [6]. First of all we need some
notation. Letay(v) for k = 1,...,4 denote a vector field

at the pointv € R* and leta, (t)vg denote the flow of the . . .
vector field passing throuah the ooint. In other words Using this idea, we are able to calculate an expression
P g 9 POIny. ' for a(—2),04¢ — a(—2),03¢ in terms of thez'. We carry

this corresponds to the solution of the differential syster%ut this calculation and stop at the second order terms in

0(t) = ar(v(t)), v(0) =vo (2) the z'. Once that is done we substitute in the obtained
expressionz® by its particular values. Lets us remember
that we have two cases according to which sulisebr

aIr? the component o’ belong (see definition 3).

Here, we see why the unusual order in (3) is needed,
ecause in the above ond/, 22 and z® are present and
so we makez® a function ofz* to bring z* into play.

where as usual := Y. Let ay(t), denote the differ-
ential of the mappingy,(t) (the jacobian matrix once a
coordinate system is chosen). Two, or more, flows c

be concatenated. For example(t)c; (s)vy means that we The two points a:, z, are in different sets

start atvy and go in the direction af; for s time units and Based on this assumption, the component 6f have

then from the pointy;(s)vy we go in the direction ofy; . .
. . . o ; 7 to respect the following constraint (where and 6 are
for ¢ time units. This concatenation is symbolic, of course

. ; fespectively distinct of and u :
because the vector fields may be nonlinear. P y n H

With these tools, we can now define a mapping as d=x22 45, B=2t 4 (8)
follows. Take any two points;, «; of the whole sef; UZ, )
and letz be the vector: . Clgarly, the calculation ofa(—z),ﬁa_4¢>_ — a(—2),03¢
is fairly tedious and we don't explicit it here. Once the
12 a1 2 nT 3) substitution of the value of has been made, there will be
z= [xl r; X xj} 3) o 5 ¢ !
) ) © terms multiplied byy, v%, ¥4, A etc. The idea is to choose
Then, for a set 0f4V9Ct0£ field$ai, ..., as}, via their the vector fieldse; and the initial pointu, to eliminate
flows we definep : R® — IR" as follows: certain terms and leave only the constant terms and those
é(2) = a4(z4) N .al(z1)v0 () linear in~, ¢, and so on. To unclutter the equations we use

the compact notation:
In (2), the vector fields and initial point are parameters
that we are going to calculate later on. It is known that for a;; = lai,a5] e = lai, [ay, ax]] 9)
|lz]] sufficiently small,¢ is a diffeomorphism.
Let 9; := %, thend;4(z) is simply thei!" column of
the differential of¢ evaluated at the point(z). Now, by
the chain rule of differentiation [6], we have:

In this new notation, we omit explicit mention af,
but the reader must bear in mind that all of the vector
fields are evaluated at the poing. As already mentioned,
is it a straightforward but long calculation that provides t
ip(2) = ax(zh)y - i1 (2171, following. If we calculate the:; and the initial point, to

ai(a; () - - a1 (21)wp) (5) satisfy the following constraints:

The basis of our approach is to compare tangent vectors, a3 =0, @ma—a3=0 (10)

but (5) gives us a tangent vector at the pahit) and we G221 — G223 =1, G332 =0



wherel denotes the identity, then the following holds: consists in findingA; and v minimising the following

constrained criteriomp:
a(—2)4 (04 — 03)p(2) = (11)
g (22)2 ® =| @izav || + || @zzav || + || (@177 — @23)v || +
(as —az)(vo) + 2~ (aas — @23) + 5 U0
+y(2*(a1z — a13) + (%) (@122 — @123))
+é(as — a3 + z2(a124 —T123))
+M 2T + 222 T331) + (@3 + 2*a31)

| (@222 — aza3)v — v ||

det Az Z €

where @;;; are defined in (9) and expressed using the
particular field (14).
The two points z;, z; are in the same set
The component of verify the constraint: B. Dimension criteria

We evaluate in (11) andl8) the jacobian matrix of the

=046 P =yt (12) mapping¢ using a(nu)mericg finité difference method:

and with the particular choice af, expressed by 6:
o(zF + A) = o(zF — A)

a(—2)4 (05 — 03)p(2) = Dip* (2) ~ A i=3,4 k=1.4
(as — az)(vo) + 22(a_24—a_23) + &vg where ¢ is defined in 4 and where contains a pair of
+y(2%(a1z — a13) + 2@z + data points (3). We then pull the difference of the two last

(22)2(a131 — a133) + 2224a331)) columns of the jacobian ma_trix t_Jac_k to the origin_using
+ 5(@iT — @15 + @51 + 2*(a191 — @195 + an)) (13) the operatora(—=z), (6), again this is done numerically
integrating differential equatior2). Then we compare the
Decision test obtained result with (11) and 13), to see if the space is
The interesting thing about (13) and (11) is that if (113-dimensional or not. In other words if the pulled back
is satisfied then the difference of the last two columns d@lifference of the last two columns af, is the vectory,
¢+, when pulled back to the origin, is spanned by a 2he constant part of (11) is the vectbrand the vectors
dimensional space (once the constant terms are accouradtiplied by +, 4, A and p. respectively are put into
for). However, if (8) is satisfied, then this space is 4the matrix X. Thenb — y C spanX. Obviously, if the
dimensional. Our idea is simply to exploit this differende orelationshipz? = ~z; + 4 is not satisfied for both data
dimension in order to determine whether or not two poin@oints then this inclusion will not be satisfied.
x; andz; belong, or not, to the same data set.
C. Dealing with noisy data
I1l. NUMERICAL ASPECTS Of course, the above rank calculation yields only for the

