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Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger equation in one dimension

For the L 2 supercritical generalized Korteweg-de Vries equation, we proved in [2] the existence and uniqueness of an N -parameter family of N -solitons. Recall that, for any N given solitons, we call N -soliton a solution of the equation which behaves as the sum of these N solitons asymptotically as t → +∞. In the present paper, we also construct an N -parameter family of N -solitons for the supercritical nonlinear Schrödinger equation, in dimension 1 for the sake of simplicity. Nevertheless, we do not obtain any classification result; but recall that, even in subcritical and critical cases, no general uniqueness result has been proved yet.

Introduction

The nonlinear Schrödinger equation

We consider the L 2 supercritical focusing nonlinear Schrödinger equation in one dimension:

i∂ t u + ∂ 2 x u + |u| p-1 u = 0, u(0) = u 0 ∈ H 1 (R), (NLS)
where (t, x) ∈ R 2 , p > 5 is real, and u is a complex-valued function. Recall first that Ginibre and Velo [START_REF] Ginibre | On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case[END_REF] proved that (NLS) is locally well-posed in H 1 (R) for p > 1: for any u 0 ∈ H 1 (R), there exist T > 0 and a unique maximal solution u ∈ C([0, T ), H 1 (R)) of (NLS). Moreover, either T = +∞ or T < +∞ and then lim t→T ∂ x u(t) L 2 = +∞. It is also well-known that H 1 solutions of (NLS) satisfy the following three conservation laws: for all t ∈ [0, T ),

M (u(t)) = |u(t)| 2 = M (u 0 ) (mass), E(u(t)) = 1 2 |∂ x u(t)| 2 - 1 p + 1 |u(t)| p+1 = E(u 0 ) (energy), P (u(t)) = Im ∂ x u(t)ū(t) = P (u 0 ) (momentum).
Recall also that (NLS) admits the following symmetries.

• Space-time translation invariance: if u(t, x) satisfies (NLS), then for any t 0 , x 0 ∈ R, w(t, x) = u(tt 0 , xx 0 ) also satisfies (NLS).

• Scaling invariance: if u(t, x) satisfies (NLS), then for any λ > 0, w(t, x) = λ 2 p-1 u(λ 2 t, λx) also satisfies (NLS).

• Phase invariance: if u(t, x) satisfies (NLS), then for any γ 0 ∈ R, w(t, x) = u(t, x)e iγ0 also satisfies (NLS).

• Galilean invariance: if u(t, x) satisfies (NLS), then for any v 0 ∈ R, w(t, x) = u(t, x -

v 0 t)e i( v 0 2 x- v 2 0
4 t) also satisfies (NLS). We now consider solitary waves of (NLS), in other words solutions of the form u(t, x) = e ic0t Q c0 (x), where c 0 > 0 and Q c0 is solution of

Q c0 > 0, Q c0 ∈ H 1 (R), Q ′′ c0 + Q p c0 = c 0 Q c0 . (1.1)
Recall that such positive solution of (1.1) exists and is unique up to translations, and is moreover the solution of a variational problem: we call Q c0 the solution of (1.1) which is even, and we denote Q := Q 1 . By the symmetries of (NLS), for any γ 0 , v 0 , x 0 ∈ R,

R c0,γ0,v0,x0 (t, x) = Q c0 (x -v 0 t -x 0 )e i( v 0 2 x- v 2 0 4 t+c0t+γ0)
is also a solitary wave of (NLS), moving on the line x = v 0 t + x 0 , that we also call soliton.

Finally recall that, in the supercritical case p > 5, solitons are unstable (see [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]). A striking illustration of this fact is the following result of Duyckaerts and Roudenko [START_REF] Duyckaerts | Threshold solutions for the focusing 3d cubic Schrödinger equation[END_REF] (adapted from a previous work of Duyckaerts and Merle [START_REF] Duyckaerts | Dynamic of threshold solutions for energy-critical NLS[END_REF]), obtained for the 3d focusing cubic nonlinear Schrödinger equation (NLS-3d), which is also L 2 supercritical and H 1 subcritical as in our case. Proposition 1.1 ([5]). Let A ∈ R. If t 0 = t 0 (A) > 0 is large enough, then there exists a radial solution

U A ∈ C ∞ ([t 0 , +∞), H ∞ ) of (NLS-3d) such that ∀b ∈ R, ∃C > 0, ∀t t 0 , U A (t) -e it Q -Ae (i-e0)t Y + H b Ce -2e0t
, where e 0 > 0 and Y + = 0 is in the Schwartz space S.

In particular, U A (t) = e it Q if A = 0, whereas lim t→+∞ U A (t)e it Q H 1 = 0. Note that, in the subcritical and critical cases p 5, no such special solutions U A (t) can exist, due to a variational characterization of Q. Indeed, if lim t→+∞ u(t)e it Q H 1 = 0, then u(t) = e it Q in this case. The purpose of this paper is to extend Proposition 1.1 to multi-solitons.

Multi-solitons

Now, we focus on multi-soliton solutions. Given 4N parameters defining N 2 solitons with different speeds,

v 1 < • • • < v N , c 1 , . . . , c N ∈ R * + , γ 1 , . . . , γ N ∈ R, x 1 , . . . , x N ∈ R, (1.2) 
we set

R j (t) = R cj ,γj,vj ,xj (t) and R(t) = N j=1 R j (t),
and we call N -soliton a solution u(t) of (NLS) such that

u(t) -R(t) H 1 -→ 0 as t → +∞.
Let us recall known results on multi-solitons.

• In the L 2 subcritical and critical cases, i.e. for (NLS) with p 5, there exists a large literature on the problem of existence of multi-solitons and on their properties. Merle [START_REF] Merle | Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity[END_REF] first established an existence result in the critical case, as a consequence of a blow up result and the conformal invariance. This result was extended by Martel and Merle [START_REF] Martel | Multi solitary waves for nonlinear Schrödinger equations[END_REF] to the subcritical case, using arguments developed by Martel, Merle and Tsai [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF] for the stability in H 1 of solitons. Nevertheless, we recall that no general uniqueness result has been proved, contrarily to the generalized Korteweg-de Vries (gKdV) equation (see [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF]).

For other stability and asymptotic stability results on multi-solitons of some nonlinear Schrödinger equations, see [START_REF] Perelman | Some results on the scattering of weakly interacting solitons for nonlinear Schrödinger equations[END_REF][START_REF] Perelman | Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations[END_REF][START_REF] Rodnianski | Asymptotic stability of N-soliton states of NLS[END_REF].

• In the L 2 supercritical case, i.e. in a situation where solitons are known to be unstable, Côte, Martel and Merle [START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF] have recently proved the existence of at least one multi-soliton solution for (NLS):

Theorem 1.2 ([3]). Let p > 5 and N 2. Let v 1 < • • • < v N , (c 1 , . . . , c N ) ∈ (R * + ) N , (γ 1 , . . . , γ N ) ∈ R N and (x 1 , . . . , x N ) ∈ R N . There exist T 0 ∈ R, C, σ 0 > 0, and a solution ϕ ∈ C([T 0 , +∞), H 1 ) of (NLS) such that

∀t ∈ [T 0 , +∞), ϕ(t) -R(t) H 1 Ce -σ 3/2 0 t .
Recall that, with respect to [START_REF] Martel | Multi solitary waves for nonlinear Schrödinger equations[END_REF][START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF], the proof of Theorem 1.2 relies on an additional topological argument to control the unstable nature of the solitons. Finally, recall that Theorem 1.2 was also obtained for the L 2 supercritical gKdV equation, and has been a crucial starting point in [START_REF] Combet | Multi-soliton solutions for the supercritical gKdV equations[END_REF] to obtain the multi-existence and the classification of multi-solitons. It is a similar multi-existence result that we propose to prove in this paper.

Main result and outline of the paper

The whole paper is devoted to prove the following theorem of existence of a family of multi-solitons for the supercritical (NLS) equation.

Theorem 1.3. Let p > 5, N 2, v 1 < • • • < v N , (c 1 , . . . , c N ) ∈ (R * + ) N , (γ 1 , . . . , γ N ) ∈ R N and (x 1 , . . . , x N ) ∈ R N . Denote R = N j=1 R cj,γj ,vj ,xj .
Then there exist γ > 0 and an N -parameter family (ϕ A1,...,AN ) (A1,...,AN )∈R N of solutions of (NLS) such that, for all (A 1 , . . . , A N ) ∈ R N , there exist C > 0 and t 0 > 0 such that

∀t t 0 , ϕ A1,...,AN (t) -R(t) H 1 Ce -γt , and if (A ′ 1 , . . . , A ′ N ) = (A 1 , . . . , A N ), then ϕ A ′ 1 ,...,A ′ N = ϕ A1,.
..,AN . Remark 1.4. As underlined above, the question of the classification of multi-solitons is open for the (NLS) equation, even in the subcritical case, while it was obtained in [START_REF] Combet | Multi-soliton solutions for the supercritical gKdV equations[END_REF] for the supercritical gKdV equation, and in [START_REF] Martel | Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF] for the subcritical and critical cases. Although we expect that the family constructed in Theorem 1.3 characterizes all multi-solitons, the lack of monotonicity properties such as for the gKdV equation does not allow to prove it for now.

The paper is organized as follows. In the next section, we briefly recall some well-known results on multi-solitons and on the linearized equation. One of the most important facts about the linearized equation, also strongly used in [START_REF] Duyckaerts | Threshold solutions for the focusing 3d cubic Schrödinger equation[END_REF][START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF], is the determination of the spectrum of the linearized operator L around the soliton e it Q (proved in [START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF] and [START_REF] Grillakis | Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system[END_REF]): σ(L) ∩ R = {-e 0 , 0, +e 0 } with e 0 > 0, and moreover e 0 and -e 0 are simple eigenvalues of L with eigenfunctions Y + and Y -. Indeed, Y ± allow to control the negative directions of the linearized energy around a soliton (see Proposition 2.4). Moreover, by a simple scaling argument, we determine the eigenvalues of the linearized operator around e icj t Q cj , and in particular ±e j = ±c 3/2 j e 0 are simple eigenvalues with eigenfunctions Y ± j (see Notation 2.7 for precise definitions). In Section 3, we construct the family (ϕ A1,...,AN ) described in Theorem 1.3. To do this, we first claim Proposition 3.1, which is the key point of the proof of the multi-existence result as in [START_REF] Combet | Multi-soliton solutions for the supercritical gKdV equations[END_REF], and can be summarized as follows. Let ϕ be a multi-soliton given by Theorem 1.2, j ∈ [[1, N ]] and A j ∈ R. Then there exists a solution u(t) of (NLS) such that

u(t) -ϕ(t) -A j e -ej t Y + j (t) H 1 e -(ej +γ)t ,
for t large and for some small γ > 0. This means that, similarly as in [START_REF] Duyckaerts | Threshold solutions for the focusing 3d cubic Schrödinger equation[END_REF] for one soliton, we can perturb the multi-soliton ϕ locally around one given soliton at the order e -ej t . Since it is not significant to perturb ϕ at order e j before order e k if e j > e k , the construction of ϕ A1,...,AN has to be done following values (possibly equal) of e j .

