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Uniform controllability of scalar conservation laws in the

vanishing viscosity limit

Matthieu Léautaud∗†

August 27, 2010

Abstract

We deal with viscous perturbations of scalar conservation laws on a bounded interval with
a general flux function f and a small dissipation coefficient ε. Acting on this system on both
endpoints of the interval, we prove global exact controllability to constant states with nonzero
speed. More precisely, we construct boundary controls so that the solution is driven to the
targeted constant state, and we moreover require these controls to be uniformly bounded as
ε → 0+ in an appropriate space. For general (non-convex) flux functions this can be done for
sufficiently large time, and for convex fluxes f , we have a precise estimate on the minimal time
needed to control.
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1 Introduction

1.1 Motivation and main results

We are concerned with the controllability of the following nonlinear parabolic equation

ut + [f(u)]x − εuxx = 0 in (0, T ) × (0, L), (1)

where T is a positive time, L a positive length, and ε a positive viscosity coefficient. On both
endpoints of the interval, we act on the system through the boundary conditions

u|x=0 = g0(t) in (0, T ), u|x=L = gL(t) in (0, T ). (2)

The problem of exact controllability is the following: given an initial datum

u|t=0 = u0 in (0, L), (3)

a time T > 0 and a prescribed state uT , is it possible to find control functions g0 = gε0 and gL = gεL
so that the associated solution u of the system (1), (2), (3) is steered to uT in time T? The aim of
this paper is to prove such a controllability result uniformly with respect to the viscosity coefficient
ε in a sufficiently small range. That is to say, is it possible to find such control functions g0 = gε0,
gL = gεL which norms in a suitable Banach space remain bounded as ε → 0+? More precisely, we
shall only consider the uniform controllability to constant targets uT = M ∈ R. The relevance of
this assumption is discussed in Remark 1.5.

Uniform controllability problems for singular perturbations of partial differential equations have
already been considered in several works, beginning with [22, Chapter 3]. In the context of trans-
port/heat equation (i.e. f(u) = V u for some constant V ∈ R) in vanishing viscosity limit, this study
was initiated by Coron and Guerrero in [9], where the authors make a conjecture on the minimal
time needed to achieve uniform controllability. Then, the estimates on this minimal time are im-
proved in [14] with a complex analytic method. The result of [9] was also generalized in several space
dimensions and for non-constant transport speed in [19]. Such uniform control properties in singular
limits are also addressed for vanishing dispersion in [16] and for vanishing dispersion and viscosity
in [17]. All these articles deal with singular perturbations of linear transport equations.

Concerning nonlinear control problems in vanishing viscosity, the only result up to our knowledge

has been stated by Glass and Guerrero [15] for the Burgers equation, i.e., in the case f(u) = u2

2 .
Theorems 1.1, 1.2 and 1.3 generalize this for general flux functions.

Our first result is concerned with convex flux functions f .

Theorem 1.1. Assume that the flux function satisfies f ∈W 2,∞
loc (R), f ′′ ≥ 0 a.e., and

lim inf
A→+∞

A−γf ′′(A) > 0 ; lim sup
A→+∞

e−A
2γ+1−δ

f ′′(A) < +∞ for some γ > −1

2
, δ > 0 (A+)

(resp. lim inf
A→−∞

|A|−γf ′′(A) > 0 ; lim sup
A→−∞

e−|A|2γ+1−δ

f ′′(A) < +∞ for some γ > −1

2
, δ > 0).

(A−)
Then, there exist α0 ≥ 1 and a constant C = C(α0) > 0 such that for all M satisfying f ′(M) > 0
(resp. f ′(M) < 0), there exists ε0 > 0 such that for any u0 ∈ L∞(0, L), any time T > α0

L
|f ′(M)| and

any ε ∈ (0, ε0), there exist two control functions gε0 and gεL satisfying

‖gε0‖L∞(0,T ) + ‖gεL‖L∞(0,T ) ≤ C
(

‖u0‖L∞(0,L) + |M |
)

,

such that the solution of (1), (2) and (3) associated to gε0 and gεL satisfies u|t=T = M on (0, L).
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This theorem is the direct generalization of [15, Theorem 1.1]. Note that we shall see that one
can take α0 = 6, or, as found numerically α0 = 5.3. Even in the case of a Burgers equation, this
improves the minimal control time found in [15] (which is α0 = 9, or, as found numerically α0 = 6.3).
Having a minimal controllability time is natural here since the inviscid system (for ε = 0) has a finite
propagation speed (see also Remark 1.4 below).

In this theorem, the second part of Assumptions (A+) and (A−) is due to a technical argument,
and does not seem to be necessary (see also Remarks 2.3 and 2.12 below). Under more natural (and
weaker) assumptions, we prove the following (weaker) result for convex flux functions.

Theorem 1.2. Assume that the flux function satisfies f ∈W 2,∞
loc (R), f ′′ ≥ 0 a.e. and f ′(u) → +∞

as u → +∞ (resp. f ′(u) → −∞ as u → −∞). Then, there exists α0 ≥ 1 and a constant C =
C(α0) > 0 such that for all R0 > 0 and all M satisfying f ′(M) > 0 (resp. f ′(M) < 0), there exists
ε0 > 0 such that for any u0 ∈ L∞(0, L) with ‖u0‖L∞(0,L) ≤ R0, any time T > α0

L
|f ′(M)| and any

ε ∈ (0, ε0), there exist two control functions gε0 and gεL satisfying

‖gε0‖L∞(0,T ) + ‖gεL‖L∞(0,T ) ≤ C (R0 + |M |) ,

such that the solution of (1), (2) and (3) associated to gε0 and gεL satisfies u|t=T = M on (0, L).

The only difference with the result of Theorem 1.1 is that here, ε0 also depends on the norm
of the initial datum u0. The question whether the result of Theorem 1.1 still holds only with the
assumptions of Theorem 1.2 remains open. In particular, Theorem 1.1 does not apply for flux
functions satisfying f(u) ∼u→+∞ uρ with 1 < ρ ≤ 3

2 , whereas Theorem 1.2 does.

We also prove a result for non-convex flux functions, that is, for general non linear transport
equations. In this setting however, we do not estimate the time needed to control, and our result is
less precise. Before stating it, let us define σ(A,B) the shock speed between two constant states A
and B, given by the Rankine-Hugoniot condition, i.e., the slope of the chord of f between A and B,

σ(A,B) =
f(B) − f(A)

B −A
if A 6= B, and σ(A,A) = f ′(A). (4)

On the interval (P,N) ⊂ R, the strict Oleinik admissibility conditions for the flux function f read

σ(P,N) < σ(A,N), for all A ∈ (P,N), (SOC+)

meaning that, on the interval (P,N), the graph of f is below the chord between P and N , or

σ(P,N) > σ(A,N), for all A ∈ (P,N), (SOC−)

meaning that, on the interval (P,N), the graph of f is above the chord between P and N . Note
that (SOC+) (resp. (SOC−)) is equivalent to having σ(A,P ) < σ(P,N) (resp. σ(A,P ) > σ(P,N))
for all A ∈ (P,N). Conditions (SOC+) or (SOC−) ensure the existence of an admissible shock wave
between P and N (see [10, Section 8.6]).

We can now state the result concerning non-convex flux functions.

Theorem 1.3. Suppose that f ∈ C2(R) and u0 ∈ L∞(0, L) satisfy the two following conditions:

(i) (f ′′)−1({0})∩K has a finite number of connected components for any compact interval K ⊂ R,

(ii) There exists an open interval I ⊂ R such that [ess inf u0, ess supu0] ⊂ I and f satisfies (SOC+)
or (SOC−) on I.

Then, for all M satisfying f ′(M) 6= 0, there exist C0 > 0, T0 > 0 and ε0 > 0 (only depending on I
and M) such that for any time T > T0 and any ε ∈ (0, ε0), there exist two control functions gε0 and
gεL satisfying

‖gε0‖L∞(0,T ) + ‖gεL‖L∞(0,T ) ≤ C0,

such that the solution of (1), (2) and (3) associated to gε0 and gεL satisfies u|t=T = M on (0, L).
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Note that Condition (i) actually means that f ′′ vanishes on a finite union of points and (closed)
intervals on each bounded subset of R. This is generally satisfied except for some pathological
examples (for instance f(u) = u5 cos

(

1
u

)

+ u if u 6= 0, f(0) = 0 and the target is 0). More precisely,
this condition is generically satisfied in C3(R), since for any compact K ⊂ R, the set

A = {f ∈ C3(K; R), (f ′′(x), f ′′′(x)) 6= (0, 0) for all x ∈ K}

is open and dense in C3(K; R). However, note that this genericity property does not hold in the
space C2(R) (see [3]).

Condition (ii) concerning the initial datum means that there exists an admissible shock wave
allowing to get rid of the initial condition, and is more restrictive. For instance, it is not satisfied if
f(u) = cos(u) and [ess inf u0, ess supu0] contains kπ for some k ∈ Z. Yet, it is satisfied in a large range
of situations, including, for any u0 ∈ L∞(0, L), the case where f satisfies limu→+∞ f ′(u) = ±∞.

Since we are interested in the properties of uniform controllability as ε → 0+, it seems natural
to refer to the results that are known both for the viscous problem (for ε > 0, fixed) and for the
inviscid problem (ε = 0).

First, the controllability of the viscous equation (1) for fixed ε > 0 has mainly been considered
for the Burgers equation. Two different types of control results have been proved. The local exact
controllability to trajectories for this equation has been established in [13]. In this work, the authors
also prove that the local exact controllability does not hold as long as one controls in a sub-interval of
(0, L), which is equivalent to controlling at one endpoint. Concerning the global exact controllability
for the viscous Burgers equation, it is proved in [18], that it does not hold even if the control is acting
on both sides of the domain. However, in [7] the author proves a global controllability result from
0 to constant states. More precisely, he states that for u0 = 0 and for any T > 0, one can drive
the solution of (1), (2), (3) to any constant M provided that |M | is sufficiently large with respect
to T . This result is improved (as a Corollary of the uniform controllability result) in [15], allowing
any u0 ∈ L∞(0, L) and giving a precise condition on the target M and the minimal control time.
Finally, adding a third control globally distributed on (0, L), and independent on x, the author of [4]
establishes the global controllability of the viscous Burgers equation for any T > 0. Note that this
last result is proved by using both controllability properties of the nonviscous equation and a local
result.

Second, concerning the inviscid problem

ut + [f(u)]x = 0, (5)

and in the context of entropy solutions, controllability questions have been addressed by Ancona and
Marson for general strictly convex flux functions f in [1]. In this work the controllability problem
is posed in the half real line with null initial condition and the set of attainable states is completely
described. For the problem on a bounded interval and with a general initial datum, the controllability

of the non-viscous Burgers equation (f(u) = u2

2 ) was studied in [20], where some conditions are given
on the final state in order to ensure this property.

We recall that for conservation laws such as (5), classical solutions starting out from smooth
initial data generally develop discontinuities in finite time. As a consequence, only weak solutions
may exist for large times. In the context of weak solutions however, uniqueness is lost. To overcome
the obstacle of nonuniqueness, restrictions need to be imposed to select the physically relevant weak
solution. One criterium for such a selection is to require that the admissible solution satisfies an
entropy condition, which reads as follows (see [10, Chapter 6] for instance): for any smooth convex
function η : R → R and associated entropy flux q(u) =

∫ u
η′(ω)f ′(ω)dω, the following holds in the

sense of measures:
η(u)t + q(u)x ≤ 0.

Another selection principle is to require that the admissible solution is the limit of a family of solutions
of equations containing a diffusive term, such as the one considered here. One can prove (see [21] or
[10, Chapter 6]) that both definitions coincide, so that entropy solutions are the ones which can be
obtained by vanishing viscosity. One can summarize the situation by saying that the viscosity has
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disappeared from the equation, and is only effective for the selection of admissible discontinuities.
The Cauchy problem, together with the convergence of vanishing viscosity approximations to the
entropy solutions of a general scalar conservation law were studied in the seminal work of Kruzkov
[21].

It is therefore very natural, when considering control problems for conservation laws, to study
the cost of the viscosity, that is, to determine if known controllability properties for the hyperbolic
equation are still valid for the model with small viscosity, and how the size of the control evolves as
the viscosity approaches 0.

Another important motivation for studying singular limit in control problems is the seek of
controllability properties for the perturbated system itself. This is well-illustrated by the papers
[6], [8] and [5], where the authors invesigate the Navier-Stokes system with Navier slip boundary
conditions. They use a global controllability result for the inviscid equation (in this case, the Euler
equation) to deduce global approximate controllability of the the Navier-Stokes system. Note that
in [6] and [5], global exact controllability is then deduced by a local controllability result obtained
by a Carleman inequality. The strategy we use to prove Theorem 1.1 is very close to the one of
these works. We here also provide a controllability result for Equation (1) for a fixed viscosity (see
Proposition 1.7 below).

Acknowledgements. The author wishes to thank O. Glass and J. Le Rousseau for very fruitful
discussions, helpful comments and encouragements, and S. Guerrero for discussions on transposition
solutions. The author was partially supported by l’Agence Nationale de la Recherche under grant
ANR-09-BLAN-0213-02.

1.2 Some remarks

Here, we make some remarks concerning the set of uniformly attainable states, and state two propo-
sitions concerning the inviscid system (ε = 0) and the viscous system with ε = 1.

Remark 1.4. In general, entropy solutions of (5) cannot reach a state uT (starting for instance
from u0 = 0), in a time less than L

inf |f ′(uT )| . In particular, the states uT satisfying f ′(uT ) = 0

cannot be reached unless one has u0 = uT . This can be proved by considering generalized backward
characteristics (see [1]). Hence the minimal control time α0

L
|f ′(M)| in Theorem 1.1 is not surprising.

