N

N

Massively Parallel Automata in Euclidean Space-Time

Denys Duchier, Jérome Durand-Lose, Maxime Senot

» To cite this version:

Denys Duchier, Jérome Durand-Lose, Maxime Senot. Massively Parallel Automata in Euclidean Space-
Time. TEEE 4th International Conference on Self-Adaptive and Self-Organizing Systems Workshops
(SASOW ’10): Spatial Computing Workshop (SCW ’10), 2010, Budapest, Hungary. pp.104-109,
10.1109/SASOW.2010.23 . hal-00511958

HAL Id: hal-00511958
https://hal.science/hal-00511958
Submitted on 29 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00511958
https://hal.archives-ouvertes.fr

Massively Parallel Automata
in Euclidean Space-Time

Denys Duchier
LIFO, Université d’Orléans

Abstract—In the cellular automata (CA) literature, discrete
lines in discrete space-time diagrams are often idealized as
Euclidean lines in order to design CA or analyze their dy-
namic behavior. In this paper, we present a parallel model of
computation corresponding to this idealization: dimensionless
particles move uniformely at fixed velocities along the real line
and are transformed when they collide. Like CA, this model
is parallel, uniform in space-time and uses local updating. The
main difference is the use of the continuity of space and time,
which we proceed to illustrate with a construction to solve Q-
SAT, the satisfiability problem for quantified boolean formulae,
in bounded space and time, and quadratic collision depth.

Index Terms—Abstract geometrical computation; Signal ma-
chine; Continuous space-time; Cellular automata; Massive par-
allelism; Model of computation.

I. INTRODUCTION

Since the introduction of cellular automata (CA) by J. Von
Neumann in the forties, CA have been used as a model of
computation [Kari, 2005], self-reproduction [Von Neumann,
1966], and of biological and physical phenomenae. CA are
composed of identical and elementary cells. Each cell can
exchange information only with its close neighbors and update
its state according to a local rule of transition. Space and
the time are discrete, and information travels with a bounded
speed. The system’s evolution is parallel and synchronous,
and the local rule is applied uniformly to each cell. Different
points of view are usually considered: we can focus only one
cell, a complete configuration of cells or the whole space-
time diagram. An alternate point of view exists and explains
diagrams by signals, particles and collisions. In this approach,
the cells are just a substrata on which information travels.
Signals become the basic objects and allow to implement
computations in CA [Mazoyer and Terrier, 1999, Mazoyer,
1996].

In this paper, we consider signal machines, an abstract and
geometrical model of computation, first introduced in [Durand-
Lose, 2003], which extends CA into continuous space and time
following the intuition outlined above. In this model, dimen-
sionless particles move uniformly on the real axis. When a set
of particles collide, they are replaced by a new set of particles
according to a chosen collection of collision rules. We consider
the temporal evolution of these systems through their space-
time diagram, in which traces of the particles are materialized
by line segments that we call signals. The space-time diagram
of a signal machine constitutes a geometrical computation.
Like CA, in which signal machines have their origins (see

Jérdme Durand-Lose
LIFO, Université d’Orléans

Maxime Senot
LIFO, Université d’Orléans

Fig. 1), the model of signal machines is massively parallel,
uniform and admits a strong geometrical interpretation. The
spatial aspect of this model is essential since computations
are carried out by bits of information travelling and interacting
when they meet.

| |
| |
| |
| |
| |
| | m —_
| E =R
g 1 L1 :
= | & | &
2 - N -
JEE i 2
= in N | £
[| || =
. | En
| W | EEE
| | | N BN |
Space (Z) Space (R)
Fig. 1. From cellular automata to signal machines.

It is possible to do Turing-computation with signal machines
[Durand-Lose, 2005] and even to do analog computation
by a systematic use of the continuity of space and time
[Durand-Lose, 2008, 2009a,b]. Of course, there are other
geometrical models of computation: colored universe [Jacopini
and Sontacchi, 1990], geometric machines [Huckenbeck, 1989,
1991], piece-wise constant derivative systems [Asarin and
Maler, 1995, Bournez, 1997], optical machines [Naughton and
Woods, 2001], etc...

