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A GLOBAL STABILITY ESTIMATE FOR THE GEL'FAND-CALDER ÓN INVERSE PROBLEM IN TWO DIMENSIONS

fand-Calderón inverse problem on a two-dimensional domain.

here we assume that 0 is not a Dirichlet eigenvalue for the operator -∆ + v in D. Equation (1.2) arises, in particular, in quantum mechanics, acoustics, electrodynamics; formally, it looks like the Schrödinger equation with potential v at zero energy.

The following inverse boundary value problem arises from this construction: given Φ on ∂D, find v on D.

This problem can be considered as the Gel'fand inverse boundary value problem for the Schrödinger equation at zero energy (see [START_REF] Gel'fand | Some problems of functional analysis and algebra[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ+(v(x)-Eu(x))ψ = 0, Funkt[END_REF]) and can also be seen as a generalization of the Calderón problem for the electrical impedance tomography (see [START_REF] Calderón | On an inverse boundary problem[END_REF], [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ+(v(x)-Eu(x))ψ = 0, Funkt[END_REF]).

The global injectivity of the map v → Φ was firstly proved in [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ+(v(x)-Eu(x))ψ = 0, Funkt[END_REF] for D ⊂ R d with d ≥ 3 and in [START_REF] Bukhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF] for d = 2 with v ∈ L p . A global stability estimate for the Gel'fand-Calderón problem for d ≥ 3 was firstly proved by Alessandrini in [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF]; this result was recently improved in [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF].

In this paper we show that, also in the two dimensional case, an estimate of the same type as in [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF] is valid. Indeed out main theorem is the following: Theorem 1.1. Let D ⊂ R 2 be an open bounded domain with C 2 boundary, let v 1 , v 2 ∈ C 2 ( D) with v j C 2 ( D) ≤ N for j = 1, 2, and Φ 1 , Φ 2 the corresponding Dirichlet-to-Neumann operators. For simplicity we assume also that v j | ∂D = 0 and ∂ ∂ν v j | ∂D = 0 for j = 1, 2. Then there exists a constant C = C(D, N ) such that

(1.3) v 2 -v 1 L ∞ (D) ≤ C(log(3 + Φ 2 -Φ 1 -1 )) -1 2 log(3 log(3 + Φ 2 -Φ 1 -1 )),
where A denotes the norm of an operator A :

L ∞ (∂D) → L ∞ (∂D).
This is the first result about the global stability of the Gel'fand-Calderón inverse problem in two dimension, for general potentials. Results of such a type were only known for special kinds of potentials, e.g. potentials coming from conductivities (see [START_REF] Liu | Stability Estimates for the Two-Dimensional Inverse Conductivity Problem[END_REF] for example). Note also that for the Calderón problem (of the electrical impedance tomography) in its initial formulation the global injectivity was firstly proved in [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF] for d ≥ 3 and in [START_REF] Nachman | Global uniqueness for a two-dimensional inverse boundary value problem[END_REF] for d = 2.

Instability estimates complementing the stability estimates of [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF], [START_REF] Liu | Stability Estimates for the Two-Dimensional Inverse Conductivity Problem[END_REF], [START_REF] Novikov | New global stability estimates for the Gel'fand-Calderon inverse problem[END_REF] and of the present work are given in [START_REF] Mandache | Exponential instability in an inverse problem of the Schrödinger equation[END_REF].

The proof of Theorem 1.1 takes inspiration mostly from [START_REF] Bukhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF] and [START_REF] Alessandrini | Stable determination of conductivity by boundary measurements[END_REF]. For z 0 ∈ D we show existence and uniqueness of a family of solution ψ z 0 (z, λ) of equation (1.2) where in particular ψ z 0 → e λ(z-z 0 ) 2 , for λ → ∞. This is accomplished by introducing a special Green's function for the Laplacian which satisfies precise estimates. Then, using Alessandrini's identity along with stationary phase techniques, we obtain the result.

An extension of Theorem 1.1 for the case when we do not assume that v j | ∂D = 0 and ∂ ∂ν v j | ∂D = 0 for j = 1, 2 is given in section 6.

Bukhgeim-type analogues of the Faddeev functions

In this section we introduce the above-mentioned family of solutions of equation (1.2), which will be used throughout all the paper. We identify R 2 with C and use the coordinates

z = x 1 + ix 2 , z = x 1 -ix 2 where (x 1 , x 2 ) ∈ R 2 . Let us define the function spaces C 1 z ( D) = {u : u, ∂u ∂ z ∈ C( D)} with the norm u C 1 z ( D) = max( u C( D) , ∂u ∂ z C( D) ), C 1 z ( D) = {u : u, ∂u ∂z ∈ C( D)
} with an analogous norm and the following functions:

G z 0 (z, ζ, λ) = e λ(z-z 0 ) 2 g z 0 (z, ζ, λ)e -λ(ζ-z 0 ) 2 , (2.1)
g z 0 (z, ζ, λ) = e λ(ζ-z 0 ) 2 -λ( ζ-z 0 ) 2 4π 2 D e -λ(η-z 0 ) 2 + λ(η-z 0 ) 2 (z -η)(η -ζ) dReη dImη, (2.2)
ψ z 0 (z, λ) = e λ(z-z 0 ) 2 µ z 0 (z, λ), (2.3) µ z 0 (z, λ) = 1 + D g z 0 (z, ζ, λ)v(ζ)µ z 0 (ζ, λ)dReζ dImζ, (2.4) h z 0 (λ) = D e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 v(z)µ z 0 (z, λ)dRez dImz, (2.5)
where z, z 0 , ζ ∈ D and λ ∈ C. In addition, equation (2.4) at fixed z 0 and λ, is considered as a linear integral equation for