Note that even in the cases of linear transport equation at speed M ∈ R or Burgers equation, the
uniform controllability results [9], [14], [17], [19] and [15] consider a time of control of the form C L

|M | ,

C > 1.

Remark 1.5. Here, we are looking for the set ET of states that are controllable uniformly in the
asymptotics ε → 0+ at time t = T . This implies in particular that ET is contained in the reachable
set E0

T for the nonviscous equation (5) and in the reachable set EεT for the viscous equation (1), for
any ε ∈ (0, ε0): ET ⊂ ⋂0<ε<ε0

EεT ∩ E0
T . In general, this intersection seems difficult to describe since

the solutions of (1) are very regular whereas the solutions of (1) can have discontinuities. We thus
restrict ourselves to equilibrium points of the system, that are the most interesting states to control.
Let uT (x) be a uniformly controllable stationary state as ε→ 0+. It satisfies both

f(uT )x = 0, and f(uT )x − εuT,xx = 0, on (0, L),

so that we have, for some constants c and d,

uT (x) = cx+ d, and f ′(cx+ d)c = 0, on (0, L).

As a consequence, either c = 0 and uT is constant, or c 6= 0, uT (x) = cx+d and f ′(uT ) = 0 on (0, L).
Referring to Remark 1.4, we see that states satisfying f ′(uT ) = 0 are not attainable for the inviscid
system (5), and necessarily uT = d is a constant. Finally, the set of uniformly attainable stationary
states for (1) is exactly the set of constant states with non-zero speed.
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In the vanishing viscosity limit ε → 0+, (the proof of) Theorem 1.3 gives a controllability result
to constant states for entropy solutions of (5), which is new as well.

Proposition 1.6. Suppose that f ∈ C2(R) and u0 ∈ L∞(0, L) satisfy conditions (i) and (ii) of
Theorem 1.3. Then, for all M satisfying f ′(M) 6= 0, there exists T0 > 0 and an entropy solution
u ∈ C0(R+;L1

loc(R)) of
ut + [f(u)]x = 0 in R+ × R,

such that
u|t=0 = u0 and u|t=T = M on (0, L),

for any time T > T0.

Even if this proposition can be viewed as a consequence of Theorem 1.3, it can also be proved
directly constructing entropy solutions. Such a proof follows the construction of Section 3.2, using
shock waves in place of traveling waves and rarefaction waves in place of viscous ones. This type of
direct proof of Proposition 1.6 would already contain all the ideas and the difficulties of Theorem 1.3
since the vanishing viscosity problem is addressed separately in Section 2.

Note that this proposition can be seen as a boundary control result for conservation laws on
the interval (0, L). However, in this case, one has to take care of the sense we give to boundary
conditions. Indeed, they must not be understood in the sense of Dirichlet, which is not the adapted
notion for conservation laws, but rather in the sense of [2] or [1].

Note also that even in the case of a constant viscosity, the analogous of Theorem 1.3 is a new
global controllability result to constant states in large time for semilinear heat equations. More
precisely, we have

Proposition 1.7. Suppose that f ∈ C2(R) and u0 ∈ L∞(0, L) satisfy conditions (i) and (ii) of
Theorem 1.3. Then, for all M satisfying f ′(M) 6= 0, there exists T0 > 0 such that for any time
T > T0, there exist two control functions g0, gL ∈ L∞(0, T ) such that the solution of







ut − uxx + [f(u)]x = 0 in (0, T ) × (0, L),
u|x=0 = g0(t) and u|x=L = gL(t) in (0, T ),
u|t=0 = u0 in (0, L),

satisfies u|t=T = M in (0, L).

To prove this proposition, it suffices to follow the proof of Theorem 1.3 line by line and replace
the argument “ε small” by “T large”. It works since all the constants we obtain in the approximate
controllability arguments are of the form e−K

T
ε (see also Remark 2.7 below).

1.3 Structure of the paper, idea of the proofs

The main idea for proving Theorems 1.1, 1.2 and 1.3 is to combine global approximate controllability
results relying on the hyperbolic nature of the problem and local exact controllability relying on the
parabolic perturbation term.

The proof of Theorems 1.1 and 1.2 follows the strategy of the article [15]. One of its main
ingredients is the use of the return method of J.-M. Coron, which consists in finding a particular
trajectory of the system which moves far away from the initial state to get back to the final state
afterwards. This strategy to prove global controllability results is for instance very close to the one
used in [6], [8] and [5] for the Navier Stokes equations and [4] for the Burgers equation. In the
situation of Theorems 1.1 and 1.2, we steer the system to a large constant state N (such that f ′(N)
has the same sign as f ′(M)), and then we get back to the constant target M . The first step (reaching
N) can be done as fast as needed, taking N sufficiently large.

The main difference between our proof of Theorems 1.1, 1.2 and the one in [15] is concerned with
the global approximate controllability results (see Sections 2.1 and 2.2). The proofs given in [15] for
the Burgers equation rely on the Hopf formula, which gives an explicit expression of the solution
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of the viscous Burgers equation on the real line. Up to our knowledge, this formula does not exist
for general flux functions, so we have to develop different arguments. We hence have to study the
convergence rate of viscous shock waves (resp. viscous rarefaction waves) to non viscous ones as
ε→ 0+.

Then, the proof of Theorem 1.3 relies on an iterative version of proof of Theorem 1.2. In a first
step, we use Assumption (ii) to get rid of the initial condition thanks to a viscous shock wave (see
a definition in the next paragraph). After that, under Assumption (i), there is between the initial
datum and the target a finite number of zones on which f ′′ ≥ 0 or f ′′ ≤ 0. In each of these intervals
we can develop the same type of arguments as in the proof of Theorem 1.2. We also have to study
how to pass from one zone to another. Note that in this proof, the difficulty does not come from
the uniformity with respect to ε. The problem here is to handle the non monotonicity of the speeds
(i.e. the non-convex flux function), and is hence of hyperbolic nature. The inviscid framework (for
ε = 0) already contains the difficulties encountered here, and the proof still holds in this case (see
Proposition 1.6 above)

The ouline of the paper is the following: In Section 2, we prove three intermediate propositions
needed for the proof of Theorems 1.1, 1.2 and 1.3. Sections 2.1 and 2.2 are concerned with two
different global approximate controllability results. Then, Section 2.3 deals with the local exact
controllability argument, that will be used systematically after the approximate controllability results
of both Sections 2.1 and 2.2. In Section 3, we finally combine these arguments and conclude the
proofs of Theorems 1.1, 1.2 and 1.3. Note that the local exact controllability result is proved using
a fixed point argument for which we need to have a small parameter (ε in the three theorems) or a
large parameter (T in Proposition 1.7 or N in the first step of the proof of Theorem 1.1).

To conclude this section, let us introduce the traveling wave (or viscous shock wave) solutions of
(1), and recall some of their basic properties (see [10, Section 8.6]). In the following, we shall make
an intensive use of these solutions. Searching a solution ǔ of (1) under the form

ǔ(t, x) = U

(

x− st

ε

)

, (t, x) ∈ R+ × R,

that approximates as ε → 0+ a shock wave between N and P , leads to considering the ordinary
differential equation

U̇ = f(U) − f(N) − s(U −N), (6)

s = σ(P,N), (7)

lim
ξ→+∞

U(ξ) = P, and lim
ξ→−∞

U(ξ) = N, (8)

once having replaced ǔ by U in (1) and integrated. Here U̇ denotes the derivative with respect to ξ,
U = U(ξ), ξ ∈ R is the wave profile and s the speed of the wave. This speed is exactly the speed
of the associated shock wave and is prescribed by the Rankine-Hugoniot condition (7). Under the
assumptions (SOC+) and P < N (resp. (SOC−) and P > N), System (6)-(8) admits a solution (see
[10, Section 8.6]), that moreover has the following properties:

• U is decreasing (resp. increasing) from N to P , since the Rankine-Hugoniot condition (7)
together with the fact that P < U(ξ) < N (resp. N < U(ξ) < P ) for all ξ ∈ R implies that the
vector field in the right hand-side of (6) is always negative (resp. positive);

• limξ→±∞ U̇(ξ) = 0, as a consequence of (6)-(8);

• for any ξ0 ∈ R, Uξ0 = U(· − ξ0) is still a solution of (6)-(8) since (6) is autonomous;

• U ∈W 3,∞(R) for f ∈W 2,∞
loc (R) by a bootstrap argument in (6).
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In the following, we shall say that a solution U of (6)-(8) is a traveling wave “from P to N” if the
vector field in the right hand side of (6) is oriented from P to N . If (SOC+) is satisfied between P
and N , U is a traveling wave “from P to N” if P < N and s > 0 or if P > N and s < 0. If (SOC−)
is satisfied between P and N , U is a traveling wave “from P to N” if P < N and s < 0 or if P > N
and s > 0.

Remark 1.8. In the sequel, during proofs, C will denote a generic positive constant, whose value
may change from line to line. Writing C = C(p, β, ...) means that this constant depends on the
parameters p, β, ....

2 Three intermediate propositions

2.1 Approximate controllability using a traveling wave

Here, we prove the approximate controllability to a large state N , using a traveling wave. Given
A,B ∈ R, let us recall that σ(A,B) is defined in (4) and denotes the slope of the chord of f between
A and B. It represents the speed of the potential shock wave between A and B, if it is admissible.
Since f ∈ W 2,∞

loc (R), we have σ ∈ W 1,∞
loc (R2). On the interval (P,N ] ⊂ R, we shall use the following

particular version of the Oleinik condition for the flux function f , which is a sufficient admissibility
condition for a shock wave betwen P and N :

σ(P,N) < σ(A,N), for all A ∈ (P,N ]. (POC)

This is the strict Oleinik condition (SOC+) with the additional assumption σ(P,N) < f ′(N). Note
that (POC) implies in particular the existence of a traveling wave (with speed σ(P,N)) between P
and N (which is equivalent to the usual non-strict Oleinik condition, see [10, Section 8.6]). Under
the aditional assumption f(N) > f(P ), the speed of this traveling wave is positive. According to
the convention described at the end of Section 1.3, it is a traveling wave from P to N .

Proposition 2.1. Suppose that there exist constant states P and N , with P < ess inf u0 ≤ ess supu0 <
N , such that (POC) holds on (P,N ], and f(N) > f(P ). Then, for all ε > 0, there exist control
functions g0 and gL with

‖g0‖L∞(0,+∞) ≤ max(|N |, |P |) and ‖gL‖L∞(0,+∞) ≤ max(|N |, |P |), (9)

such that the solution u of (1), (2), (3) satisfies, for any κ > 0, ν ∈ (0, 1) and t∗ > L+κ
(1−ν)s ,

‖u(t∗, ·) −N‖H1(0,L) ≤ Cκ
t∗2

ε
5
2

(N − P )‖f ′‖
5
2

L∞(P,N)

(

‖f ′‖L∞(P,N) + ‖f ′′‖L∞(P,N)‖f‖L∞(P,N)

)

e−
ν
ε
s(σm−s)t∗ , (10)

where s = σ(P,N), σm = min{σ(A,N), A ∈ [ess inf u0, N ]} and Cκ is independent from t∗, P,N, ε.

Note that s > 0 and σm > s under Assumptions (POC) and f(N) > f(P ), so that u converges
exponentially to N on the interval considered as ε→ 0+ or t∗ → +∞. In the case where f is convex,
we have σm = σ(ess inf u0, N) since σ(·, N) is nondecreasing. If we replace (POC) by (SOC+) in the
assumptions of Proposition 2.1, then σm = inf{σ(A,N), A ∈ [ess inf u0, N)}, and σm = s can occur.
Under the weaker assumption (SOC+), we thus no longer have systematically exponential decay.

Proof of Proposition 2.1. The solution u in Proposition 2.1 is obtained by taking the restriction to
(0, t∗)× (0, L) of the solution defined on whole R+×R (still denoted u) of the following problem (see
Figure 1)

{

ut + [f(u)]x − εuxx = 0 in R+ × R,
u|t=0 = ũ0 in R,

(11)
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with

ũ0(x) =







N if x ≤ 0,
u0 if x ∈ (0, L),
ess inf u0 if x ≥ L.

(12)

Then, the control functions g0 and gL are obtained by taking the trace of u along the lines
(0, t∗)×{0} and (0, t∗)×{L}. The estimates on the control cost (9) follow directly from the comparison
principle [10, Theorem 6.3.2], and hence, we only have to prove (10). We first prove the following
lemma, that gives a L∞ estimate of the convergence rate of traveling waves (viscous shock waves) to
the associated non-viscous shock wave as ε→ 0+. Then a comparison principle gives a L∞ estimate
of the convergence rate of u to N . This strategy is illustrated in Figure 1.

P

N

xL

u0

P

ess inf u0

N

xL0

0

u(t)

s

U0

Figure 1: Comparison principle during the traveling wave.
Initial data, and solution after a time t > L

s has gone by.

Lemma 2.2. Suppose that there exist constant states P and N , with P < ess inf u0 ≤ ess supu0 < N ,
such that (POC) holds on (P,N ], and f(N) > f(P ). Then, for every ε > 0 and β ∈ R, the solution
u of (11), (12) satisfies

‖N − u(t, ·)‖L∞(−∞,β) ≤ (N − ess inf u0)e
− s

ε
(σm−s)(t− β

s
), for t >

β

s
, (13)

where s = σ(P,N) and σm = min{σ(A,N), A ∈ [ess inf u0, N ]}.

