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Abstract

Contrary to widespread perception, there is ever since 1994 a uni-
fied, general type independent theory for the existence of solutions
for very large classes of nonlinear systems of PDEs. This solution
method is based on the Dedekind order completion of suitable spaces
of piece-wise smooth functions on the Euclidean domains of definition
of the respective PDEs. The method can also deal with associated
initial and/or boundary value problems. The solutions obtained can
be assimilated with usual measurable functions or even with Hausdorff
continuous functions on the respective Euclidean domains.

It is important to note that the use of the order completion method
does not require any monotonicity condition on the nonlinear systems
of PDEs involved.

One of the major advantages of the order completion method is that
it eliminates the algebra based dichotomy ”linear versus nonlinear”
PDEs, treating both cases with equal ease. Furthermore, the order
completion method does not introduce the dichotomy ”monotonous
versus non-monotonous” PDEs.

None of the known functional analytic methods can exhibit such a
performance, since in addition to topology, such methods are signifi-
cantly based on algebra.



1. A Sample of customary perception

The 2004 edition of the Springer Universitext book ” Lectures on PDEs”
by V I Arnold, [4], starts on page 1 with the statement :

"In contrast to ordinary differential equations, there is no
unified theory of partial differential equations. Some equa-
tions have their own theories, while others have no theory
at all. The reason for this complexity is a more compli-
cated geometry ..."” (italics added)

The 1998 edition of the book ”Partial Differential Equations” by L C
Evans, [8], starts his Examples on page 3 with the statement :

"There is no general theory known concerning the solv-
ability of all partial differential equations. Such a theory
is extremely unlikely to exist, given the rich variety of phys-
ical, geometric, and probabilistic phenomena which can be
modeled by PDE. Instead, research focuses on various par-
ticular partial differential equations ...” (italics added)

And yet, in 1994, [18], MR 95k:35002, precisely such a general theory
of existence of solutions for very large classes of nonlinear PDEs was
published. For latest developments, see [1-3,37,44-52,58-60,66].

In the sequel, we present the main ideas and motivations which un-
derlie the order completion method. The detailed mathematical de-
velopments can be found in the references mentioned above.

It is on occasion worth recalling that we all do mathematics based on
certain underlying ideas and motivations. What happens is that we
may hold to them for longer, and do so long enough, so that many of
them may become rather automatic. And once that happens, we do
no longer - and in fact, can no longer - review them, and do so at least
now and then. This is, then, how perceptions are established, and we
end up being subjected to them.

Here an attempt is made to go beyond such perceptions in the realms
of solving PDEs. And since perceptions are inevitably formulated in a



"meta-language” - in this case "meta” with respect to the usual formal
mathematical texts - much of what follows has to go along with that.

The fact is that, recently, two rather different and general, that is,
type independent solution methods have been developed for very large
classes of linear and nonlinear systems of PDEs with possibly associ-
ated initial and/or boundary conditions. One of them, [16], is using
standard functional analytic methods, while the other, [18,1-3,37,44-
52,58-60,66], is based on a new idea in the realms of PDEs, namely,
the Dedekind order completion of spaces of smooth functions.

Contrary to widespread perceptions, it thus proves to be possible to
implement no less than two powerful solution methods for a very large
variety of linear and nonlinear PDEs. These two methods are type in-
dependent in the sense that they are no longer dependent on specifics
of one or another of the countless particular types of PDEs.

In fact, the essence of both methods is that, each in its own way is able
to solve far more general equations than PDEs. And it is precisely in
this lifting to a higher level of generality, one beyond PDEs, that the
two methods attain their respective type independent power.

These two solution methods have rather complementary strong, re-
spectively, weak points. The one in [16] does in fact deliver not only
the existence of solutions, but also efficient numerical methods for
approximating them. On the other hand, the method in [18,1-3,37,44-
52,58-60,66] can deal with considerably more general equations, and
among them linear and nonlinear systems of PDEs with possibly as-
sociated initial and/or boundary conditions.

In view of the above, it is clear that in proving the existence of solutions
with the mentioned reqularity properties, the order completion method
can dispense to a good extent with all sorts of spaces of generalized
functions, distributions, hyperfunctions, and so on, and instead, focus
on various classes of usual measurable functions or Hausdorff contin-
uous ones defined on usual Euclidean domains.

Certainly, the use of generalized solutions need not be avoided com-
pletely. However, solution methods based on them are clearly far less



powerful, especially with respect to their existence, than the order
completion method. As for the regularity of solutions obtained by the
order completion method, it gives from the beginning solutions which
are more regular than by far most generalized functions, since they
can be assimilated with usual measurable functions or Hausdorff con-
tinuous ones on FEuclidean domains.

2. The class of nonlinear systems of PDEs solved

In [18] it was show how to obtain solutions U for all systems of non-
linear PDEs with associated inital and/or boundary value problems,
where the equations are of the form

(2.1) F(z,U(x), ...,DPU(x), ...) = f(x), € QCR", |p| <m

Here F' is any function jointly continuous in all its arguments, the
right hand term f can belong to a class of discontinuous functions,
the order m € N is given arbitrary, while the domain 2 can be any
bounded or unbounded open set in R".

