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Abstract Region merging methods consist of improv-

ing an initial segmentation by merging some pairs of

neighboring regions. In a graph, merging two regions,
separated by a set of vertices, is not straightforward.

The perfect fusion graphs defined in [J. Cousty et al,

“Fusion Graphs: Merging Properties and Watersheds”,

JMIV 2008] verify all the basic properties required by
region merging algorithms as used in image segmenta-

tion. Unfortunately, the graphs which are the most fre-

quently used in image analysis (namely, those induced
by the direct and the indirect adjacency relations) are

not perfect fusion graphs. The perfect fusion grid, intro-

duced in the above mentioned reference, is an adjacency
relation on Z

d which can be used in image analysis,

which indeed induces perfect fusion graphs and which

is “between” the graphs induced by the direct and the

indirect adjacencies. One of the main results of this pa-
per is that the perfect fusion grid is the only such graph

whatever the dimension d.
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Introduction

Image segmentation is the task of delineating objects

of interest that appear in an image. In many cases, the

result of such a process, also called a segmentation, is
a set of connected regions lying in a background which

constitutes the separation between regions. To define

regions, an image is often considered as a graph whose

vertex set is made of the pixels of the image and whose
edge set is given by an adjacency relation on these

pixels. In this framework1, the regions correspond to

the connected components of foreground pixels (see for
instance Fig. 1).

A popular approach to image segmentation, called
region merging [1,2], consists of progressively merging

pairs of regions, starting from an initial segmentation

that contains too many regions (see, for instance,
Figs. 1a and b). Given a subset S of an image

equipped with an adjacency relation, merging two

neighboring regions (connected components) of S is

not straightforward. A problem occurs when we want
to merge a pair of neighboring regions A and B of S

and when each point adjacent to these two regions is

also adjacent to a third one that we want to preserve
during the merging operation. Fig. 1c illustrates such

a situation, where x is adjacent to regions A,B,C

and y to A,B,D. Thus, we cannot merge A and B
while preserving both C and D. This problem has

been identified in particular by T. Pavlidis (see [1],

section 5.6: “When three regions meet”), and, as

1 Another framework, popular in image analysis, consists of
considering a segmentation as a partition of the image domain

where each element of the partition represents a segmented
region. Thus the regions are not separated by “background
pixels”. As we will see in Section 5, in many cases, this framework
also falls in the scope of the present paper.
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far as we know, has not been solved in general. A

major contribution of [3] is the definition of a merging
operation and the study of a class of graphs, called

the perfect fusion graphs, where such a situation cannot

occur.

In 2-dimensional image analysis, two adjacency

relations on Z
2, called the 4- and the 8-adjacencies [5],

are commonly used. With the 4-adjacency (resp. the
8-adjacency), each point is adjacent to its 4 (resp. 8)

closest neighbors. For instance, the graph in Fig. 1c

is induced by the 4-adjacency. As seen above, the
two neighboring regions A and B cannot be merged,

while preserving all other regions, by removing x and y

from the set of black vertices. Thus, in general, the
graphs induced by the 4-adjacency are not perfect

fusion graphs. Similar configurations can be found with

the 8-adjacency. Thus the graphs induced by the 8-

adjacency are not perfect fusion graphs either. More
generally, the graphs induced by the direct and the

indirect adjacencies [5,6], which generalize the 4- and

the 8-adjacencies to Z
d, are not perfect fusion graphs

(see Section 6 in [3]).