Proof. We introduce the family of traveling waves from P to N , given by

ǔ(t, x) = U

(

x− st

ε

)

, (t, x) ∈ R+ × R

whose existence is ensured by Assumption (POC) (see [10, Section 8.6]). Here, U = U(ξ), ξ ∈ R is
the wave profile and s = σ(P,N) > 0 the speed of the wave. The ordinary differential equation (6)
satisfied by U can be reformulated as

d

dξ
(U −N) = (−s+ σ(U,N))(U −N),

9



which yields, for any ξ, ξ0 ∈ R

(U(ξ) −N) = (U(ξ0) −N) exp

(

∫ ξ

ξ0

(−s+ σ(U(τ), N))dτ

)

.

From now on, we select the traveling wave that satisfies

U0(0) = ess inf u0 > P,

(which is unique since it now solves a Cauchy problem) so that

0 < N − U0(ξ) = (N − ess inf u0) exp

(

∫ ξ

0

(−s+ σ(U0(τ), N))dτ

)

. (14)

Note also that U(ξ) → P when ξ → +∞, and the solution U0 can also be characterized by

∫ +∞

0

(−s+ σ(U0(τ), N))dτ = log

(

N − P

N − ess inf u0

)

.

For ξ < 0 and τ ∈ [ξ, 0], we have U0(τ) ∈ [U0(0), U0(ξ)] ⊂ [U0(0), N ]. On the compact interval
[U0(0), N ], the function A 7→ σ(A,N) is continuous and satisfies σ(A,N) > s, so that

−s+ σ(U0(τ), N) ≥ σm − s > 0, for all ξ < 0, τ ∈ [ξ, 0].

As a consequence,
∫ ξ

0

−s+ σ(U0(τ), N)dτ ≤ ξ(σm − s), for all ξ < 0,

so that (14) now yields

0 < N − U0(ξ) ≤ (N − ess inf u0)e
ξ(σm−s), for all ξ < 0.

Coming back to the variables t, x, we obtain for x ∈ (−∞, β)

0 < N − U0

(

x− st

ε

)

≤ (N − ess inf u0)e
1
ε
(σm−s)(β−st), for t >

β

s
, (15)

since U0 is decreasing. We conclude the proof by comparing the traveling wave U0 and the solution
u of (11), (12). From the choice of U0(0), we have at time t = 0,

U0

(x

ε

)

≤ ũ0(x) ≤ N, for all x ∈ R, ε > 0.

The comparison principle [10, Theorem 6.3.2] then implies that for every (t, x) ∈ R+ × R,

U0

(

x− st

ε

)

≤ u(t, x) ≤ N,

so that estimate (15) now yields

‖N − u(t, ·)‖L∞(−∞,β) ≤ (N − ess inf u0)e
− s

ε
(σm−s)(t− β

s
), for t >

β

s
,

and the lemma is proved.

Remark 2.3. If f is convex on (P,N), the decay rate obtained does not seem to be optimal. In
this case, under the assumptions of Lemma 2.2, one can prove that for any θ < 1, there exists
ξ0 = ξ0(N) > 0 and C > 0 such that

‖N − u(t, ·)‖L∞(−∞,β) ≤ Ce−
θ
ε
s(f ′(N)−s)(t− β

s
), for t >

β + ξ0ε

s
.
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The convergence rate that we can expect is thus in the convex case of the form θs(f ′(N) − s).
This plays an important role when taking N large, as in the first part of the proof of Theorem 1.1
since θs(f ′(N) − s) is much larger than s(σm − s). For the Burgers equation [15] for instance,
θs(f ′(N)−s) ∼ θN2/4 whereas s(σm−s) ∼ (ess inf u0−P )N as N → +∞. The problem for general
convex functions f is to give the asymptotic behaviour of ξ0(N). If ξ0(N)/s → 0, then Assumption
(A+) can be replaced by the more general (and somehow more natural) assumption:

lim inf
A→+∞

A−γf ′′(A) > 0 ; lim sup
A→+∞

e−A
2γ+2−δ

f ′′(A) < +∞ for some γ > −1, δ > 0.

Such a condition would include in particular flux functions satisfying f(u) ∼u→+∞ uρ with 1 < ρ ≤ 3
2 ,

for which Assumption (A+) does not hold.

We can now conclude the proof of Proposition 2.1 by a bootstrap argument.
Back to proof of Proposition 2.1. We study the evolution of (11), (12) for t ∈ (0, t∗), where t∗ is the
time at which we want to obtain Estimate (10). First, we set

v(t, x) = (u−N)(t, x+ f ′(N)t),

so that, for any β ∈ R,

‖v(t, ·)‖L∞(−∞,β) = ‖u(t, ·) −N‖L∞(−∞,β+f ′(N)t).

Estimate (13) of Lemma 2.2 gives,

‖v(t, ·)‖L∞(−∞,β) ≤ (N − ess inf u0) exp

(

−s
ε
(σm − s)

(

t− β + f ′(N)t

s

))

, (16)

for t > β+f ′(N)t
s , i.e. t < −β

f ′(N)−s . For some µ > 1 that will be chosen later on, we fix β∗ =

−(f ′(N) − s)µt∗ < 0, so that estimate (16) holds for every t ∈ (0, µt∗). Estimate (16) now becomes

‖v(t, ·)‖L∞(−∞,β∗) ≤ (N − ess inf u0) exp

(

−1

ε
(σm − s)(f ′(N) − s) (µt∗ − t)

)

, for t < µt∗. (17)

We denote by Ω1 = (a1, b1) a bounded open interval of (−∞, β∗) and χ1 ∈ C∞
c (Ω1) a cut-off

function satisfying χ1 = 1 on some Ω2, with Ω2 ⊂ Ω1. The function w1(t, x) = χ1(x)v(t, x) satisfies







w1,t − εw1,xx = [f ′(N) − f ′(u)](w1,x − χ′
1v) − ε(χ′′

1v + 2χ′
1vx) in (0, t∗) × Ω1

w1 = 0 on ∂Ω1

w1(0, x) = 0 in Ω1

The parabolic regularizing effect (see Lemma 4.1 for m = 0) gives for this system

ε

∫ t∗

0

‖w1‖2
H1

0 (Ω1)
dt ≤ 1

ε

∫ t∗

0

‖[f ′(N) − f ′(u)](w1,x − χ′
1v) − ε(χ′′

1v + 2χ′
1vx)‖2

H−1(Ω1)
dt. (18)

Let us now estimate each of the terms on the right hand-side. Denoting by CΩ1 = |Ω1|
π (the Poincaré’s

constant of Ω1), and defining the H−1 norm on Ω1 as in Section 4.1, we have for the first term

∫ t∗

0

‖[f ′(N) − f ′(u)]w1,x(t, ·)‖2
H−1(Ω1)

dt ≤
∫ t∗

0

‖[f ′(N) − f ′(u)]‖2
H1(Ω1)

‖w1,x(t, ·)‖2
H−1(Ω1)

dt

≤
∫ t∗

0

(

C|Ω1|‖f ′‖2
L∞(P,N) + ‖uxf ′′(u)‖2

L2(Ω1)

)

‖w1(t, ·)‖2
L2(Ω1)

dt

≤
∫ t∗

0

(

C|Ω1|‖f ′‖2
L∞(P,N) + ‖f ′′‖2

L∞(P,N)‖ux(t, · + f ′(N)t)‖2
L2(Ω1)

)

|Ω1|‖v‖2
L∞(Ω1)

dt. (19)
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It only remains to estimate ‖ux(t, · + f ′(N)t)‖2
L2(Ω1)

. For this, we consider another bounded open

set Ω̃1 such that Ω1 = (a1, b1) ⊂ [a1, b1 + f ′(N)t∗] ⊂ Ω̃1. We take χ̃1 ∈ C∞
c (Ω̃1) such that χ̃1 = 1 on

[a1, b1 + f ′(N)t∗] and set y1(t, x) = χ̃1(x)u(t, x). Since y1 satisfies

y1,t − εy1,xx = −χ̃1[f(u)]x − ε(χ̃′′
1u+ 2χ̃′

1ux),

the parabolic regularizing effect (see Lemma 4.1 for m = 0) gives

ε2
∫ t∗

0

‖y1‖2
H1

0 (Ω̃1)
dt ≤ ε‖u0‖2

L2(Ω̃1)
+ C

∫ t∗

0

‖f(u)‖2
L2(Ω̃1)

dt+ C|Ω̃1|2ε2
∫ t∗

0

‖u‖2
L2(Ω̃1)

dt,

and hence,

∫ t∗

0

‖ux(t, · + f ′(N)t)‖2
L2(Ω1)

dt ≤ |Ω̃1|t∗
ε2

(

‖f‖2
L∞(P,N) + εmax(|P |2, |N |2)

)

.

Coming back to (19) and using estimate (17) on v, this yields

∫ t∗

0

‖[f ′(N) − f ′(u)]w1,x(t, ·)‖2
H−1(Ω1)

dt ≤ C

(

|Ω1|‖f ′‖2
L∞(P,N) +

|Ω̃1|
ε2

‖f ′′‖2
L∞(P,N)‖f‖2

L∞(P,N)

)

× |Ω1|t∗(N − P )2e−
2
ε
(σm−s)(f ′(N)−s)(µ−1)t∗ , (20)

Concerning the other terms in (18), we simply have

∫ t∗

0

‖[f ′(N) − f ′(u)]χ′
1v − ε(χ′′

1v + 2χ′
1vx)‖2

H−1(Ω1)
dt

≤ C

∫ t∗

0

(‖f ′‖2
L∞(P,N)|Ω1|2 + |Ω1|2ε2 + ε2)‖v‖2

L2(Ω1)
dt

≤ C‖f ′‖2
L∞(P,N)|Ω1|3t∗(N − P )2e−

2
ε
(σm−s)(f ′(N)−s)(µ−1)t∗ , (21)

after using estimate (17) on v.

Now, replacing (20) and (21) in (18), we obtain

∫ t∗

0

‖w1‖2
H1

0 (Ω1)
dt ≤ C

|Ω̃1|3
ε4

(

‖f ′‖2
L∞(P,N) + ‖f ′′‖2

L∞(P,N)‖f‖2
L∞(P,N)

)

× t∗(N − P )2e−
2
ε
(σm−s)(f ′(N)−s)(µ−1)t∗ . (22)

We now take χ2 ∈ C∞
c (Ω2) and set w2(t, x) = χ2(x)w1(t, x) = χ2(x)v(t, x), that satisfies







w2,t − εw2,xx = [f ′(N) − f ′(u)]χ2w1,x − ε(χ′′
2w1 + 2χ′

2w1,x) in (0, t∗) × Ω1

w2 = 0 on ∂Ω1

w2(0, x) = 0 in Ω1

The parabolic regularizing effect (see Lemma 4.1 for m = 1) gives for this system

‖w2(t
∗, ·)‖2

H1
0 (Ω1)

≤ 1

ε

∫ t∗

0

‖[f ′(N) − f ′(u)]χ2w1,x − ε(χ′′
2w1 + 2χ′

2w1,x)‖2
L2(Ω1)

dt,

which directly yields

‖w2(t
∗, ·)‖2

H1
0 (Ω1)

≤ C

ε
‖f ′‖2

L∞(P,N)

∫ t∗

0

‖w1‖2
H1

0 (Ω1)
dt.
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As a consequence of (22), we thus have, for t∗ > 0,

‖w2(t
∗, ·)‖H1(Ω2) ≤ C

|Ω̃1|
3
2

ε
5
2

√
t∗(N − P )‖f ′‖L∞(P,N)

×
(

‖f ′‖L∞(P,N) + ‖f ′′‖L∞(P,N)‖f‖L∞(P,N)

)

e−
1
ε
(σm−s)(f ′(N)−s)(µ−1)t∗ . (23)

Note that we could have proved the same type of estimate for the H2 norm, but not more since
we only supposed f ∈ W 2,∞

loc . However, if f is more regular, we can prove the estimate in higher
regularity spaces.

Now, to come back to u, we choose the sets Ω1, Ω2 and the function χ2 such that χ2 = 1 on
(−f ′(N)t∗, β∗ − κ) ⊂ Ω2 ⊂ Ω1 = (−f ′(N)t∗ − κ, β∗) for some constant κ > 0, and for t∗ > 0
satisfying β∗ − κ > −f ′(N)t∗ (i.e., [µs+ (1− µ)f ′(N)]t∗ > κ). Note that |Ω1| = β∗ + κ+ f ′(N)t∗ =
κ + [µs + (1 − µ)f ′(N)]t∗ depends on t∗ and on N . Estimate (23) now yields for all κ > 0 and
t∗ > κ

µs+(1−µ)f ′(N) ,

‖v(t∗, ·)‖H1(−f ′(N)t∗,β∗−κ) ≤ D e−
1
ε
(σm−s)(f ′(N)−s)(µ−1)t∗ ,

with

D = Cκ
t∗2

ε
5
2

(N − P )‖f ′‖
5
2

L∞(P,N)

(

‖f ′‖L∞(P,N) + ‖f ′′‖L∞(P,N)‖f‖L∞(P,N)

)

.

Recalling the expression of β∗ and v, we obtain

‖u(t∗, ·) −N‖H1(0,−µ(f ′(N)−s)t∗+f ′(N)t∗−κ) ≤ D e−
1
ε
(σm−s)(f ′(N)−s)(µ−1)t∗

‖u(t∗, ·) −N‖H1(0,[(1−µ)f ′(N)+µs]t∗−κ) ≤ D e−
1
ε
(σm−s)(f ′(N)−s)(µ−1)t∗ .

(24)

We now choose µ = 1 + ν s
f ′(N)−s with ν ∈ (0, 1), so that

{

(µ− 1) = ν s
f ′(N)−s > 0

(1 − µ)f ′(N) + µs = (1 − ν)s > 0.