Most of the work to date in this domain, called abstract
geometrical computation (AGC), has dealt with the simula-
tion of sequential computations even though the model, as
a continuous extension of cellular automata, is inherently
parallel. In the present paper, we propose signal machines
as a theoretical foundation for studying (certain classes of)
massively parallel, spatially distributed algorithms, and the
implications that potentially unbounded parallelism may have
on the nature and structure of complexity classes. Our ap-
proach is based on distributing work across space following a
fractal pattern. We illustrate this proposal with an example
of how the continuity of space and time can be used to
solve Q-SAT, the classical PSPACE problem of satisfiability
of quantified boolean formulae, in bounded space and time.
Since the amount of space and time used for a computation is
no longer particularly meaningful in our model, we offer new
measures of complexity based on the maximal length of chains
and anti-chains in the space-time diagram of a computation

Meta-Signals | Speed

Collision rules

w0 {w,div}— {w, hi,lo} w
div, |h_0> 1 { G’ w } — { back, w } W “ba\ckw
i = e TSN
back 3 { hi,back } — {w} ~<\ o
/7 w
Ay

Fig. 2. Geometrically computing the middle.

regarded as directed graph.

The model of signal machines is introduced in Sect.II.
Section III presents a solution of Q-SAT on signal machines.
Discussions and remarks about the model and complexities are
gathered in Sect.IV.

II. DEFINITIONS

In this section, we introduce the model of signal machines
and illustrate it with an example for geometrically computing
the middle.

A. Signals

Each signal is an instance of a meta-signal. The associated
meta-signal defines its velocity and what happens when signals
meet. Figure2 presents a very simple space-time diagram.
Time is increasing upwards and the meta-signals are indicated
as labels on the signals. Existing meta-signals are listed on the
left of Fig.2.

Generally, we use over-line arrows to indicate the direction
of propagation of a meta-signal. For example, a and @
denotes two different meta-signals; but as can be expected,
they have similar uses and behaviors. No over-line arrow
indicates a stationary signal e.g. W in Fig. 2.

B. Collision rules

When a set of signals collide, they are replaced by a new
set of signals according to a matching collision rule. A rule
has the form:

O}

{o1,...,00} — {0}, ..

where all o; and ag- are meta-signals. A rule matches a set of
colliding signals if its left-hand side is equal to the set of their
meta-signals. By default, if there is no exactly matching rule
for a collision, the behavior is defined to regenerate exactly
the same meta-signals. In such a case, the collision is called
blank. Collision rules can be deduced from space-time diagram
as on Fig.2. They are also explicitly listed on the left of this
diagram.

C. Signal machine

A signal machine is defined by a set of meta-signals, a
set of collision rules, and an initial configuration, i.e. a finite
set of particles placed on the real line. The evolution of a
signal machine can be represented geometrically as a space-
time diagram: space is always represented horizontally, and
time vertically, growing upwards.

The example of Fig.2 computes the middle: the new w
is located exactly half way between the initial two w. This
process does not depend on the initial location of the two
walls, neither on the distance between them. Since the space
is continuous, this geometrical algorithm always works and
spatially marks the middle by a stationary signal.

III. Q-SAT IN BOUNDED SPACE-TIME

As an illustration of massively parallel computations with
signal machines, we outline a construction for solving Q-
SAT, the satisfiability problem for quantified boolean formulae
(QBF), in bounded space-time.! Combinatorial computations
self-distribute across space following a fractal pattern and
information travels at fixed velocities.

A QBF is a closed formula of the form:

¢ = Qr1Qx2...Qx, Y(r1,22,...

where Q € {3,V} and ¢ is a quantifier-free formula of
propositional logic. A recursive algorithm for solving Q-SAT
is:

,Tn)

gsat(3x ¢) = gsat(¢p[x — false]) V gsat(p[x — true))
gsat(Vx ¢) = gsat(¢p[x — false]) A gsat(p[x — true))
gsat(s) = eval(p)

where [is a ground boolean formula. This is exactly the
structure of our construction: each quantified variable splits
the computation in 2, gsat(¢[x < false]) is sent to the left
and gsat(¢[z — true]) to the right, and subsequently the
recursively computed results that come back are combined
(with vV for 3 and A for V) to yield the result for the
quantified formula. This process can be viewed as an instance
of Map/Reduce, where the Map phase distributes the com-
binatorial exploration of all possible valuations across space
using a binary decision tree, and the Reduce phase collects
the results and aggregates them using quantifier-appropriate
boolean operations. As our running example, we will use
(i) = EI:le:cQng x1 A ("l‘g \Y £E3).

A. Combinatorial comb

The first step of our construction is to put into place
the decision points for constructing the binary decision tree.
The intuition is that the decision for variable z; will be
represented by a stationary signal: the space to the left should

'We do not go into the details both for lack of space and because the formal
details of this construction have been submitted elsewhere.