The implementation of the proposed approach neeffdse where we have perfect data. In order to increase the
interest of the algorithm, we must account for noisy data.

discussion about the role played by some parameters: e blem b fd o hen th .
vector field choice, the dimension of the space connect He pro em becomes one of determining when the matrix
} has rank 1, 2 or 3. In the case that this matrix

with the model selection, the measurement noise, the cho
as rank 1 or 2 then the two data points are in the same

of the initial parameters, the allocation of the data t
clusters. set, due to the above mentioned inclusion. If the rank is 3
then the data points are not in the same set. Determining
o . the change of rank of a matrix is notoriously difficult; the
A. Optimisation and constraints experts recommend that to make use of the singular value
For our preliminary trials, we decided to use linear vectatecomposition (SVD) [7].

fields and so in (2) we have:
D. Initialising the algorithm

ai(v) = A i=1.4 (14) As already stated, the data could be (usually are) noisy
The set of matricesd; and initial pointwv, were then and so our method should be expected to work within
determined by a standard optimisation routine by traneertain reasonable limits. Generally, we begin "blind”twit
forming equaliies (10) into norms (remember that thegbhe data set and so an initial data point has to be chosen.
are all vectors) and minimising the sum of the norms. THguite obviously, the two regression lines are more than
only thing that one needs to be aware of is that constrairifeely to intersect at some point, unless the data are co-
need to be added to avoid the routine converging to thinear with only the constants being different. We could
zero solution (which of course satisfies (10)). To alleviatexpect difficulties in making decisions about membership
this problem we simply added constraints that required one or the other of the two data sets at intersection
det A; > ¢ for somee > 0 (concretely we chose= 0.1). points. Therefore, to initialise the algorithm to sort the
For the considered system, this computation has to beatter plots, we chose the data paigtthat is in general
performed once for all. Thus, summarizing, the problethe furthest from all of the others.



E. Clustering the data points within certain limits of course. Improvements are to be

Once the initial data point, is chosen we carry out theMade to the overall algorithm. The problem is quite a
above calculations for all the other remaining points. THéfficult one and we don't believe that one method alone
systems (11) and (13) are compared only for points withffn solve it, rather a combination of methods is required. In

a neighbourhood of the initial point. Neighbourhodd, this paper we have presented our first attempt at a method,
of the pointz;, is defined as : which works reasonably well. More investigation will have

to take place in order to develop our ideas further.
Nay = {zi, | 2 — 2 |< 7} We are in the process of analysing our method in order

7, being a threshold selected by the user. If a neighbourifychoose the parameters and thresholds in a more rigorous
point looks as though it satisfies (10) then it is include¥@y. We are also considering a way of choosing the various
in the same set as the initial point. The algorithm thep@rameters based on various easily calculated functions of
continues by comparing all the new points in the initiaihe® data, the mean values, variances etc. On a theoritical
point set with the remaining points and repeats in tHPiNt of wiev, we are also looking at how to dynamically
same way until there are no more candidate points. Atodify the parameters as the algorithm progresses on a
stage(k) in the process, when the cardinality of the initiaft@ Set in a systematic and optimal fashion.

point setka) is greater than some threshold valueir As our research progresses, we must also address the

our example), the vector parameters of the local mod@ioPlém where there are more than two data sets and in

p#) = (7(;@) 5)) can be estimated by a standard Ieaélf'e case where the number of sets is not a priori known.

squares method [7]. When a point,1 = (2}, =7,4)
becomes a candidate for inclusion in the initial point set
5™ then the new values op(k+D) = (y(k+1) §(k+1)

can be estimated. If the difference between the new and
old valuesp*t1) andp®) is too great, then the candidate
point is refused, elsewhere the candidate point is accepted
Summarizing, the implementation of the method needs that
the user define three parametetsfor the neightbourhood

of a given point,r, for testing the singular values ratio and
7, for testing the evolution of the local model parameters.

IV. EXAMPLE AND NUMERICAL RESULTS Fig.

We have tested our method on simulated data and, in
this section, we present one example of data sets. For
this example we set'! = —0.9 : 0.2 : 0.9 and 22 = o
221 4+ 3+ ¢ wheree ~ N(0,0.04) for the first data set and
2?2 = 22! + 2 + e wheree ~ N(0,0.09) for the second [2]
data set. Ther? were then normalised to fall within the 3]
interval [-0.9,0.9]. In this and the following example we
set the algorithm parameters to the following values. For
the neighbourhoods test we used= 0.2, for the singular [4]
values test we used, = 0.05 and for the difference test
in parametep*+1) and p*) we usedr, = 0.1 wherep,
is the old vector withy andé as components ang the
new one. 6]

The results can be seen in Figure 1, the "0” are the points
determined as belonging to the first set by the algorithn[17]
and the "+” are all the points left when the algorithm hasg;
terminated. We can see that, as we expected, the main
problems occur at the point where the two curves interse%]
and it is here that the algorithm starts to follow the other
curve but then comes back on course again. ldentifiéd]
parameters for the first model a2el 62, 2.887 and for the
second one-1.689, 1.946.

(5]

[11]

V. CONCLUSION [12]

In this paper we have presented a feasible solution to the
proposed problem of local switching models identification,

4

.

1. Results of classification and identification
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