µ z 0 (•, λ) ∈ C 1 z ( D). We have that 4 ∂ 2 ∂z∂ z G z 0 (z, ζ, λ) = δ(z -ζ), (2.6) 4 ∂ ∂z + 2λ(z -z 0 ) ∂ ∂ z g z 0 (z, ζ, λ) = δ(z -ζ), (2.7) -4 ∂ 2 ∂z∂ z ψ z 0 (z, λ) + v(z)ψ z 0 (z, λ) = 0, (2.8) -4 ∂ ∂z + 2λ(z -z 0 ) ∂ ∂ z µ z 0 (z, λ) + v(z)µ z 0 (z, λ) = 0, (2.9)
where z, z 0 , ζ ∈ D, λ ∈ C, δ is the Dirac's delta. Formulas (2.6)-(2.9) follow from (2.1)-(2.4) and from

∂ ∂ z 1 πz = δ(z), ∂ ∂z + 2λ(z -z 0 ) e -λ(z-z 0 ) 2 + λ(z-z 0 ) 2 π z e λz 2 0 -λz 2 0 = δ(z),
where z, z 0 , λ ∈ C. We say that the functions G z 0 , g z 0 , ψ z 0 , µ z 0 , h z 0 are the Bukhgeim-type analogues of the Faddeev functions (see [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ+(v(x)-Eu(x))ψ = 0, Funkt[END_REF], [START_REF] Nachman | Global uniqueness for a two-dimensional inverse boundary value problem[END_REF], [START_REF] Bukhgeim | Recovering a potential from Cauchy data in the two-dimensional case[END_REF]).

3. Estimates for g z 0 , µ z 0 , h z 0 This section is devoted to crucial estimates concerning the functions defined in section 2.

Let (3.1)

g z 0 ,λ u(z) = D g z 0 (z, ζ, λ)u(ζ)dReζ dImζ, z ∈ D, z 0 , λ ∈ C,
where g z 0 (z, ζ, λ) is defined by (2.2) and u is a test function.

Lemma 3.1. Let g z 0 ,λ u be defined by (3.1), where u ∈ C 1 z ( D), z 0 , λ ∈ C. Then the following estimates hold:

g z 0 ,λ u ∈ C 1 z ( D), g z 0 ,λ u C 1 z ( D) ≤ c 1 (D) |λ| 1 2 u C 1 z ( D) , |λ| ≥ 1, (3.2) ∂ ∂z g z 0 ,λ u L p ( D) ≤ c 2 (D, p) |λ| 1 2 u C 1 z ( D) , |λ| ≥ 1, 1 < p < ∞. (3.3) Lemma 3.1 is proved in section 5. Given a potential v ∈ C 1 z ( D)
we define the operator g z 0 ,λ v simply as (g z 0 ,λ v)u(z) = g z 0 ,λ w(z), w = vu, for a test function u. If u ∈ C 1 z ( D), by Lemma 3.1 we have that g z 0 ,λ v :

C 1 z ( D) → C 1 z ( D), (3.4) g z 0 ,λ v op C 1 z ( D) ≤ 2 g z 0 ,λ op C 1 z ( D) v C 1 z ( D) , where • op C 1 z ( D) denotes the operator norm in C 1 z ( D), z 0 , λ ∈ C. In addition, g z 0 ,λ op C 1 z ( D)
is estimated in Lemma 3.1. Inequality (3.4) and Lemma 3.1 implies existence and uniqueness of µ z 0 (z, λ) (and thus also ψ z 0 (z, λ)) for |λ| sufficiently large.

Let

µ (k) z 0 (z, λ) = k j=0 (g z 0 ,λ v) j 1, h (k) z 0 (λ) = D e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 v(z)µ (k) z 0 (z, λ)dRez dImz, where z, z 0 ∈ D, λ ∈ C, k ∈ N ∪ {0}.
Lemma 3.2. For v ∈ C 1 z ( D) such that v| ∂D = 0 the following formula holds:

(3.5) v(z 0 ) = 2 π lim λ→∞ |λ|h (0) z 0 (λ), z 0 ∈ D.
In addition, if v ∈ C 2 ( D), v| ∂D = 0 and ∂v ∂ν | ∂D = 0 then

(3.6) |v(z 0 ) - 2 π |λ|h (0) z 0 (λ)| ≤ c 3 (D) log(3|λ|) |λ| v C 2 ( D) , for z 0 ∈ D, λ ∈ C, |λ| ≥ 1. Lemma 3.2 is proved in section 5. Let W z 0 (λ) = D e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 w(z)dRe zdIm z,
where z 0 ∈ D, λ ∈ C and w is some function on D. (One can see that

W z 0 = h (0) z 0 for w = v.) Lemma 3.3. For w ∈ C 1 z ( D)
the following estimate holds:

(3.7a) |W z 0 (λ)| ≤ c 4 (D) log (3|λ|) |λ| w C 1 z ( D) , z 0 ∈ D, |λ| ≥ 1, (3.7b) |W z 0 (λ)| ≤ c 4,1 (D) log (3|λ|) |λ| w C( D) + c 4,2 (D, p) |λ| ∂ ∂z w L p ( D) , for 2 < p < ∞. Lemma 3.3 is proved in Section 5. Lemma 3.4. For v ∈ C 1 z ( D) and for g z 0 ,λ v op C 1 z ( D) ≤ δ < 1 we have that µ z 0 (•, λ) -µ (k) z 0 (•, λ) C 1 z ( D) ≤ δ k+1 1 -δ , (3.8) |h z 0 (λ) -h (k) z 0 (λ)| ≤ c 4 (D) log(3|λ|) |λ| δ k+1 1 -δ v C 1 z ( D) , (3.9 
)

where z 0 ∈ D \ {0}, λ ∈ C, |λ| ≥ 1, k ∈ N ∪ {0}.
Lemma 3.4 is proved in section 5.