In [3], we introduce a family of graphs on Z
d that we

call the perfect fusion grids, which can be used in image
analysis, which are indeed perfect fusion graphs, and

which are “between” the graphs induced by the direct

and the indirect adjacencies. Let us give an intuitive
presentation of these graphs in the two dimensional

case. Consider the set C of all black squares in a

chessboard (see Fig. 2). The perfect fusion grid is
simply the graph obtained, by setting adjacent any

two summits which belong to a same square in C (see,

for instance, the two graphs depicted Fig. 2). Fig. 3a

shows a set of regions obtained in this grid thanks to a
watershed algorithm [7]. It can be seen on Fig. 3b that

the problems pointed out in the previous paragraphs

do not exist in this case: any pair of neighboring
regions can be merged by simply removing from the

black vertices the points which are adjacent to both

regions (see Fig. 3b,c). Furthermore, it can be verified
on Fig. 2 that any two points which are 4-adjacent

are necessarily adjacent for the perfect fusion grid and

that any two points adjacent for the perfect fusion grid

are necessarily 8-adjacent. In this sense, the perfect
fusion grid satisfies the geometric constraint of being

“between” the graphs induced by the 4- and the 8-

adjacency relation.

One of our main result in this paper (Theorem 21)

establishes that the perfect fusion grid is the only

perfect fusion graph on Z
d which is between the direct

and the indirect adjacency relations, whatever the

dimension d ∈ N⋆. The outline of the paper is the

following: we first recall in Section 1 some definitions
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Fig. 2 Illustration of the two perfect fusion grids on Z
2. The

gray squares constitute subsets of the two chessboard on Z
2 and

the associated graphs are the subgraphs of the perfect fusion grids
(Z2, Λ2

(1,1)
) and (Z2, Λ2

(1,0)
) induced by {0, . . . , 4} × {0, . . . , 4}.

and properties related to region merging and perfect
fusion graphs. Then, in Section 2, we propose a set

of definitions and properties to handle cubical grids in

arbitrary dimension. Afterward, Section 3 provides a
definition of the perfect fusion grids which is based on

the notion of a chessboard in Z
d. In Section 4, we prove

the unicity theorem of the perfect fusion grids. Finally,

in Section 5, we establish three properties, based on the
notion of a line graph, which allow us to make a strong

link between the framework developed in this paper and

the approaches of segmentation based on edges rather
than vertices (i.e. when the regions are separated by a

set of edges). In order to ease the reading, this article2

is self-contained.

1 Perfect fusion graphs

1.1 Basic notions on graphs

Let E be a set, we denote by 2E the set composed

of all subsets of E. Let X ⊆ E, we write X for the

complementary set of X in E, i.e., X = E \X. Let E′

be a set. The Cartesian product of E by E′, denoted
by E × E′, is the set made of all pairs (x, y) such

that x ∈ E and y ∈ E′.

We define a graph as a pair (E,Γ ) where E is a set
and Γ is a binary relation on E (i.e. Γ ⊆ E×E) which is

anti-reflexive (for any x ∈ E, (x, x) /∈ Γ ) and symmetric

(for any x and y in E, (y, x) ∈ Γ whenever (x, y) ∈ Γ ).
Each element of E (resp. Γ ) is called a vertex or a

point (resp. an edge). We will also denote by Γ the map

from E to 2E such that, for any x ∈ E,Γ (x) = {y ∈
E | (x, y) ∈ Γ}. Let x ∈ E, the set Γ (x) is called

the neighborhood of x and if y ∈ Γ (x), we say that y is

adjacent to x. IfX ⊆ E, the neighborhood ofX, denoted

by Γ (X), is the set [∪x∈XΓ (x)] \X.

2 A part of the results of this paper has been presented, without
proofs, in a conference article [8].
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Fig. 1 (a): Original image (cross-section of a brain, after applying a gradient operator). (b): A segmentation of (a) (obtained by a
watershed algorithm [4] using the 4-adjacency relation). (c): A zoom on a part of (b); the graph induced by the 4-adjacency relation

is superimposed in gray.
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Fig. 3 (a) A segmentation of Fig. 1a obtained on a perfect fusion grid. (b) A zoom on a part of (a); the regions A, B, C and D

correspond to the ones of Fig. 1c; the corresponding perfect fusion grid is shown in gray. (c) Same as (b) after having merged B and
C to form a new region E.

Let G = (E,Γ ) and G′ = (E′, Γ ′) be two graphs,

we say that G and G′ are isomorphic if there exists a

bijection f from E to E′ such that, for all x, y ∈ E, y
belongs to Γ (x) if and only if f(y) belongs to Γ ′(f(x)).