In fact, even the functions F' defining the nonlinear partial differential
operators in the left hand terms of (2.1) can have certain types of
discontinuities.

Here one can note the unprecedented generality, type independence,
or universality of the corresponding result both on the existence and
the regularity of solutions given in [18] for systems of nonlinear PDEs
of the form (2.1).

Indeed, regarding the existence of solution, the generality of the PDEs
in (2.1) is self-evident.

As for the regularity of the solutions obtained, one can note the fol-
lowing.

The solutions U obtained in [18] can be assimilated with usual mea-
surable functions on the respective domains €2.

Not much later, in [2,3,58-60], it was shown that such solutions are in
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fact always considerably more regular, being in fact Hausdorff contin-
uous functions on the whole of the domains €2 of the respective PDEs.

Recently, in [44-51] this general, type independent, universal, or baln-
ket regularity result was further improved as it was shown that the
solutions U can be associated with usual smooth functions on the do-
mains ) of the PDEs concerned, provided that similar smoothness
conditions are assumed on the functions F' and f in the PDEs (2.1).

Here it is important to note that Hausdorff continuous functions are
not much unlike usual real valued continuous functions, [1-3]. Indeed,
on suitable dense subsets of their domains of definition, Hausdorff
continuous functions have as values real numbers, and are completely
determined by such values. On the rest of their domains of definition,
Hausdorff continuous functions can have values given by bounded or
unbounded closed intervals of real numbers. Also, every real valued
function which is continuous in the usual sense will be Hausdorff con-
tinuous as well.

One of the major advantages of the order completion method is that
it eliminates the dichotomy between linear, and on the other hand,
nonlinear PDEs, treating both cases with equal ease. Indeed, the di-
chotomy between linear and nonlinear follows from the vector space
structure of the spaces of functions on which the partial differential op-
erators act. In this way, this dichotomy is of an algebraic nature. On
the other hand, partial orders are more basic mathematical structures,
and as such, they do not, and simply cannot, differentiate between lin-
ear and nonlinear.

Clearly, functional analytic methods, which rely not only on topolog-
ical but also algebraic structures cannot exhibit such a performance,
since are bound to discriminate between linear and nonlinear, see de-
tails in section 9.

3. A short history of difficulties in solving linear and
nonlinear PDEs

The first general, that is, type independent existence result for solu-



tions of rather arbitrary nonlinear systems of PDEs was obtained in
1874, when upon the suggestion of K Weierstrass, Sophia Kovalevskaia
gave a rigorous proof for an earlier theorem of Cauchy, published in
the 1821, in his Course d’Analyse. This result although completely
general as far as the type independent nonlinearities involved ar con-
cerned, assumes however, that in the systems of PDEs of the form (2.1)
both F' and f are analytic. In addition one also assumes initial value
problems on non-characteristic analytic hypersurfaces, while boundary
value problems are not treated by the respective Cauchy-Kovalevskaia
theorem.

However, in such a highly particular situation concerning the regu-
larity of the PDEs and the data involved, the solutions obtained are
proved to exist always, and also to be unique and analytic.

The problem with that classical existence, uniqueness and reqularity
result is that, typically for nonlinear PDEs, such analytic solutions
do not - and in general, cannot - exist globally on the whole of the
domain of the respective PDEs, but only in certain neghbourhoods of
the analytic hypersurfaces on which the initial values are given. This
is, therefore, not due to the specific method of proof of Kovalevskaia.

Here however it is important to note that the failure of the existence
of global analytic solutions is but a part of a far more general phe-
nomenon, since even linear, let alone nonlinear PDEs may fail to have
smooth, or even merely classical solutions, even in the case of solutions
of major applicative interest. After all, even linear constant coefficient
PDEs have nonclassical solutions of particular interest, such as those
given by Green functions. In the nonlinear case, difficulties start with
the simple ODE given by U, = U? which does not have global classi-
cal solutions either, except for the trivial solution U = 0. As for the
nonlinear shock wave equation U;+UU, = 0, its nonclassical solutions
are precisely those which model shocks, thus have a considerable ap-
plicative interest.

What may be interesting, and also worthwhile to note with respect to
the mentioned Cauchy-Kovalevskaia theorem, are the following three
facts :

e The rigorous proof by Kovalevskaia of that theorem on solutions
of general nonlinear systems of PDEs predates by about two
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decades the corresponding general theorem on solving systems
of nonlinear ODEs defined by continuous expressions. Indeed,
the existence of solutions for such ODEs was given by Charles
Emile Picard in his 1894 Comptes Rendu Acad. Sci. Paris paper,
where the associated Cauchy problem was solved by the method
of successive approximations.

e The only so called "hard” mathematics used in the proof of the
Cauchy-Kovalevskaia theorem is the formula for the summation
of a convergent geometric progression, the rest of the proof be-
ing but a succession of rather elementary, even if quite involved,
estimates of terms in power series. In this way, the proof of the
Cauchy-Kovalevskaia theorem does not involve methods of func-
tional analysis, and certainly it could not involve such methods
at the time in the 1880s when it was given. On the other hand,
the proof of the corresponding general existence result for solu-
tions of nonlinear systems of ODEs does involve a fixed point
argument in suitable spaces of functions which are complete in
their respective topologies.