Proof of Theorem 1.1

We start from Alessandrini's identity

D (v 2 (z) -v 1 (z))ψ 2 (z)ψ 1 (z)dRez dImz = ∂D ∂D ψ 1 (z)(Φ 2 -Φ 1 )(z, ζ)ψ 2 (ζ)|dζ||dz|, which holds for every ψ j solution of (-∆ + v j )ψ j = 0 on D, j = 1, 2. Here (Φ 2 -Φ 1 )(z, ζ) is the kernel of the operator Φ 2 -Φ 1 .
Let μz 0 denote the complex conjugated of µ z 0 for real-valued v and, more generally, the solution of (2.4) with

g z 0 (z, ζ, λ) replaced by g z 0 (z, ζ, λ)for complex-valued v. Put ψ 1 (z) = ψ1,z 0 (z, -λ) = e -λ(z-z 0 ) 2 μ1 (z, -λ), ψ 2 (z) = ψ 2,z 0 (z, λ) = e λ(z-z 0 ) 2 µ 2 (z, λ), where we called for simplicity μ1 = μ1,z 0 , µ 2 = µ 2,z 0 . This gives D e λ,z 0 (z)(v 2 (z) -v 1 (z))µ 2 (z, λ)μ 1 (z, λ)dRez dImz (4.1) = ∂D ∂D e -λ(z-z 0 ) 2 μ1 (z, -λ)(Φ 2 -Φ 1 )(z, ζ)e λ(ζ-z 0 ) 2 µ 2 (ζ, λ)|dζ||dz|,
where e λ,z 0 (z) = e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 . The left side I(λ) of (4.1) can be written as the sum of four integrals, namely

I 1 (λ) = D e λ,z 0 (z)(v 2 (z) -v 1 (z))dRez dImz, I 2 (λ) = - D e λ,z 0 (z)(v 2 (z) -v 1 (z))(µ 2 -1)(μ 1 -1)dRez dImz, I 3 (λ) = -I 2 (λ) + D e λ,z 0 (z)(v 2 (z) -v 1 (z))(µ 2 -1)dRez dImz, I 4 (λ) = -I 2 (λ) + D e λ,z 0 (z)(v 2 (z) -v 1 (z))(μ 1 -1)dRez dImz,
for z 0 ∈ D. By Lemma 3.1, 3.2, 3.3, 3.4 we have the following estimates:

2 π |λ|I 1 -(v 2 (z 0 ) -v 1 (z 0 )) ≤ c 3 (D) log(3|λ|) |λ| v 2 -v 1 C 2 ( D) , (4.2) |I 2 | ≤ c 5 (D) log(3|λ|) |λ| 3 2 v 2 -v 1 C 1 ( D) v 1 C 1 z ( D) v 2 C 1 z ( D) , (4.3) |I 3 | ≤ |I 2 | + c 6 (D) log(3|λ|) |λ| 3 2 v 2 -v 1 C 1 z ( D) v 2 C 1 z ( D) , (4.4) |I 4 | ≤ |I 2 | + c 6 (D) log(3|λ|) |λ| 3 2 v 2 -v 1 2 C 1 z ( D) v 1 C 1 z ( D) , (4.5) 
for |λ| sufficiently large for example, for λ such that

2 c 1 (D) |λ| 1 2 max ( v 1 C 1 z ( D) , v 1 C 1 z ( D) , v 2 C 1 z ( D) , v 2 C 1 z ( D) ) ≤ 1 2 , |λ| ≥ 1. (4.6)
The right side J(λ) of (4.1) can be estimated as follows:

|λ||J(λ)| ≤ c 7 (D)e (2L 2 +1)|λ| Φ 2 -Φ 1 , (4.7) 
where we called L = max z∈∂D, z 0 ∈D |zz 0 |.

Putting together estimates (4.2)-(4.7) we obtain

|v 2 (z 0 ) -v 1 (z 0 )| ≤ c 8 (D) log(3|λ|) |λ| 1 2 N 3 + 2 π c 7 (D)e (2L 2 +1)|λ| Φ 2 -Φ 1 (4.8)
for z 0 ∈ D and N is the costant in the statement of Theorem 1.1. We call ε = Φ 2 -Φ 1 and impose |λ| = γ log(3 + ε -1 ), where 0 < γ < (2L 2 + 1) -1 so that (4.8) reads

|v 2 (z 0 ) -v 1 (z 0 )| ≤ c 8 (D)N 3 (γ log(3 + ε -1 )) -1 2 log(3γ log(3 + ε -1 )) (4.9) + 2 π c 7 (D)(3 + ε -1 ) (2L 2 +1)γ ε, for every z 0 ∈ D, with (4.10) 0 < ε ≤ ε 1 (D, N, γ),
where ε 1 is sufficiently small or, more precisely, where (4.10) implies that |λ| = γ log(3 + ε -1 ) satisfies (4.6).

As (3 + ε -1 ) (2L 2 +1)γ ε → 0 for ε → 0 more rapidly then the other term, we obtain that

v 2 -v 1 L ∞ (D) ≤ c 9 (D, N, γ) log(3 log(3 + Φ 2 -Φ 1 -1 )) (log(3 + Φ 2 -Φ 1 -1 )) 1 2 
(4.11)

for ε = Φ 2 -Φ 1 ≤ ε 1 (D, N, γ).
Estimate (4.11) for general ε (with modified c 10 ) follows from (4.11) for ε ≤ ε 1 (D, N, γ) and the assumption that v j L ∞ (D) ≤ N, j = 1, 2. This completes the proof of Theorem 1.1.

Proofs of the Lemmata

Proof of Lemma 3.1. One can see that g z 0 ,λ = 1 4 T Tz 0 ,λ , for z 0 , λ ∈ C, where

T u(z) = - 1 π D u(ζ) ζ -z dReζ dImζ, (5.1) 
Tz 0 ,λ u(z) = - e -λ(z-z 0 ) 2 + λ(z-z 0 ) 2 π D e λ(ζ-z 0 ) 2 -λ( ζ-z 0 ) 2 ζ - z u(ζ)dReζ dImζ, (5.2) 
for z ∈ D and u a test function. Estimates (3.2), (3.3) now follow from

(5.3) T w ∈ C 1 z ( D), (5.4a) T w C 1 z ( D) ≤ n 1 (D) w C( D)
, where w ∈ C(D),

(5.4b) ∂T ∂z w L p ( D) ≤ n(D, p) w L p ( D) , 1 < p < ∞, Tz 0 ,λ u ∈ C( D), (5.5) Tz 0 ,λ u C( D) ≤ n 2 (D) |λ| 1 2 u C 1 z ( D) , |λ| ≥ 1, (5.6) Tz 0 ,λ u C( D) ≤ log(3|λ|)(1 + |z -z 0 |)n 3 (D) |λ||z -z 0 | 2 u C 1 z ( D) , |λ| ≥ 1, (5.7)
where u ∈ C 1 z ( D), z 0 , λ ∈ C. Estimates (5.3), (5.4) are well-known (see [START_REF] Vekua | Generalized Analytic Functions[END_REF]).