Replacing this in (24) gives for any κ > 0, ν ∈ (0, 1) and t∗ > κ
(1−ν)s ,

‖u(t∗, ·) −N‖H1(0,(1−ν)st∗−κ) ≤ D e−
ν
ε
s(σm−s)t∗ .

Finally, on (0, L), we obtain, for any κ > 0, ν ∈ (0, 1) and t∗ > L+κ
(1−ν)s ,

‖u(t∗, ·) −N‖H1(0,L) ≤ D e−
ν
ε
s(σm−s)t∗ ,

and the proposition is proved.

2.2 Approximate controllability using a rarefaction wave

We here prove the approximate controllability from a large state N to the state M , thanks to a
rarefaction wave.

Proposition 2.4. Suppose that f ′′ ≥ 0 on the interval (M,N) and f ′(M) > 0. Then, for all
ε0 > 0, κ > 0, and t∗ > L+κ

f ′(M) , there exists a constant δ(t∗) = δ(t∗, κ, ε0,M,N) > 0 such that for all

ε ∈ (0, ε0), there exist control functions g0 and gL with

‖g0‖L∞(0,t∗) ≤ max(|M |, |N |) and ‖gL‖L∞(0,t∗) ≤ max(|M |, |N |), (25)

such that the solution u of (1), (2) with initial condition u|t=0 = N satisfies,

‖u(t∗, ·) −M‖H1(0,L) ≤
δ(t∗)

ε
3
2

exp

(

− 1

4εt∗
(f ′(M)t∗ − L− κ)2

)

. (26)
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As for the proof of Proposition 2.4, the solution u is obtained by taking the restriction to (0, t∗)×
(0, L) of the solution defined on whole R+ ×R (still denoted u) of the following problem (see Figure
2)

{

ut + [f(u)]x − εuxx = 0 in R+ × R,
u|t=0 = u0 in R,

(27)

with

u0(x)







= M if x ≤ −k,
= N if x ≥ 0,
∈ C∞([−k, 0]), increasing,

(28)

for some (small) k > 0.

xL

N

M

u0

u(t)

0−k

Figure 2: Rarefaction wave.
Initial data, and solution after a time t > L

f ′(M) has gone by.

Then, the control functions g0 and gL are obtained by taking the traces of u along the lines
(0, t∗)×{0} and (0, t∗)×{L}. As in Section 2.1, (25) follows directly from the comparison principle
[10, Theorem 6.3.2], and we hence only have to prove (26).

To that purpose, we first prove the following lemma, that gives a L2 estimate of the convergence
rate of a viscous rarefaction wave to the associated non-viscous one. Its proof is inspired by [11, The-
orem 1.1.], where the author proves dissipation results for the Navier-Stokes equations and associated
vortex patches in the vanishing viscosity limit.

Lemma 2.5. Let u be the solution of the problem (27), (28). Then for all ε0 > 0, k > 0, and
t∗ ≥ 0, there exists γ(t∗) = γ(t∗, k, ε0,M,N) > 0 (nondecreasing with respect to t∗) such that for any
ε ∈ (0, ε0) and η > 0,

‖u(t∗, ·) −M‖L2(−∞,−η−k+f ′(M)t∗) + ‖u(t∗, ·) −N‖L2(η+f ′(N)t∗,+∞) ≤ γ(t∗)e−
η2

4εt∗ . (29)

Note that the function γ(t∗) is relatively explicit, i.e.,

γ(t∗) = ‖X‖L2(0,t∗;L2(R))e
t∗

2 (‖f ′′‖L∞(M,N)‖u0,x‖L∞(R)+1),

where the function X can be estimated uniformly with respect to ε, as in (31).

Proof. We first consider a function w ∈ C∞(R+ × R) satisfying














w(t, x) = M if x ≤ −k + f ′(M)t, t ≥ 0
w(t, x) = N if x ≥ f ′(N)t, t ≥ 0
w(t, ·) is increasing on [−k + f ′(M)t, f ′(N)t], t ≥ 0,
w|t=0 = u0 in R.

We shall make estimates on v := u− w, that satisfies the problem
{

vt + f ′(u)vx − εvxx = −wt − f ′(u)wx + εwxx in R+ × R,
v|t=0 = 0 in R,

(30)
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We set
X(t, x) := −wt − f ′(u)wx + εwxx,

and notice that for all t ≥ 0, X has a compact support with respect to x, included in [−k +
f ′(M)t, f ′(N)t]. Hence, for t ≥ 0, X(t, ·) ∈ L2(R) and we have the estimate

‖X(t, ·)‖L2 ≤ ‖wt(t, ·)‖L2 + f ′(N)‖wx(t, ·)‖L2 + ε0‖wxx(t, ·)‖L2 . (31)

Moreover, the right hand-side of (31) is continuous with respect to t, so that X ∈ L2
loc(R+;L2(R)),

uniformly with ε.
We define ψ the flow associated with the vector field f ′(u), i.e., the solution of

ψ(t, x) = x+

∫ t

0

f ′(u)(s, ψ(s, x))ds, (32)

and ψ−1 the associated backward flow. Following [11], we set, for α ∈ R,

Φ(t, x) = exp
(

αg
(

ψ−1(t, x)
))

, (33)

so that the function Φ is constant along flow lines, that is d
dt (Φ(t, ψ(t, x))) = 0. Here, the function

g ∈ W 1,∞
loc (R) and the constant α = α(t∗) will be chosen later on. We suppose moreover that

g is equal to a constant R outside a compact set (see the definition in (36)). In particular, this
yields Φ ∈ C0(R+;W 1,∞(R)) and Φv ∈ C0(R+;H1(R)) since v ∈ C0(R+;H1(R)) from (30). As a
consequence of (30), Φv satisfies the following equation

(Φv)t + f ′(u)(Φv)x − ε(Φv)xx = v(Φt + f ′(u)Φx) − εvΦxx − 2εvxΦx +X.

Since Φ is constant along flow lines, the first term on the right hand-side vanishes. Next, taking the
inner product of this equation with Φv yields

1

2

d

dt
‖Φv‖2

L2 +

∫

R

f ′(u)(Φv)xΦv + ε‖(Φv)x‖2
L2 = −ε

∫

R

v2ΦxxΦ − 2ε

∫

R

vxΦxΦv +

∫

R

XΦv. (34)

In this expression, we have, after integrations by parts,
∫

R

f ′(u)(Φv)xΦv = −1

2

∫

R

(f ′(u))x(Φv)
2,

and

−ε
∫

R

v2ΦxxΦ − 2ε

∫

R

vxΦxΦv = 2ε

∫

R

vxΦxΦv + ε

∫

R

(vΦx)
2 − 2ε

∫

R

vxΦxΦv = ε

∫

R

(vΦx)
2.

Now, Equation (34) yields

1

2

d

dt
‖Φv‖2

L2 ≤ 1

2

∫

R

(f ′(u))x(Φv)
2 + ε‖vΦx‖2

L2 +

∫

R

XΦv. (35)

We choose the function g in (33) as

g(x) = min{R, d(x, [−k, 0])} ∈W 1,∞(R) (36)

for some constant R > 0. Notice that we have ‖g′‖L∞(R) = 1. Then, Φx = α (ψ−1)x g
′ ◦ ψ−1 Φ can

be estimated thanks to the following lemma.

Lemma 2.6. Let u be the solution of (27), (28) and ψ−1 the backward flow associated with the
vector field f ′(u). Then we have, for any t ≥ 0 and ε > 0,

0 ≤ ux(t, x) ≤ ‖u0,x‖L∞(R) (37)

and
‖(ψ−1)x(t, ·)‖L∞(R) ≤ 1. (38)
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Note that the estimates (37) and (38) are consequences of the fact that the solution of (27), (28)
is a rarefaction wave. The proof of this lemma is postponed to the end of this proof.

As a consequence of Lemma 2.6, we now have

‖(f ′(u))x‖L∞(R) ≤ ‖f ′′‖L∞(M,N)‖u0,x‖L∞(R), (39)

from (37) and
‖α (ψ−1)x g

′ ◦ ψ−1‖L∞(R+×R) ≤ α‖(ψ−1)x‖L∞‖g′‖L∞ ≤ α, (40)

from (38). Coming back to (35), estimates (39) and (40) yield

1

2

d

dt
‖Φv‖2

L2
x
≤ ‖f ′′‖L∞(M,N)‖u0,x‖L∞(R)

2
‖Φv‖2

L2
x

+ εα2‖Φv‖2
L2

x
+

1

2
‖X‖2

L2
x

+
1

2
‖Φv‖2

L2
x
. (41)

Now, using Gronwall’s lemma in

d

dt
‖Φv‖2

L2
x
≤
(

2εα2 + ‖f ′′‖L∞(M,N)‖u0,x‖L∞(R) + 1
)

‖Φv‖2
L2

x
+ ‖X‖2

L2
x

yields, for any t∗ > 0,

‖Φv(t∗, ·)‖2
L2 ≤ ‖X‖2

L2(0,t∗;L2(R)) exp
[(

2εα2 + ‖f ′′‖L∞(M,N)‖u0,x‖L∞(R) + 1
)

t∗
]

, (42)

since (Φv)|t=0 = 0. We set γ(t∗)2 = ‖X‖2
L2(0,t∗;L2(R))e

(‖f ′′‖L∞(M,N)‖u0,x‖L∞(R)+1)t∗ which does not
depend on ε, α. It depends only on ε0 and k through the initial condition u0 and X.

Let us now take η ∈ (0, R). If x ∈ ψ (t∗, (−∞,−k − η) ∪ (η,+∞)), then ψ−1(t∗, x) ∈ (−∞,−k −
η) ∪ (η,+∞) and g ◦ ψ−1(t∗, x) ≥ η. Thus, Φ(t∗, x) = eαg◦ψ

−1(t∗,x) ≥ eαη so that

‖Φv(t∗, ·)‖L2(R) ≥ eαη‖v(t∗, ·)‖L2(ψ(t∗,(−∞,−k−η)∪(η,+∞))).

This, together with (42) gives

‖v(t∗, ·)‖L2(ψ(t∗,(−∞,−k−η)∪(η,+∞))) ≤ γ(t∗)eεα
2t∗−αη,

‖v(t∗, ·)‖L2((−∞,ψ(t∗,−k−η))∪(ψ(t∗,η),+∞)) ≤ γ(t∗)e−
η2

4εt∗ ,
(43)

after having chosen α = η
2εt∗ . This inequality does not depend on R, so making R → +∞, we see

that (43) holds for any η > 0.
It only remains to prove that (−∞,−k − η + f ′(M)t∗) ∪ (η + f ′(N)t∗,+∞) ⊂ (−∞, ψ(t∗,−k −

η)) ∪ (ψ(t∗, η),+∞)). Actually, this is a direct consequence of

ψ(t∗, η) = η +

∫ t∗

0

f ′(u)(t, ψ(t, η))dt ≤ η + f ′(N)t∗,

ψ(t∗,−k − η) = −k − η +

∫ t∗

0

f ′(u)(t, ψ(t,−k − η))dt ≥ −k − η + f ′(M)t∗,

where we have used the convexity of f and the comparison priciple [10, Theorem 6.3.2] for the
solutions of viscous conservation laws. This concludes the proof of Lemma 2.5.

We now have to prove Lemma 2.6.

Proof of Lemma 2.6. Firstly, we check that for any ε > 0 and t ≥ 0, the speed f ′(u) is nondecreasing,
i.e., (f ′(u))x ≥ 0. Since f ′′ ≥ 0, we only have to prove that ux is nonnegative. The function y = ux
is solution of

{

yt − εyxx + f ′(u)yx + f ′′(u)y2 = 0 in R+ × R,
y|t=0 = ux|t=0 ≥ 0 in R,

(44)

As a consequence of the weak maximum principle for parabolic equations (see for instance [12, p.
368]), we have ux(t, x) = y(t, x) ≥ 0 in R+ × R, and

(f ′(u))x(t, x) ≥ 0, (t, x) ∈ R+ × R. (45)
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Secondly, since f ′′ ≥ 0, Equation (44) yields

{

yt − εyxx + f ′(u)yx ≤ 0 in R+ × R,
y|t=0 = ux|t=0 ∈ L∞(R).

For this system, the same maximum principle gives ux(t, x) = y(t, x) ≤ ‖y|t=0‖L∞(R) = ‖ux|t=0‖L∞(R).
Hence, we have

0 ≤ ux(t, x) ≤ ‖ux|t=0‖L∞(R), (t, x) ∈ R+ × R,

and (37) is proved.
Finally, to prove (38), we recall that the backward flow ψ−1 is given by

ψ−1(t, x) = x−
∫ t

0

f ′(u)(s, ψ−1(s, x))ds, (t, x) ∈ R+ × R,

which yields, derivating with respect to x and t,

{

d

dt
(ψ−1)x(t, x) = −(ψ−1)x(t, x) · (f ′(u))x(t, ψ−1(t, x)), (t, x) ∈ R+ × R,

(ψ−1)x(0, x) = 1.

This can be rewritten under the form (ψ−1)x(t, x) = exp

(

−
∫ t

0

(f ′(u))x(s, ψ
−1(s, x))ds

)

, which,

thanks to (45), yields
0 ≤ (ψ−1)x(t, x) ≤ 1, (t, x) ∈ R+ × R,

and Lemma 2.6 is proved.

As a consequence of Lemma 2.5 and using a bootstrap argument, we are now able to prove the
central result of this section.