e The result in the Cauchy-Kovalevskaia theorem - when consid-
ered on its own original terms of type independent nonlinear
generality - could not so far be improved in those very terms,
regardless of all the advances in functional analysis of the last
more than a century. The only such improvement of the classical
result in the Cauchy-Kovalevskaia theorem was obtained in 1985,
without however using functional analytic methods, see section
4. Indeed, when it comes to type independent nonlinear general-
ity, the functional analytic methods used in solving PDEs could
bring about improvements - and often quite dramatic ones - only
in a variety of far more particular cases than the type indepen-
dent nonlinear generality dealt with in the Cauchy-Kovalevskaia
theorem. In this way, in spite of more than one century of func-
tional analysis, the classical Cauchy-Kovalevskaia theorem still
remains a mazximal result, except for its extension mentioned in
section 4, which does not use functional analysis.

In the early 1950s, soon after the introduction of the linear theory
of distributions by L Schwartz, it was proved independently by Mal-
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grange and Ehrepreis that in case of a single PDE of the form (2.1), if
the left hand term F is linear and with constant coefficients, while f is
the Dirac delta distribution, then (2.1) always has a global, so called,
fundamental solution given by a suitable Schwartz distribution.

This rather general linear result appeared to suggest that a similar
result could be obtained in the more general case when F' in (2.1)
is linear and with smooth coefficients. L Schwartz himself is known
to have conjectured such a generalization, and furthermore, as it ap-
pears, he suggested it at the time to Francois Treves as a subject for
his doctoral thesis.

However, in 1957, Hans Lewy showed that the rather simple linear
first order PDE in three space variables and with first degree polyno-
mial coefficients

(3.1)  (Dy+iDy —2(z+y)D)U(z,y,2) = f(2,y,2),
(,9,2) € R®

does not have any Schwartz distribution solutions in any neighbour-
hood of any point in R3, for a large class of smooth right terms f. In
1967, Shapiro gave a similar example of a smooth linear PDE which
does not have solutions in Sato’s hyperfunctions.

In the early 1960s, L. Hormander gave certain necessary conditions for
the solvability in distributions of arbitrary linear smooth coefficient
PDEs, see [27, pp. 37-39], [28, pp. 212-214].

Regarding the perception that nontrivial general, type independent re-
sults are just about impossible to obtain related to PDEs, it is worth
noting that the Malgrange-Ehrenpreis result on fundamental solutions
is precisely such a nontrivial general and type independent existence
result within the range of all linear and constant coefficient PDEs.
The necessary condition for the existence of distributions solutions
given by Hormander is also a nontrivial general and type independent
result, this time within the much larger class of all linear smooth co-
efficient PDEs.



In this regards, of course, the classical Cauchy-Kovalevskaia theorem
is the most impressive general and type independent nonlinear result
regarding existence, regularity and uniqueness of solutions, although
it is obtained without any kind of functional analysis.

4. Nonlinear algebraic theory of generalized functions

This nonlinear theory - see 46F30 in the AMS Subject Classification
2010 - was started in the 1960s, [21-37,55-57,61,64,65], and it is based
on the construction of all possible differential algebras of generalized
functions which contain the Schwartz distributions. That theory has
managed to come quite near to solving the Lewy impossibility. Yet
it did not solve it completely, although it obtained generalized func-
tion solutions for large classes of linear and nonlinear PDEs. As an
example, back in 1985, it obtained the first global existence result for
the general nonlinear PDEs in the classical Cauchy-Kovalevskaia the-
orem. And the respective global solutions are analytic on the whole of
the domain of the PDEs, except for certain closed and nowhere dense
subsets, which can be chosen to have zero Lebesgue measure, see [27,
pp. 259-266], [28, pp. 101-122], [29,36,37].

5. The order completion method

Surprisingly, the order completion method in solving general nonlin-
ear systems of PDEs of the form (2.1) is based on certain very simple,
even if less than usual, approximation properties, see [18, pp. 12-20].
To give here an idea about the ways the order completion method
works, we mention some of these approximations here in the case of
one single nonlinear PDE of the form (2.1).

Let us denote by T'(z, D) the left term in (2.1), then we have the basic
approximation property :

Lemma 5.1



V 20€Q, ¢>0
4 6 >0, P polynomial in z € R"”

|z —xol]| <6 = f(x)—e < T(x,D)P(z) < f(x)

Consequently, we obtain :

Proposition 5.1

vV e>0
3 T'. € Q closed, nowhere dense in ), U, € C>®(Q)

f—e < T(x,D)P < f on Q\T.

Furthermore, one can also assume that the Lebesgue measure of I', is
zero, namely

mes (['.) = 0.