Finally, to prove Proposition 3.1, we follow the strategy of the proof of the similar proposition in [START_REF] Combet | Multi-soliton solutions for the supercritical gKdV equations[END_REF], except for the monotonicity property of the energy which does not hold for the (NLS) equation. If this property of monotonicity was necessary to obtain the classification, we prove that a slightly different functional estimated regardless its sign is sufficient to reach our purpose. We also rely on refinements of arguments developed in [START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF], in particular the topological argument to control the unstable directions.

Preliminary results

Notation 2.1. They are available in the whole paper.

(a) We denote 

∂ x v = v x the partial derivative of v with respect to x. (b) For h ∈ C, we denote h 1 = Re h and h 2 = Im h. (c) For f, g ∈ L 2 , (f, g) = Re f ḡ denotes the real scalar product. (d) The Sobolev space H s is defined by H s (R) = {u ∈ D ′ (R) | (1 + ξ 2 ) s/2 û(ξ) ∈ L 2 (R)}, and in particular H 1 (R) = {u ∈ L 2 (R) | u 2 H 1 = u 2 L 2 + ∂ x u 2 L 2 < +∞} ֒→ L ∞ (R). (e)

Linearized operator around a stationary soliton

The linearized equation appears if one considers a solution of (NLS) close to the soliton

e it Q. More precisely, if u(t, x) = e it (Q(x) + h(t, x)) satisfies (NLS), then h satisfies ∂ t h + Lh = O(h 2 ),
where the operator L is defined for

v = v 1 + iv 2 by Lv = -L -v 2 + iL + v 1 ,
and the self-adjoint operators L + and L -are defined by

L + v 1 = -∂ 2 x v 1 + v 1 -pQ p-1 v 1 , L -v 2 = -∂ 2 x v 2 + v 2 -Q p-1 v 2 .
The spectral properties of L are well-known (see [START_REF] Grillakis | Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system[END_REF][START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF] for instance), and summed up in the following proposition.

Proposition 2.2 ([7, 16]). Let σ(L) be the spectrum of the operator L defined on L 2 (R) × L 2 (R) and let σ ess (L) be its essential spectrum. Then

σ ess (L) = {iξ ; ξ ∈ R, |ξ| 1}, σ(L) ∩ R = {-e 0 , 0, +e 0 } with e 0 > 0.
Furthermore, e 0 and -e 0 are simple eigenvalues of L with eigenfunctions Y + and Y -= Y + which have an exponential decay at infinity. Finally, the null space of L is spanned by ∂ x Q and iQ, and as a consequence, the null space of L + is spanned by ∂ x Q and the null space of L -is spanned by Q.

Remark 2.3. By standard ODE techniques, we can quantify the exponential decay of Y ± and ∂ x Y ± at infinity. In fact, there exist η 0 > 0 and C > 0 such that, for all x ∈ R,

|Y ± (x)| + |∂ x Y ± (x)| Ce -η0|x| .
Moreover, L, L + and L -satisfy some properties of positivity or coercivity. The following proposition sums up the two properties useful for our purpose. Note that the first one is proved in [START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF], while the second one is proved in [START_REF] Duyckaerts | Dynamic of threshold solutions for energy-critical NLS[END_REF][START_REF] Duyckaerts | Threshold solutions for the focusing 3d cubic Schrödinger equation[END_REF]. Proposition 2.4 ([16, 5]). (i) For all f ∈ H 1 \{λQ ; λ ∈ R} real-valued, one has (L -f )f > 0.

(ii) There exists κ 0 > 0 such that, for all

v = v 1 + iv 2 ∈ H 1 , (L + v 1 , v 1 ) + (L -v 2 , v 2 ) 1 κ 0 v 2 H 1 -κ 0 ∂ x Qv 1 2 + Qv 2 2 + Im Y + v 2 + Im Y -v 2 . (2.1)
Finally, we extend Proposition 2.2 to the operator L c linearized around a soliton e ict Q c (x), by a simple scaling argument. In fact, we recall that if u is a solution of (NLS), then w(t, x) = λ 2 p-1 u(λ 2 t, λx) is also a solution, and moreover, we have

Q c (x) = c 1 p-1 Q( √ cx) for all c > 0. Corollary 2.5. Let c > 0. For v = v 1 + iv 2 , L c is defined by L c v = -L c-v 2 + iL c+ v 1 ,
where

L c+ v 1 = -∂ 2 x v 1 + cv 1 -pQ p-1 c v 1 and L c-v 2 = -∂ 2 x v 2 + cv 2 -Q p-1 c v 2 .
Moreover, the spectrum σ(L c ) of L c satisfies

σ(L c ) ∩ R = {-e c , 0, +e c }
, where e c = c 3/2 e 0 > 0.

Finally, e c and -e c are simple eigenvalues of L c with eigenfunctions Y + c and Y - c , where 

Y + c (x) = c 1/4 Y + ( √ cx) and Y - c = Y + c ,
Y + = Y 1 + iY 2 , Y -= Y 1 -iY 2 ,
and

L + Y 1 = e 0 Y 2 , L -Y 2 = -e 0 Y 1 .
Now, suppose that there exists λ ∈ R such that Y 2 = λQ. Then, we would have L -Y 2 = -e 0 Y 1 = λL -Q = 0, and so Y 1 = 0. But it would imply L + Y 1 = 0 = e 0 Y 2 , and so Y 2 = 0, which would be a contradiction. Therefore, by (i) of Proposition 2.4, we have (

L -Y 2 )Y 2 = -e 0 Y 1 Y 2 > 0. Hence, since Im (Y + ) 2 = 2 Y 1 Y 2 , we normalize Y ± by taking Y + = Y + -2 Y 1 Y 2 , Y -= Y + .

Multi-solitons results

A set of parameters (1.2) being given, we adopt the following notation.

Notation 2.7. For all j ∈ [[1, N ]], define: ,x) , where ,x) , where

(i) λ j (t, x) = x -v j t -x j and θ j (t, x) = 1 2 v j x -1 4 v 2 j t + c j t + γ j . (ii) R j (t, x) = Q cj (λ j (t, x))e iθj (t
Q c (x) = c 1 p-1 Q( √ cx). (iii) Y ± j (t, x) = Y ± cj (λ j (t, x))e iθj (t
Y ± c (x) = c 1/4 Y ± ( √ cx).
(iv) e j = e cj , where e c = c 3/2 e 0 . Now, to estimate interactions between solitons, we denote c min = min{c k ; k ∈ [[1, N ]]}, and the small parameters

σ 0 = min{η 0 √ c min , e 2/3 0 c min , c min , v 2 -v 1 , . . . , v N -v N -1 } and γ = σ 3/2 0 10 6 . (2.3)
From [START_REF] Martel | Multi solitary waves for nonlinear Schrödinger equations[END_REF], it appears that γ is a suitable parameter to quantify interactions between solitons in large time. For instance, we have, for j = k and all t 0,

|R j (t)||R k (t)| + |(R j ) x (t)||(R k ) x (t)| Ce -10γt .
(2.4)

From the definition of σ 0 and Remark 2.3, such an inequality is also true for Y ± j . Moreover, since σ 0 has the same definition as in [START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF], Theorem 1.2 can be rewritten as follows. There exist T 0 ∈ R, C > 0 and ϕ ∈ C([T 0 , +∞), H 1 ) such that, for all t T 0 ,

ϕ(t) -R(t) H 1 Ce -4γt .
(2.5)

Construction of a family of multi-solitons

In this section, we prove Theorem 1.3 as a consequence of the following crucial Proposition 3. Proof of Theorem 1.3.

Let (A 1 , . . . , A N ) ∈ R N . Denote σ the permutation of [[1, N ]] which satisfies c σ(1) • • • c σ(N ) , and σ(i) < σ(j) if c σ(i) = c σ(j) and i < j. (i) Consider ϕ A σ(1)
the solution of (NLS) given by Proposition 3.1 applied with ϕ given by Theorem 1.2. Thus, there exists t 0 > 0 such that 1) is also a multi-soliton which satisfies (2.5). Hence, we can apply Proposition 3.1 with ϕ A σ(1) instead of ϕ, so that we obtain

∀t t 0 , ϕ A σ(1) (t) -ϕ(t) -A σ(1) e -e σ(1) t Y + σ(1) (t) H 1 e -(e σ(1) +γ)t . Now, remark that ϕ A σ(
ϕ A σ(1) ,A σ(2) such that ∀t t ′ 0 , ϕ A σ(1) ,A σ(2) (t) -ϕ A σ(1) (t) -A σ(2) e -e σ(2) t Y + σ(2) (t) H 1 e -(e σ(2) +γ)t .
Similarly, for all j ∈ [[2, N ]], we construct by induction a solution ϕ A σ(1) ,...,A σ(j) such that

∀t t 0 , ϕ A σ(1) ,...,A σ(j) (t) -ϕ A σ(1) ,...,A σ(j-1) (t) -A σ(j) e -e σ(j) t Y + σ(j) (t) H 1
e -(e σ(j) +γ)t .

(3.2) Observe finally that ϕ A1,...,AN := ϕ A σ(1) ,...,A σ(N ) constructed by this way satisfies (2.5).

(ii) Let

(A ′ 1 , . . . , A ′ N ) ∈ R N be such that ϕ A ′ 1 ,...,A ′ N = ϕ A1,...

,AN , and let us show that it implies

(A ′ 1 , . . . , A ′ N ) = (A 1 , . . . , A N ).
In fact, we prove by induction on 1) ,...,A σ(N ) , and moreover

j that A σ(j) = A ′ σ(j) for all j ∈ [[1, N ]]. For j = 1, first note that, from the construction of ϕ A1,...,AN , the hypothesis means ϕ A ′ σ(1) ,...,A ′ σ(N ) = ϕ A σ(
ϕ A σ(1) ,...,A σ(N ) (t) = ϕ A σ(1) ,...,A σ(N -1) (t) + A σ(N ) e -e σ(N ) t Y + σ(N ) (t) + z σ(N ) (t) = • • • = ϕ(t) + N k=1 A σ(k) e -e σ(k) t Y + σ(k) (t) + N k=1 z σ(k) (t),
where

z σ(k) satisfies z σ(k) (t) H 1 e -(e σ(k) +γ)t for t t 0 and each k ∈ [[1, N ]].
Similarly, we get

ϕ A ′ σ(1) ,...,A ′ σ(N ) (t) = ϕ(t) + N k=1 A ′ σ(k) e -e σ(k) t Y + σ(k) (t) + N k=1 z σ(k) (t),
and so, by difference, we have

(A σ(1) -A ′ σ(1) )e -e σ(1) t Y + σ(1) (t)+ N k=2 (A σ(k) -A ′ σ(k) )e -e σ(k) t Y + σ(k) (t)+ N k=1 z σ(k) (t)-z σ(k) (t) = 0.
Now, if we multiply this equality by Y + σ(1) (t), integrate, and take the imaginary part of it, we obtain, by Claim 2.6 and (2.4),

|A σ(1) -A ′ σ(1) |e -e σ(1) t Ce -(e σ(1) +γ)t ,
and so A σ(1) = A ′ σ( 1) by taking t → +∞. For the inductive step from j -1 to j, we write similarly

ϕ A σ(1) ,...,A σ(N ) (t) = ϕ A σ(1) ,...,A σ(j-1) (t) + N k=j A σ(k) e -e σ(k) t Y + σ(k) (t) + N k=j z σ(k) (t) = ϕ A σ(1) ,...,A σ(j-1) (t) + N k=j A ′ σ(k) e -e σ(k) t Y + σ(k) (t) + N k=j z σ(k) (t),
and we finally obtain A σ(j) = A ′ σ(j) as expected, by taking the difference of these two expressions, multiplying by Y + σ(j) (t), integrating and taking the imaginary part of it. Now, the only purpose of the rest of the paper is to prove Proposition ,x) . We want to construct a solution u of (NLS) such that

3.1. Let j ∈ [[1, N ]] and A j ∈ R, and denote r j (t, x) = A j e -ej t Y + j (t, x) = A j e -ej t Y + cj (λ j (t, x))e iθj (t
z(t, x) = u(t, x) -ϕ(t, x) -r j (t, x)
satisfies z(t) H 1 e -(ej +γ)t for t t 0 with t 0 large enough.