Proof of Proposition 2.4. We study the evolution of (27), (28) for t ∈ (0, t∗). First, we set

v(t, x) = (u−M)(t, x+ f ′(M)t),

for which estimate (29) of Lemma 2.5 yields, for any η > 0,

‖v(t, ·)‖L2(−∞,−k−η) ≤ γ(t)e−
η2

4εt , t ≥ 0. (46)

As in the proof of Proposition 2.1, we denote by Ω1 a bounded open interval of (−∞,−k − η) and
χ1 ∈ C∞

c (Ω1) a cut-off function satisfying χ1 = 1 on Ω2 with Ω2 ⊂ Ω1. The function w1(t, x) =
χ1(x)v(t, x) satisfies







w1,t − εw1,xx = [f ′(M) − f ′(u)]χ1vx − ε(χ′′
1v + 2χ′

1vx) in (0, t∗) × Ω1

w1 = 0 on ∂Ω1

w1(0, x) = 0 in Ω1

The parabolic regularizing effect (see Lemma 4.1 for m = 0) gives for this system

ε

∫ t∗

0

‖w1‖2
H1

0 (Ω1)
dt ≤ 1

ε

∫ t∗

0

‖[f ′(M) − f ′(u)]χ1vx − ε(χ′′
1v + 2χ′

1vx)‖2
H−1(Ω1)

dt. (47)

Let us now estimate each of the terms on the right hand-side as in the proof of Proposition 2.1. Here
however, we see that thanks to Lemma 2.6, it is not necessary to perform a preliminary H1 estimate
on u, as opposed to the proof of Proposition 2.1. The first term is

‖[f ′(M) − f ′(u)]χ1vx‖H−1(Ω1) ≤ C
(

‖f ′‖L∞(M,N) + ‖(f ′(u))x‖L∞(Ω1)

)

‖v‖L2(Ω1).

As a consequence of Lemma 2.6, we have ‖(f ′(u))x‖L∞(R) ≤ ‖f ′′‖L∞(M,N)‖u0,x‖L∞(R), so that

‖[f ′(M) − f ′(u)]χ1vx‖H−1(Ω1) ≤ C‖v‖L2(Ω1).
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Concerning the other terms, we have

ε‖(χ′′
1v + 2χ′

1vx)‖H−1(Ω1) ≤ εC(CΩ1
+ 1)‖v‖L2(Ω1),

where the constants denoted by C do not depend on Ω1 and CΩ1 = |Ω1|
π as before. Coming back to

(47) and using (46), we now have

∫ t∗

0

‖w1‖2
H1

0 (Ω1)
dt ≤ C

(

1

ε2
+ |Ω1|2

)
∫ t∗

0

‖v‖2
L2(Ω1)

dt ≤ C

(

1

ε2
+ |Ω1|2

)

t∗γ(t∗)2e−
η2

2εt∗ , (48)

from (46), since Ω1 ⊂ (−∞,−k− η) the functions γ(t) and e−
η2

2εt are non-decreasing with respect to
t.

We now take χ2 ∈ C∞
c (Ω2) and set w2(t, x) = χ2(x)w1(t, x) = χ2(x)v(t, x), that satisfies







w2,t − εw2,xx = [f ′(M) − f ′(u)]χ2w1,x − ε(χ′′
2w1 + 2χ′

2w1,x) in (0, t∗) × Ω1

w2 = 0 on ∂Ω1

w2(0, x) = 0 in Ω1

The parabolic regularizing effect (see Lemma 4.1 for m = 1) directly yields

‖w2(t
∗, ·)‖2

H1
0 (Ω1)

≤ C

ε

∫ t∗

0

‖w1,x‖2
L2(Ω1)

+ ε2‖w1‖2
L2(Ω1)

dt ≤ C

ε

∫ t∗

0

‖w1‖2
H1

0 (Ω1)
dt.

As a consequence of (48), we thus have

‖w2(t
∗, ·)‖2

H1
0 (Ω1)

≤ C

ε

(

1

ε2
+ |Ω1|2

)

t∗γ(t∗)2e−
η2

2εt∗ . (49)

Now, to come back to u, we choose the sets Ω1, Ω2, and the function χ2 such that χ2 = 1 on
(−f ′(M)t∗,−η − 2k) ⊂ Ω2 ⊂ Ω1 = (−f ′(M)t∗ − k,−η − k) ⊂ (−∞,−η − k). With this choice, we
have |Ω1| = f ′(M)t∗ − η and estimate (49) yields, for any t∗ > 0 and 0 < η < f ′(M)t∗,

‖u(t∗, ·) −M‖H1(0,−η−2k+f ′(M)t∗) ≤
C√
ε

(

1

ε
+ |f ′(M)t∗ − η|

)√
t∗γ(t∗)e−

η2

4εt∗ .

It remains to choose η so that −η − 2k + f ′(M)t∗ = L, that is, η = f ′(M)t∗ − L − 2k, which is
positive as soon as t∗ > L+2k

f ′(M) . Finally, we have for any t∗ > L+2k
f ′(M) ,

‖u(t∗, ·) −M‖H1(0,L) ≤
C√
ε

(

1

ε
+ (L+ 2k)

)√
t∗γ(t∗) exp

(

− 1

4εt∗
(f ′(M)t∗ − L− 2k)2

)

,

and Proposition 2.4 is proved, setting κ = 2k and δ(t∗) = C
√
t∗γ(t∗).

Remark 2.7. This proposition and its proof need slight modifications when proving Proposition 1.7,
since the right hand-side of (26) needs to be exponentially decreasing as t∗ → +∞. For this, we first
replace 1

2‖X‖2
L2

x
+ 1

2‖Φv‖2
L2

x
in Estimate (41) by 1

2µ‖X‖2
L2

x
+ µ

2 ‖Φv‖2
L2

x
for all µ > 0. Choosing u0

such that ‖u0,x‖L∞(R) = C
k , Estimate (26) for ε = 1 now reads, for all k, µ > 0,

‖u(t∗, ·) −M‖H1(0,L) ≤ C(L+ 2k)

√

t∗

µ
‖X‖L2(0,t∗;L2(R))e

( C
2k

‖f ′′‖L∞(M,N)+
µ
2 )t∗− 1

4t∗
(f ′(M)t∗−L−2k)2 .

Noting that ‖X‖L2(0,t∗;L2(R)) increases at most linearly in t∗ and fixing k large enough and µ small

enough so that
(

C
2k‖f ′′‖L∞(M,N) + µ

2

)

< f ′(M)2

4 , we obtain the sought exponential decay as t∗ → +∞.
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2.3 Local exact controllability

In this section, we perform the local controllability argument. We suppose that the initial condition
u0 is H1-exponentially close (in terms of ε) to the constant target, say N , and we want to reach it
exactly. This will be done both after the “shock phase” and the rarefaction phase, i.e., for an initial
datum that satisfies the estimate (10) or (26). More precisely, we prove the following proposition,
where we assume that f ′(N) > 0 for simplicity (the case f ′(N) < 0 follows the same procedure).

Proposition 2.8. Assume that f ′(N) > 0, and that u0 ∈ H1(0, L) satisfies

‖u0 −N‖H1(0,L) ≤ e−
K0
ε

for some K0 > 0. Then, there exist α1 > 0 and ε0 > 0 such that for all T ≥ α1
L

f ′(N) and 0 < ε < ε0,

there exist two control functions g0 and gL, with

‖g0‖L∞(0,T ) ≤ 2|N | and ‖gL‖L∞(0,T ) ≤ 2|N |,

such that the solution u of (1), (2) and (3) satisfies

u|t=T = N in (0, L).

The proof of Proposition 2.8 follows the steps of [15]. When doing this, we shall see that one can
take α1 = 5 (or, as found numerically α1 = 4.3).

We first set y(t, x) = u(t, x) −N , so that y satisfies







yt + [f(N + y)]x − εyxx = 0 in (0, T ) × (0, L),
y|t=0 = y0 = u0 −N in (0, L),

‖y0‖H1(0,L) ≤ e−
K0
ε .

(50)

Now, our objective is to find boundary controls y|x=0 = g0(t)−N and y|x=L = gL(t)−N such that
y|t=T = 0 and

‖g0 −N‖L∞(0,T ) ≤ |N | and ‖gL −N‖L∞(0,T ) ≤ |N |.
More precisely, we prove the existence of a controlled solution y, satisfying (50) and y|t=T = 0, and
then take the traces of y on (0, T ) × {0} and (0, T ) × {L} to obtain the controls. The existence of
such a controlled solution is proved by means of a fixed point argument. For this, let us first consider
the following linearization of System (50), for some z ∈ L1(0, T ;W 1,∞(0, L)) ∩ L∞((0, T ) × (0, L)):







yt − εyxx + [σ(N + z(t, x), N)y]x = 0 in (0, T ) × (0, L),
y|x=0 = g̃0, y|x=L = g̃L in (0, T ),
y|t=0 = y0 in (0, L),

(51)

where we have denoted σ(N + z,N) = f(N+z)−f(N)
z , with σ(N + ·, N) ∈ W 1,∞

loc (R). Note that
formally, a fixed point of a map z 7→ y, where y is a solution of (51) associated to some controls
g̃0, g̃L, is a solution of the problem (50). It will be convenient to extend this control problem to (a, b)
for some a < 0 and b > L, and introduce ỹ0 and z̃ smooth extensions of y0 and z, satisfying

ỹ0 = y0 on (0, L), ỹ0(a) = ỹ0(b) = 0, and ‖ỹ0‖H1
0 (a,b) ≤ CE‖y0‖H1(0,L),

z̃ = z on (0, T ) × (0, L), and ‖z̃‖L1W 1,∞∩L∞L∞ ≤ CE‖z‖L1W 1,∞∩L∞L∞ .
(52)

(see for instance [12, Section 5.4]). We now consider the following extended linear system






ỹt − εỹxx + [σ(N + z̃(t, x), N)ỹ]x = 0 in (0, T ) × (a, b),
ỹ|x=a = g̃(t), ỹ|x=b = 0 in (0, T ),
ỹ|t=0 = ỹ0 in (a, b).

(53)

To prove the null-controllability of this system, we shall prove an observability estimate for its adjoint.
We set

ζ(t, x) = σ(N + z̃(t, x), N) − f ′(N)
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and
λ = b− a > L. (54)

We have the following controllability lemma.

Lemma 2.9. There exist α1 > 0 and ε0 > 0 such that for all ζ ∈ L1(0, T ;W 1,∞(0, L))∩L∞((0, T )×
(0, L)) satisfying

‖ζx‖L1L∞ + ‖ζ‖L∞L∞ ≤ CE e−
K0
2ε , (55)

(where K0 is introduced in Proposition 2.8 and CE is the norm of the extension operator introduced

in (52)), for all T ≥ α1
λ

f ′(N) , all ε ∈ (0, ε0) and ỹ0 ∈ H1
0 (a, b) satisfying ‖ỹ0‖H1

0 (a,b) ≤ CE e−
K0
ε ,

there exists a control function g̃ ∈ L2(0, T ) with ‖g̃‖L2(0,T ) ≤ e−
K0
ε such that the associated solution

to (53) satisfies
ỹ|t=T = 0 on (a, b).

Note that the constant α1 here is the same as the one in Proposition 2.8. In the course of the
proof, we shall see that one can take α1 as claimed before.

Proof. For this linear control problem (53), we use the classical approach, consisting in obtaining a
suitable observability inequality for the adjoint system of (53), which reads







−ϕt − εϕxx − (f ′(N) + ζ(t, x))ϕx = 0 in (0, T ) × (a, b)
ϕ|x=a = 0, ϕ|x=b = 0 in (0, T )
ϕ|t=T = ϕT in (a, b)

(56)

where ϕT ∈ L2(a, b) is the final condition of this backward problem. We aim to prove the following
observability inequality for the solutions of (56):

‖ϕ|t=0‖L2(a,b) ≤ K(T, ε)‖ϕx|x=a‖L2(0,T ). (57)

Then, classical duality arguments give the null-controllability of System (53) with a control function
g̃ whose L2 norm is bounded by

K(T, ε)

ε
‖ỹ0‖H1

0 (a,b) ≤ CE
K(T, ε)

ε
e−

K0
ε .

To prove (57), we mostly follow [15] and use two of their technical estimates. More precisely, once
rescaled with respect to the parameters, the dissipation estimate and the Carleman estimate read as
follows (λ is defined in (54)).

Dissipation result : for every t ∈
(

λ
f ′(N)−‖ζ‖L∞L∞

, T
)

, we have

‖ϕ(0, ·)‖2
L2(a,b) ≤ exp

{

λ2‖ζx‖L1L∞

4
− ((f ′(N) − ‖ζ‖L∞L∞)t− λ)2

2εt
e−4λ2‖ζx‖L1L∞

}

‖ϕ(t, ·)‖2
L2(a,b).

(58)
Note that f ′(N) − ‖ζ‖L∞L∞ > 0 for ε sufficiently small (or f ′(N) sufficiently large in the proof of
Proposition 2.11 below).

Carleman inequality : Assume that ζ satisfies (55) and T > 3
2

λ
f ′(N)−‖ζ‖L∞L∞

. Then, we have

∫ b

a

∫ 5T/6

2T/3

|ϕ|2dt dx ≤ Ce
κλ2

εT

(

∫ T

0

|ϕx(t, a)|2dt+

∫ b

a

|ϕ(0, x)|2dx
)

. (59)

These two estimates are proved in [15, Section 4], with κ = 4 or κ = 2.61 as found numerically.
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To obtain the observability inequality (57), we suppose that T > 3
2

λ
f ′(N)−‖ζ‖L∞L∞

. As a con-

sequence (58) holds on
(

2T
3 ,

5T
6

)

⊂
(

λ
f ′(N)−‖ζ‖L∞L∞

, T
)

. Integrating (58) on
(

2T
3 ,

5T
6

)

, we hence

obtain

T

6
‖ϕ(0, ·)‖2

L2(a,b) ≤ exp

{

λ2‖ζx‖L1L∞

4

}

×
∫ 5T/6

2T/3

exp

{

− ((f ′(N) − ‖ζ‖L∞L∞)t− λ)2

2εt
e−4λ2‖ζx‖L1L∞

}

‖ϕ(t, ·)‖2
L2(a,b)dt.