Let us now note that, see [1-3]

C%(Q) Cc H(Q)
and the set H(Q2) of Hausdorff continuous functions on € is Dedekind
order complete.
Consequently, we obtain the following basic result on the existence
and regularity of solutions for nonlinear PDEs of the form (2.1) :
Theorem 5.1

T(z,D)U(z) = f(x), v€Q

has solutions U which can be assimilated with Hausdorff continuous
functions, for a class of discontinuous functions f on €2, class which
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contains the continuous functions on €.
O

We give here some more details related to Theorem 5.1 above. In view
of Proposition 5.1, we shall be interested in spaces of piecewise smooth
functions given by

4 I' € Q closed, nowhere dense

(5.1) CL,(Q) = u «)u:Q\T =R

xx) u € CHQ\T)

where [ € N. It is easy to see that we have the inclusions
(5.2) T(z,D)Cm(Q) C C°% () C H(Q)

In this way, we obtain the following more precise formulation of the
result in Theorem 5.1 on the existence and regularity of solutions :

Theorem 5.1%
(5.3)  T(z,D)* (Cm(Q)F = (Co(Q)* c H(Q)
OJ

Here (C7(Q)# and (C°,(Q))# are Dedekind order completions of
C™(Q) and C°,(Q), respectively, when these latter two spaces are
considered with suitable partial orders. The respective partial order
on C(Q) may depend on the nonlinear partial differential opera-
tor T(x, D) in (5.2), while the partial order on C?,(€2) is the natural
point-wise one at the points where two functions compared are both
continuous.

The operator T'(z, D)# is a natural extension of the nonlinear partial
differential operator T'(x, D) in (5.2) to the mentioned Dedekind order
completions.
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The meaning of (5.3) is twofold :

e for every right hand term f € (C%,(Q))# in (2.1), there ex-
ists a solution U € (C™())¥, and the set (C°,(Q))# contains
many discontinuous functions beyond those piecewise discontin-
uous ones, see [18],

e the solutions U can be assimilated with Hausdorfl continuous
functions on €, see [1-3].

6. Comparison with methods in Functional Analysis

The order completion method is a powerful alternative to the usual
functional analytic ones, when solving linear or nonlinear PDEs. De-
tails in this regard are presented in [18, chap. 12]. Certainly, the
order completion method is not meant to replace the functional an-
alytic ones, the latter being useful in obtaining stronger results in a
large variety of particular PDEs.

Here, we shall only mention the following. Functional analytic meth-
ods in solving PDEs are based on the topological completion of uniform
spaces, such a normed or locally convex vector spaces of suitably cho-
sen functions. In this respect, the comparative advantages of the order
completion method can shortly be formulated as follows :

e unlike the functional analytic methods, which are geared more
naturally to the solution of linear PDEs, the order completion
method performs equally well in the case of both linear and
nonlinear PDEs, see section 9 below,

e unlike the functional analytic methods, which face considerable
difficulties when dealing with initial, and especially, boundary
value problems, the order completion method performs without
significant additional troubles in such situations,

e the order completion method gives solutions which can be as-
similated with usual measurable, or even Hausdorff continuous
functions, and thus the solutions obtained are not merely distri-
butions, generalized functions or hyperfunctions.
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As an illustration of the comparative situation regarding these two
methods let us consider on a bounded Fuclidean domain 2, which has
a smooth boundary 0¢2, the following well known linear boundary
value problem

AU(x) = f(z), z€Q
(6.1)
U =0 on 012

As is well known, for every given f € C(f), this problem has a
unique solution U in the space

62) X = { veC™(Q) | v =0 on 90 }
It follows that the mapping

(6.3) X3v — [|Av][r2q)

defines a norm on the vector space X. Now let

64) Y = C=(S)

be endowed with the topology induced by L?*(2). Then in view of
(6.1) - (6.4), it follows that the mapping

65 A:X — Y

is a uniform continuous linear bijection. Therefore, it can be extended
in a unique manner to an isomorphism of Banach spaces

66) A:X — Y = L%Q)

In this way one has the classical existence and uniqueness result

13



vV fel*0)
67 31 UeX

AU = f

The power and simplicity - based on linearity and topological comple-
tion of uniform spaces - of the above classical existence and unique-
ness result is obvious. This power is illustrated by the fact that the
set Y = L?*(Q) in which the right hand terms f in (6.1) can now be
chosen is much larger than the original Y = C*(£2). Furthermore,
the existence and uniqueness result in (6.7) does not need the a priori
knowledge of the structure of the elements U € X , that is, of the
respective generalized solutions. This structure which gives the regu-
larity properties of such solutions can be obtained by a further detailed
study of the respective differential operators defining the PDEs under
consideration, in this case, the Laplacian A. And in the above specific
instance we obtain

(6.8) X = H2(Q)N HYQ)

As seen above, typically for the functional analytic methods, the gen-
eralized solutions are obtained in topological completions of vector
spaces of usual functions. And such completions, like for instance the
various Sobolev spaces, are defined by certain linear partial differential
operators which may happen to depend on the PDEs under consider-
ation.

In the above example, for instance, the topology on the space X ob-
viously depends on the specific PDE in (6.1). Thus the topological
completion X in which the generalized solutions U are found accord-
ing to (6.7), does again depend on the respective PDE.

On the other hand, with the method of order completion we are no
longer looking for generalized solutions, and instead, a type indepen-
dent, universal or blanket regularity property is attained, since the
solutions obtained can always be assimilated with usual measurable
functions, or even with Hausdorff continuous functions. Similar to the
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functional analytic methods, however, the order completion method
obtains the solutions in spaces which may again be related to the spe-
cific nonlinear partial differential operators T'(z, D) in the equations
of form (2.1).