The assumption u ∈ C 1 z ( D) is not necessary at all for (5.5): indeed, using well-known arguments it is sufficient to take u ∈ C( D).

Let us prove (5.6) and (5.7). We have that

-πe λ(z-z 0 ) 2 -λ(z-z 0 ) 2 Tz 0 ,λ u(z) = I z 0 ,λ,ε (z) + J z 0 ,λ,ε (z),
where

I z 0 ,λ,ε (z) = D∩(Bz,ε∪Bz 0 ,ε) e λ(ζ-z 0 ) 2 -λ( ζ-z 0 ) 2 ζ - z u(ζ)dReζ dImζ, (5.8) J z 0 ,λ,ε (z) = Dz,z 0 ,ε e λ(ζ-z 0 ) 2 -λ( ζ-z 0 ) 2 ζ - z u(ζ)dReζ dImζ, (5.9) and B z,ε = {ζ ∈ C : |ζ -z| < ε}, D z,z 0 ,ε = D \ (B z,ε ∪ B z 0 ,ε ). One sees that (5.10) |I z 0 ,λ,ε (z)| ≤ 2 Bz,ε u C( D) |ζ -z| dReζ dImζ = 4πε u C( D) ,
with z, z 0 , λ ∈ C, ε > 0. Further, we have that

J z 0 ,λ,ε (z) = - 1 2 λ Dz,z 0 ,ε ∂ ∂ ζ e λ(ζ-z 0 ) 2 -λ( ζ-z 0 ) 2 u(ζ) ( ζ -z)( ζ -z0 ) dReζ dImζ = J 1 z 0 ,λ,ε (z) + J 2 z 0 ,λ,ε (z),
where

J 1 z 0 ,λ,ε (z) = - 1 4i λ ∂Dz,z 0 ,ε e λ(ζ-z 0 ) 2 -λ( ζ-z 0 ) 2 ( ζ -z)( ζ -z0 ) u(ζ)dζ, J 2 z 0 ,λ,ε (z) = 1 2 λ Dz,z 0 ,ε e λ(ζ-z 0 ) 2 -λ( ζ-z 0 ) 2 ∂ ∂ ζ u(ζ) ( ζ -z)( ζ -z0 )
dReζ dImζ

Now we get

|J 1 z 0 ,λ,ε (z)| ≤ M 1 z,z 0 ,λ,ε := 1 4|λ| ∂Dz,z 0 ,ε |u(ζ)||dζ| | ζ -z|| ζ -z0 | , M 1 z,z 0 ,λ,ε ≤ 1 8|λ| ∂Dz,z 0 ,ε 1 | ζ -z| 2 + 1 | ζ -z0 | 2 |dζ| u C(D) , (5.11) M 1 z,z 0 ,λ,ε ≤ 1 2|z -z 0 ||λ| ∂Dz,z 0 ,ε 1 | ζ -z| + 1 | ζ -z0 | |dζ| u C(D) . (5.12)
We also have

|J 2 z 0 ,λ,ε (z)| ≤ M 2 z,z 0 ,λ,ε : = 1 2|λ| Dz,z 0 ,ε | ∂u ∂ ζ (ζ)| | ζ -z|| ζ -z0 | + |u(ζ)| | ζ -z| 2 | ζ -z0 | + |u(ζ)| | ζ -z|| ζ -z0 | 2 dReζ dImζ, M 2 z,z 0 ,λ,ε ≤ 1 2|λ| Dz,z 0 ,ε | ∂u ∂ ζ (ζ)| | ζ -z| 2 + | ∂u ∂ ζ (ζ)| | ζ -z0 | 2 + 2 |u(ζ)| | ζ -z| 3 (5.13) + 2 |u(ζ)| | ζ -z0 | 3 dReζ dImζ M 2 z,z 0 ,λ,ε ≤ 1 2|λ| Dz,z 0 ,ε 2| ∂u ∂ ζ (ζ)| | ζ -z||z -z 0 | + 2| ∂u ∂ ζ (ζ)| | ζ -z0 ||z -z 0 | + 2|u(ζ)| | ζ -z| 2 |z -z 0 | (5.14) + 4|u(ζ)| | ζ -z||z -z 0 | 2 + 2|u(ζ)| | ζ -z0 | 2 |z -z 0 | + 4|u(ζ)| | ζ -z0 ||z -z 0 | 2 dReζ dImζ.
Using (5.11) and (5.13) we obtain that

|J 1 z 0 ,λ,ε (z)| ≤ |λ| -1 n 4 (D)ε -1 u C(D) ,
(5.15)

|J 2 z 0 ,λ,ε (z)| ≤ |λ| -1 n 5 (D)ε -1 u C(D) + |λ| -1 n 6 (D) log(3ε -1 ) ∂u ∂ z C(D) , (5.16) 
where z, z 0 , λ ∈ C, |λ| ≥ 1, 0 < ε < 1.

If z 0 = z we can use (5.12) and (5.14) in order to obtain

|J 1 z 0 ,λ,ε (z)| ≤ |λ| -1 |z -z 0 | -1 n 7 (D) log(3ε -1 ) u C(D) , (5.17) |J 2 z 0 ,λ,ε (z)| ≤ |λ| -1 |z -z 0 | -2 n 8 (D) log(3ε -1 ) u C(D) (5.18) + |λ| -1 |z -z 0 | -1 n 9 (D) ∂u ∂ z C(D) ,
Finally, putting ε = |λ| -1 2 into (5.10), (5.15), (5.16) we obtain (5.6), while putting ε = |λ| -1 into (5.10), (5.17), (5.18) we obtain (5.7). The proof follows.