Using the fact that

t 7→ ((f ′(N) − ‖ζ‖L∞L∞)t− λ)2

2εt

is an increasing function as soon as t > λ
f ′(N)−‖ζ‖L∞L∞

, together with (59), we have

‖ϕ(0, ·)‖2
L2(a,b) ≤ Ce−

D(ε,T,λ,ζ)
εT

(

∫ T

0

|ϕx(t, a)|2dt+

∫ b

a

|ϕ(0, x)|2dx
)

, (60)

with

D(ε, T, λ, ζ) =
3e−4λ2‖ζx‖L1L∞

4

(

(f ′(N) − ‖ζ‖L∞L∞)
2T

3
− λ

)2

− κλ2.

Now we see that for T sufficiently large, i.e. T ≥ α1
λ

f ′(N) , we have D(ε, T, λ, ζ) > 0 and we can

absorb the last term in (60) by the left hand-side, taking ε0 = ε0(α1) sufficiently small so that it
works with T = α1

λ
f ′(N) . We also notice that we can take α1 = 5 if κ = 4 or α1 = 4.30 if κ = 2.61.

Finally, we obtain the observability inequality (57) with K(T, ε) = Ce−
D(ε,T,λ,ζ)

εT . This concludes the
proof of Lemma 2.9.

Now given this result for the linearized system, we are able to implement a fixed point strategy
to conclude the proof of Proposition 2.8.

Proof of Proposition 2.8. We first recall Kakutani’s fixed point Theorem as presented in [23, Theo-
rem 9.2.2].

Theorem 2.10. Let Z be a Banach space, E a subset of Z and Λ : E → 2Z a multivalued mapping.
Suppose that

(i) E is compact convex nonempty and for every z ∈ E, Λ(z) ⊂ E.

(ii) For every z ∈ E, Λ(z) is a compact convex nonempty subset of Z.

(iii) Λ is “upper semicontinuous”, i.e. if zn → z in E and yn ∈ Λ(zn) satisfies yn → y in Z, then
y ∈ Λ(z).

Then Λ has a fixed point in E, i.e. there exists z ∈ E such that z ∈ Λ(z).

Let us now define the appropriate space Z, subset E and mapping Λ. We choose

Z = H
3
4 (0, T ;L2(0, L)) ∩ L2(0, T ;H1(0, L)), (61)

for the Banach space and

Eε =
{

z ∈ H1(0, T ;L2(0, L)) ∩ L2(0, T ;H2(0, L)), ‖z‖H1L2∩L2H2 ≤ e−
K0
2ε

}

⊂ Z.

Given a fixed y0 ∈ H1(0, L) such that ‖y0‖H1(0,L) ≤ e−
K0
ε , we set

Λ(z) =
{

y ∈ H1(0, T ;L2(0, L)) ∩ L2(0, T ;H2(0, L)) satisfying conditions (62)-(65)
}
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with
yt − εyxx = −[σ(N + z,N)y]x in (0, T ) × (0, L), (62)

y|t=0 = y0 in (0, L), (63)

y|t=T = 0 in (0, L), (64)

‖y‖H1L2∩L2H2 ≤ e−
K0
2ε , (65)

and check that Kakutani’s Theorem applies with Z, Eε and Λ for ε sufficiently small.

To prove (i), note that the compact injection of H1L2 ∩L2H2 in Z gives the compactness of Eε

in Z and the fact that it is a ball yields its convexity. Moreover Eε is nonempty since it contains the
null function, and Λ(z) ⊂ Eε if z ∈ Eε, as a consequence of their definition.

To prove (ii), notice first that Λ(z) is convex since the conditions (62)-(64) are linear and (65) is
convex. To prove that it is closed (and hence compact), let us consider a sequence (yn)n∈N ⊂ Λ(z)
converging to y in Z. Since Z ⊂ C0([0, T ];L2(0, L)), conditions (63) and (64) are still valid for the
limit y. Since the right hand-side of (65) does not depend on n, this estimate also holds for y.
Moreover, yn converges to y in D′((0, T ) × (0, L)) and hence, the linear equation (62) is satisfied by
y in D′((0, T )× (0, L)). As a consequence of (65), y ∈ H1L2 ∩L2H2, so that y satisfies (62) in L2L2,
and Λ(z) is closed.

Let us now prove that Λ(z) is non-empty if z ∈ Eε. We denote by z̃ and ỹ0 extensions of z and
y0 on (a, b) satisfying (52). Denoting ỹ the associated solution of (53) (for any control g̃), we see

that ỹ|(0,L) solves (62)-(63). Moreover, we have ‖ỹ0‖H1
0 (a,b) ≤ Ce−

K0
ε and

‖z̃‖L1W 1,∞(a,b)∩L∞L∞(a,b) ≤ C‖z̃‖L1W 1,∞(0,L)∩L∞L∞(0,L) ≤ C‖z‖H1L2(0,L)∩L2H2(0,L) ≤ Ce−
K0
2ε .

Hence, denoting by ζ(t, x) = σ(N + z̃, N) − f ′(N), we have

‖ζ‖L∞L∞ ≤ ‖f ′′‖L∞(K)

2
‖z̃‖L∞L∞ ≤ Ce−

K0
2ε , (66)

for some compact K ⊂ R containing N , and

‖ζx‖L1L∞ = ‖[σ(N + z̃, N)]x‖L1L∞ ≤ ‖f ′′‖L∞(K)‖z̃x‖L1L∞ ≤ Ce−
K0
2ε . (67)

As a consequence of (66) and (67), Estimate (55) holds and Lemma 2.9 applies as soon as T ≥ α1
λ

f ′(N)

(that we shall suppose in the following). In particular, for ε < ε0, there exists a control function

g̃ such that ‖g̃‖L2(0,T ) ≤ Ce−
K0
ε and the associated solution of (53) satisfies ỹ|t=T = 0, and thus

ỹ|(0,L) fulfills (64). Moreover, ỹ is defined as a transposition solution of (53) so that the regularity
estimate (84) of Lemma 4.2 gives, for some C > 0 independent from ε,

‖ỹ‖L2L2(a,b) ≤
C√
ε

(

‖g̃‖L2(0,T ) + ‖ỹ0‖L2(a,b)

)

. (68)

We now take open intervals Ω1 and Ω2 such that [0, L] ⊂ Ω2 ⊂ Ω2 ⊂ Ω1 ⊂ Ω1 ⊂ (a, b) and a cut-off
function χ1 ∈ C∞

c (Ω1) defined as before. The function w1 = χ1ỹ satisfies







w1,t − εw1,xx = −χ1[σ(N + z̃, N)ỹ]x − 2εχ′
1ỹx − εχ′′

1 ỹ in (0, T ) × Ω1,
w1 = 0, in (0, T ) × ∂Ω1,
w1|t=0 = χ1ỹ0 ∈ H1

0 (Ω1),

so that the parabolic regularity result of Lemma 4.1, taken for m = 0, gives

‖w1‖L2H1
0 (Ω1) ≤

C

ε

(

‖χ1ỹ0‖L2(Ω1) + ‖χ1[σ(N + z̃, N)ỹ]x + 2εχ′
1ỹx + εχ′′

1 ỹ‖L2H−1(Ω1)

)

.
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The last two terms in the right hand-side can be estimated by C‖ỹ‖L2L2(Ω1), and we have

‖χ1[σ(N + z̃, N)ỹ]x‖L2H−1(Ω1) ≤ C‖σ(N + z̃, N)ỹ‖L2L2(Ω1) ≤ C‖ỹ‖L2L2(a,b)

since σ(N + ·, N) ∈ L∞ and z̃ ∈ L∞L∞. As a consequence of (68), we now obtain

‖w1‖H1H−1(Ω1)∩L2H1
0 (Ω1)∩L∞L2(Ω1) ≤

C

ε
3
2

(

‖g̃‖L2(0,T ) + ‖ỹ0‖L2(a,b)

)

. (69)

Taking another cut-off function χ2 ∈ C∞
c (Ω2) as before, the function w2 = χ2w1 = χ2ỹ satisfies







w2,t − εw2,xx = −χ2[σ(N + z̃, N)w1]x − 2εχ′
2w1,x − εχ′′

2w1 in (0, T ) × Ω2,
w2 = 0, in (0, T ) × ∂Ω2,
w2|t=0 = χ2w1 ∈ H1

0 (Ω2),

so that the parabolic regularity result of Lemma 4.1, taken for m = 1, gives

‖w2‖L2(H2∩H1
0 (Ω2))∩H1L2(Ω2) ≤

C

ε

(

‖χ2w1‖H1
0 (Ω2)

+ ‖χ2[σ(N + z̃, N)w1]x + 2εχ′
2w0,x + εχ′′

2w1‖L2L2(Ω2)

)

. (70)

In this expression, we can estimate

‖χ2[σ(N + z̃, N)w1]x‖L2L2(Ω2) ≤ ‖σ(N + z̃, N)w0,x‖L2L2(Ω1) + ‖[σ(N + z̃, N)]xw1‖L2L2(Ω1)

≤ ‖σ(N + z̃, N)‖L∞L∞‖w1‖L2H1
0 (Ω1) + ‖σ(N + z̃, N)‖L2W 1,∞‖w1‖L∞L2(Ω1)

where all the terms in the right hand-side are finite, since σ(N + ·, N) ∈ L∞, z̃ ∈ L∞L∞ ∩L2W 1,∞,
and w1 satisfies (69). Replacing this in (70) and using (69) yields

‖w2‖L2(H2∩H1
0 (Ω2))∩H1L2(Ω2) ≤

C

ε
5
2

(

‖g̃‖L2(0,T ) + ‖ỹ0‖L2(a,b)

)

,

and thus

‖ỹ|(0,L)‖L2H2(0,L)∩H1L2(0,L) ≤ ‖w2‖L2(H2∩H1
0 (Ω2))∩H1L2(Ω2) ≤

C

ε
5
2

(

2e−
K0
ε + e−

K0
ε

)

≤ e−
K0
2ε ,

for 0 < ε < ε0. This implies that ỹ|(0,L) satisfies (65) for 0 < ε < ε0 and hence all conditions
(62)-(65), and Λ(z) is nonempty.

To prove (iii), let us consider two sequences, zn → z in Eε for the topology of H1L2 ∩ L2H2,
and yn ∈ Λ(zn) satisfying yn → y in Z, and check that y ∈ Λ(z). The three assertions (63)-(65) still
hold for y since (63)-(65) do not depend on zn, and in particular y ∈ H1L2 ∩ L2H2. Let us denote
Rn the right hand-side of (62) for zn and yn, and R its counterpart for z and y. We have

Rn −R = [σ(N + z,N)]xy + σ(N + z,N)yx − [σ(N + zn, N)]xyn − σ(N + zn, N)yn,x

and hence ‖Rn −R‖L2L2 ≤ An +Bn, with

An = ‖[σ(N + z,N)]xy − [σ(N + z,N)]xyn‖L2L2 + ‖[σ(N + z,N)]xyn − [σ(N + zn, N)]xyn‖L2L2

≤ ‖[σ(N + z,N)]x‖L2L∞‖y − yn‖L∞L2 + ‖[σ(N + z,N)]x − [σ(N + zn, N)]x‖L2L∞‖yn‖L∞L2 ,

and

Bn = ‖σ(N + z,N)yx − σ(N + z,N)yn,x‖L2L2 + ‖σ(N + z,N)yn,x − σ(N + zn, N)yn,x‖L2L2

≤ ‖σ(N + z,N)‖L∞L∞‖yx − yn,x‖L2L2 + ‖σ(N + z,N) − σ(N + zn, N)‖L∞L∞‖yn,x‖L2L2
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Recalling that zn → z in Eε and yn → y in Z, we deduce limn→+∞An = 0 since yn → y in
H

3
4L2 ⊂ L∞L2 and σ(N + zn, N) → σ(N + z,N) in L2W 1,∞. Moreover, limn→+∞Bn = 0 since

yn → y in L2H1 and σ(N + zn, N) → σ(N + z,N) in L∞L∞. We can now write (62) for zn and yn
as

yn,t − εyn,xx = Rn (71)

where the right hand-side Rn satisfies Rn → R in L2L2. This, together with (65) implies that when
n→ +∞ we have,

yt − εyxx = R in L2L2, (72)

so that (62) holds for the limit y. Finally, y ∈ Λ(z), and condition (iii) is fulfilled.

Consequently, Kakutani’s Theorem applies and there exists y ∈ Λ(y), that is to say, for y0

satisfying ‖y0‖H1(0,L) ≤ e−
K0
ε , we have found a function y satisfying















yt − εyxx + [σ(N + y,N)y]x = 0 in (0, T ) × (0, L),
y|t=0 = y0 in (0, L),
y|t=T = 0 in (0, L),

‖y‖H1L2∩L2H2 ≤ e−
K0
2ε .

It suffices now to take the control functions

g0(t) := y|x=0(t) +N and gL(t) := y|x=L(t) +N.

With this choice, we have g0, gL ∈ L∞(0, T ) since H1L2 ∩ L2H2 ⊂ H
3
5H

4
5 and

max(‖g0‖L∞(0,T ), ‖gL‖L∞(0,T )) ≤ |N | + Ce−
K0
2ε ≤ 2|N |

for 0 < ε < ε0. In addition, this proof works for any time of control T ≥ α1
λ

f ′(N) , for any λ > L

(but all the constants depend on λ). This yields the result for any T ≥ α1
L

f ′(N) , and concludes the

proof of Proposition 2.8.

