

Brambilla et al. Reply:

Giovanni Brambilla, Djamel El Masri, Matteo Pierno, Ludovic Berthier, Luca Cipelletti, George Petekidis, Andrew B. Schofield

▶ To cite this version:

Giovanni Brambilla, Djamel El Masri, Matteo Pierno, Ludovic Berthier, Luca Cipelletti, et al.. Brambilla et al. Reply:. Physical Review Letters, 2010, 104, pp.169602. 10.1103/PhysRevLett.104.169602 . hal-00512112

HAL Id: hal-00512112 https://hal.science/hal-00512112v1

Submitted on 27 Aug 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. **Brambilla** et al. Reply: van Megen and Williams (vMW) question [1] our recent claim [2] that dense colloidal hard spheres enter at large volume fraction φ a dynamical regime not observed in earlier work [3] and not described by the mode-coupling theory (MCT) of the glass transition. They claim that our results are in contradiction to theirs, and suggest that this discrepancy is due to differences in particle size polydispersity.

We show in Fig. 1 the particle size distribution obtained by transmission electron microscopy (TEM). We find $\sigma = 12.2\%$, very close to $\sigma = 11.5\%$ as in our simulations [4]. In this range of σ , MCT predicts [5], and our simulations reveal [4], no significant effect due to differential localization of large and small particles, which thus cannot account for our data, contrary to vMW's suggestion.

A second explanation suggested by vMW is that a moderate polydispersity shifts the glass transition to a larger volume fraction, implying that a non-ergodic sample might become ergodic if σ increases at constant φ . We have considered this effect. Our simulations [4] show that the effect is quantitatively modest since, for instance, the position of the fitted MCT divergence, φ_c , shifts merely by 0.002 when σ changes from 6 to 11.5% [4]. Taking into account this φ_c shift and uncertainties related to volume fraction determination [3, 4], our data are in fact fully consistent with those of Refs. [3, 6] up to $\varphi \leq \varphi_c$.

However, unlike previous work, we have been able to detect ergodic behavior for samples that have volume fractions above our fitted $\varphi_c \simeq 0.590$, and have discovered that near φ_c an MCT description of the data breaks down. Since we have allowed φ_c to vary to take polydispersity effects into account, our data cannot be reconciled with MCT in this regime. Indeed, deviations from an algebraic MCT description can only be cured at the

FIG. 1: Particle size distribution as obtained from a sample of 1000 particles imaged by TEM. The relative polydispersity is $\sigma = 12.2\%$. The average radius measured by TEM is close to the hydrodynamic radius measured by DLS, $a \approx 105$ nm. The particle size reported in Ref. [2] was somehow higher because the solvent viscosity had been underestimated.

expense of using unphysical values of the critical parameters. For example, by imposing $\varphi_c = 0.60$ (instead of 0.59 as in Ref. [2]), we find that the critical exponent γ in the fitted MCT divergence is as high as $\gamma = 4.5$; for $\varphi_c = 0.605$, the exponent is even higher, $\gamma = 6.8$. We made similar observations in our two simulated polydisperse hard sphere models. If these results were solely due to polydispersity, as claimed by vMW, it should be possible to obtain experimental and numerical results with less polydisperse samples, say $\sigma \lesssim 10$ %, that would cover a range of relaxation times comparable to that in our work,

Finally, vMW criticize our statement that this new dynamic regime had not been detected in Ref. [3] because crystallization intervened. Indeed, crystallization is not mentioned as an issue in [3], although it did intervene in [6], where a sample with $\sigma \approx 4$ % was studied. vMW emphasize that the samples with $\varphi > \varphi_c$ in Ref. [3] are not ergodic, even if a larger time window is used: they mention a more recent work [7] where the non-ergodic aging dynamics of a sample with $\varphi = \varphi_c + 0.01$ is studied over 5 days. From the fit of the relaxation time $\tau_{\alpha}(\varphi)$ discussed in [2], we estimate that τ_{α} grows by a factor ~ 500 when φ increases from φ_c to $\varphi_c + 0.01$. Assuming a similar behavior for the sample studied in [7], no equilibration is to be expected before several hundreds of days, much longer than the largest waiting time in that work. Similar arguments apply to the sample at $\varphi = 0.583$ in [3].

but still be fully compatible with MCT. To our knowl-

edge, evidence supporting this scenario is lacking.

To conclude, our data show no discrepancy with earlier work, but explore a broader dynamical range, including an activated regime that has not been accessed before.

G. Brambilla, D. El Masri, M. Pierno, L. Berthier, and L. Cipelletti

LCVN UMR 5587, Université Montpellier 2 and CNRS, 34095 Montpellier, France

G. Petekidis

IESL-FORTH and Department of Material Science and Technology, University of Crete, 71110 Heraklion, Greece A. Schofield

School of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, UK

- [1] W. van Megen and S. R. Williams, preceding comment.
- [2] G. Brambilla et al., Phys. Rev. Lett. 102, 085703 (2009).
- [3] W. van Megen et al., Phys. Rev. E 58, 6073 (1998).
- [4] D. El Masri et al., J. Stat. Mech. P07015 (2009).
- [5] J. Bosse and J. S. Thakur, Phys. Rev. Lett. **59**, 998 (1987).
 [6] W. van Megen and S. M. Underwood, Phys. Rev. E **49**, 4206 (1994).
- [7] V. A. Martinez et al., Phys. Rev. Lett. 101, 135702 (2008).