7. Solving equations by extending their domains
of definition : the three classical methods

The ancient case of solving an equation, which shocked Pythagoras
two and a half millennia ago, is given by

(7.1) 2* =2

This is of the general form
(7.2) E(z) = ¢

where we are given a mapping
(73) E:X—>Y

together with a specific ¢ € Y, and then we want to find a solution
x € X so that (7.2) holds.

What shocked Pythagoras was that (7.1) could not be solved if one re-
stricted oneself to X = Q in (7.3). And it took no less than about two

millennia or more, till we could rigorously extend X = Q to X = R,
and thus obtain a well defined solution z = ++/2 of (7.1).

In this way, ever since, we have the following model lesson in solving
equations :

e if one cannot solve (7.2) within the framework of (7.3), then one
can try to solve it in the extended framework

(74) E:X—Y
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where X C X , Y C 37, and E is such that we have the commutative
diagram

E
X >

Y
C\
- Y

e how to choose or construct X , and then how to interpret the new,
or so called generalized solutions x € X'\ X, which two questions
altogether constitute but the celebrated regularity problem,

(7.5)

N

X

E

Here however, we face the following problems :

e how to do the same for }7, which nevertheless need not always
be done, since we can often stay with Y in (7.4) and only have
to extend X to X,

e how to define the extension £, which often, and typically in the
nonlinear case, is not a trivial problem.

Fur further detail, we can now recall that with the equation (7.1) we
had to

(7.6) go from Q to Q=R
On the other hand, with the equation
(7.7) 2*41 =0

we had to

(7.8) go from R to C
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However, there is a vast difference between (7.6) and (7.8), respec-
tively, between solving (7.1) and (7.7). Indeed, we solve (7.7) through
the extension (7.8) which is a mere algebraic adjoining of an element,
in this case, of i = /—1 to R.

On the other hand, when solving (7.1), the extension (7.6) can be seen
as at least three different, even if in this particular case equivalent,
constructions, namely, through :

e topology
e algebra

e order.
And to be more precise, we have :

e The Cauchy-Bolzano method is ring theoretic plus topological,
and it is applied to Q, as it obtains R according to the quotient
construction in algebras

(79) R = A/T

where A C QV is the algebra of Cauchy sequences of rational
numbers, while 7 is its ideal of sequences convergent to zero.

e The method of Dedekind is based on the order completion of Q.

However, the Cauchy-Bolzano method can be generalized in two di-
rections :

e In the topological generalization the algebraic part can be omit-
ted, and instead, one only uses the topological completion of uni-
form spaces, here of the usual metric space on Q.

e In the algebraic generalization it is possible to extract the ab-
stract essence of (7.9), and simply start with a suitable algebra
A, and an ideal Z in it. Such a construction can indeed be rather
abstract, since it need not involve any topology on Q or R, as it
happens for instance, when constructing the nonstandard reals
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“R, namely
‘R = A/

Here one takes A = RY, that is, the algebra of all sequences
of real numbers, while the ideal 7 is defined by any given free
ultrafilter on N.

A rather general version of such an abstract approach, which
however makes a certain limited use of topology, has been intro-
duced and extensively used in the nonlinear algebraic theory of
generalized functions under the AMS classification index 46F 30,
as mentioned in section 4 above.

What is done in the method in 46F30 is to generalize the Cauchy-
Bolzano method by retaining its ring theoretic algebraic aspect, while
the topological one is weakened to the certain extent of being confined
to the topologies of Euclidean spaces only.

What is done in the method introduced in [18], and further developed
in [1-3,44-51,58-60], is the extension of the classical Dedekind order
completion method, used in the construction of R from Q, to suitable
spaces of piece-wise smooth functions.

An important fact to note is that both the topological and order com-
pletion methods give us the property that

e Qis densein R

in the respective sense of topology or order. In this way, the elements
of the extension of Q, that is, the elements of R, are in the corre-
sponding sense arbitrarily near to the elements of the extended space
Q. Thus the elements in the extension can arbitrarily be approzimated
by elements of the extended space, be it in the sense of topology, or
respectively, order.

Furthermore, both through the methods of topology and order, one
obtains R in a unique manner, up to a respective isomorphism.

In this way both the topological and order completion methods have
the double advantage that
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e the elements of the extension are not too strange conceptually,
and furthermore

e the elements of the extension are near to elements of the ex-
tended space, within arbitrarily small error.

This density property remains also in the general Dedekind order com-
pletion method used in [18,1-3,44-51,58-60]. Indeed, in (5.3) we have
that C™(Q) and C9,(Q) are order dense in (C,(Q))% and (C9,(Q))#,
respectively.

Connected with the general extension method in (7.3) - (7.5) one can
note that, on occasion, the following convenient situation may occur :
the extended mapping

(7100 E:X — Y

may turn out to be an isomorphism of the respective algebraic, topo-
logical or order structures used on X and Y, when constructing the
corresponding extensions X and Y. In such a case, and when one
has a better understanding of the structure of the elements in Y, one
can obtain in addition a regularity type result concerning the so called
generalized solutions € X \ X of the equations (7.2), since such
generalized solutions can be assimilated - through the isomorphism E
- with the corresponding elements E(x) € Y.