Equation of z

Since u is a solution of (NLS) and also ϕ is (and this fact is crucial for the whole proof), we get

i∂ t z + ∂ 2 x z + |ϕ + r j + z| p-1 (ϕ + r j + z) -|ϕ| p-1 ϕ + A j e -ej t e iθj [∂ 2 x Y + cj -c j Y + cj -ie j Y + cj ](λ j ) = 0.
But from Corollary 2.5, we have

L cj Y + cj = e j Y + cj = e j Y + cj ,1 + ie j Y + cj ,2 = -L -Y + cj,2 + iL + Y + cj ,1
where

Y + cj ,1 = Re Y + cj and Y + cj ,2 = Im Y + cj ,

and so

∂ 2 x Y + cj -c j Y + cj + iQ p-1 cj Y + cj ,2 + pQ p-1 cj Y + cj ,1 = ie j Y + cj . (3.3)
Therefore, we get the following equation for z:

i∂ t z + ∂ 2 x z + |ϕ + r j + z| p-1 (ϕ + r j + z) -|ϕ| p-1 ϕ -A j e -ej t Q p-1 cj (λ j )e iθj [pY + cj ,1 + iY + cj ,2 ](λ j ) = 0.
(3.4) By developing the nonlinearity, we find

|ϕ + r j + z| p-1 (ϕ + r j + z) -|ϕ| p-1 ϕ = |ϕ + r j | p-1 (ϕ + r j ) -|ϕ| p-1 ϕ + ω(z) + (p -1)|ϕ + r j | p-3 (ϕ + r j ) Re((ϕ + r j )z) + |ϕ + r j | p-1 z,
where ω(z) satisfies |ω(z)| C|z| 2 for |z| 1. Hence, we can rewrite (3.4) as

i∂ t z + ∂ 2 x z + (p -1)|ϕ + r j | p-3 (ϕ + r j ) Re((ϕ + r j )z) + |ϕ + r j | p-1 z + ω(z) = -Ω,
where

Ω = |ϕ + r j | p-1 (ϕ + r j ) -|ϕ| p-1 ϕ -A j e -ej t Q p-1 cj (λ j )e iθj [pY + cj ,1 + iY + cj ,2 ](λ j ). (3.5)
Finally, the equation of z can be written in the shorter form

i∂ t z + ∂ 2 x z + (p -1)|ϕ| p-3 ϕ Re(ϕz) + |ϕ| p-1 z + ω 1 • z + ω(z) = -Ω, (3.6) 
where ω 1 satisfies ω 1 (t) L 2 Ce -ej t for all t T 0 . We finally estimate the source term Ω in the following lemma, that we prove in Appendix A.

Lemma 3.2.

There exists C > 0 such that, for all t T 0 , Ω(t) H 1 Ce -(ej +4γ)t .

Compactness argument assuming uniform estimates

To prove Proposition 3.1, we follow the strategy of [START_REF] Martel | Multi solitary waves for nonlinear Schrödinger equations[END_REF][START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF]. We first need some notation for our purpose.

Notation 3.3. (i) Denote J = {k ∈ [[1, N ]] | c k c j }, K = {k ∈ [[1, N ]] | c k > c j } and k 0 = ♯K.
(ii) R k0 is equipped with the ℓ 2 norm, simply denoted • .

(iii) S R k 0 (r) denotes the sphere of radius r in R k0 .

(iv) B B (r) is the closed ball of the Banach space B, centered at the origin and of radius r 0.

Let S n → +∞ be an increasing sequence of time, b n = (b n,k ) k∈K ∈ R k0 be a sequence of parameters to be determined, and let u n be the solution of

   i∂ t u n + ∂ 2 x u n + |u n | p-1 u n = 0, u n (S n ) = ϕ(S n ) + A j e -ej Sn Y + j (S n ) + k∈K b n,k Y + k (S n ). (3.7)
Proposition 3.4. There exist n 0 0 and t 0 > 0 (independent of n) such that the following holds.

For each n n 0 , there exists b n ∈ R k0 with b n 2e -(ej+2γ)Sn , and such that the solution u n of (3.7) is defined on the interval [t 0 , S n ], and satisfies

∀t ∈ [t 0 , S n ], u n (t) -ϕ(t) -A j e -ej t Y + j (t) H 1 e -(ej +γ)t .
Assuming this key proposition of uniform estimates, we can sketch the proof of Proposition 3.1, relying on compactness arguments developed in [START_REF] Martel | Multi solitary waves for nonlinear Schrödinger equations[END_REF][START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF]. The proof of Proposition 3.4 is postponed to the next section.

Sketch of the proof of Proposition 3.1 assuming Proposition 3.4. From Proposition 3.4, there exists a sequence u n (t) of solutions to (NLS), defined on [t 0 , S n ], such that the following uniform estimates hold:

∀n n 0 , ∀t ∈ [t 0 , S n ], u n (t) -ϕ(t) -A j e -ej t Y + j (t) H 1 e -(ej +γ)t .
In particular, there exists C 0 > 0 such that u n (t 0 ) H 1 C 0 for all n n 0 . Thus, there exists u 0 ∈ H 1 (R) such that u n (t 0 ) ⇀ u 0 in H 1 weak (after passing to a subsequence). Moreover, using the compactness result [10, Lemma 2], we can suppose that u n (t 0 ) → u 0 in L 2 strong, and so in H sp strong by interpolation, where 0 s p < 1 is an exponent for which local well-posedness and continuous dependence hold, according to a result of Cazenave and Weissler [START_REF] Cazenave | The Cauchy problem for the critical nonlinear Schrödinger equation in H s[END_REF]. Now, consider u solution of

i∂ t u + ∂ 2 x u + |u| p-1 u = 0, u(t 0 ) = u 0 .
Fix t t 0 . For n large enough, we have S n > t, so u n (t) is defined and by continuous dependence of the solution of (NLS) upon the initial data, we have u n (t) → u(t) in H sp strong. By the uniform H 1 bound, we also obtain u n (t) ⇀ u(t) in H 1 weak. As

u n (t) -ϕ(t) -A j e -ej t Y + j (t) H 1 e -(ej +γ)t ,
we finally obtain, by weak convergence, u(t)ϕ(t) -A j e -ej t Y + j (t) H 1 e -(ej +γ)t . Thus, u is a solution of (NLS) which satisfies (3.1).

Proof of Proposition 3.4

The proof proceeds in several steps. For the sake of simplicity, we will drop the index n for the rest of this section (except for S n ). As Proposition 3.4 is proved for given n, this should not be a source of confusion. Hence, we will write u for u n , z for z n , b for b n , etc. We possibly drop the first terms of the sequence S n , so that, for all n, S n is large enough for our purposes.

From (3.6), the equation satisfied by z is

i∂ t z + ∂ 2 x z + (p -1)|ϕ| p-3 ϕ Re(ϕz) + |ϕ| p-1 z + ω 1 • z + ω(z) = -Ω, z(S n ) = k∈K b k Y + k (S n ). (3.8) Moreover, for all k ∈ [[1, N ]], we denote α ± k (t) = Im z(t) • Y ± k (t).
In particular, we have Sn) .

α ± k (S n ) = - l∈K b l Im Y ∓ c k (λ k (S n ))Y + c l (λ l (S n ))e -iθ k (Sn) e iθ l (
Finally, we denote α -(t) = (α - k (t)) k∈K .

Modulated final data

Lemma 3.5. For n n 0 large enough, the following holds. For all a -∈ R k0 , there exists a unique

b ∈ R k0 such that b 2 a -and α -(S n ) = a -.
Proof. Consider the linear application

Φ : R k0 → R k0 b = (b l ) l∈K → (α - k (S n )) k∈K .
If we denote (σ 1 , . . . , σ k0 ) the canonical basis of R k0 , then, by the normalization of Claim 2.6 and the definition of Y + c in Corollary 2.5, we have, for all

k ∈ [[1, k 0 ]], (Φ(σ k )) k = -Im Y + c k 2 = -Im Y + 2 = 1.
Moreover, from (2.4), there exists C 0 > 0 independent of n such that, for l = k,

|(Φ(σ k )) l | Y + c l (λ l (S n ))||Y + c k (λ k (S n )) C 0 e -γSn .
Thus, by taking n 0 large enough, we have Φ = Id + A n where A n 1 2 , so Φ is invertible and Φ -1 2. Finally, for a given a -∈ R k0 , it is enough to define b by b = Φ -1 (a -) to conclude the proof of Lemma 3.5.

Claim 3.6. The following estimates at S n hold:

• |α + k (S n )| Ce -2γSn b for all k ∈ [[1, N ]], since Im Y - c k Y + c k = Im |Y + c k | 2 = 0. • |α - k (S n )| Ce -2γSn b for all k ∈ J. • z(S n ) H 1 C b .

Equations on α ± k

Let t 0 > 0 independent of n to be determined later in the proof, a -∈ B R k 0 (e -(ej +2γ)Sn ) to be chosen, b be given by Lemma 3.5 and u be the corresponding solution of (3.7). We now define the maximal time interval [T (a -), S n ] on which suitable exponential estimates hold. Definition 3.7. Let T (a -) be the infimum of T t 0 such that, for all t ∈ [T, S n ], both following properties hold: e (ej +γ)t z(t) ∈ B H 1 (1) and e (ej +2γ)t α -(t) ∈ B R k 0 (1).

(3.9)

Observe that Proposition 3.4 is proved if, for all n, we can find a -such that T (a -) = t 0 . The rest of the proof is devoted to prove the existence of such a value of a -. First, we prove the following estimate on α ± k .