— —_—
{ start, w } — { w, starty, mg }
N -

{ Startlo, w } - { a » W }

{a.w}—{a,w}

— — —
{mis a }H{ a’mi+1’X’L, mi+17 a}
— — — —_— —
{a,m}—{a, Mg, X, My, &}
—
{m,, a}—{b}
{a.m,}—{b}

(a) Collision rules

Fig. 3.

be interpreted as z; = false and the space to the right
as z; = true. The resulting set of stationary signals form
what we call the combinatorial comb and its construction for
our example is shown in Fig 3. Everywhere, in our entire
construction (here and later), signal velocities have absolute
values 0, 1, or 3.

B. Compilation into a beam

The intuition for this next phase is that a formula of
propositional logic can be viewed as a tree (Fig 4(a)) whose
nodes are labeled by symbols (connectives and variables). One
signal is generated for each node in this tree. In order to
facilitate the naming of these signals, we decorate each node
with the unique path to it from the root. The signals for all
subformulae are generated and sent along parallel trajectories
to form a beam (Fig 4(b)). The beam is then propagated
through the binary decision tree to explore in parallel all
possible valuations (Fig 4(c)).

C. Propagation

The beam is propagated down the decision tree. For each
decision point (a stationary signal for a quantified variable
x;), the beam is duplicated: one part goes through, the other
is reflected. Except for the sign of their velocity, most signals
remain identical in both branches; most, except those corre-
sponding to occurences of x;: those become false in the left
branch, and true in the right branch (Fig 5(a)).

D. Evaluation

Eventually, the beam reaches the bottom of the decision tree
where stationary signals by or by initiate the evaluation process

of the, by now, ground boolea{n_ formula (Fig 5(c)). When tl
reaches by, it gets reflected as T". The change from lowercase

(b) Division process

Combinatorial comb.

to uppercase indicates that the subformula’s signal is now able
to interact with the signal of its parent connective. The stacking
order ensures that reflected signals of subformulae will interact
with the incoming signal of their parent connective before the
latter reaches by.

A connective is evaluated by colliding with the (uppercased)
boolean signals of its arguments. For example, when the
disjunction collides with its first argument, depending on the
value of the latter, it becomes either the one-argument identity
function or the constant true. This is the way the rules of
Fig. 5(b) should be understood.

Note how path decorations are essential to ensure that
the right subformulae interact with the right occurrences of
connectives. Conjunctions and negations are handled similarly.
Finally, store projects the truth value of the formula’s root
on by where it is temporarily stored until collect starts the
aggregation of the results.

E. Collecting the results

Collection of the stored results is initiated by collect, which
is top-most in the beam and, therefore, last. This phase folds
the tree back together, combining the two incoming results
with V for 3 and with A for V (Fig 6).

FE. Size of the signal machine

Compiling a QBF into a signal machine can be done in
quadratic time by a Turing machine, and results in a signal
machine with a quadratic number of rules and an intial state
with 3 signals.

IV. CONCLUSION

In this paper, we briefly illustrated how the propagation
of information — modeled by signals — and its interactions

colleét
store

l//\\ T
VAN
|

x'é‘lc

T
3

(a) Labeled tree

(b) Generation of the beam

(c) Propagation of the beam

Fig. 4. Compilation of the formula into a beam of signals

— modeled by collisions — can be used methodically to
solve hard problems. We (geometrically) described a signal
machine that solves Q-SAT in bounded time and space. Similar
constructions can solve SAT (obviously), MAX(SAT), #SAT.
The fact that signal machines can solve PSPACE and NP
problems in bounded time and space should not be understood
as a collapse of the classical complexity hierarchy, but illus-
trates the fact that complexity classes crucially depend on the
choice of a model of computation: classical classes such as P,
NP and PSPACE are defined in terms of Turing machines. It
also suggests that Turing machines are not well suited to the
study of massively parallel, spatially distributed computations.
While width and height are respectively the traditional
measures for space-complexity and time-complexity in the
discrete world of cellular automata, they clearly loose here all
pertinence. Indeed, considering the width and the height of our
construction as complexity measures does not take in account
the continuous nature of dimensions, resulting in a size of
execution independent of the size of the input. Furthermore,
the constant space and time used by a computation can be
made as small as desired because of the continuity of space-
time (it is enough to multiply all velocities by an appropriate
constant or to start with a smaller initial configuration).
Instead we should regard our construction as a computa-
tional device transforming inputs into outputs. The inputs are
given by the initial state of the signal machine at the bottom
of the diagram. The output is the computed result that comes
out at the top. The transformation is performed in parallel
by many threads: a thread here is an ascending path through
the diagram from an input to the output. The operations
that are “performed” by the thread are all the collisions

found along the path. If we view a space-time diagram of
signal machine as a directed acyclic graph (directed by the
relation of causality between collisions), then we can propose
complexity notions adapted to this construction. We define
the time-complexity as the maximal length of a chain and
the space-complexity as the maximal length of an antichain.
It corresponds to the maximal number of collisions along a
path for the measure of time-complexity, and to the maximal
number of signals simultaneously existing in the machine for
the measure of space-complexity. According to these new
definitions, the time-complexity of the construction of Sect. III
is quadratic in the size of the formula and the space-complexity
is exponential.