A classical example of such an isomorphism (7.10) happens, for in-
stance, in (6.5), (6.6), when the boundary value problem (6.1) is solved
by using well known functional analytic methods.

In that specific instance, however, the suitable further use of func-
tional analytic methods can lead to the additional regularity property
of generalized solutions in X, as given in (6.8). Nevertheless, the Ba-
nach space isomorphism (6.6) - which in that case is but the particular
form taken by (7.10) - is in itself already a first regularity result about
the structure of the elements of X.

The above convenient situation of an isomorphism of type (7.10) can
appear as well when using the order completion method in solving
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nonlinear system of PDEs. This is the reason why the solutions ob-
tained in [18] could be assimilated with usual measurable functions,
while in [1-3], they can be assimilated with the much more regular
Hausdorff continuous functions.

More specifically, in (5.3), the extended mappings T'(z, D)# prove to
be order isomorphisms between the spaces C(Q)# and C?,(Q)#.
This is then, in essence, the reason why the solutions of nonlinear
systems of PDEs of the form (2.1) could earlier be assimilated with
usual measurable functions, and can now be assimilated with Haus-
dorff continuous functions.

8. The need for extensions in the case of solving PDEs.

Let us now associate with each nonlinear PDE in (2.1) the correspond-
ing nonlinear partial differential operator defined by the left hand side,
namely

8.1) T(xz,D)U(x) = F(z,U(z), ...,DPU(x), ...), z€

Two facts about the nonlinear PDEs in (2.1) and the corresponding
nonlinear partial differential operators T'(z, D) in (8.1) are important
and immediate

e The operators T'(xz, D) can naturally be seen as acting in the
classical context, namely

82) T(x,D) : C™(Q)>U +— T(x,D)U €C’Q)
while, unfortunately on the other hand

e The mappings in this natural classical context (8.2) are typi-
cally not surjective. In other words, linear or nonlinear PDEs in
(2.1) typically cannot be expected to have classical solutions U €
C™(Q), for arbitrary continuous right hand terms f € C°(Q).
Furthermore, it can often happen that nonclassical solutions
have a major applicative interest, thus they have to be sought
out beyond the classical framework in (8.2).
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This is, therefore, how we are led to the necessity to consider general-
ized solutions U for PDEs of type (2.1), that is, solutions U ¢ C™(£2),
which therefore are no longer classical. This means that the natural
classical mappings (8.2) must in certain suitable ways be extended to

commutative diagrams
()
Yy

which are expected to have certain kind of surjectivity type properties,
such as for instance

cm () e D - C
c

(8.3)

N

X >
T

(8.4) CUQ) € T(X)
We conclude with a few comments :

e Traditionally, ever since Hilbert and Sobolev, starting before
WW 11, functional analysis has been used in solving PDEs,
and suitable uniform topologies are defined on the domains and
ranges of the corresponding partial differential operators T'(z, D).
These domains and ranges are given by various vector spaces
of generalized functions, and in particular, distributions. Thus
these operators obtain certain continuity properties. Then the
extensions X and Y in (8.3) are defined as the completions in
these uniform topologies of the respective domains and ranges
of T'(xz, D). Finally, the continuity properties of T'(z, D) may al-
low the construction of suitable extensions 7 which would give
the commutative diagrams (8.3), and also satisfy some version
of the surjectivity property (8.4), see for details [18, chap. 12,
pp. 237-262].

e Since the 1960s, the algebraic nonlinear method in 46F30 can

21



alternatively be used especially in the case of nonlinear partial
differential operators T'(x, D). In this respect, large, and in fact,
infinitely many classes of differential algebras of generalized func-
tions containing the Schwartz distributions were constructed as
the sought after extensions X and ) in (8.3).

The most general classes of such algebras were introduced and
used in [21-37], starting with the 1960s. Later, in the 1980s, a
particular class of such algebras was introduced in [6], and it has
known a certain popularity.

However, due to the specific polynomially limiting growth condi-
tions required in the construction of Colombeau algebras, their
use in the study, for instance, of Lie group symmetries of PDEs,
or singularities in General Relativity is limited, since in both
cases one may have to deal with transformation whose growth
can be arbitrary. In this way, such transformations cannot be
accommodated within the Colombeau algebras of generalized
functions. In fact, in the Colombeau algebras, as well as in other
ones which fail to be flabby sheaves, one cannot even formulate -
let alone solve - the Global Cauchy-Kovalevskaia Theorem. Sim-
ilarly, one cannot define globally arbitrary Lie group actions.
On the other hand, arbitrary smooth transformations and op-
erations can easily be dealt with in some of the other classes
of algebras of generalized functions introduced earlier in [21-37].
Also as mentioned, the Global Cauchy-Kovalevskaia Theorem
can be formulated and solved, and arbitrary Lie group actions
can be defined globally in such algebras. In fact, based on such
a definition of arbitrary global Lie group actions on generalized
functions, in [32] a first time complete solution of Hilbert’s Fifth
Problem was presented.

The severe limitations on dealing with singularities which various
vector spaces of distributions or algebras of generalized functions
suffer from is closely related to their failure to be flabby sheaves.
Among such algebras are the Colombeau algebras which fail to
be flabby sheaves due to the mentioned growth conditions which
paly an essential role in their definition.