Claim 3.8. For all k ∈ [[1, N ]] and all t ∈ [T (a -), S n ],

d dt α ± k (t) ∓ e k α ± k (t) C 0 e -4γt z(t) H 1 + C 1 z(t) 2 H 1 + C 2 e -(ej +4γ)t . (3.10)
Proof. Following Notation 2.7, we compute

d dt α ± k (t) = - d dt Im Y ± k (t)z(t) = - d dt Im Y ∓ c k (x -v k t -x k )e -i( 1 2 v k x-1 4 v 2 k t+c k t+γ k ) z(t) = -Im -v k ∂ x Y ∓ c k -i(c k - 1 4 v 2 k )Y ∓ c k (x -v k t -x k )e -i( 1 2 v k x-1 4 v 2 k t+c k t+γ k ) z(t) -Im Y ∓ c k (x -v k t -x k )e -i( 1 2 v k x-1 4 v 2 k t+c k t+γ k ) z t .
Moreover, using the equation of z (3.8) and an integration by parts, we find for the second term

-Im Y ∓ c k (x -v k t -x k )e -i( 1 2 v k x-1 4 v 2 k t+c k t+γ k ) z t = -Im Y ∓ c k (λ k )e -iθ k × i ∂ 2 x z + (p -1)|ϕ| p-3 ϕ Re(ϕz) + |ϕ| p-1 z + ω 1 • z + ω(z) + Ω = -Im ize -iθ k ∂ 2 x Y ∓ c k -iv k ∂ x Y ∓ c k - v 2 k 4 Y ∓ c k (λ k ) -Im iY ∓ c k (λ k )e -iθ k (p -1)|ϕ| p-3 ϕ Re(ϕz) + |ϕ| p-1 z -Im iY ∓ c k (λ k )e -iθ k [ω 1 • z + ω(z) + Ω] .
Using the estimate ω 1 (t) L 2 Ce -ej t and Lemma 3.2, we find for the last term

-Im iY ∓ c k (λ k )e -iθ k [ω 1 • z + ω(z) + Ω] Ce -ej t z H 1 + C z 2 H 1 + Ce -(ej +4γ)t .
From the definition of γ (2.3), we deduce that

d dt α ± k (t) = -Im ize -iθ k ∂ 2 x Y ∓ c k -c k Y ∓ c k (λ k ) + O(e -4γt z H 1 ) + O( z 2 H 1 ) + O(e -(ej +4γ)t ) -Im iY ∓ c k (λ k )e -iθ k (p -1)|ϕ| p-3 ϕ Re(ϕz) + |ϕ| p-1 z . Now, from (3.
3), we find

-Im ize -iθ k ∂ 2 x Y ∓ c k -c k Y ∓ c k (λ k ) = -Im ize -iθ k ∓ie k Y ∓ c k -iQ p-1 c k Y ∓ c k ,2 -pQ p-1 c k Y ∓ c k ,1 (λ k ),
and, as in the proof of Lemma 3.2, we also find

-Im iY ∓ c k (λ k )e -iθ k (p -1)|ϕ| p-3 ϕ Re(ϕz) + |ϕ| p-1 z = -Im iY ∓ c k (λ k )e -iθ k (p -1)|R k | p-3 R k Re(R k z) + |R k | p-1 z + O(e -4γt z H 1 ).
Hence, we have

d dt α ± k (t) = ± -Im ze -iθ k Y ∓ c k (λ k ) + Im ize -iθ k iQ p-1 c k Y ∓ c k ,2 + pQ p-1 c k Y ∓ c k ,1 (λ k ) -Im iY ∓ c k (λ k )e -iθ k (p -1)Q p-2 c k (λ k )e iθ k Re[Q c k (λ k )e -iθ k z] + Q p-1 c k (λ k )z + O(e -4γt z H 1 ) + O( z 2 H 1 ) + O(e -(ej +4γ)t ).
Finally, if we denote z 1 = Re(ze -iθ k ) and z 2 = Im(ze -iθ k ), we find

d dt α ± k (t) = ±e k α ± k (t) + O(e -4γt z H 1 ) + O( z 2 H 1 ) + O(e -(ej +4γ)t ) + Re (z 1 + iz 2 ) iQ p-1 c k (λ k )Y ∓ c k ,2 (λ k ) + pQ p-1 c k (λ k )Y ∓ c k ,1 (λ k ) -Re (p -1)Y ∓ c k (λ k )Q p-1 c k (λ k )z 1 -Re Y ∓ c k (λ k )Q p-1 c k (λ k )(z 1 + iz 2 ) = ±e k α ± k (t) + O(e -4γt z H 1 ) + O( z 2 H 1 ) + O(e -(ej +4γ)t ) + p z 1 Q p-1 c k (λ k )Y ∓ c k ,1 (λ k ) -z 2 Q p-1 c k (λ k )Y ∓ c k ,2 (λ k ) -(p -1) Y ∓ c k ,1 (λ k )Q p-1 c k (λ k )z 1 -Y ∓ c k ,1 (λ k )Q p-1 c k (λ k )z 1 + Y ∓ c k ,2 (λ k )Q p-1 c k (λ k )z 2 = ±e k α ± k (t) + O(e -4γt z H 1 ) + O( z 2 H 1 ) + O(e -(ej +4γ)t ),
since all other terms cancel.

Control of the stable directions

We estimate here α + k (t) for all k ∈ [[1, N ]] and t ∈ [T (a -), S n ]. From (3.10) and (3.9), we have

d dt α + k (t) -e k α + k (t) C 0 e -(ej +5γ)t + C 1 e -2(ej +γ)t + C 2 e -(ej +4γ)t K 2 e -(ej +4γ)t .
Thus, |(e -e k s α + k (s)) ′ | K 2 e -(ej +e k +4γ)s , and so, by integration on [t, S n ], we get |e -e k Sn α + k (S n )e -e k t α + k (t)| K 2 e -(ej +e k +4γ)t , which gives

|α + k (t)| e e k (t-Sn) |α + k (S n )| + K 2 e -(ej +4γ)t .
But from Claim 3.6 and Lemma 3.5, we have

e e k (t-Sn) |α + k (S n )| |α + k (S n )| Ce -2γSn b Ce -2γSn e -(ej +2γ)Sn K 2 e -(ej +4γ)Sn K 2 e -(ej +4γ)t ,
and so finally

∀k ∈ [[1, N ]], ∀t ∈ [T (a -), S n ], |α + k (t)| K 2 e -(ej +4γ)t .
(3.11)

Control of the unstable directions for k ∈ J

We estimate here α - k (t) for all k ∈ J and t ∈ [T (a -), S n ]. Note first that, as in the previous paragraph, we get, for all 

k ∈ [[1, N ]] and t ∈ [T (a -), S n ], d dt α - k (t) + e k α - k (t) K 2 e -(ej +4γ)t . ( 3 
e e k (Sn-t) |α - k (S n )| K 2 e e k (
Sn-t) e -2γSn e -(ej +2γ)Sn = K 2 e e k (Sn-t) e -(ej +4γ)Sn K 2 e (Sn-t)(e k -ej ) e -ej t e -4γSn K 2 e -(ej +4γ)t , and so finally

∀k ∈ J, ∀t ∈ [T (a -), S n ], |α - k (t)| K 2 e -(ej +4γ)t .
(3.13)

Localized Weinstein's functional

We follow here the same strategy as in [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF][START_REF] Martel | Multi solitary waves for nonlinear Schrödinger equations[END_REF][START_REF] Côte | Construction of multi-soliton solutions for the L 2supercritical gKdV and NLS equations[END_REF] to estimate the energy backwards. For this, we define the function ψ by

ψ(x) = 0 for x -1, ψ(x) = 1 for x 1, ψ(x) = 1 c 0 x -1 e - 1 
1-y 2 dy for x ∈ (-1, 1),

where c 0 = 1 -1 e -1 1-y 2 dy. Hence, ψ ∈ C ∞ (R) is non-decreasing and 0 ψ 1. Moreover, we define, for all k ∈ [[2, N ]], m k (t) = 1 2 [(v k + v k-1 )t + x k + x k-1 ],
and

ψ k (t, x) = ψ 1 √ t (x -m k (t)) , ψ 1 ≡ 1.
Moreover, we set

h 1 (t, x) = c 1 + v 2 1 4 + N k=2 c k + v 2 k 4 -c k-1 + v 2 k-1 4 ψ k (t, x), h 2 (t, x) = v 1 + N k=2 (v k -v k-1 )ψ k (t, x).
Observe that the functions h 1 and h 2 take values close to

c k + v 2 k
4 and v k respectively, for x close to v k t + x k , and have large variations only in regions far away from the solitons. To quantify these facts (see Lemma 3.9), we introduce the functions φ k , defined for k ∈ [[1, N -1]] by

φ k = ψ k -ψ k+1 , φ N = ψ N .
Hence, we have φ k 0 and N k=1 φ k ≡ 1, and by an Abel's transform, we also have

h 1 ≡ N k=1 c k + v 2 k 4 φ k and h 2 ≡ N k=1 v k φ k . Lemma 3.9. (i) For all k ∈ [[1, N ]], (|R k | + |R kx |)|φ k -1| Ce -4γt e -√ σ0|x-v k t| . (ii) For all k, l ∈ [[1, N ]] such that l = k, (|R k | + |R kx |)φ l Ce -4γt e -√ σ0|x-v k t| . (iii) For all k ∈ [[1, N ]], φ kx L ∞ + φ kxx L ∞ + φ kt L ∞ C √ t . (iv) One has h 1x L ∞ + h 2x L ∞ + h 1xx L ∞ + h 2xx L ∞ + h 1t L ∞ + h 2t L ∞ C √ t ,

and, for all

k ∈ [[1, N ]], h 1 -c k + v 2 k 4 (|R k | + |R kx |) Ce -4γt e -√ σ0|x-v k t| , |h 2 -v k |(|R k | + |R kx |) Ce -4γt e -√ σ0|x-v k t| .
Proof. See Appendix A. Now, we define a quantity related to the energy for z, by

H(t) = |∂ x z| 2 - 2 p + 1 |ϕ + r j + z| p+1 -|ϕ + r j | p+1 -(p + 1)|ϕ + r j | p-1 Re[(ϕ + r j )z] + h 1 |z| 2 -Im h 2 z∂ x z. (3.14)
The following estimate of the variation of H is the main new point of this paper, and as its proof is long and technical, it is postponed to Appendix B.