Proof of Lemma 3.2. First we extend our potential v to a larger domain

D 1 ⊃ D (always with C 2 boundary) such that dist(∂D 1 , ∂D) ≥ δ > 0 (for some δ) by putting v| D 1 \D ≡ 0. In such a way v ∈ C 1 (D 1 ) ∩ C 2 (D 1 \ ∂D) with v C k (D 1 ) = v C k (D) for k = 1, 2.
Now let χ δ be a real-valued function on C, with δ > 0, constructed as follows:

χ δ (z) = χ(z/δ), where χ ∈ C ∞ (C), χ is real valued, χ(z) = χ(|z|), χ(z) ≡ 1 for |z| ≤ 1/2, χ(z) ≡ 0 for |z| ≥ 1. Let v lin (z, z 0 ) = v(z 0 ) + v z (z 0 )(z -z 0 ) + v z (z 0 )(z -z0 ),
for z, z 0 ∈ D 1 , v z = ∂v ∂z and v z = ∂v ∂ z . We can write h (0) z 0 (λ) = S z 0 ,δ (λ) + R z 0 ,δ (λ), where

S z 0 ,δ (λ) = C e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 v lin (z, z 0 )χ δ (z -z 0 )dRez dImz = C e i|λ|(z 2 +z 2 ) v lin (e -iϕ(λ) z + z 0 , z 0 )χ δ (z)dRez dImz, R z 0 ,δ (λ) = D 1 e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 (v(z) -v lin (z, z 0 )χ δ (z -z 0 )) dRez dImz where ϕ(λ) = 1 2 (arg(λ) -π 2 ), z 0 ∈ D, λ ∈ C.
Using the stationary phase method we obtain that

v(z 0 ) = 2 π lim λ→∞ |λ|S z 0 ,δ (λ), (5.19) |v(z 0 ) - 2 π |λ|S z 0 ,δ (λ)| ≤ q 1 (D, δ) v C 1 ( D) |λ| -1 , (5.20) z 0 ∈ D, δ > 0, λ ∈ C, |λ| ≥ 1.
Integrating by parts we can write

R z 0 ,δ (λ) = - 1 2 λ D 1 ∂ ∂ z e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 × (v(z) -v lin (z, z 0 )χ δ (z -z 0 )) z -z0 dRez dImz = R 1 z 0 ,δ (λ) + R 2 z 0 ,δ (λ), R 1 z 0 ,δ (λ) = -1 4i λ ∂D 1 e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 (v(z) -v lin (z, z 0 )χ δ (z -z 0 )) z -z0 dz, R 2 z 0 ,δ (λ) = 1 2 λ D 1 e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 × ∂ ∂ z (v(z) -v lin (z, z 0 )χ δ (z -z 0 )) z -z0 dRez dImz, for z 0 ∈ D, λ ∈ C \ {0}.
In addition, we have that lim λ→∞ |λ|R 1 z 0 ,δ (λ) = 0, (5.21) lim λ→∞ |λ|R 2 z 0 ,δ (λ) = 0. (5.22) Formula (5.21) follows from properties of χ δ , the assumption that z 0 ∈ D and that v| ∂D 1 ≡ 0. Actually, as a corollary of this properties we have that v(z)v lin (z, z 0 )χ δ (zz 0 ) ≡ 0 for z ∈ ∂D 1 and, therefore, R 1 z 0 ,δ (λ) ≡ 0 for λ ∈ C \ {0}.

Formula (5.22) for v ∈ C 1 ( D1 ) is a consequence of the estimates R 2,1 z 0 ,δ,ε (λ) := Bz 0 ,ε e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 (5.23) × ∂ ∂ z (v(z) -v lin (z, z 0 )χ δ (z -z 0 )) z -z0 dRez dImz = O(ε) as ε → 0 R 2,2 z 0 ,δ,ε (λ) := Dz 0 ,ε e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 (5.24) × ∂ ∂ z (v(z) -v lin (z, z 0 )χ δ (z -z 0 )) z -z0 dRez dImz → 0 as λ → ∞ where B z 0 ,ε = {z ∈ C : |z -z 0 | < ε}, D z 0 ,ε = D 1 \ B z 0 ,ε .
In (5.23)-( 5.24) we assume that z 0 ∈ D, 0 < ε < δ, λ ∈ C. Estimate (5.23) is obtained by standard arguments using that

|v(z) -v(z 0 )| ≤ v C 1 ( D) |z -z 0 |, z 0 ∈ D, z ∈ B z 0 ,δ ,
while (5.24) is a variation of the Riemann-Lebesgue Lemma. Formula (3.5) now follows from (5.19), (5.21), (5.22). Under the assumptions mentioned in Lemma 3.2, the final part of the proof of estimate (3.6) consists in the following. We have, for ε < δ/2,

|R 2,1 z 0 ,δ,ε (λ)| ≤ Bz 0 ,ε |v(z) -v lin (z, z 0 )| |z -z 0 | 2 dRez dImz (5.25) + Bz 0 ,ε |v z (z) -v z (z 0 )| |z -z 0 | dRez dImz ≤ 7 2 π v C 2 ( D) ε 2 , R 2,2 z 0 ,δ,ε (λ) = -1 2 λ Dz 0 ,ε ∂ ∂ z e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 1 z -z0 × ∂ ∂ z (v(z) -v lin (z, z 0 )χ δ (z -z 0 )) z -z0 dRez dImz = -1 2 λ (R 2,2,1 z 0 ,δ,ε (λ) + R 2,2,2 z 0 ,δ,ε (λ)), R 2,2,1 z 0 ,δ,ε (λ) = 1 2i ∂Dz 0 ,ε e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 1 z -z0 × ∂ ∂ z (v(z) -v lin (z, z 0 )χ δ (z -z 0 )) z -z0 dz = -1 2i ∂Bz 0 ,ε e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 1 z -z0 ∂ ∂ z v(z) -v lin (z, z 0 ) z -z0 dz,
where we used in particular that v|