Details related to the ability of various vector spaces of distri-
butions and algebras of generalized functions to deal with large
classes of singularities are presented in [37]. And it turns out
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that those vector spaces of distributions and algebras of general-
ized functions which fail to be flabby sheaves also fail in dealing
with large enough classes of singularities.

e The order completion method, introduced and developed in 1994
in [18], and further improved in [1-3,37,44-52,58-60], constructs
the extensions X and ) in (8.3) as the Dedekind order comple-
tion of spaces naturally associated with the partial differential
operators T'(x, D), and the spaces C™(2) and C°(€2) in (8.2).

Related to the advantages of the order completion method in solving
nonlinear PDEs let us mention here in short the following.

Neither the functional analytic, nor the algebraic methods can so far
come anywhere near to solve nonlinear PDEs of the generality of those
n (2.1), let alone systems of such nonlinear PDEs together with asso-
ciated initial and/or boundary value problems.

In fact, the functional analytic methods are still subjected to the cele-
brated 1957 Hans Lewy impossibility which they are nowhere near to
manage to overcome, even in the general smooth coefficient linear case.

The extent of the inevitability of this failure within the present func-
tional analytic methods is clearly illustrated by the necessary condition
for the solvability in distributions of linear smooth coefficient PDEs
given by Hormander in the 1960s, a condition which is also sufficient
in the case of first order such PDEs, as shown not much later by Niren-
berg & Treves, see [27, pp. 37-47] for details.

As far as the algebraic method is concerned, it has among others come
quite near to the solution of the Lewy impossibility, see [6], and for a
short respective account [27].

Further powerful results in solving various classes of nonlinear PDEs,
not treated so far by the functional analytic method, can be found in
[25-30], [6], or [17].

Among such results is the global solution of arbitrary analytic nonlin-
ear systems of PDEs, when considered with analytic non-characteristic
Cauchy initial values, mentioned in section 4 above. The respective
generalized solutions obtained are analytic functions, except for closed
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and nowhere dense subsets I' of the domains 2 of definition of the
given PDEs. In addition, these subsets I' can also be chosen to have
zero Lebesgue measure.

On the other hand, the order completion method introduced and de-
veloped in [18], and further improved in [1-3,37,44-52,58-60] as far as
the regularity of solutions is concerned, can not only deliver global
solutions for systems of nonlinear PDEs of the generality of those in
(2.1), but it can also obtain a general, type independent, universal or
blanket regularity result for such solution, namely, it can prove that
the solutions obtained can be assimilated with usual measurable func-
tions, or even with Hausdorff continuous functions, and in fact, with
smooth functions, under appropriate smoothness conditions on the re-
spective nonlinear PDEs.

Clearly, as one of the consequences of solving nonlinear systems of
PDEs of the generality of those in (2.1), the order completion method
in [18,1-3,37,44-52,58-60] is the only one so far which fully manages to
overcome the Lewy impossibility. Furthermore, it does so with a large
nonlinear margin.

9. Order Completion Abolishes the Dichotomy ”Linear
versus Nonlinear”

The dichotomy linear versus nonlinear relating to equations or opera-
tors is in its essence an issue of algebra, and more specifically, of vector
space structures. In this way, it is present both in the functional an-
alytic and algebraic methods for solving PDEs. And needless to say,
dealing with the nonlinear case proves to be incomparably more diffi-
cult than it is with the linear one. Consequently, and unfortunately,
the presence of this dichotomy is one of the major disadvantages of
both the functional analytic and algebraic methods in solving PDEs,
even if by now it is taken so much for granted that no attempt is made
to overcome it, let alone abolish what appears to be its inevitable pres-
ence.

On the other hand, order structures are of a more basic type than the
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algebraic ones.

Consequently, if instead of algebraic structures we consider order struc-
tures on the spaces of smooth functions on which the partial differen-
tial operators act naturally when considered in the classical context,
see for instance (8.2), then these order structures - being more ba-
sic than algebra - can no longer distinguish between the linearity or
nonlinearity of such partial differential operators. In this way, the
traditional dichotomy between the linear and nonlinear is simply set
aside, and then the only problem left is whether indeed one can solve
PDEs in the completion of such order structures.

Fortunately, as shown in [18,1-3,37,44-52,58-60], such a solution is pos-
sible and useful.

Here of course, one may think that it may help if the respective par-
tial differential operators are monotonous. And then one may be con-
cerned that all we managed to do was simply to get rid of the di-
chotomy between linear and nonlinear, so that instead, now we have
to face the dichotomy monotonous versus arbitrary partial differential
operators, with the latter being quite likely again far more difficult to
deal with, than the former.

Such a particular approach in which the dichotomy monotonous versus
non-monotonous prevails has recently been pursued in [5], for instance,
with the consequent and not surprising considerable limitations on the
types of PDEs to which it can be applied.

This however is clearly not the way with the method in [18,1-3,37,44-
52,58-60]. Indeed, although in this method order structures and order
completions are essentially used in solving PDEs, one nevertheless
need not require a priori any sort of monotonicity property related to
the equations solved. Certainly, the generality of nonlinear PDEs in
(2.1), or of systems of such nonlinear PDEs; clearly illustrates the fact
that the respective equations are not supposed to satisfy any a priori
monotonicity conditions whatsoever.