Proposition 3.10. For all t ∈ [T (a -), S n ], dH dt (t) C 0 √ t z(t) 2 H 1 + C 1 e -(ej +4γ)t z(t) H 1 + C 2 z(t) 3 H 1 .
We can now prove that, for all t ∈ [T (a -), S n ], 

H[z](t) := |∂ x z| 2 -|R| p-1 |z| 2 -(p -1) Re(Rz) 2 |R| p-3 + h 1 |z| 2 -Im h 2 z∂ x z satisfies H[z](t) K 1 √ t e -2(
H(t) |H(S n )| + K 1 √ t e -2(ej +γ)t .
But from Claim 3.6 and Lemma 3.5, we have

|H(S n )| C z(S n ) 2 H 1 C b 2 C a -2
Ce -2(ej +2γ)Sn Ce -2(ej +2γ)t ,

and so ∀t ∈ [T (a -), S n ], H(t) K 1 √ t e -2(ej +γ)t .
Finally, expanding |ϕ + r j + z|

p+1 = |ϕ + r j | 2 + 2 Re[(ϕ + r j )z] + |z| 2 p+1
2 , we find

|ϕ + r j + z| p+1 -|ϕ + r j | p+1 -(p + 1) Re[(ϕ + r j )z]|ϕ + r j | p-1 - p + 1 2 |z| 2 |ϕ + r j | p-1 - (p + 1)(p -1) 2 (Re[(ϕ + r j )z]) 2 |ϕ + r j | p-3 C|z| 3 ,
and so, from the definition of H (3.14),

|∂ x z| 2 -|ϕ + r j | p-1 |z| 2 -(p-1)(Re[(ϕ + r j )z]) 2 |ϕ + r j | p-3 +h 1 |z| 2 -Im h 2 z∂ x z K 1 √ t e -2(ej +γ)t .
Using (2.5), we easily obtain (3.15) by similar techniques used in the proof of Lemma 3.2 in Appendix A to replace (ϕ + r j ) by R plus an exponentially small error term.

Control of the directions of null energy

Define z(t) = z(t)

+ N k=1 β k (t)iR k (t) + N k=1 γ k (t)∂ x Q c k (λ k )e iθ k ,
where

β k (t) = - Re iR k z Q c k 2 L 2 = Im R k z Q c k 2 L 2 and γ k (t) = - Re ∂ x Q c k (λ k )e iθ k z ∂ x Q c k 2 L 2 .
First, note that there exist C 1 , C 2 > 0 such that

C 1 z H 1 z H 1 + N k=1 (|β k | + |γ k |) C 2 z H 1 . (3.16)
Moreover, by this choice of parameters, we have, for

all k ∈ [[1, N ]], Re -iR k z Ce -γt z H 1 , Re ∂ x Q c k (λ k )e iθ k z Ce -γt z H 1 .
(3.17) Indeed, by (2.4), we have

Re -iR k z = Im R k z(t) + N l=1 β l (t)iR l (t) + N l=1 γ l (t)∂ x Q c l (λ l )e iθ l = Im R k z + β k (t) Re |R k | 2 + γ k (t) Im Q c k ∂ x Q c k + O(e -γt z H 1 ) = Im R k z + Im R k z + O(e -γt z H 1 ) = O(e -γt z H 1 ),
and similarly, 

Re ∂ x Q c k (λ k )e iθ k z = Re ∂ x Q c k (λ k )e iθ k z + β k (t) Im Q c k ∂ x Q c k + γ k (t) Re |∂ x Q c k | 2 + O(e -γt z H 1 ) = Re ∂ x Q c k (λ k )e iθ k z -Re ∂ x Q c k (λ k )e iθ k z + O(e -γt z H 1 ) = O(e -
H[ z](t) 1 κ 1 z 2 H 1 -κ 1 N k=1 -Im zY + k 2 + -Im zY - k 2 + Re z(-iR k ) 2 + Re z∂ x Q c k (λ k )e -iθ k 2 . (3.19)
To justify heuristically this inequality, we compute,

for k ∈ [[1, N ]], the localized version H k [z] of H[z]
(it would be the same for z), defined by

H k [z] = |∂ x z| 2 -|R k | p-1 |z| 2 -(p -1) Re(R k z) 2 |R k | p-3 + c k + v 2 k 4 |z| 2 -v k Im z∂ x z. In fact, if we denote [e -iθ k z](• + v k t + x k ) = z 1 + iz 2 , i.e. z = e iθ k (z 1 + iz 2 )(λ k ), then we have ∂ x z = iv k 2 e iθ k (z 1 + iz 2 )(λ k ) + e iθ k (∂ x z 1 + i∂ x z 2 )(λ k )
, and so, by (ii) of Proposition 2.4,

H k [z] = - v k 2 z 2 + ∂ x z 1 2 (λ k ) + v k 2 z 1 + ∂ x z 2 2 (λ k ) -Q p-1 c k (λ k )(z 2 1 + z 2 2 )(λ k ) -(p -1) Q p-1 c k (λ k )z 2 1 (λ k ) + c k + v 2 k 4 (z 2 1 + z 2 2 )(λ k ) -v k v k 2 z 2 1 + z 1 ∂ x z 2 + v k 2 z 2 2 -z 2 ∂ x z 1 (λ k ) = (∂ x z 1 ) 2 + c k z 2 1 -pQ p-1 c k z 2 1 + (∂ x z 2 ) 2 + c k z 2 2 -Q p-1 c k z 2 2 = (L c k + z 1 , z 1 ) + (L c k -z 2 , z 2 ) 1 κ 0 z 2 H 1 -κ 0 ∂ x Q c k z 1 2 + Q c k z 2 2 + Im Y + k z 2 + Im Y - k z 2 .
Now, we return to (3.19), and we estimate each term of the sum, for all k ∈ [[1, N ]] and t ∈ [T (a -), S n ]. First, by (3.17), we have

Re z(-iR k ) 2 + Re z∂ x Q c k (λ k )e -iθ k 2 Ce -2γt z 2 H 1 Ce -2γt e -2(ej +γ)t . Second, denoting Y 1 = Re Y + and Y 2 = Im Y + again, we have -Im Y + k (t) z(t) = α + k (t) -β k (t) Re Q c k (λ k )(Y + c k ,1 -iY + c k ,2 )(λ k ) -γ k (t) Im ∂ x Q c k (λ k )(Y + c k ,1 -iY + c k ,2 )(λ k ) + O(e -γt z H 1 ) = α + k (t) -Cβ k (t) QY 1 + Cγ k (t) ∂ x QY 2 + O(e -γt z H 1 ).
But by definition of Y + , we recall that L + Y 1 = e 0 Y 2 and L -Y 2 = -e 0 Y 1 , and so -

-Im Y + k (t) z(t) = α + k (t) + Cβ k (t) e 0 Q(L -Y 2 ) + Cγ k (t) e 0 ∂ x Q(L + Y 1 ) + O(e -γt z H 1 ) = α + k (t) + C ′ β k (t) (L -Q)Y 2 + C ′ γ k (t) L + (∂ x Q)Y 1 + O(e -γt z H 1 ) = α + k (t) + O(e -γt
Im zY + k 2 2(α + k ) 2 +Ce -2γt z 2 H 1
Ce -2(ej +4γ)t +Ce -2γt e -2(ej +γ)t Ce -2γt e -2(ej +γ)t .

Completely similarly, we find, for all k

∈ [[1, N ]], -Im zY - k 2 2(α - k ) 2 + Ce -2γt z 2 H 1
Ce -2γt e -2(ej +γ)t , using (3.13) for k ∈ J, and (3.9) for k ∈ K.

Finally, gathering all estimates from (3.18), we have proved that there exists K 0 > 0 such that, for all t ∈ [T (a -), S n ],

z(t) H 1 K 0 t 1/4
e -(ej +γ)t . We want now to prove the same estimate for z, and so we have to control the parameters β k (t) and γ k (t) introduced above.

Improvement of the decay of z

Lemma 3.12. There exists K 0 > 0 such that, for all t ∈ [T (a -), S n ], 

z(t) H 1 K 0 t 1/4
i∂ t z + ∂ 2 x z + (p -1)|ϕ| p-3 ϕ Re(ϕ z) + |ϕ| p-1 z = i∂ t z - β ′ l R l - β l -v l ∂ x Q c l + i c l - v 2 l 4 Q c l (λ l )e iθ l + i γ ′ l ∂ x Q c l (λ l )e iθ l + i γ l -v l ∂ 2 x Q c l + i c l - v 2 l 4 ∂ x Q c l (λ l )e iθ l + ∂ 2 x z + i β l ∂ 2 x Q c l + iv l ∂ x Q c l - v 2 l 4 Q c l (λ l )e iθ l + γ l ∂ 3 x Q c l + iv l ∂ 2 x Q c l - v 2 l 4 ∂ x Q c l (λ l )e iθ l + (p -1)|ϕ| p-3 ϕ Re(ϕz) + (p -1)|ϕ| p-3 ϕ β l Re(iϕR l ) + |ϕ| p-1 z + (p -1)|ϕ| p-3 ϕ γ l Re(ϕ∂ x Q c l (λ l )e iθ l ) + β l i|ϕ| p-1 R l + γ l |ϕ| p-1 ∂ x Q c l (λ l )e iθ l ,
and so, since

∂ 2 x Q c l + Q p c l = c l Q c l , we find i∂ t z + ∂ 2 x z + (p -1)|ϕ| p-3 ϕ Re(ϕ z) + |ϕ| p-1 z = -ω 1 • z -ω(z) -Ω - β ′ l R l + i γ ′ l ∂ x Q c l (λ l )e iθ l -i β l Q p c l (λ l )e iθ l -p γ l ∂ x Q c l (λ l )Q p-1 c l (λ l )e iθ l -(p -1) β l |ϕ| p-3 ϕ Im(ϕR l ) + (p -1) γ l |ϕ| p-3 ϕ Re(ϕ∂ x Q c l (λ l )e iθ l ) + i β l |ϕ| p-1 Q c l (λ l )e iθ l + γ l |ϕ| p-1 ∂ x Q c l (λ l )e iθ l = -ω 1 • z -ω(z) -Ω - β ′ l R l + i γ ′ l ∂ x Q c l (λ l )e iθ l -(p -1) β l |ϕ| p-3 ϕ Im(ϕR l ) + i β l e iθ l Q c l (λ l )[|ϕ| p-1 -Q p-1 c l (λ l )] + γ l |ϕ| p-1 ∂ x Q c l (λ l )e iθ l + (p -1)|ϕ| p-3 ϕ Re(ϕ∂ x Q c l (λ l )e iθ l ) -p∂ x Q c l (λ l )Q p-1 c l (λ l )e iθ l .
Then, multiply this equation by R k , integrate, and take the real part of it, so that we obtain, by (2.4), (2.5) and Lemma 3.2,

-Im ∂ t zR k + O( z L 2 ) = O(e -ej t z H 1 ) + O( z 2 H 1 ) + O(e -(ej +4γ)t ) -Cβ ′ k + l =k (β ′ l + γ ′ l )O(e -γt ) + β l O(e -γt ) + γ l O(e -γt ).
In other words, we have, by (3.16) and (3.9),

|β ′ k | C Im ∂ t zR k + Ce -γt l =k (|β ′ l | + |γ ′ l |) + C t 1/4 e -(ej +γ)t . Moreover, from Im zR k = l =k β l Im iR l R k + l =k γ l Im ∂ x Q c l (λ l )e iθ l R k , we deduce that d dt Im zR k = l =k (β ′ l + γ ′ l )O(e -γt ) + l =k (β l + γ l )O(e -γt ) = Im ∂ t zR k + Im z∂ t R k ,
and so, as

∂ t R k = -v k ∂ x R k + i c k + v 2 k 4 R k , Im ∂ t zR k C z H 1 + Ce -γt l =k (|β ′ l | + |γ ′ l |) + Ce -γt l =k (|β l | + |γ l |).
Gathering previous estimates, we find

|β ′ k | Ce -γt l =k (|β ′ l | + |γ ′ l |) + C t 1/4 e -(ej +γ)t .
Completely similarly, if we multiply the equation on z by ∂ x Q c k (λ k )e -iθ k , integrate and take the imaginary part of it, we find

|γ ′ k | Ce -γt l =k (|β ′ l | + |γ ′ l |) + C t 1/4 e -(ej +γ)t .
Hence, we have proved that there exist C 3 , C 4 > 0 such that, for all t ∈ [T (a -), S n ],

|β ′ k | + |γ ′ k | C 3 e -γt l =k (|β ′ l | + |γ ′ l |) + C 4 t 1/4 e -(ej +γ)t .
Finally, if we choose t 0 large enough so that C 3 e -γt0

1

N , we obtain, for all s ∈ [t, S n ], with t ∈ [T (a -), S n ], |β ′ k (s)| + |γ ′ k (s)| C t 1/4 e -(ej +γ)s .

