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Abstract— In this paper we look at the problem where we
have two mixed sets of data on the same scatter plot. We
want to calculate linear regression lines for each of the two
sets, but first of all we need to decide which data belong to
which set. We propose one possible solution to this problem
involving data classification and parameters estimation.
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I. I NTRODUCTION

During the last few decades a number of methodological
papers on models with discrete parameter shifts have been
published and revised interest in the so-called regime
switching model. Since the pioneer work of Quandt (1958)
[11], various attempts have been made to fit data to
models with changes of regimes. The basic idea of regime
switching models is that the process under consideration
is time-invariant conditional on a regime variable which
indicates the regime prevailing at each time. This kind of
representation has been successfully developed in several
scientific communities and mainly for multi-models [9],
hybrid systems [3], time-series [8] and mixture models [5],
[10].

There is a long history of work on change detection in
time-series [2] and many studies assume that within each
time-segment, the distribution of data does not depend on
time. The most widely used assumption is the piecewise
linear model in which each segment is described by a linear
regression [4], [8]. In the field of data analysis, the same
objective is underlying but the time is not a variable that
can be used to describe the models. In this area, we find
the well known problem of classification for which it is
desired to separate the data into clusters and to describe
each cluster by a model [5].

Our paper deals with the second class of problem and
we are mainly interested with the problem of mixing

regression equations. Our objective is only concerned with
the estimation of the local model, the generating switching
process itself is not here estimated ; however, as it will
be seen later, we need to estimate the switching or the
partitioning of the data. As is evident, if the partitioning
is known, the problem of identifying the local models can
easily be solved using standard techniques. However, when
this partitioning is unknown the problem becomes much
more difficult [12] unless the local models are known.

Our approach deals with a combined estimation allowing
the partitioning or the data allocation to clusters and the
local model parameters. In the paper, we consider a simpler
version of the problem, where the number of local linear
models and their order are a priori known. The contribution
of the paper is to propose an original approach to solve a
classical problem.

The basic problem that we are looking at then is fairly
easy to state. Quite simply we assume that we are given a
scatter plot, where there are obviously two fairly distinct
data sets. We want to determine which data belong to which
set before carrying out a regression analysis.

The solution presented in the following section is based
on ideas from differential geometry and could be thought of
as an information geometry approach to the problem [1].
Following the section 2 where our method is presented,
the section 3 is devoted to numerical aspects of the cal-
culations. Then, in section 4 some examples are presented
before looking at conclusions and perspectives in section
5. There is also a technical annex to the paper where some
of the tools from differential geometry are resumed.

II. A POSSIBLE SOLUTION

A more precise statement of the problem is that we
are given two data setsS1 = (x1

i , x
2
i ), i ∈ I1 and

S2 = (x1
j , x

2
j ), j ∈ I∈ where I1 = {i1 . . . im1

} and



I2 = {j1 . . . jm2
} are two subsets of index. The data are

mixed together of course and we don’t know the values of
m1 andm2. All we know about the data is that they belong
to two distinct sets and within each set they are related by
a linear equation:

x2 = γx1 + δ x ∈ S1, x2 = λx1 + µ x ∈ S2 (1a)

whereγ and δ are unknown but different for each of the
two sets. For numerical reasons we assume that the data
are normalised and all lie within the square‖xi‖ ≤ ε for
some parameterε > 0.

Our idea is very simple, we map the points from the 2-
dimensional space where the data lie into a higher dimen-
sional space, in our case a 4-dimensional space (because
we consider two data sets). We then carry out operations
in the higher dimensional space that are designed to give
indications as to whether or not two data points belong
to the same set. There are, of course, various choices
of mappings from lower to higher dimensional spaces.
We choose a particular type of mapping coming from
differential geometry and one that is particularly useful in
nonlinear control theory [6]. First of all we need some
notation. Letak(v) for k = 1, . . . , 4 denote a vector field
at the pointv ∈ IR4 and letαk(t)v0 denote the flow of the
vector field passing through the pointv0. In other words,
this corresponds to the solution of the differential system

v̇(t) = ak(v(t)), v(0) = v0 (2)

where as usual̇v := dv
dt

. Let αk(t)? denote the differ-
ential of the mappingαk(t) (the jacobian matrix once a
coordinate system is chosen). Two, or more, flows can
be concatenated. For exampleαj(t)αi(s)v0 means that we
start atv0 and go in the direction ofai for s time units and
then from the pointαi(s)v0 we go in the direction ofαj

for t time units. This concatenation is symbolic, of course,
because the vector fields may be nonlinear.