Signal machines (and more generally abstract geometrical
computations) remains a model of computation that is reso-
lutely theoretical. It illustrates the use of the continuous bature
of space-time to implement efficient solutions to hard prob-
lems. This is achieved while keeping reasonable assumptions
such as that information has finite density everywhere and
travels at bounded (indeed, fixed) velocities. As in the discrete
world of CA, space is methodically used to propagate infor-
mation and signal machines are inherently parallel, providing
a new abstract model for parallel programming.

All our research with abstract geometrical machines has
been carried out on rational machines i.e. machines with only
rational velocities and configurations, and all diagrams in this
paper were automatically generated by Durand-Lose’s Java-
based simulator for signal machines.

—_—
~

—~~

—

—_—
~

—~~

—

Fig. 5.

T Fall

I <

|

,_
<
S

I <

.

,.,
-
S

(b) Collision rules to evaluate the
disjunction \/*

Ty = ())
T = (1)
Ty = (1)
Fly = (id)
Fry— (1)

LT

gt

(c) Evaluation at the bottom of
the comb

Propagation and evaluation

-+ Fail

Fig. 6. Collecting the result.

REFERENCES

Eugene Asarin and Oded Maler. Achilles and the Tortoise
climbing up the arithmetical hierarchy. In FSTTCS ’95,
number 1026 in LNCS, pages 471-483, 1995.

Olivier Bournez. Some bounds on the computational power
of piecewise constant derivative systems. In ICALP 97,
number 1256 in LNCS, pages 143-153, 1997.

Jérome Durand-Lose. Calculer géométriquement sur le plan —
machines a signaux. Habilitation a Diriger des Recherches,
Ecole Doctorale STIC, Université de Nice-Sophia Antipolis,
2003. In French.

Jérome Durand-Lose. Abstract geometrical computation: Tur-
ing computing ability and undecidability. In B.S. Cooper,
B. Lowe, and L. Torenvliet, editors, New Computational
Paradigms, 1st Conf. Computability in Europe (CiE ’05),
number 3526 in LNCS, pages 106-116. Springer, 2005.

Jérome Durand-Lose. Abstract geometrical computation with

accumulations: Beyond the Blum, Shub and Smale model.
In A. Beckmann, C. Dimitracopoulos, and B. Lowe, editors,
Logic and Theory of Algorithms, 4th Conf. Computability
in Europe (CiE '08), pages 107-116. University of Athens,
2008.

Jérome Durand-Lose.
Black holes for classical and analog computing.
Comput., 8(3):455-572, 2009a.

Jérdome Durand-Lose. Abstract geometrical computation and
computable analysis. In J.F. Costa and N. Dershowitz,
editors, International Conference on Unconventional Com-
putation 2009 (UC ’09), number 5715 in LNCS, pages 158-
167. Springer, 2009b.

Ulrich Huckenbeck. Euclidian geometry in terms of automata
theory. Theoret. Comp. Sci., 68(1):71-87, 1989.

Ulrich Huckenbeck. A result about the power of geometric
oracle machines. Theoret. Comp. Sci., 88(2):231-251, 1991.

Abstract geometrical computation 3:
Nat.

Giuseppe Jacopini and Giovanna Sontacchi. Reversible paral-
lel computation: an evolving space-model. Theoret. Comp.
Sci., 73(1):1-46, 1990.

Jarkko Kari. Theory of cellular automata: a survey. Theoret.
Comput. Sci., 334(1):3-33, 2005.

Jacques Mazoyer. Computations on one-dimensional cellular
automata. Annals of Mathematics and Artificial Intelligence,
16:285-309, 1996.

Jacques Mazoyer and Véronique Terrier. Signals in one-
dimensional cellular automata. Theoret. Comput. Sci, 217
(1):53-80, 1999.

Thomas J. Naughton and Damien Woods. On the computa-
tional power of a continuous-space optical model of compu-
tation. In M. Margenstern, editor, Machines, Computations,
and Universality (MCU ’01), number 2055 in LNCS, pages
288-299, 2001.

John Von Neumann. Theory of self-reproducing automata.
University of Illinois Press, 1966.