By integration on [t, S n ], we get |β

k (t)| + |γ k (t)| |β k (S n )| + |γ k (S n )| + C t 1/4
e -(ej +γ)t . But from Claim 3.6, Lemma 3.5 and (3.16), we have

|β k (S n )| + |γ k (S n )| C z(S n ) H 1 C b C a - Ce -(ej +2γ)Sn Ce -(ej +2γ)t ,
and so finally,

∀t ∈ [T (a -), S n ], |β k (t)| + |γ k (t)| C t 1/4 e -(ej +γ)t .

Control of the unstable directions for k ∈ K by a topological argument

Lemma 3.12 being proved, we choose t 0 large enough so that K0 t 1/4 0 1 2 . Therefore, we have

∀t ∈ [T (a -), S n ], z(t) H 1 1 2 e -(ej +γ)t .
We can now prove the following final lemma, which concludes the proof of Proposition 3.4. Note that its proof is very similar to the one in [START_REF] Combet | Multi-soliton solutions for the supercritical gKdV equations[END_REF], by the common choice of notation, but it is reproduced here for the reader's convenience.

Lemma 3.13. For t 0 large enough, there exists a -∈ B R k 0 (e -(ej +2γ)Sn ) such that T (a -) = t 0 .

Proof. For the sake of contradiction, suppose that, for all a -∈ B R k 0 (e -(ej +2γ)Sn ), T (a -) > t 0 . As e (ej +γ)T (a -) z(T (a -)) ∈ B H 1 (1/2), then, by definition of T (a -) and continuity of the flow, we have e (ej +2γ)T (a

-) α -(T (a -)) ∈ S R k 0 (1). (3.20)
Now, let T ∈ [t 0 , T (a -)] be close enough to T (a -) such that z is defined on [T, S n ], and by continuity,

∀t ∈ [T, S n ], z(t) H 1 e -(ej +γ)t .
We can now consider, for t ∈ [T, S n ],

N (t) = N (α -(t)) = e (ej +2γ)t α -(t) 2 .
To calculate N ′ , we start from estimate (3.12):

∀k ∈ K, ∀t ∈ [T, S n ], d dt α - k (t) + e k α - k (t) K ′ 2 e -(ej +4γ)t .
Multiplying by |α - k (t)|, we obtain

α - k (t) d dt α - k (t) + e k α - k (t) 2 K ′ 2 e -(ej +4γ)t |α - k (t)|,
and thus

2α - k (t) d dt α - k (t) + 2e min α - k (t) 2 2α - k (t) d dt α - k (t) + 2e k α - k (t) 2 K ′ 2 e -(ej +4γ)t |α - k (t)|,
where e min = min{e k ; k ∈ K}. By summing on k ∈ K, we get

( α -(t) 2 ) ′ + 2e min α -(t) 2 K 3 e -(ej +4γ)t α -(t) .
Therefore, we can estimate

N ′ (t) = (e 2(ej +2γ)t α -(t) 2 ) ′ = e 2(ej +2γ)t 2(e j + 2γ) α -(t) 2 + ( α -(t) 2 ) ′ e 2(ej +2γ)t 2(e j + 2γ) α -(t) 2 -2e min α -(t) 2 + K 3 e -(ej +4γ)t α -(t) .
Hence, we have, for all t ∈ [T, S n ],

N ′ (t) -θ • N (t) + K 3 e ej t α -(t) ,
where θ = 2(e mine j -2γ) > 0 by the definitions of γ (2.3) and of the set K. In particular, for all τ ∈ [T, S n ] satisfying N (τ ) = 1, we have

N ′ (τ ) -θ + K 3 e ej τ α -(τ ) = -θ + K 3 e ej τ e -(ej +2γ)τ = -θ + K 3 e -2γτ -θ + K 3 e -2γt0 .
Now, we definitely fix t 0 large enough so that K 3 e -2γt0 θ 2 , and so, for all τ ∈ [T, S n ] such that N (τ ) = 1, we have

N ′ (τ ) - θ 2 . ( 3.21) 
In particular, by (3.20), we have N ′ (T (a -)) -θ 2 . First consequence: a -→ T (a -) is continuous. Indeed, let ε > 0. Then there exists δ > 0 such that N (T (a -)ε) > 1 + δ and N (T (a -) + ε) < 1δ. Moreover, by definition of T (a -) and (3.21), there can not exist τ ∈ [T (a -) + ε, S n ] such that N (τ ) = 1, and so by choosing δ small enough, we have, for all t ∈ [T (a -) + ε, S n ], N (t) < 1δ. But from continuity of the flow, there exists η > 0 such that, for all a -satisfying a -a - η, we have

∀t ∈ [T (a -) -ε, S n ], |N ( α -(t)) -N (α -(t))| δ/2.
We finally deduce that T (a -)ε T ( a -) T (a -) + ε, as expected.

Second consequence:

We can define the map

M : B R k 0 (e -(ej +2γ)Sn ) → S R k 0 (e -(ej +2γ)Sn ) a -→ e -(ej +2γ)(Sn-T (a -)) α -(T (a -)).
Note that M is continuous by the previous point. Moreover, let a -∈ S R k 0 (e -(ej +2γ)Sn ).

As N ′ (S n ) -θ 2 by (3.21), we deduce by definition of T (a -) that T (a -) = S n , and so M(a -) = a -. In other words, M restricted to S R k 0 (e -(ej +2γ)Sn ) is the identity. But the existence of such a map M contradicts Brouwer's fixed point theorem.

In conclusion, there exists a -∈ B R k 0 (e -(ej +2γ)Sn ) such that T (a -) = t 0 .

Since ϕ -R H 1 Ce -4γt by (2.5), the first three terms are bounded in L 2 norm by Ce -(ej +4γ)t . Moreover, by (2.4), the next three terms are also bounded in L 2 norm by Ce -(ej +4γ)t . Finally, for the last term, we write

|ϕ| p-5 ϕ -|R j | p-5 R j = (|ϕ| p-5 ϕ -|R| p-5 R) + (|R| p-5 R -|R j | p-5 R j ),
so that, since p > 5, we can conclude similarly that II L 2 Ce -(ej +4γ)t .

Proof of Lemma 3.9. (i) For k ∈ [[1, N ]], we have

(|R k | + |R kx |)|φ k -1| Ce -√ c k |x-v k t| [1 + ψ k+1 -ψ k ] Ce -√ σ0|x-v k t| • e -√ σ0|x-v k t| [1 + ψ k+1 -ψ k ]. But, if x < m k (t) + √ t, then e -√ σ0|x-v k t| [1 + ψ k+1 -ψ k ] Ce √ σ0x e -√ σ0v k t Ce 1 2 √ σ0(v k +v k-1 -2v k )t e √ σ0 √ t Ce -1 4 σ 3/2 0 t , and similarly, if x > m k+1 (t) - √ t, then e -√ σ0|x-v k t| [1+ψ k+1 -ψ k ] Ce -√ σ0x e √ σ0v k t Ce -1 2 √ σ0(v k+1 -v k -2v k )t e √ σ0 √ t Ce -1 4 σ 3/2 0 t . As φ k (t, x) = 1 for m k (t) + √ t x m k+1 (t) - √ t, the conclusion follows from (2.3). (ii) For l, k ∈ [[1, N ]] such that l = k, we have (|R k | + |R kx |)φ l Ce -√ c k |x-v k t| [ψ l -ψ l+1 ]½ {x>m l (t)- √ t} ½ {x<m l+1 (t)+ √ t} Ce -√ σ0|x-v k t| • e -√ σ0|x-v k t| ½ {x>m l (t)-√ t} ½ {x<m l+1 (t)+ √ t} . But, if k > l, then e -√ σ0|x-v k t| ½ {x>m l (t)-√ t} ½ {x<m l+1 (t)+ √ t} e √ σ0x e -√ σ0v k t ½ {x>m l (t)-√ t} ½ {x<m l+1 (t)+ √ t} Ce 1 2 √ σ0(v l+1 +v l -2v k )t e √ σ0 √ t Ce -1 4 σ 3/2 0 t ,
and similarly, if k < l, then

e -√ σ0|x-v k t| ½ {x>m l (t)-√ t} ½ {x<m l+1 (t)+ √ t} Ce -√ σ0x e √ σ0v k t ½ {x>m l (t)-√ t} ½ {x<m l+1 (t)+ √ t} Ce -1 2 √ σ0(v l +v l-1 -2v k )t e √ σ0 √ t Ce -1 4 σ 3/2 0 t ,
and the conclusion follows again from the definition of γ.

(iii) For k ∈ [[1, N ]], it suffices to prove ψ kx L ∞ + ψ kxx L ∞ + ψ kt L ∞ C √ t . The first two in- equalities are obvious since ψ kx (t, x) = 1 √ t ψ ′ 1 √ t (x -m k (t)) and so ψ kx L ∞ 1 √ t ψ ′ L ∞ , and similarly ψ kxx L ∞ 1 t ψ ′′ L ∞ .
For the last one, we write

ψ k (t, x) = ψ x -1 2 (x k + x k-1 ) √ t - 1 2 (v k + v k-1 ) √ t , so that ψ kt (t, x) = - 1 2 x -x k +x k-1 2 t 3/2 - 1 4 
v k + v k-1 √ t • ψ ′ 1 √ t (x -m k (t)) ½ |x-m k (t)| √ t , since supp(ψ ′ ) = [-1, 1]. But for x such that |x -m k (t)| √ t, we have x -x k +x k-1 2
Ct, and so finally

ψ kt L ∞ C √ t ψ ′ L ∞ . (iv) Since h 1 ≡ N k=1 c k + v 2 k 4
φ k and h 2 ≡ N k=1 v k φ k have a similar form, it is clear that it suffices to prove the inequalities for h 2 , for example. Moreover, the first inequalities are obvious by (iii). Finally, for the last inequality, we write

|h 2 -v k |(|R k | + |R kx |) = N l=1 v l φ l -v k (|R k | + |R kx |) v k |φ k -1|(|R k | + |R kx |) + l =k v l φ l (|R k | + |R kx |) Ce -4γt e -√ σ0|x-v k t|
by (i) and (ii), which concludes the proof.