∂D 1 ≡ 0, ∂ ∂ν v| ∂D 1 ≡ 0, R 2,2,2 z 0 ,δ,ε (λ) = - Dz 0 ,ε e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 × ∂ ∂ z 1 z -z0 ∂ ∂ z (v(z) -v lin (z, z 0 )χ δ (z -z 0 )) z -z0 dRez dImz.
We have, for ε < δ/2

|R 2,2,1 z 0 ,δ,ε (λ)| ≤ 1 2 ∂Bz 0 ,ε |v(z) -v lin (z, z 0 )| |z -z 0 | 3 |dz| (5.26) + 1 2 ∂Bz 0 ,ε |v z (z) -v z (z 0 )| |z -z 0 | 2 |dz| ≤ 7 2 π v C 2 ( D) , |R 2,2,2 z 0 ,δ,ε (λ)| ≤ |R 2,2,2 z 0 ,δ,δ/2 (λ)| + |R 2,2,2 z 0 ,δ,ε (λ) -R 2,2,2 z 0 ,δ,δ/2 (λ)|, (5.27) |R 2,2,2 z 0 ,δ,δ/2 (λ)| ≤ q 2 (D, δ) v C 2 ( D) , (5.28) |R 2,2,2 z 0 ,δ,ε (λ)-R 2,2,2 z 0 ,δ,δ/2 (λ)| ≤ 5 j=1 B z 0 ,δ/2 \Bz 0 ,ε u j (z, z 0 )dRez dImz, with u 1 (z, z 0 ) = 1 |z -z 0 | 2 v z (z) -v z (z 0 ) z -z0 , (5.29) u 2 (z, z 0 ) = 1 |z -z 0 | 2 v(z) -v lin (z, z 0 ) (z -z0 ) 2 , (5.30) u 3 (z, z 0 ) = 1 |z -z 0 | v z z (z) z -z0 , (5.31) u 4 (z, z 0 ) = 2 |z -z 0 | v z (z) -v z (z 0 ) (z -z0 ) 2 , (5.32) u 5 (z, z 0 ) = 2 |z -z 0 | v(z) -v lin (z, z 0 ) (z -z0 ) 3 . (5.33) This yields (5.34) |R 2,2,2 z 0 ,δ,ε (λ) -R 2,2,2 z 0 ,δ,δ/2 (λ)| ≤ q 3 log( δ 2ε ) v C 2 ( D) ,
where z 0 ∈ D, 0 < ε < δ/2. λ ∈ C \ {0}. Using (5.20), (5.25)-(5.34) with ε = |λ| -1 we obtain (3.6). Lemma 3.2 is proved.

Proof of Lemma 3.3. We write

W z 0 (λ) = W 1 z 0 ,ε (λ) + W 2 z 0 ,ε (λ), W 1 z 0 ,ε (λ) = D∩Bz 0 ,ε e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 w(z)dRez dImz, W 2 z 0 ,ε (λ) = D\Bz 0 ,ε e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 w(z)dRez dImz, where B z 0 ,ε = {z ∈ C : |z -z 0 | < ε}. One sees that |W 1 z 0 ,ε (λ)| ≤ D∩Bz 0 ,ε w C(D) dRez dImz = π w C(D) ε 2 , (5.35) W 2 z 0 ,ε (λ) = -1 2 λ D\Bz 0 ,ε ∂ ∂ z e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 w(z) z -z0 dRez dImz = W 2,1 z 0 ,ε (λ) + W 2,2 z 0 ,ε (λ), W 2,1 z 0 ,ε (λ) = -1 4i λ ∂(D\Bz 0 ,ε) e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 w(z) z -z0 dz, W 2,2 z 0 ,ε (λ) = 1 2 λ D\Bz 0 ,ε e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 ∂ ∂ z w(z) z -z0 dRez dImz.
We have

|W 2,1 z 0 ,ε (λ)| ≤ |λ| -1 a 1 (D) w C( D) log(3ε -1 ), (5.36) |W 2,2 z 0 ,ε (λ)| ≤ |λ| -1 a 2 (D) w C 1 z ( D) log(3ε -1 ) (5.37a) |W 2,2 z 0 ,ε (λ)| ≤ |λ| -1 a 2 (D) w C( D) log(3ε -1 ) (5.37b) + |λ| -1 a 3 (D, p) ∂w ∂ z L p ( D) , for z 0 ∈ D, λ ∈ C \ {0}, 0 < ε ≤ 1, 2 < p < ∞.
Using (5.35), (5.36), (5.37) with ε = |λ| -1 we obtain (3.7). This finishes the proof.

Proof of Lemma 3.4. Formula (3.8) follows from the assumption on g z 0 ,λ v and from solving (2.4) by the method of successive approximations. The proof of estimate (3.9) follows from (3.8) and Lemma 3.3. The proof follows.

An extension of Theorem 1.1

As an extension of Theorem 1.1 for the case when we do not assume that v j | ∂D ≡ 0, ∂ ∂ν v j | ∂D ≡ 0, j = 1, 2, we give the following result. 

(6.1) v 2 -v 1 L ∞ (D) ≤ C log(3 + Φ 2 -Φ 1 - 1 
1 ) -α ,
where A 1 is the norm for an operator A : L ∞ (∂D) → L ∞ (∂D), with kernel A(x, y), defined as A 1 = sup x,y∈∂D |A(x, y)|(log(3 + |x -y| -1 )) -1 .

All we need to know about • 1 consists of the following:

i) A L ∞ (∂D)→L ∞ (∂D) ≤ const(D) A 1 ;
ii) by formula (4.9) of [START_REF] Novikov | Multidimensional inverse spectral problem for the equation -∆ψ+(v(x)-Eu(x))ψ = 0, Funkt[END_REF] one has

v L ∞ (∂D) ≤ const Φ v -Φ 0 1 .
In order to prove Proposition 6.1 we need the following modified version of Lemma 3.2. We will call (∂D) δ = {z ∈ C : dist(z, ∂D) < δ}. Lemma 6.2. For v ∈ C 2 ( D) we have that (6.2)

|v(z 0 )- 2 π |λ|h (0) z 0 (λ)| ≤ κ 1 (D)δ -4 log(3|λ|) |λ| v C 2 ( D) +κ 2 (D) log(3+δ -1 ) v C(∂D) , for z 0 ∈ D \ (∂D) δ , 0 < δ < 1, λ ∈ C, |λ| ≥ 1.
Proof of Lemma 6.2. Let χ δ be as in the proof of Lemma 3.2. We have in particular that (6.3)