To conclude this section, we give a slight modification of Proposition 2.8, adapted to the first
phase of the proof of Theorem 1.1, which consists in reaching exactly a large state N , without
assuming ε small. To this aim, the strategy adopted here is the same as the one of Proposition 2.8
except that we take “N large” instead of “ε small” in the fixed point argument. To do so, we carefully
keep track of the dependence with respect to the parameter N , as N → +∞.

Proposition 2.11. Suppose that Assumption (A+) holds. Then, there exist α1 > 0 such that for
all ε0 > 0, there exist N0 > 0 such that for all ε ∈ (0, ε0), N > N0, T ≥ α1

L
f ′(N) , and u0 ∈ H1(0, L)

satisfying for some P < N0

‖u0 −N‖H1(0,L) ≤ C(N − P )‖f ′‖
5
2

L∞(P,N)

(

‖f ′‖L∞(P,N) + ‖f ′′‖L∞(P,N)‖f‖L∞(P,N)

)

e−K0s(σm−s),

(73)
with s = σ(P,N), σm = σ(E,N) and P < E, there exist two control functions g0 and gL such that
the result of Proposition 2.8 holds.

To use this after Proposition 2.1, we take E = ess inf u0 > P . We now sketch the proof of this
proposition.

Proof. Here, we only replace the argument “ε small” in the previous proof by “N large”. This is
possible since Assumption (A+) implies the existence of Q ∈ R, l0, C > 0, γ > − 1

2 and δ > 0 such
that

f ′′(A) ≥ l0A
γ and f ′′(A) ≤ CeA

2γ+1−δ

for all A > Q. Since we have

f(N) = f(Q) + (N −Q)f ′(Q) +

∫ N

Q

f ′′(τ)(N − τ)dτ ≥ l0
(γ + 1)(γ + 2)

Nγ+2 +O(N),
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we can estimate

σm − s ≥ (E − P )
f(N)

N2
+O(

1

N
) ≥ (E − P )

l0
(γ + 1)(γ + 2)

Nγ +O(
1

N
),

and

s ≥ (E − P )
f(N)

2N
+O(

1

N
) ≥ l0

2(γ + 1)(γ + 2)
Nγ+1 +O(1),

so that

e−K0s(σm−s) ≤ Ce
−

K0l20(E−P )

2(γ+1)2(γ+2)2
N2γ+1

. (74)

Since we supposed γ > − 1
2 , this expression is exponentially decaying as N → +∞. It sufficies now

to follow the proof of Proposition 2.8, replacing the exponential decay ‖u0 − N‖H1(0,L) ≤ e−
K0
ε as

ε→ 0+, by the exponential decay

‖u0 −N‖H1(0,L) ≤ C(N − P )‖f ′‖
5
2

L∞(P,N)

(

‖f ′‖L∞(P,N) + ‖f ′′‖L∞(P,N)‖f‖L∞(P,N)

)

e−K0s(σm−s)

≤ CeN
2γ+1−δ

e
−

K0l20(E−P )

2(γ+1)2(γ+2)2
N2γ+1

≤ e−K1N
2γ+1

,

as N → +∞, for some K1 > 0, as a consequence of Assumption (A+) and (74). We also have

to use systematically e−
K1
2 N2γ+1

in place of e−
K0
2ε and N > N0 in place of ε < ε0 in the proof

Proposition 2.8. The analogous of Estimates (66) and (67) are performed using the fact that in these

expressions, K is the ball centered on N of radius smaller than e−K1N
2γ+1

.

Remark 2.12. This is the only place where we use the unnatural assumption (A+). Any other
condition on f allowing to perform the fixed point argument is sufficient for proving Theorem 1.1.
Note that if we had proved a decay rate of the form θs(f ′(N)− s), Estimate (74) would be replaced

by e−K0s(f
′(N)−s) ≤ Ce−CN

2γ+2

, which explains the more general condition written in Remark 2.3.

3 Proofs of the three theorems

With the use of Propositions 2.1, 2.4 and 2.8 (resp. 2.11), we are now able to prove Theorems 1.2, 1.3
(resp. 1.1). Before that, we combine the global approximate controllability results and the local one
to provide two different global exact controllability results using a traveling wave (see Proposition 3.1
below) or a rarefaction wave (see Proposition 3.2 below). After that, we can conclude the proofs of
the theorems.

Proposition 3.1. Suppose that there exist constant states P and N , such that one of these conditions
is satisfied:

(a) P < ess inf u0 ≤ ess supu0 < N , f(N) > f(P ), and (SOC+) holds on (P,N);

(b) N < ess inf u0 ≤ ess supu0 < P , f(N) > f(P ), and (SOC+) holds on (N,P );

(c) P < ess inf u0 ≤ ess supu0 < N , f(N) < f(P ), and (SOC−) holds on (P,N);

(d) N < ess inf u0 ≤ ess supu0 < P , f(N) < f(P ), and (SOC−) holds on (N,P ).

Then, setting s = σ(P,N), there exist C > 0 only depending on f and ε0 > 0 such that for all
T > α1

L
|f ′(N)| + L

|s| and 0 < ε < ε0, there exist two control functions g0 and gL, with

‖g0‖L∞(0,T ) ≤ C(|N | + |P |) and ‖gL‖L∞(0,T ) ≤ C(|N | + |P |),

such that the solution u of (1), (2) and (3) satisfies

u|t=T = N in (0, L).
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Proof. Here, we only prove the proposition in the case (a). The proof of cases (b)-(d) follows the
one of (a) for a modified Proposition 2.1, since the conditions that we write are the conditions of
existence of a traveling wave from P to N or from N to P .

Since P and N satisfy the strict condition (SOC+) and f(N) > f(P ), one can find P ′ close to
P , and N ′ close to N , such that the stronger condition (POC) is satisfied on (P ′, N ′), together with
P ′ < ess inf u0 ≤ ess supu0 < N ′ and f(N ′) > f(P ′). As a consequence, Proposition 2.1 applies and
hence one can find control functions that drive u0 to a state u1 which is H1-exponentially close to
N in any time T1 >

L
|s| . After that, the assumptions of Proposition 2.8 are satisfied, and thus u1

can be steered exacly to N in any time T2 ≥ α1
L

|f ′(N)| . Finally the result of Proposition 3.1 holds

for any time T ≥ T1 + T2.

Proposition 3.2. Suppose that one of these conditions is satisfied:

(a) M < N , f ′′ ≥ 0 on the interval (M,N) and f ′(M) > 0;

(b) N < M , f ′′ ≥ 0 on the interval (N,M) and f ′(M) < 0;

(c) M < N , f ′′ ≤ 0 on the interval (M,N) and f ′(M) < 0;

(d) N < M , f ′′ ≤ 0 on the interval (N,M) and f ′(M) > 0.

Then, there exist C > 0 only depending on f and ε0 > 0 such that for all T > (α1 + 1) L
|f ′(M)| and

0 < ε < ε0, there exist two control functions g0 and gL, with

‖g0‖L∞(0,T ) ≤ C(|M | + |N |) and ‖gL‖L∞(0,T ) ≤ C(|M | + |N |), (75)

such that the solution u of (1), (2) with initial condition u|t=0 = N satisfies,

u|t=T = M in (0, L).

Proof. Here, we only prove the proposition in the case (a). The proof of cases (b)-(d) follows the one
of (a) for a modified Proposition 2.4, since the conditions we write are the conditions of existence of
a rarefaction wave steering N to M , having a speed of non-vanishing fixed sign.

In the case (a), the assumptions of Proposition 2.4 are satisfied and hence one can find control
functions that drive u0 to a state u1 which is H1-exponentially close to M in any time T1 >

L
|f ′(M)| .

After that, the assumptions of Proposition 2.8 are satisfied, and thus u1 can be steered exacly to N
in a time T2 ≥ α1

L
|f ′(M)| . Finally, the result of Proposition 3.1 holds for any time T ≥ T1 + T2.

3.1 Proof of Theorems 1.1 and 1.2, the convex case

In this section, we suppose f ′′ ≥ 0. Let us first prove Theorem 1.2, using Propositions 3.1 and 3.2.

Proof of Theorem 1.2. We first suppose that f ′(M) > 0 and choose some P < ess inf u0. Since
limu→+∞ f ′(u) = +∞, and setting s = σ(N,P ), we have limN→+∞ s = +∞. As a consequence,
for any time T1 > 0 there exists N > ess supu0 sufficiently large so that f(N) > f(P ) and 0 <
α1

L
f ′(N) + L

s < T1. As a consequence of Proposition 3.1, one can reach N exactly, uniformly with

ε in time T1. Then Proposition 3.2 holds between N and M , and for any T2 > α0
L

f ′(M) (with

α0 = α1 + 1), there exist two control functions bounded uniformly with respect to ε such that
u|t=T1+T2

= M . Finally, the result of Theorem 1.1 holds for any time T ≥ T1 + T2.
In the case f ′(M) < 0, exactly the same proof still holds using limu→−∞ f ′(u) = −∞, together

with Proposition 3.1 (b) and Proposition 3.2 (b).

In Theorem 1.1, however, we do not want ε0 to depend on the initial datum u0. For this, we use
the following proposition instead of Proposition 3.1.

26



Proposition 3.3. Suppose that condition (A+) holds. Then, for all ε0 > 0 and T > 0, there exists
a state N0 > 0, such that for all ε ∈ (0, ε0) and N > N0, there exist control functions g0 and gL with

‖g0‖L∞(0,T ) ≤ ‖u0‖L∞(0,L) + 2|N | and ‖gL‖L∞(0,T ) ≤ ‖u0‖L∞(0,L) + 2|N |,

such that the solution u of (1), (2) and (3) satisfies

u|t=T = N in (0, L).

The proof of this proposition combines the approximate controllability result to the large state
N of Proposition 2.1 and the local exact controllability result of Proposition 2.11. Both results hold
for any ε > 0, for N sufficiently large, for control times T > L

s and T ≥ α1
L

f ′(N) , both vanishing as

N → +∞.

The proof of Theorem 1.1 then exactly follows that of Theorem 1.2, using both Proposition 3.3
to reach the large constant N and Proposition 3.2 to come back to the state M with a rarefaction
wave.

3.2 Proof of Theorem 1.3, the non-convex case

For the sake of brevity in the following proof, we do not mention that every control step is done
uniformly with respect to ε, as a consequence of Propositions 3.1 and 3.2.

Proof of Theorem 1.3. The first step is to “get rid of” the initial condition u0, and that is the only
role of Assumption (ii). This assumption, together with Proposition 3.1 gives the controllability from
u0 to some constant state M0 with f ′(M0) 6= 0. All the proof is reduced now to a controllability
problem between two constant states (M0 and M) and is illustrated in Figure 3.

I2 J2 J3 I4

M0

I3 J4 I5I1 J1

T+

R−

R+

T−

T+

R−

f(u)

u

T+

R−

M

R−

I6 J6J5

Figure 3: Global control strategy for non-convex f
R+: “convex rarefaction wave”; R−: “concave rarefaction wave”;
T+: “convex traveling wave”; T−: “concave traveling wave”.

Let us suppose that M0 < M (the case M0 > M follows from the same arguments). From
Assumption (i), (f ′′)−1({0}) ∩ [M0,M ] can be written as

⋃m
j=1 Ij where the union is disjoint and

ordered. Note that each Ij is a segment (possibly reduced to a point) since f ′′ is supposed to be
continuous here. Let us denote (Jk)1≤k≤p the connected components of (M0,M) \⋃mj=1 Ij , so that

(M0,M) \⋃mj=1 Ij =
⋃p
k=1 Jk, where this last union is disjoint and ordered. As a consequence, Jk is

an open interval on which either f ′′ > 0 or f ′′ < 0.
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1. Driving A to B with A,B ∈ Jk.
We first prove that, for any A ∈ Jk and B ∈ Jk satisfying f ′(A) 6= 0 and f ′(B) 6= 0, one can steer
A to B in a finite time. We suppose that f ′′ > 0 on Jk (the case f ′′ < 0 follows from the same
arguments) and denote by Lk (resp. Rk) the left (resp. right) endpoint of Jk.

• If f ′(Lk) > 0, then, as a consequence of Lemma 3.4 below, and using the fact that f is strictly
convex on (Lk, Rk), there exists L′

k < Lk such that f satisfies (SOC+) on (L′
k, Rk). Thus, there

exists a traveling wave from L′
k to Rk and, according to Proposition 3.1 (a), A can be driven to Rk

in finite time (see the situation in J1 in Figure 3). Then, we are in the situation of Proposition 3.2
(a) and a rarefaction wave drives Rk to B in finite time. Note that if f ′(Lk) = 0, we have Lk < A
and the same strategy holds.

• If f ′(Rk) ≤ 0, f has no local minimum on Jk and this case follows the same.
• If f ′(Lk) < 0 and f ′(Rk) > 0, there exists Ck ∈ Jk satisfying f ′(Ck) = 0. The situation

f ′(A)f ′(B) > 0 has already been treated, so we only have to consider the case f ′(A) < 0 and
f ′(B) > 0 (the case f ′(A) > 0 and f ′(B) < 0 follows exactly the same arguments). According to
Proposition 3.2 (b), A can be brought to A′ as close to Ck as needed, by means of a rarefaction wave
(see the situation in J3 in Figure 3). It suffices to take A′ so that f(A′) < f(B), and as a consequence
of Proposition 3.1 (a), we can steer A′ to B thanks to a traveling wave (f is convex on Jk and hence
satisfies (SOC+) on this interval).