Proof of Lemma 3.11. To compare H[ z] and H[z], we replace z in H[ z] by its definition,

z = z + N k=1 β k iQ c k (λ k )e iθ k + N k=1 γ k ∂ x Q c k (λ k )e iθ k ,
dropping the argument λ k for this proof, which would not be a source of confusion since there is no time derivative. Hence, we compute

H[ z] = ∂ x z • ∂ x z -Im h 2 ∂ x z • z + (h 1 -|R| p-1 ) z • z -(p -1) Re(R z) 2 |R| p-3 = ∂ x z + γ k ∂ 2 x Q c k - β k 2 v k Q c k + i∂ x Q c k (β k + 1 2 v k γ k ) e iθ k × ∂ x z + γ k ∂ 2 x Q c k - β k 2 v k Q c k -i∂ x Q c k (β k + 1 2 v k γ k ) e -iθ k -h 2 Im ∂ x z + γ k ∂ 2 x Q c k - β k 2 v k Q c k + i∂ x Q c k (β k + 1 2 v k γ k ) e iθ k × z + (γ k ∂ x Q c k -iβ k Q c k )e -iθ k + (h 1 -|R|) p-1 z + (γ k ∂ x Q c k + iβ k Q c k )e iθ k × z + (γ k ∂ x Q c k -iβ k Q c k )e -iθ k -(p -1)|R| p-3 Re(Rz) - β k Im(R k R) + γ k Re(∂ x Q c k e iθ k R) 2 .
Developing in terms of z, we find

H[ z] = |∂ x z| 2 + 2 Re ∂ x z • γ k ∂ 2 x Q c k - β k 2 v k Q c k -i∂ x Q c k (β k + 1 2 v k γ k ) e -iθ k + k,l γ k ∂ 2 x Q c k - β k 2 v k Q c k + i∂ x Q c k (β k + 1 2 v k γ k ) e iθ k × γ l ∂ 2 x Q c l - β l 2 v l Q c l -i∂ x Q c l (β l + 1 2 v l γ l ) e -iθ l -Im h 2 ∂ x z • z -Im h 2 ∂ x z • (γ k ∂ x Q c k -iβ k Q c k )e -iθ k + Im h 2 z • γ k ∂ 2 x Q c k - β k 2 v k Q c k -i∂ x Q c k (β k + 1 2 v k γ k ) e -iθ k - k,l Im h 2 γ k ∂ 2 x Q c k - β k 2 v k Q c k + i∂ x Q c k (β k + 1 2 v k γ k ) e iθ k (γ l ∂ x Q c l -iβ l Q c l )e -iθ l + (h 1 -|R| p-1 )|z| 2 + 2 Re (h 1 -|R| p-1 )z • (γ k ∂ x Q c k -iβ k Q c k )e -iθ k + k,l (h 1 -|R| p-1 )(γ k ∂ x Q c k + iβ k Q c k )e iθ k (γ l ∂ x Q c l -iβ l Q c l )e -iθ l -(p -1) |R| p-3 Re(Rz) 2 -(p -1) |R| p-3 k,l β k β l Im(R k R) Im(R l R) -(p -1) |R| p-3 k,l γ k γ l Re(∂ x Q c k e iθ k R) Re(∂ x Q c l e iθ l R) + 2(p -1) |R| p-3 Re(Rz) β k Im(R k R) -2(p -1) |R| p-3 Re(Rz) γ k Re(∂ x Q c k e iθ k R) + 2(p -1) |R| p-3 k,l β k γ l Im(R k R) Re(∂ x Q c l e iθ l R). Now, first remark that Im(R k R) = q =k Im(R k R q )
, and so, by (2.4), all integrals containing this term are in O(e -γt z 2 H 1 ). Moreover, still by (2.4), all double sums on k, l have their terms in O(e -γt z 2 H 1 ) whenever k = l. Note finally that all terms composing H[z] appear. Hence, with an integration by parts to make ∂ x z disappear, we have

H[ z] = |∂ x z| 2 -Im h 2 ∂ x z • z + (h 1 -|R| p-1 )|z| 2 -(p -1)|R| p-3 Re(Rz) 2 + O(e -γt z 2 H 1 ) -2 Re ze -iθ k γ k ∂ 3 x Q c k -β k v k ∂ x Q c k - 1 4 γ k v 2 k ∂ x Q c k +i -v k γ k ∂ 2 x Q c k -β k ∂ 2 x Q c k + 1 4 v 2 k β k Q c k + γ k ∂ 2 x Q c k - β k 2 v k Q c k 2 + β k + 1 2 v k γ k 2 (∂ x Q c k ) 2 + Im z∂ x h 2 (γ k ∂ x Q c k -iβ k Q c k )e -iθ k + 2 Im h 2 ze -iθ k γ k ∂ 2 x Q c k - β k 2 v k Q c k -i∂ x Q c k β k + 1 2 v k γ k - h 2 γ k (β k + 1 2 v k γ k )(∂ x Q c k ) 2 + h 2 β k Q c k (γ k ∂ 2 x Q c k - β k 2 v k Q c k ) + 2 Re (h 1 -|R| p-1 )ze -iθ k (γ k ∂ x Q c k -iβ k Q c k ) + (h 1 -|R| p-1 )(γ 2 k (∂ x Q c k ) 2 + β 2 k Q 2 c k ) -(p -1) |R| p-3 γ 2 k Q 2 c k (∂ x Q c k ) 2 -2(p -1) Re |R| p-3 ze -iθ k γ k Q 2 c k ∂ x Q c k .
We now use notation z 1,k = Re(z -iθ k ) and z 2,k = Im(z -iθ k ) again. Moreover, recall that we have ∂ x h 2 L ∞ C √ t by (iv) of Lemma 3.9, and ∂ 2

x Q c k + Q p c k = c k Q c k by (1.1)
. Thus, we find

H[ z] = H[z] + O(t -1/2 z 2 H 1 ) + z 1,k [-2c k γ k ∂ x Q c k + 2pγ k ∂ x Q c k Q p-1 c k + 2β k v k ∂ x Q c k + 1 2 γ k v 2 k ∂ x Q c k -2h 2 β k ∂ x Q c k -h 2 γ k v k ∂ x Q c k + 2h 1 γ k ∂ x Q c k -2γ k ∂ x Q c k Q p-1 c k -2(p -1)γ k ∂ x Q c k Q p-1 c k ] (A.1) + z 2,k [-2γ k v k c k Q c k + 2γ k v k Q p c k -2β k c k Q c k + 2β k Q p c k + 1 2 β k v 2 k Q c k + 2h 2 γ k c k Q c k -2h 2 γ k Q p c k -h 2 β k v k Q c k + 2h 1 β k Q c k -2β k Q p c k ] (A.2) + γ k c k Q c k -γ k Q p c k - β k 2 v k Q c k 2 + β k + 1 2 v k γ k 2 (∂ x Q c k ) 2 - h 2 γ k (β k + 1 2 v k γ k )(∂ x Q c k ) 2 + h 2 β k Q c k (γ k c k Q c k -γ k Q p c k - β k 2 v k Q c k ) + h 1 [γ 2 k (∂ x Q c k ) 2 + β 2 k Q 2 c k ] - Q p-1 c k [γ 2 k (∂ x Q c k ) 2 + β 2 k Q 2 c k ] - (p -1)γ 2 k Q p-1 c k (∂ x Q c k ) 2 . (A.3)
To conclude, we estimate the term (A.1) involving z 1,k , the term (A.2) involving z 2,k , and finally the source term (A.3). For (A.1), we write

(A.1) = z 1,k γ k ∂ x Q c k (-2c k + v 2 k 2 -h 2 v k + 2h 1 ) + 2 z 1,k β k ∂ x Q c k (v k -h 2 ),
and

-2c k + v 2 k 2 -h 2 v k + 2h 1 = 2(h 1 -c k - v 2 k 4 ) + v k (v k -h 2 )
, so that, by (iv) of Lemma 3.9, we have (A.1) = O(e -γt z 2 H 1 ). Similarly, we write

(A.2) = 2 z 2,k γ k c k Q c k (h 2 -v k ) + 2 z 2,k γ k Q p c k (v k -h 2 ) + z 2,k β k Q c k (-2c k + v 2 k 2 -h 2 v k + 2h 1 ),
and we also conclude that (A.2) = O(e -γt z 2 H 1 ). For the last term, we expand it as

(A.3) = β k γ k c k Q 2 c k (h 2 -v k ) + β k γ k Q p+1 c k (v k -h 2 ) + β k γ k (∂ x Q c k ) 2 (v k -h 2 ) + γ 2 k c 2 k Q 2 c k + γ 2 k Q 2p c k + β 2 k 4 v 2 k Q 2 c k -2γ 2 k c k Q p+1 c k + β 2 k (∂ x Q c k ) 2 + 1 4 γ 2 k v 2 k (∂ x Q c k ) 2 - 1 2 h 2 γ 2 k v k (∂ x Q c k ) 2 - 1 2 h 2 β 2 k v k Q 2 c k + h 1 γ 2 k (∂ x Q c k ) 2 + h 1 β 2 k Q 2 c k -β 2 k Q p+1 c k -pγ 2 k Q p-1 c k (∂ x Q c k ) 2 .
Note that the first sum is in O(e -γt z 2 H 1 ) as above. Hence, with several integrations by parts and using ∂

2 x Q c k = c k Q c k -Q p c k , we find (A.3) = O(e -γt z 2 H 1 ) + γ 2 k c 2 k Q 2 c k + γ 2 k Q 2p c k + β 2 k 4 v 2 k Q 2 c k -2γ 2 k c k Q p+1 c k -β 2 k Q c k (c k Q c k -Q p c k ) - 1 4 γ 2 k v 2 k Q c k (c k Q c k -Q p c k ) + 1 2 h 2 γ 2 k v k Q c k (c k Q c k -Q p c k ) - 1 2 h 2 β 2 k v k Q 2 c k -h 1 γ 2 k Q c k (c k Q c k -Q p c k ) + h 1 β 2 k Q 2 c k -β 2 k Q p+1 c k + γ 2 k Q p c k (c k Q c k -Q p c k ) = O(e -γt z 2 H 1 ) - 1 2 γ 2 k c k Q 2 c k (-2c k + v 2 k 2 -h 2 v k + 2h 1 ) + 1 2 β 2 k Q 2 c k (-2c k + v 2 k 2 -h 2 v k + 2h 1 ) + 1 2 γ 2 k Q p+1 c k (-2c k + v 2 k 2 -h 2 v k + 2h 1 ),
and so we can conclude as above that (A. Gathering all previous estimates, we have proved that Finally, collecting similar terms in a single integral, we get, as r j H 