χ δ C k (C) ≤ δ -k χ C k (C) , k ∈ N. Let v lin (z, z 0 ) = v(z 0 ) + v z (z 0 )(z -z 0 ) + v z (z 0 )(z -z0 ),
for z, z 0 ∈ D, v z = ∂v ∂z and v z = ∂v ∂ z . We can write h (0) z 0 (λ) = S z 0 ,δ (λ) + R z 0 ,δ (λ), where

S z 0 ,δ (λ) = C e λ,z 0 (z)v lin (z, z 0 )χ δ (z -z 0 )dRez dImz = C e i|λ|(z 2 +z 2 ) v lin (e -iϕ(λ) z + z 0 , z 0 )χ δ (z)dRez dImz, R z 0 ,δ (λ) = D e λ,z 0 (z) (v(z) -v lin (z, z 0 )χ δ (z -z 0 )) dRez dImz where ϕ(λ) = 1 2 (arg(λ) -π 2 ), e λ,z 0 (z) = e λ(z-z 0 ) 2 -λ(z-z 0 ) 2 , z 0 ∈ D \ (∂D) δ , λ ∈ C.
Using the stationary phase method and the explicit construction of χ δ we obtain that v(z 0 ) = 2 π lim λ→∞ |λ|S z 0 ,δ (λ), (6.4)

|v(z 0 ) - 2 π |λ|S z 0 ,δ (λ)| ≤ ρ 1 (D) δ 4 v C 1 ( D) χ C 4 (C) |λ| -1 , (6.5) z 0 ∈ D \ (∂D) δ , 0 < δ < 1, λ ∈ C, |λ| ≥ 1. Inequality (6.5) follows from |v(z 0 ) - 2 π |λ|S z 0 ,δ (λ)| ≤ ρ 1 (D) |λ| v lin C 4 ( D) χ δ C 4 (C) ≤ ρ 1 (D) |λ|δ 4 v C 1 ( D) χ C 4 (C) ,
where we used [5, Lemma 7.7.3] and (6.3).

Integrating by parts we can write

R z 0 ,δ (λ) = - 1 2 λ D ∂ ∂ z (e λ,z 0 (z)) (v(z) -v lin (z, z 0 )χ δ (z -z 0 )) z -z0 dRez dImz = R 1 z 0 ,δ (λ) + R 2 z 0 ,δ (λ), R 1 z 0 ,δ (λ) = -1 4i λ ∂D e λ,z 0 (z) (v(z) -v lin (z, z 0 )χ δ (z -z 0 )) z -z0 dz, R 2 z 0 ,δ (λ) = 1 2 λ D e λ,z 0 (z) ∂ ∂ z (v(z) -v lin (z, z 0 )χ δ (z -z 0 )) z -z0 dRez dImz, for z 0 ∈ D \ (∂D) δ , λ ∈ C \ {0}.
In addition, we have that

2 π |λ||R 1 z 0 ,δ (λ)| ≤ κ 2 (D) log(3 + δ -1 ) v C(∂D) . (6.6) 
Formula (6.6) follows from the fact that χ δ (zz 0 ) = 0 for z ∈ ∂D, z 0 ∈ D \ (∂D) δ and from the estimate

2 π |R 1 z 0 ,δ (λ)| ≤ 2 π 1 |λ| ∂D |v(z)| |z -z0 | |dz| ≤ κ 2 (D) log(3 + δ -1 ) |λ| v C(∂D) . We now write R 2 z 0 ,δ (λ) = 1 2 λ (R 2,1 z 0 ,δ,ε (λ) + R 2,2 z 0 ,δ,ε (λ)), with R 2,1 z 0 ,δ,ε (λ) = Bz 0 ,ε e λ,z 0 (z) ∂ ∂ z (v(z) -v lin (z, z 0 )χ δ (z -z 0 )) z -z0 dRez dImz (6.7) R 2,2 z 0 ,δ,ε (λ) = Dz 0 ,ε e λ,z 0 (z) ∂ ∂ z (v(z) -v lin (z, z 0 )χ δ (z -z 0 )) z -z0 dRez dImz, (6.8) 
where

B z 0 ,ε = {z ∈ C : |z -z 0 | < ε}, D z 0 ,ε = D \ B z 0 ,ε . In (6.7)-(6.8) we assume that z 0 ∈ D \ (∂D) δ , 0 < ε < δ, λ ∈ C.
The final part of the proof of estimate (6.2) consists in the following. We have, for ε < δ/2,

|R 2,1 z 0 ,δ,ε (λ)| ≤ 7 2 π v C 2 ( D) ε 2 , (6.9) exactly as in (5.25), R 2,2 z 0 ,δ,ε (λ) = - 1 2 λ Dz 0 ,ε ∂ ∂ z (e λ,z 0 (z)) 1 z -z0 × ∂ ∂ z (v(z) -v lin (z, z 0 )χ δ (z -z 0 )) z -z0 dRez dImz = - 1 2 λ (R 2,2,1 z 0 ,δ,ε (λ) + R 2,2,2 z 0 ,δ,ε (λ)), R 2,2,1 z 0 ,δ,ε (λ) = 1 2i ∂Dz 0 ,ε e λ,z 0 (z) 1 z -z0 ∂ ∂ z (v(z) -v lin (z, z 0 )χ δ (z -z 0 )) z -z0 dz = - 1 2i ∂Bz 0 ,ε e λ,z 0 (z) 1 z -z0 ∂ ∂ z v(z) -v lin (z, z 0 ) z -z0 dz - 1 2i ∂D e λ,z 0 (z) 1 z -z0 ∂ ∂ z v(z) z -z0 dz, R 2,2,2 z 0 ,δ,ε (λ) = - Dz 0 ,ε e λ,z 0 (z) × ∂ ∂ z 1 z -z0 ∂ ∂ z (v(z) -v lin (z, z 0 )χ δ (z -z 0 )) z -z0 dRez dImz.
We have, for ε < δ/2