Let G = (E,Γ ) be a graph. Let S ⊆ E, the set S
is a clique for G if any two elements x and y of S are

adjacent. A clique S for G is said to be a maximal

clique for G if, S = S′ whenever S′ is a clique for G

and S ⊆ S′.

Let G = (E,Γ ) be a graph and let X ⊆ E, we define

the subgraph of G induced by X as the graph GX =
(X,Γ ∩ [X × X]). We also say that GX is a subgraph

of G.

Let (E,Γ ) be a graph and X ⊆ E. A path in X

is a sequence 〈x0, . . . , xℓ〉 such that xi ∈ X, i ∈ [0, ℓ],

and (xi−1, xi) ∈ Γ , i ∈ [1, ℓ]. The set X is connected if,
for any x, y ∈ X, there exists a path in X from x to y.

Let Y ⊆ X, we say that Y is a (connected) component

of X if Y is connected and maximal for this property,

i.e. if Z = Y whenever Y ⊆ Z ⊆ X and Z connected.

Important remark. From now on, when consid-

ering a graph G = (E,Γ ), we always assume that E is

connected and that G is locally finite, i.e. the set Γ (x)

is finite for any x ∈ E.

1.2 Region merging and perfect fusion graphs

Consider the graph (E,Γ ) depicted in Fig. 4a, where

a subset S of E (white and gray vertices) is composed

of four regions (connected components). If we replace
the set S by, for instance, the set S ∪ T where T =

{x, y, z}, we obtain a set composed of three regions (see

Fig. 4b). We can say that we “merged two components
of S through T”. This operation may be seen as an

“elementary merging” in the sense that only two regions

of S were merged while all other regions of S were
preserved. On the opposite, replacing the set S by

the set S ∪ T ′, where T ′ = {w} (see Fig. 4c), would

merge three components of S. This section recalls the

definitions introduced in [3] related to such merging
operations in graphs. Then, we remind the definition of

the perfect fusion graphs, which are the graphs in which

any two neighboring regions can be merged through
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their common neighborhood while preserving all other

regions.
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Fig. 4 Illustration of merging. (a) A graph (E,Γ ) and a subset S

of E (white and gray points). (b) The white and gray points
represent a subset S ∪ T where T = {x, y, z}. (c) The white and
gray points represent a subset S ∪ T where T ′ = {w}.

Let (E,Γ ) be a graph and let S ⊆ E. Let A and
B be two distinct components of S and T ⊆ S. We

say that A and B can be merged (for S) through T if A

and B are the only connected components of S adjacent
to T and if A ∪B ∪ T is connected.

In other words (see Property 21 in [3] for a formal

proof), the two regions A and B can be merged
through T if and only if A ∪ B ∪ T is a component

of S ∪ T . More precisely, they can be merged if and

only if the components of S ∪ T are the same as the

components of S except that A and B are replaced
by A ∪B ∪ T .

For instance, in Fig. 4a the two white components

can be merged through {x, y, z} but the two gray
components cannot be merged through {w}.

Let (E,Γ ) be a graph, S ⊆ E, and let A and

B be two distinct connected components of S. We
set Γ (A,B) = Γ (A)∩Γ (B) and we say that Γ (A,B) is

the common neighborhood of A and B. If the common

neighborhood of A and B is nonempty, A and B are

said to be neighbors.

Definition 1 (perfect fusion graph) Let (E,Γ )

be a graph. We say that (E,Γ ) is a perfect fusion

graph (PFG) if, for any S ⊆ E, any two connected

components A and B of S which are neighbors can be
merged through Γ (A,B).

In other words, the PFGs are the graphs in which

two neighboring regions A and B can always be merged

by removing from the separating set (S) all the points
which are adjacent to both regions. This class of graphs

permits, in particular, to rigorously define hierarchical

schemes (i.e. procedures which consist of successive
region merging steps) and to implement them in a

straightforward manner. Furthermore, we have shown

[7] that the watershed transform [9,10,4,11,12], which

is a popular segmentation method to obtain an initial
segmentation for such a hierarchical scheme [13–16],

satisfy stronger properties in PFGs than in general

graphs.