  If a and b are two functions of t and if b is positive, we write a = O(b) when there exists a constant C > 0 independent of t such that |a(t)| Cb(t) for all t.
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  z H 1 ), since L ± are self-adjoint, and moreover, L -Q = 0 and L + (∂ x Q) = 0 by Proposition 2.2. Hence, by (3.11), we find, for all k ∈ [[1, N ]],
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 23131 ′ (t) = I + II + III + O(e -(ej +4γ)t z H 1 ) + O(t -1/2 z 2 H 1 ), where                       I = Re h 2 z |ϕ + r j + z| p-1 (ϕ + r j + z) -|ϕ + r j | p-1 (ϕ + r j ) x , II = Im h 1 z |ϕ + r j + z| p-1 (ϕ + r j + z) -|ϕ + r j | p-1 (ϕ + r j ) , III = Re ϕ t |ϕ + r j + z| p-1 (ϕ + r j + z) -|ϕ + r j | p-1 (ϕ + r j + z) -(p -1)|ϕ + r j | p-3 (ϕ + r j ) Re[(ϕ + r j )z] .The purpose is now to make appear quadratic terms in z in these expressions. For II and III, we simply writeII = -Re ih 1 z |ϕ + r j | p-1 z + (p -1)(ϕ + r j )|ϕ + r j | p-3 Re[(ϕ + r j )z] + O( z )andIII = Re ϕ t p -1 2 |z| 2 |ϕ + r j | p-3 (ϕ + r j ) + (p -1)z|ϕ + r j | p-3 Re[(ϕ + r j )z] + (p -1)(p -3) 2 (Re[(ϕ + r j )z]) 2 |ϕ + r j | p-5 (ϕ + r j ) + O( z ). + (p-1) Re ϕ t z|ϕ + r j | p-3 Re[(ϕ + r j )z] -(p -1) Re ih 1 z(ϕ + r j )|ϕ + r j | p-3 Re[(ϕ + r j )z].

  and the null space of L c is spanned by ∂ x Q c and iQ c . Proof. Denote Y 1 = Re Y + and Y 2 = Im Y + . Thus, we have

	Claim 2.6. One can normalize Y ± so that	
	-Im (Y + ) 2 = 1 and still Y -= Y + .	(2.2)

Proposition 3.1. Let

  j ∈ [[1, N ]] and A j ∈ R. Then there exist t 0 > 0 and u ∈ C([t 0 , +∞), H 1 )

	Let p > 5, N	2, and a set of parameters (1.2). Denote R =	1. k=1 R k and ϕ a multi-soliton N
	solution satisfying (2.5), as defined in Theorem 1.2 for example.
	a solution of (NLS) such that	
		∀t t 0 ,	u(t) -ϕ(t) -A j e -ej t Y + j (t) H 1 e -(ej +γ)t .	(3.1)
	Before proving this proposition, let us show how this proposition implies Theorem 1.3.

  Indeed, from Proposition 3.10 and estimates (3.9), we deduce that, for all s ∈ [t, S n ], + C 1 e -3γs e -2(ej +γ)s + C 2 e -3(ej +γ)s K 1

	dH ds	(s)	C 0 √ s	e -2(ej +γ)s √	t	e -2(ej +γ)s .
	Thus, by integration on [t, S n ], we obtain |H(t) -H(S n )| K1 √ t e -2(ej +γ)t , and so

ej +γ)t .

(3.15) 

  Proof. By(3.16), it is enough to prove this estimate for|β k (t)| + |γ k (t)| with k ∈ [[1, N ]] fixed.To do this, write first the equation of z, from the equation of z (3.6),

e -(ej +γ)t .

  -1/2 z 2 H 1 ), as expected.From the definition of H(3.14), we now compute, using integrations by parts, H ′ (t) = 2 Re z tx zx -2 Re (ϕ + r j + z) t |ϕ + r j + z| p-1 (ϕ + r j + z)+ 2 Re (ϕ + r j ) t |ϕ + r j | p-1 (ϕ + r j ) + 2(p -1) Re (ϕ + r j ) t |ϕ + r j | p-3 (ϕ + r j ) Re[(ϕ + r j )z] + 2 |ϕ + r j | p-1 Re[(ϕ + r j ) t z] + 2 |ϕ + r j | p-1 Re[(ϕ + r j )z t ] + h 1t |z| 2 + 2 Re h 1 z t z -Im h 2t z x z -Im h 2 z tx z -Im h 2 z x zt = -2 Re z t zxx + |ϕ + r j + z| p-1 (ϕ + r j + z) -|ϕ + r j | p-1 (ϕ + r j ) -2 Re (ϕ + r j ) t |ϕ + r j + z| p-1 (ϕ + r j + z) -|ϕ + r j | p-1 (ϕ + r j + z) -(p -1)|ϕ + r j | p-3 (ϕ + r j ) Re[(ϕ + r j )z] + 2 Re h 1 z t z + 2 Im h 2 zx z t + Im h 2x z t z + h 1t |z| 2 -Im h 2t z x z.But from (iv) of Lemma 3.9, we haveh 1t L ∞ + h 2t L ∞ -|ϕ + r j | p-1 (ϕ + r j + z) -(p -1)|ϕ + r j | p-3 (ϕ + r j ) Re[(ϕ + r j )z] -2 Im h 1 zz xx -2 Im h 1 z[|ϕ + r j + z| p-1 (ϕ + r j + z) -|ϕ + r j | p-1 (ϕ + r j )] -2 Im h 1 Ωz + 2 Re h 2 zx z xx + Re h 2x zz xx + Re (2h 2 zx + h 2x z)Ω -2 Re h 2 z |ϕ + r j + z| p-1 (ϕ + r j + z) -|ϕ + r j | p-1 (ϕ + r j ) Re h 2x z |ϕ + r j + z| p-1 (ϕ + r j + z) -|ϕ + r j | p-1 (ϕ + r j ) + O(t -1/2 z Im Ωz xx = 2 Im Ω x z x C Ω H 1 z H 1 Ce -(ej +4γ)t z H 1 . Im Ω |ϕ + r j + z| p-1 (ϕ + r j + z) -|ϕ + r j | p-1 (ϕ + r j ) Ce -(ej +4γ)t z H 1 , -2 Im h 1 Ωz + Re (2h 2 zx + h 2x z)Ω Ce -(ej +4γ)t z H 1 . Im h 1 zz xx = 2 Im h 1 |z x | 2 + 2 Im h 1x zz x = 2 Im h 1x zz x ,and so, ash 1x L ∞ C √ t by Lemma 3.9, -2 Im h 1 zz xx Re h 2x z |ϕ + r j + z| p-1 (ϕ + r j + z) -|ϕ + r j | p-1 (ϕ + r j )Finally, we can also estimate 2 Re h 2 zx z xx + Re h 2x zz xx =h 2x |z x | 2 -Re z x (h 2xx z + h 2x zx ) = -2 h 2x |z x | 2 -Re h 2xx z x z. Indeed, since h 2x L ∞ + h 2xx L ∞ C √ t by Lemma 3.9, we have 2 Re h 2 zx z xx + Re h 2x zz xx

	Similarly, we have			
	-2 Then, another integration by parts gives			
	-2 C √ t z	2 H 1 . As we also have h 2x L ∞
	C √ t , we can estimate			
	-C √ t	z	2 H 1 .
		C √ t , and so
	h 1t |z| 2 -Im h 2t z x z	C √ t	z	2 H 1 .
			C √ t		z 2 H 1 .

3) = O(e -γt z 2 H 1 ). Finally, we proved that H[ z] = H[z] + O(t Moreover, by expanding |ϕ + r j + z| p-1 = |ϕ + r j + z| 2 p-1

2 , and as r jt L ∞ Ce -ej t , we have

-2 Re r jt |ϕ + r j + z| p-1 (ϕ + r j + z) -|ϕ + r j | p-1 (ϕ + r j + z) -(p -1)|ϕ + r j | p-3 (ϕ + r j ) Re[(ϕ + r j )z] Ce -4γt z 2 H 1 .

Hence, replacing z t by its equation, we find

H ′ (t) = -2 Im Ω z xx + |ϕ + r j + z| p-1 (ϕ + r j + z) -|ϕ + r j | p-1 (ϕ + r j ) -2 Re ϕ t |ϕ + r j + z| p-1 (ϕ + r j + z) x -2 H 1 ).

We can already estimate several terms in this expression. For the first term, for example, we have, by an integration by parts, -2

  1 Ce -ej t , (Re[(ϕ + r j )z])2 ϕ t + h 2 ϕ xih 1 ϕ + p -1 2 Re |z| 2 ϕ|ϕ + r j | p-3 ϕ t + h 2 ϕ xih 1 ϕ + (p -1) Re z|ϕ + r j | p-3 Re[(ϕ + r j )z] ϕ t + h 2 ϕ xih 1 ϕ = O(e -(ej +4γ)t z H 1 ) + O(t -1/2 z + h 2 ϕ xih 1 ϕ H -1 Ce -4γtby Lemma B.1 and the three terms in front of ϕ t + h 2 ϕ xih 1 ϕ are bounded in H 1 by z 2 H 1 , which concludes the proof of Proposition 3.10.

	-	1 2	H ′ (t) = O(e -(ej +4γ)t z H 1 ) + O(t -1/2 z 2 H 1 ) + O( z 3 H 1 )
			+	(p -1)(p -3) 2	Re ϕ|ϕ + r j | p-5 2 H 1 ) + O( z	3 H 1 ),
	since ϕ t			

A Appendix

Proof of Lemma 3.2. First, we calculate

Hence, from the expression of Ω (3.5), it can be written

We can now estimate Ω H 1 , and we estimate ∂ x Ω L 2 for example, the term Ω L 2 being similar and easier. To do this, we write

To estimate all these terms in L 2 norm, we use the facts that ϕ is equal to R plus a small error term according to (2.5), that R multiplied by a term moving on the line x = v j t + x j (like r j ) is equal to R j plus a small error term according to (2.4), and finally that r j is at order e -ej t . To illustrate this, we estimate the first two terms I and II, for example, as all other terms can be treated similarly. For I, we simply remark that

by the definition of γ (2.3). For II, we decompose it as

B Appendix

We prove here Proposition 3.10. To do this, we first need a lemma quantifying the fact that ϕ almost satisfies a transport equation similar to those satisfied by the solitons. Note finally that, since ϕ t takes values in H -1 , all integrals in this appendix may be seen as the dual bracket

Lemma B.1. There exists C > 0 such that, for all t T 0 ,

Remark B.2. To find the transport equation almost satisfied by ϕ, it suffices to compute an exact relation for

, and so

First note that, by (2.5),

Moreover, by (2.4), we also have |III| Ce -4γt f L 2 . For the last term, we first compute

and so, using

Therefore, by (iv) of Lemma 3.9, we also have |II| Ce -4γt f L 2 , which concludes the proof of Lemma B.1.

Proof of Proposition 3.10. First recall that, from Section 3.1, the equation of z can be written

where r j (t, x) = A j e -ej t Y + j (t, x) and Ω satisfies Ω H 1 Ce -(ej +4γ)t by Lemma 3.2.

For I, we have to compute

In the last expression, we integrate by parts the following two terms. First, we have

Second, we have similarly