|R 2,2,1 z 0 ,δ,ε (λ)| ≤ 1 2 ∂Bz 0 ,ε |v(z) -v lin (z, z 0 )| |z -z 0 | 3 |dz| + 1 2 ∂Bz 0 ,ε |v z (z) -v z (z 0 )| |z -z 0 | 2 |dz| (6.10) + 1 2 ∂D |v(z)| |z -z 0 | 3 |dz| + 1 2 ∂D |v z (z)| |z -z 0 | 2 |dz| ≤ 7 2 π v C 2 ( D) + ρ 2 (D) δ 2 v C 1 ( D) ,
|R 2,2,2 z 0 ,δ,ε (λ)| ≤ |R 2,2,2 z 0 ,δ,δ/2 (λ)| + |R 2,2,2 z 0 ,δ,ε (λ) -R 2,2,2 z 0 ,δ,δ/2 (λ)|, (6.11)

|R 2,2,2 z 0 ,δ,δ/2 (λ)| ≤ ρ 3 (D)

δ 3 v C 2 ( D) , (6.12) 
|R 2,2,2 z 0 ,δ,ε (λ)-R 2,2,2 z 0 ,δ,δ/2 (λ)| ≤ 5 j=1 B z 0 ,δ/2 \Bz 0 ,ε u j (z, z 0 )dRez dImz, with u j defined as in (5.29)- (5.33). This yields (6.13) |R 2,2,2 z 0 ,δ,ε (λ) -R 2,2,2 z 0 ,δ,δ/2 (λ)| ≤ ρ 4 (D) log(

δ 2ε ) v C 2 ( D) ,
where z 0 ∈ D \ (∂D) δ , 0 < ε < δ/2, λ ∈ C \ {0}. Using (6.5), (6.6), (6.9)-(6.13) with ε = |λ| -1 we obtain (6.2) for |λ| > 2 δ . Notice that only the estimation of |λ||R 2 z 0 ,δ (λ)| requires |λ| > 2 δ . In that case one has for 1 ≤ |λ| ≤ 2 δ , 0 < δ < 1. Thus, taking κ 1 = max(ρ 5 , c ′ ρ 5 , ρ 1 χ C 4 (C) ), we obtain estimation (6.2) for |λ| ≥ 1 and 0 < δ < 1. This finish the proof of Lemma 6.2.

Proof of Proposition 6.1. Fix 0 < α < 1 5 , and 0 < δ < 1. We have the following chain of inequalities

v 2 -v 1 L ∞ (D) = max( v 2 -v 1 L ∞ (D∩(∂D) δ ) , v 2 -v 1 L ∞ (D\(∂D) δ ) ) ≤ C 1 max 2N δ + Φ 2 -Φ 1 1 , log(3 log(3 + Φ 2 -Φ 1 - 1 
))

δ 4 log(3 + Φ 2 -Φ 1 -1 ) + log(3 + 1 δ ) Φ 2 -Φ 1 1 + log(3 log(3 + Φ 2 -Φ 1 -1 )) (log(3 + Φ 2 -Φ 1 -1 )) 1 2 ≤ C 2 max 2N δ + Φ 2 -Φ 1 1 , 1 δ 4 log(3 + Φ 2 -Φ 1 - 1 
1 ) -5α + log(3 + 1 δ ) Φ 2 -Φ 1 1 + log(3 log(3 + Φ 2 -Φ 1 -1 1 )) (log(3 + Φ 2 -Φ 1 -1 1 )) 1 2
, where we followed the scheme of the proof of Theorem 1.1 with the following modifications: we make use of Lemma 6.2 instead of Lemma 3.2 and we also use i)-ii); note that C 1 = C 1 (D, N ) and C 2 = C 2 (D, N, α).

1 .

 1 Introduction Let D be an open bounded domain in R 2 with with C 2 boundary and let v ∈ C 1 ( D). The Dirichlet-to-Neumann map associated to v is the operator Φ : C 1 (∂D) → L p (∂D), p < ∞ defined by: (1.1) Φ(f ) = ∂u ∂ν ∂D where f ∈ C 1 (∂D), ν is the outer normal of ∂D and u is the H 1 ( D)-solution of the Dirichlet problem (1.2) -∆u + v(x)u = 0 on D, u| ∂D = f ;

Proposition 6 . 1 .

 61 Let D ⊂ R 2 be an open bounded domain with C 2 boundary, let v 1 , v 2 ∈ C 2 ( D) with v j C 2 ( D) ≤ N for j = 1, 2, and Φ 1 , Φ 2 the corresponding Dirichlet-to-Neumann operators. Then, for any 0 < α < 1 5 , there exists a constant C = C(D, N, α) such that the following inequality holds

2 π |λ||R 2 z 0 If 1 ≤ |λ| ≤ 2 δ we have that 2 π |λ||R 2 z 0 in order to have 2 π |λ||R 2 z 0

 20100 ,δ (λ)| ≤ ρ 5 (D)δ -4 log(3|λ|) |λ| v C 2 ( D) . ,δ (λ)| ≤ ρ 6 (D)N δ (6.14) and ρ 5 (D)δ -4 log(3|λ|) |λ| v C 2 ( D) ≥ ρ 5 (D) 2δ 3 log(6δ -1 ) v C 2 ( D) , (6.15)where we used the fact that the function log(3s) s is decreasing for s > e 3 . We now definec ′ = 2ρ 6 (D)N ρ 5 (D) log(6) v C 2 ( D) , ,δ (λ)| ≤ c ′ ρ 5 (D)δ -4 log(3|λ|) |λ| v C 2 ( D) ,

Putting δ = log(3 + Φ 2 -Φ 1 -1 1 ) -α we obtain the desired inequality

with ε 1 sufficiently small or, more precisely when δ 1 = log(3 + ε -1 1 ) -α satisfies:

Estimate (6.16) for general ε (with modified C 3 ) follows from (6.16) for ε ≤ ε 1 (D, N, α) and the assumption that v j L ∞ ( D) ≤ N for j = 1, 2. This completes the proof of Proposition 6.1.