2. Driving A to B with A,B ∈ Ij.
Next, we prove that, if f ′ 6= 0 on Ij for some j, then for any A,B ∈ Ij , one can steer A to B in finite
time. Recall that f ′′ = 0 on Ij . If f ′ > 0 on Ij and B < A, we are in the context of Proposition 3.2
(a) and a “convex rarefaction wave” drives A to B (see the situation in I3 in Figure 3). If f ′ > 0 on
Ij and A < B, Proposition 3.2 (d) applies and a “concave rarefaction wave” drives A to B (see the
situation in I1 in Figure 3). We can do the same if f ′ < 0 on Ij using Proposition 3.2 (b) and (c).
Note that in this case, Equation (1) is only a linear transport equation with constant speed, which
we control on both endpoints of the interval, and the result is also a consequence of [9].

3. Driving A to B with A ∈ Jk and B ∈ Jk+1, when f ′ vanishes between Jk and Jk+1

The last case to consider is the case where Jk = (Lk, Lj), Ij = [Lj , Rj ], Jk+1 = (Rj , Rk+1), f
′ = 0

on Ij , A ∈ Jk, B ∈ Jk+1, and we want to steer A to B. Suppose that f ′(A) > 0 (the case f ′(A) < 0
follows the same). Then, according to Proposition 3.2 (d), a “concave rarefaction wave” can bring
A to some A′ as close as we want from Lj (see the situation in J4 in Figure 3).

• If f ′(B) < 0, we can choose A′ < Lj such that f(A′) > f(B), so that Proposition 3.1 (c) holds
and we can steer A′ to B by means of a concave traveling wave.

• If f ′(B) > 0, the continuity of f ′ yields that we can choose A′ < Lj such that 0 < f ′(A′) <
σ(A′, B) so that (SOC+) holds on (A′, B) and, according to Proposition 3.1 (a), we can steer A′ to
B by means of a “convex traveling wave” (see the situation in I5 in Figure 3).

Therefore, using iteratively the three arguments above, one can pass from each zone Ij to the
neighboring zone Jk (case 2.) and to each Jk to the neighboring Ij (case 1.) since Ij ∩ Jk 6= ∅,
provided that f ′ 6= 0 on Ij . If f ′ = 0 on Ij , one can jump from Jk before Ij to Jk+1 after Ij (case 3.).
Finally, from Assumption (i), there is a finite number of Ij and Jk between M0 and M , so that we
can steer M0 to M with a finite number of such iterations, i.e., in finite time. This global strategy
is illustrated in Figure 3.

Note that this proof does not provide an estimate on the minimal time T0 needed to control.
Moreover, the strategy developed here is clearly not optimal in time since it is mainly a local strategy.
For instance, in Figure 3, we see that one can steer the point I3 ∩ J3 directly to a point in J6 with a
single traveling wave, a strategy which is much faster than the one described in the proof. Optimizing
this strategy in time seems to be an interesting open problem.

We end this section by proving a Lemma used in the Proof of Theorem 1.3.
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Lemma 3.4. Suppose that f ∈ C1(R) satisfies (SOC+) on the interval (L,R) and that f ′(L) <
σ(L,R). Then, there exists ρ0 > 0 such that for all ρ ∈ (0, ρ0), the function f satisfies (SOC+) on
(L− ρ,R).

Proof. First, we have
∂

∂u
σ(u,R)|u=L =

1

R− L
(σ(L,R) − f ′(L)) > 0.

Hence, there exists ρ1 > 0 such that for all ρ ∈ (0, ρ1), σ(L− ρ,R) < σ(L,R). Since (SOC+) reads
σ(L,R) < σ(u,R) for all u ∈ (L,R), we now have

σ(L− ρ,R) < σ(u,R), for all ρ ∈ (0, ρ1), u ∈ (L,R). (76)

Second, the assumption f ′(L) < σ(L,R) together with the continuity of f ′ and σ(·, R) gives the
existence of ρ2 > 0 such that for all ρ ∈ (0, ρ2) and all v ∈ (L− ρ, L), we have f ′(v) < σ(L− ρ,R).
Integrating this inequality with respect to v on (L − ρ, u), for u ∈ (L − ρ, L) and dividing by
(u− (L− ρ)) yields σ(L− ρ, u) < σ(L− ρ,R). This is equivalent to having

σ(L− ρ,R) < σ(u,R), for all ρ ∈ (0, ρ2), u ∈ (L− ρ, L). (77)

Finally, setting ρ0 = min{ρ1, ρ2} and combining (76) and (77) concludes the proof of the lemma.

4 Appendix: parabolic regularity estimates

4.1 Parabolic regularity estimates for classical solutions

For the sake of completeness, we recall here a classical regularity result for the heat equation, that
is used in the previous sections. However, we give a precise dependence with respect to ε, and a
simple proof. Let Ω be a bounded domain of R

n with smooth boundary. For m ≥ 0, we denote by
Hm = D((−∆)

m
2 ) the domain of the fractional Laplace-Dirichlet operator on L2(Ω), and H−m =

(Hm)
′
. Here the duality is taken with respect to H0 = L2(Ω). For instance we have H1 = H1

0 (Ω),

H2 = H2(Ω) ∩H1
0 (Ω) and H−1 = H−1(Ω) =

(

H1
0 (Ω)

)′
. We have the following regularity result.

Lemma 4.1. Let u(t, x) be a classical solution of






∂tu− ε∆u = f in (0, t∗) × Ω,
u = 0 on (0, t∗) × ∂Ω,
u|t=0 = u0 in Ω.

(78)

and let m ∈ R. Suppose that u0 ∈ Hm and f ∈ L2(0, t∗;Hm−1), then

u ∈ C0(0, t∗;Hm) ∩ L2(0, t∗;Hm+1) ∩H1(0, t∗;Hm−1)

and we have, for all t∗ > 0,

ε‖u(t∗)‖2
Hm + ε2

∫ t∗

0

‖u(t)‖2
Hm+1dt+

∫ t∗

0

‖ut(t)‖2
Hm−1dt = ε‖u0‖2

Hm +

∫ t∗

0

‖f(t)‖2
Hm−1dt. (79)

Proof. We denote by (ω2
j , φj)j∈N∗ the (positive) eigenvalues and associated eigenfunctions of the

Laplace-Dirichlet operator on Ω, forming a Hilbert basis of L2(Ω). We have −∆φj = ω2
jφj and

φj |∂Ω = 0. We here suppose that m ≥ 1. In the case m ≤ 1, we do the following computations with
smooth functions f and u, and conclude with a density argument. Taking the inner product of (78)
with φj , we obtain

{

uj,t + εω2
juj = fj in (0, t∗),

uj |t=0 = uj,0,

where uj = (u, φj)L2 , uj,0 = (u0, φj)L2 , and fj = (f, φj)L2 . Multiplying the first equation by ωm−1
j

and squaring it, we have

ω2m−2
j |uj,t|2 + ε2ω2m+2

j |uj |2 + 2εω2m
j ujuj,t = ω2m−2

j |fj |2.
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Integrating this equation on (0, t∗), we now obtain

ω2m−2
j

∫ t∗

0

|uj,t|2dt+ ε2ω2m+2
j

∫ t∗

0

|uj |2dt+ εω2m
j |uj |2(t∗) = εω2m

j |uj,0|2 + ω2m−2
j

∫ t∗

0

|fj |2dt. (80)

The right hand-side is summable over j ∈ N
∗ since we supposed

∑

j∈N∗ ω2m
j |uj,0|2 = ‖u0‖2

Hm < +∞
and

∑

j∈N∗ ω
2m−2
j

∫ t∗

0
|fj |2dt = ‖f(t)‖2

L2(0,t∗;Hm−1) < +∞. Hence, the left hand-side is summable.

Since its three terms are non-negative, they are all summable. Finally, summing (80) over j ∈ N
∗

yields (79) and the lemma is proved.

4.2 Well-posedness of an initial-boundary value problem with low regu-

larity

We here prove the well-posedness of Problem (53) in some energy space and give the associated
regularity estimates used in (68). More precisely, we consider the problem







ut − εuxx + [W (t, x)u]x = 0 in (0, T ) × (a, b),
u|x=a = g(t), u|x=b = 0 in (0, T ),
u|t=0 = u0 in (a, b),

(81)

with W and g having low regularity and show that (81) is well-posed in a weak sense, viz. in the
sense of transposition solutions. We have the following result.

Lemma 4.2. Suppose that W ∈ L∞(0, T ;L∞(a, b)) ∩ L1(0, T ;W 1,∞(a, b)) and u0 ∈ L2(a, b). Then
there exists a unique u ∈ L2(0, T ;L2(a, b)) such that

∫ T

0

∫ b

a

u(t, x)F (t, x)dx dt =

∫ b

a

u0(x)ϕ(0, x)dx+ ε

∫ T

0

g(t)ϕx(t, a)dt (82)

for every test function F ∈ L2(0, T ;L2(a, b)) and associated ϕ satisfying







−ϕt − εϕxx −W (t, x)ϕx = F (t, x) in (0, T ) × (a, b),
ϕ|x=a = 0, ϕ|x=b = 0 in (0, T ),
ϕ|t=T = 0 in (a, b),

(83)

in the classical sense. Moreover, there exists C = C(T, ‖W‖L∞L∞ , ‖Wx‖L1L∞) > 0 independent from
ε such that

‖u‖L2(0,T ;L2(a,b)) ≤
C√
ε

(

‖g‖L2(0,T ) + ‖u0‖L2(a,b)

)

. (84)

The solution u is called the transposition solution of (81). Note that u is in particular a solution
of the first equation of (81) in the sense of distributions.

Proof. First notice that for anyW ∈ L∞(0, T ;L∞(a, b))∩L1(0, T ;W 1,∞(a, b)) and F ∈ L2(0, T ;L2(a, b)),
the backward problem (83) is well-posed in the classical sense and a regularity estimate for its solu-
tion ϕ ∈ H1(0, T ;L2(a, b)) ∩ L2(0, T ;H2 ∩H1

0 (a, b)) is given in Lemma 4.3 below. We now remark
that, given u0 ∈ L2(a, b) and g ∈ L2(0, T ), the mapping

l : F 7→
∫ b

a

u0(x)ϕ(0, x)dx+ ε

∫ T

0

g(t)ϕx(t, a)dt,

is linear. Furthermore, we have, using (85) below,

|l(F )| ≤ ‖u0‖L2(a,b)‖ϕ(0, ·)‖L2(a,b) + ε‖g‖L2(0,T )‖ϕx(·, a)‖L2(0,T )

≤ ‖u0‖L2(a,b)‖ϕ‖H1(0,T ;L2(a,b)) + ε‖g‖L2(0,T )‖ϕ‖L2(0,T ;H2(a,b))

≤ C√
ε

(

‖u0‖L2(a,b) + ‖g‖L2(0,T )

)

‖F‖L2L2 .

30



As a consequence l is a continuous linear form on L2L2, and Riesz representation Theorem gives the
existence of a unique u ∈ L2L2 satisfying (82) for every F ∈ L2L2. In addition, we have

‖u‖L2L2 ≤ C√
ε

(

‖u0‖L2(a,b) + ‖g‖L2(0,T )

)

and the lemma is proved.

Note that refining our estimates, we could have proved that u ∈ L2(0, T ;H
1
2−δ(a, b)) for any

δ > 0 (which we do not need here).

Lemma 4.3. Suppose that W ∈ L∞(0, T ;L∞(a, b)) ∩ L1(0, T ;W 1,∞(a, b)), F ∈ L2(0, T ;L2(a, b))
and that ϕ is a solution of the backward problem (83). Then ϕ ∈ L∞(0, T ;H1

0 )∩L2(0, T ;H2 ∩H1
0 )∩

H1(0, T ;L2) and we have for some C = C(T, ‖W‖L∞L∞ , ‖Wx‖L1L∞), independent from ε,

ε2‖ϕ‖2
L∞(0,T ;H1

0 ) + ε3‖ϕ‖2
L2(0,T ;H2∩H1

0 ) + ε‖ϕt‖2
L2(0,T ;L2) ≤ C‖F‖2

L2(0,T ;L2). (85)

Proof. Multiplying the first line of (83) by ϕ and integrating on (a, b) yields

−1

2

d

dt
‖ϕ(t, ·)‖2

L2 + ε‖ϕx(t, ·)‖2
L2 −

∫ b

a

W (t, x)
(ϕ(t, x)2

2

)

x
dx =

∫ b

a

F (t, x)ϕ(t, x) dx,

which, after an integration by parts, gives the estimate

−1

2

d

dt
‖ϕ(t, ·)‖2

L2 + ε‖ϕx(t, ·)‖2
L2 ≤ 1

2
‖F (t, ·)‖2

L2 +
1

2
‖ϕ(t, ·)‖2

L2 + ‖Wx(t, ·)‖L∞‖ϕ(t, ·)‖2
L2 . (86)

Forgetting the term ε‖ϕx(t, ·)‖2
L2 and applying Gronwall’s lemma backward in time yields

‖ϕ‖2
L∞(0,T ;L2) ≤

1

2
exp

(

‖Wx‖L1(0,T ;L∞) +
T

2

)

‖F (t, ·)‖2
L2(0,T ;L2), (87)

since ϕ|t=T = 0. Now integrating (86) on (0, T ) and using (87), we obtain

ε‖ϕx‖2
L2(0,T ;L2) ≤

[

1

2
+

(

T

4
+

‖Wx‖L1(0,T ;L∞)

2

)

exp

(

‖Wx‖L1(0,T ;L∞) +
T

2

)]

‖F‖2
L2(0,T ;L2). (88)

Next, we write the first equation of (83) as

−ϕt − εϕxx = Wϕx + F,

where the right handside is in L2(0, T ;L2(a, b)) sinceW ∈ L∞(0, T ;L∞(a, b)) and ϕx ∈ L2(0, T ;L2(a, b)).
The regularity estimate (79) of Lemma 4.1 for the heat equation (taken backward in time) for m = 1
directly yields Estimate (85) and concludes the proof of the lemma.
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