The graph of Fig. 4a is not a PFG since the two

gray components cannot be merged through {w} which
is their common neighborhood. On the other hand,

the graph of Fig. 5 is a PFG. For instance, it can be

verified in Fig. 5b that any two components of the white
vertices which are neighbors can be merged through

their common neighborhood.

r
pq

s
(a) (b)

Fig. 5 An example of a perfect fusion graph with, in (b), a
subset of the vertices (in white) on which the perfect fusion
property can be tested.

The definition of the PFGs is based on a condition

which must be verified for all subsets of the vertex sets.

This means, if we want to check whether a graph is a

PFG, then, using the straightforward method based on
the definition, this will cost an exponential time with

respect to the number of vertices. In fact, the PFGs can

be recognized in a simpler way thanks to the following
conditions which can be checked independently in the

neighborhood of each vertex.

We denote by GN the graph of Fig. 6.

Fig. 6 The graph GN used to characterized the perfect fusion
graphs.

Theorem 2 (from Theorem 41 in [3]) The three

following statements are equivalent:

i) (E,Γ ) is a PFG;
ii) the graph GN is not a subgraph of (E,Γ );

iii) for any x ∈ E, any X ⊆ Γ (x) contains at most two

connected components.

Thanks to Theorem 2, it can be verified that the graph

(E,Γ ) depicted in Fig. 5 is a PFG. Indeed, GN is
not a subgraph of (E,Γ ). Remark in particular that

the subgraph induced by {p, q, r, s} is not GN since it

contains the edge (r, s).
The next corollary follows straightforwardly from

Theorem 2, and will be used in some subsequent proofs.

Corollary 3 If (E,Γ ) is a PFG, then any subgraph

of (E,Γ ) is a PFG.
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2 Cubical grids in arbitrary dimensions

Digital images are defined on (hyper-) rectangular
subsets of Z

d (with d ∈ N⋆). For region merging

applications, Z
d must be equipped with an adjacency

relation reflecting the geometrical relationship between
its elements. We provide, in this section, a set of

definitions (which were first introduced in [17]) that

allows for recovering the adjacency relations [5] which

are the most frequently used in 2- and 3-dimensional
image analysis and permit to extend them to images of

arbitrary dimension (see [6] for an alternative definition

of these adjacency relations on Z
d).

Let Z be the set of integers. We consider the families

of sets H1
0 and H1

1 such that H1
0 = {{a} | a ∈ Z}

and H1
1 = {{a, a + 1} | a ∈ Z}. Let m ∈ [0, d].

A subset C of Z
d which is the Cartesian product of

exactly m elements of H1
1 and (d−m) elements of H1

0

is called a (m-)cube of Z
d.

Observe that an m-cube of Z
d is a point if m = 0,

a (unit) interval if m = 1, a (unit) square if m = 2 and

a (unit) cube if m = 3.

Let C be a set of cubes of Z
d. The binary relation

induced by C is the set of all pairs (x, y) of Z
d such that

there exists a cube in C which contains both x and y.
Let (E,Γ ) be a graph. We say that (E,Γ ) is the graph

induced by C if E = ∪{C | C ∈ C} and Γ is the relation

induced by C. We call cubical grid any graph induced
by a set of cubes.

Definition 4 (m-adjacency) Let m ∈ [1, d]. The m-

adjacency on Z
d, denoted by Γ d

m, is the binary relation
induced by the set of all m-cubes of Z

d. If (x, y) ∈ Γ d
m,

we say that x and y are m-adjacent.

Observe that two points x and y of Z
d (with x =

(x1, . . . , xd) and y = (y1, . . . , yd)) are m-adjacent if and
only if |xi−yi| ≤ 1 for any i ∈ [1, d] and

∑d

i=1 |xi−yi| ≤
m.