With these tools, we can now define a mapping as
follows. Take any two pointsxi, xj of the whole setI1∪I2

and letz be the vector:

z =
[

x2
i x1

i x2
j x1

j

]T
(3)

Then, for a set of vector fields{a1, . . . , a4}, via their
flows we defineφ : IR4 → IR4 as follows:

φ(z) = α4(z
4) · · ·α1(z

1)v0 (4)

In (2), the vector fields and initial pointv0 are parameters
that we are going to calculate later on. It is known that for
‖z‖ sufficiently small,φ is a diffeomorphism.

Let ∂i := ∂
∂zi , then∂iφ(z) is simply theith column of

the differential ofφ evaluated at the pointφ(z). Now, by
the chain rule of differentiation [6], we have:

∂iφ(z) = α4(z
4)? · · ·αi−1(z

i−1)?

ai(αi(z
i) · · ·α1(z

1)v0) (5)

The basis of our approach is to compare tangent vectors,
but (5) gives us a tangent vector at the pointφ(z) and we

would like to compare them at the origin (the pointz = 0).
This is where the differentialsαk(−t)? come in useful,
because this operator pulls a tangent vector atαk(t)v0 (i.e.
ak(αk(t)v0) back to the origint = 0 and we know that
αk(−t)?αk(t)? = 1 where1 indicates the identity matrix
[6]. Let

α(−z)? := α1(−z1)? · · ·α4(−z4)? (6)

Then applying operatorα(−z)? on ∂iφ(z) will pull
tangent vectors back to the origin. By repeated application
of the CBH formula we can develop a multinomial approx-
imation for any of the columns of the jacobian matrix of
φ when pulled back to the origin. In our case, the most
complicated expression is for∂4φ which is:

α(−z)?∂4φ =
∞
∑

k1=0

(z1)k1

k1!
adk1

a1
(

∞
∑

k2=0

(z2)k2

k2!

adk2

a2
(

∞
∑

k3=0

(z3)k3

k3!
adk3

a3
(a4(v0)))) (7)

Here, we see why the unusual order in (3) is needed,
because in the above onlyz1, z2 and z3 are present and
so we makez3 a function ofz4 to bring z4 into play.

Using this idea, we are able to calculate an expression
for α(−z)?∂4φ−α(−z)?∂3φ in terms of thezi. We carry
out this calculation and stop at the second order terms in
the zi. Once that is done we substitute in the obtained
expressionzi by its particular values. Lets us remember
that we have two cases according to which subsetI1 or
I2 the component ofzi belong (see definition 3).

The two points xi, xj are in different sets
Based on this assumption, the component ofzi have
to respect the following constraint (whereγ and δ are
respectively distinct ofλ andµ :

z1 = γz2 + δ, z3 = λz4 + µ (8)

Clearly, the calculation ofα(−z)?∂4φ − α(−z)?∂3φ

is fairly tedious and we don’t explicit it here. Once the
substitution of the value ofz has been made, there will be
terms multiplied byγ, γ2, γδ, λ etc. The idea is to choose
the vector fieldsai and the initial pointv0 to eliminate
certain terms and leave only the constant terms and those
linear inγ, δ, and so on. To unclutter the equations we use
the compact notation:

aij = [ai, aj ] aijk = [ai, [aj , ak]] (9)

In this new notation, we omit explicit mention ofv0,
but the reader must bear in mind that all of the vector
fields are evaluated at the pointv0. As already mentioned,
is it a straightforward but long calculation that provides the
following. If we calculate theai and the initial pointv0 to
satisfy the following constraints:

a134 = 0, a114 − a113 = 0 (10)

a224 − a223 = 1, a334 = 0
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where1 denotes the identity, then the following holds:

α(−z)?(∂4 − ∂3)φ(z) = (11)

(a4 − a3)(v0) + z2(a24 − a23) +
(z2)2

2
v0

+γ(z2(a14 − a13) + (z2)2(a124 − a123))

+δ(a14 − a13 + z2(a124 − a123))

+λ(z4a34 + z2z4a234) + µ(a34 + z2a234)

The two points xi, xj are in the same set
The component ofz verify the constraint:

z1 = γz2 + δ, z3 = γz4 + δ (12)

and with the particular choice ofv0 expressed by 6:

α(−z)?(∂4 − ∂3)φ(z) =

(a4 − a3)(v0) + z2(a24 − a23) + (z2)2

2 v0

+ γ(z2(a14 − a13) + z4a34 +

(z2)2(a124 − a123) + z2z4a234))

+ δ(a14 − a13 + a34 + z2(a124 − a123 + a234)) (13)

Decision test
The interesting thing about (13) and (11) is that if (11)
is satisfied then the difference of the last two columns of
φ?, when pulled back to the origin, is spanned by a 2-
dimensional space (once the constant terms are accounted
for). However, if (8) is satisfied, then this space is 4-
dimensional. Our idea is simply to exploit this difference of
dimension in order to determine whether or not two points
xi andxj belong, or not, to the same data set.

III. N UMERICAL ASPECTS

The implementation of the proposed approach needs
discussion about the role played by some parameters: the
vector field choice, the dimension of the space connected
with the model selection, the measurement noise, the choice
of the initial parameters, the allocation of the data to
clusters.

A. Optimisation and constraints

For our preliminary trials, we decided to use linear vector
fields and so in (2) we have:

ai(v) = Aiv i = 1..4 (14)

The set of matricesAi and initial point v0 were then
determined by a standard optimisation routine by trans-
forming equaliies (10) into norms (remember that these
are all vectors) and minimising the sum of the norms. The
only thing that one needs to be aware of is that constraints
need to be added to avoid the routine converging to the
zero solution (which of course satisfies (10)). To alleviate
this problem we simply added constraints that required
detAi ≥ ε for someε > 0 (concretely we choseε = 0.1).
For the considered system, this computation has to be
performed once for all. Thus, summarizing, the problem

consists in findingAi and v minimising the following
constrained criterionφ:

Φ =‖ a134v ‖ + ‖ a234v ‖ + ‖ (a114 − a223)v ‖ +

‖ (a224 − a223)v − v ‖

detAi ≥ ε

where aijk are defined in (9) and expressed using the
particular field (14).

B. Dimension criteria

We evaluate in (11) and (13) the jacobian matrix of the
mappingφ using a numerical finite difference method:

∂iφ
k(z) '

φ(zk + ∆) − φ(zk − ∆)

2∆
, i = 3, 4 k = 1..4

where φ is defined in 4 and wherez contains a pair of
data points (3). We then pull the difference of the two last
columns of the jacobian matrix back to the origin using
the operatorα(−z)? (6), again this is done numerically
integrating differential equation (2). Then we compare the
obtained result with (11) and 13), to see if the space is
2-dimensional or not. In other words if the pulled back
difference of the last two columns ofφ? is the vectory,
the constant part of (11) is the vectorb and the vectors
multiplied by γ, δ, λ and µ respectively are put into
the matrix X . Then b − y ⊆ spanX . Obviously, if the
relationshipx2

i = γx1
i + δ is not satisfied for both data

points then this inclusion will not be satisfied.

C. Dealing with noisy data

Of course, the above rank calculation yields only for the
case where we have perfect data. In order to increase the
interest of the algorithm, we must account for noisy data.
The problem becomes one of determining when the matrix
[

X, b − y
]

has rank 1, 2 or 3. In the case that this matrix
has rank 1 or 2 then the two data points are in the same
set, due to the above mentioned inclusion. If the rank is 3
then the data points are not in the same set. Determining
the change of rank of a matrix is notoriously difficult; the
experts recommend that to make use of the singular value
decomposition (SVD) [7].