What happens is very simple in fact, and is similar with the way
the operators T'(x, D) and 7 in (8.3) acquire continuity type proper-
ties when the functional analytic method is used in the construction
of such commutative diagrams. Indeed, with the functional analytic
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method, when one starts, say, with the natural mappings (8.2), the
uniform topologies one considers on the classical domains and ranges
of the operators in order to obtain commutative diagrams (8.3) are
not arbitrary, but typically are related to the respective operators, see
section 6 above, or [18, chap. 12].

The same happens when order completion is used in [18,1-3,37,44-
52,58-60] for the construction of commutative diagrams (8.3). More
precisely, the order structures on the spaces of smooth functions on
which the partial differential operators naturally act, see for instance
(8.2), will typically be defined dependent to a certain extent on these
operators. In this way, the respective operators, no matter how ar-
bitrary within the class of those in (2.1), will nevertheless become
monotonous, thus so much easier to deal with.

Such a procedure obviously cannot be imitated within algebra, since
a nonlinear operator cannot in general define a vector space structure
in which it would become linear.

Furthermore, such a procedure obviously goes far beyond the approach
in [5], for instance, where one starts with given natural order relations
on both the domains and ranges of ODEs or PDEs, and then severely
restricts oneself only to those rather small classes of equations whose
associated operators, or rather, inverse operators, are monotonous in
the a priori given orders.

10. The Hidden Power of Methods Based on Partial Orders

As it happens, there is a rather widespread perception in mathematics
that order structures are too simple, and thus powerless, especially in
analysis, therefore, they can deliver less than algebra, which on its
turn, can deliver less than topology.

Accordingly, since the emergence of functional analytic methods in
the solution of PDEs at the beginning of the 20th century, with the
respective wealth of topologies on a variety of spaces of functions, the
perception prevails that there simply cannot be any other more pow-
erful methods in present day mathematics which could deal with such
equations.
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This perception has obviously further been strengthened by the fact
that - lacking actually a sufficient ability to deal in a type independent
manner with solving linear and nonlinear PDEs - the power of func-
tional analytic methods got fragmented into dealing with a larger and
larger variety more and more particular types of linear and nonlinear
PDEs. And needless to say, such an increasing fragmentation has led
to more and more powerful results, each of a less and less wider ap-
plicability.

Since that process has by now been ongoing ever since the 1930s, it
has entrenched the perception that there is not, and there cannot be
any other way forward ...

In view of such a perception it may therefore appear rather surpris-
ing, if not in fact hardly credible, to see results such as in [1-3,37,44-
52,58-60], and the earlier ones in [18], results obtained through order
structures, and which so far could not be approached anywhere near
by functional analytic methods.

Indeed, this method - based on order completion - does solve systems
of PDEs of the nonlinear generality of those in (2.1), together with
associated initial and/or boundary value problems, and furthermore,
delivers for them global solutions which can be assimilated with usual
measurable, or even Hausdorff continuous functions, and yet more
smooth ones, under corresponding smoothness conditions on the re-
spective PDEs. It is in this way that the order completion method is
not only unprecedented, but it may also look rather strange in view of
the mentioned perception in mathematics related to order structures.

Therefore, one should indeed address the apparent secret of the power
of the order completion method in solving such large classes of sys-
tems of nonlinear PDEs, together with their associated initial and/or
boundary value problems. And one can do so by questioning the men-
tioned perception. This can perhaps best be done by the presentation
of certain classical - even if less well known - examples which illustrate
the power of order structures in yielding what usually are called deep
theorems.

In this regard a rather impressive, yet less well known fact is given by
the 1936 ”Spectral Theorem” of Freudenthal, see [11, chap. 6.
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Let us recall here in short some of its rather deep consequences.

The mentioned ”Spectral Theorem” is a theorem about partially or-
dered structures, and it was proved by Freudenthal exclusively in terms
of such structures. Yet, what is of special relevance is that by suitable
particularizations, one can obtain from it the following three results
which are in fields as diverse as Operator Theory, Measure Theory,
and linear PDEs :

e the celebrated spectral representation theorem for normal oper-
ators in Hilbert spaces,

e the highly nontrivial Radon-Nikodym theorem in measure the-
ory, and

e the Poisson formula for harmonic functions in an open circle.

11. Conclusions

The unprecedented power of the order completion method in solv-
ing very general systems of nonlinear PDEs and the associated initial
and/or boundary value problems, and obtaining solutions given by
usual functions, stems from two facts :

e Partial orders are more basic mathematical structures than al-
gebra or topology. And being more basic than algebra, partial
orders do not distinguish between linear and nonlinear equa-
tions, operators, and so on. Consequently, partial orders treat
the linear and nonlinear cases in the same manner. Functional
analytic method clearly cannot do the same.

e When using order completion for solving PDEs, one need not
assume any monotonicity properties of the respective equations.

In the order completion method, the partial orders on the spaces of
functions which are the domains of definition of the partial differential
operators considered are defined in relation to these operators. This
is similar to the way the topologies on such domains are defined, when
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functional analytic methods are used. Further details in this regard
can be found in [18, chap. 12, 13] and [1-3,37,44-52,58-60].
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