In the literature, Γ 2
1 and Γ 2

2 are often referred to

as the 4- and the 8-adjacencies on Z
2, and Γ 3

1 , Γ 3
2

and Γ 3
3 are often referred to as the 6-, the 18- and

the 26-adjacencies on Z
3. The relations Γ d

1 and Γ d
d are

sometimes called respectively the direct and the indirect

adjacencies on Z
d.

Examples of graphs induced by Γ 2
1 and Γ 2

2 are

shown in respectively Figs. 7a and b. The graphs
induced by Γ 2

1 and Γ 2
2 are not, except in some

degenerated cases, PFGs. For instance, it can be seen

that any two white components which are neighbors

in Fig. 7a cannot be merged. Thus, this graph which
is induced by Γ 2

1 is not a PFG. In Fig. 7b, let us

consider the set S of white and gray vertices. The two

components of S, depicted in gray, are neighbors since

the points x and y are adjacent to both but they cannot

be merged through {x, y}. Thus, this graph which is
induced by Γ 2

2 is not a PFG. More generally, the graphs

which are the most frequently used in image analysis

(namely, those induced by Γ d
1 and Γ d

d , with d = 2, 3)
are not PFGs (see Sec. 6 in [3]).

x y

(a) (b)

Fig. 7 (a): A graph induced by the 4-adjacency relation; no
component of the set of white vertices can be merged. (b): A

graph induced by the 8-adjacency relation; let S be the set of
white and gray vertices; the two gray components A and B

are neighbors and cannot be merged through their common

neighborhood Γ ⋆(A,B) = {x, y}.

We now introduce a set of definitions and properties
which allow us to handle the cubes of Z

d and which will

be used in the next section to define the perfect fusion

grids.

In the following, we will denote by Cd the set of

all d-cubes of Z
d. We define the index map of Cd as

the map ϕ from Cd to Z
d, such that for any C ∈ Cd,

ϕ(C)i = min{xi | x ∈ C}, where ϕ(C)i is the i-

th coordinate of ϕ(C), for any i ∈ [1, d]. It may be

seen that C is equal to the Cartesian product: C =
{ϕ(C)1, ϕ(C)1 + 1} × · · · × {ϕ(C)d, ϕ(C)d + 1}. Thus,

clearly ϕ is a bijection and allows for indexing the d-

cubes of Z
d.

Fig. 8 shows the values of the index map of C2

associated with a (rectangular) subset of Z
2.

2
3
4

10 2 3 4
0
1

(0,1)

(3,2)(2,2)(1,2)(0,2)

(2,3)(1,3)(0,3)

(3,0)(2,0)(1,0)

(1,1) (3,1)(2,1)

(3,3)

(0,0)

Fig. 8 Index map of C2 associated with a subset of Z
2.
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We set U⋆ = {1,−1}, O = {0} and U = O ∪ U⋆.

Let u = (u1, . . . , ud) ∈ U
d. We denote by −u the

element of U
d defined by (−u)i = −ui for any i ∈ [1, d].

The number of non null coordinates of u is called the

dimension of u.

Property 5 Let C and D be two d-cubes of Cd.

1. The intersection between C and D is nonempty if

and only if there exists u ∈ U such that ϕ(C) =
ϕ(D) + u.

2. Furthermore, C ∩ D is an m-cube (m ≤ d) if and

only if there exists u ∈ U
d such that (d −m) is the

dimension of u and ϕ(C) = ϕ(D) + u.

Proof 1) The proof is trivial.

2) By 1), C ∩ D = ∅ if and only if there is

no u ∈ U
d such that ϕ(C) = ϕ(D) + u. Suppose

now that C ∩ D 6= ∅. By 1) there exists u ∈ U
d such

that ϕ(C) = ϕ(D) + u. Let m be the dimension of u.

Let us define, for any i ∈ [1, d], the set Ki by:

Ki = {ϕ(D)i, ϕ(D)i + 1} if ui = 0,

Ki = {ϕ(D)i + 1} if ui = 1, and

Ki = {ϕ(D)i} if ui = −1.