D. Initialising the algorithm

As already stated, the data could be (usually are) noisy
and so our method should be expected to work within
certain reasonable limits. Generally, we begin ”blind” with
the data set and so an initial data point has to be chosen.
Quite obviously, the two regression lines are more than
likely to intersect at some point, unless the data are co-
linear with only the constants being different. We could
expect difficulties in making decisions about membership
in one or the other of the two data sets at intersection
points. Therefore, to initialise the algorithm to sort the
scatter plots, we chose the data pointxq that is in general
the furthest from all of the others.
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E. Clustering the data points

Once the initial data pointxq is chosen we carry out the
above calculations for all the other remaining points. The
systems (11) and (13) are compared only for points within
a neighbourhood of the initial point. NeighbourhoodNxk

of the pointxk is defined as :

Nxk
= {xi, ‖ xi − xk ‖≤ τn}

τn being a threshold selected by the user. If a neighbouring
point looks as though it satisfies (10) then it is included
in the same set as the initial point. The algorithm then
continues by comparing all the new points in the initial
point set with the remaining points and repeats in the
same way until there are no more candidate points. At
stage(k) in the process, when the cardinality of the initial
point setŜ(k)

1 is greater than some threshold value (4 in
our example), the vector parameters of the local model
p(k) = (γ(k) δ(k)) can be estimated by a standard least
squares method [7]. When a pointxk+1 = (x1

k+1 x2
k+1)

becomes a candidate for inclusion in the initial point set
Ŝ

(k)
1 , then the new values ofp(k+1) = (γ(k+1) δ(k+1))

can be estimated. If the difference between the new and
old valuesp(k+1) andp(k) is too great, then the candidate
point is refused, elsewhere the candidate point is accepted.
Summarizing, the implementation of the method needs that
the user define three parameters:τn for the neightbourhood
of a given point,τs for testing the singular values ratio and
τp for testing the evolution of the local model parameters.

IV. EXAMPLE AND NUMERICAL RESULTS

We have tested our method on simulated data and, in
this section, we present one example of data sets. For
this example we setx1 = −0.9 : 0.2 : 0.9 and x2 =
2x1 +3+ e wheree ∼ N(0, 0.04) for the first data set and
x2 = −2x1 + 2 + e wheree ∼ N(0, 0.09) for the second
data set. Thex2 were then normalised to fall within the
interval [−0.9, 0.9]. In this and the following example we
set the algorithm parameters to the following values. For
the neighbourhoods test we usedτn = 0.2, for the singular
values test we usedτs = 0.05 and for the difference test
in parameterp(k+1) andp(k) we usedτp = 0.1 wherep0

is the old vector withγ and δ as components andp1 the
new one.

The results can be seen in Figure 1, the ”o” are the points
determined as belonging to the first set by the algorithm
and the ”+” are all the points left when the algorithm has
terminated. We can see that, as we expected, the main
problems occur at the point where the two curves intersect
and it is here that the algorithm starts to follow the other
curve but then comes back on course again. Identified
parameters for the first model are2.162, 2.887 and for the
second one−1.689, 1.946.

V. CONCLUSION

In this paper we have presented a feasible solution to the
proposed problem of local switching models identification,

within certain limits of course. Improvements are to be
made to the overall algorithm. The problem is quite a
difficult one and we don’t believe that one method alone
can solve it, rather a combination of methods is required. In
this paper we have presented our first attempt at a method,
which works reasonably well. More investigation will have
to take place in order to develop our ideas further.

We are in the process of analysing our method in order
to choose the parameters and thresholds in a more rigorous
way. We are also considering a way of choosing the various
parameters based on various easily calculated functions of
the data, the mean values, variances etc. On a theoritical
point of wiev, we are also looking at how to dynamically
modify the parameters as the algorithm progresses on a
data set in a systematic and optimal fashion.

As our research progresses, we must also address the
problem where there are more than two data sets and in
the case where the number of sets is not a priori known.
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Fig. 1. Results of classification and identification
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