Let K = K1 × · · · ×Kd. By definition K is a (d−m)-

cube. Therefore, to complete the proof, it is sufficient

to show that x ∈ C∩D if and only if x ∈ K. The sets C
and D are the Cartesian products:

C = {ϕ(D)1 + u1, ϕ(D)1 + u1 + 1} × · · · ×

{ϕ(D)d + ud, ϕ(D)d + ud + 1}, and

D = {ϕ(D)1, ϕ(D)1 + 1} × · · · × {ϕ(D)d, ϕ(D)d + 1}

Thus, x ∈ C ∩D if and only if, for any i ∈ [1, d], one of
the following statements holds true:

1. xi = ϕ(D)i + ui = ϕ(D)i

2. xi = ϕ(D)i + ui = ϕ(D)i + 1

3. xi = ϕ(D)i + ui + 1 = ϕ(D)i

4. xi = ϕ(D)i + ui + 1 = ϕ(D)i + 1

Thus, x ∈ C ∩D if and only if, for any i ∈ [1, d],

– when ui = 0, xi = ϕ(D)i (case 1 above) or xi =

ϕ(D)i + 1 (case 4 above),
– when ui = 1, xi = ϕ(D)i + 1 (case 2 above), and

– when ui = −1, xi = ϕ(D)i (case 3 above).

Hence, by definition of K, x ∈ C ∩ D if and only

if x ∈ K. ⊓⊔

Let x ∈ Z
d and u ∈ U

d, we denote by C(u, x) the

cube of Z
d defined by {x1, x1+u1}×· · ·×{xd, xd +ud}.

In other words, C(u, x) is the set of all points y such
that, for any i ∈ [1, d], yi = xi or yi = xi + ui. We also

set Ĉ(u, x) = C(−u, x)
Fig. 9 illustrates this definition on Z

2 and Z
3.

Remark 6 Let x ∈ Z
d. Let u and v be two elements

in U
d,

1. a subset C of Z
d is a cube which contains x if and

only if there exists w ∈ U
d such that C = C(w, x);

2. C(u, x) ∩ Ĉ(u, x) = {x};
3. C(u, x) ⊆ C(v, x) if and only if, for any i ∈ [1, d],

ui = vi or ui = 0; and
4. C(u, x) is an m-cube (with m ∈ [1, d]) of Z

d if and

only if m is the dimension of u.

In order to prove properties related to objects of

arbitrary dimension, an important method consists

of proceeding by induction on the dimension. The
notion of section introduced hereafter is fundamental

for proving by induction the main claims of this paper.

Let x ∈ Z
d and let u be an element of U

d the
dimension of which equals m. We denote by P (u, x) the

set {y ∈ Z
d | ∀i ∈ [1, d], yi = xi + ki.ui, where ki ∈ Z}.

We say that P (u, x) is a (m-)section of Z
d.

Remark 7 Let x ∈ Z
d, m ∈ [1, d] and let u, v be two

elements of U
d,

1. P (u, x) = P (v, x) if and only if, for any i ∈ [1, d],
|ui| = |vi|;

2. for any y ∈ P (u, x), C(u, y) ⊆ P (u, x) and Ĉ(u, y) ⊆
P (u, x); and

3. if m is the dimension of u and n ∈ [1, d], then
the subgraph of (Zd, Γ d

n) induced by P (u, x) is

isomorphic to (Zm, Γm
k ), where k = min{m,n}.

3 Perfect fusion grids

As said in the previous section, the graphs associated
with the adjacency relations which are the most

frequently used in 2- and 3-dimensional image analysis

are not, in general, PFGs. In [3], we introduced a family
of graphs on Z

d, called the perfect fusion grids, which

are indeed PFGs and which are “between” Γ d
1 and Γ d

d .

In this section, we recall the definition of the perfect
fusion grids and study some of their properties.

The perfect fusion grids can be defined, whatever

the dimension d ∈ N⋆, by the mean of chessboards.
Intuitively, a chessboard C on Z

d is a set of d-cubes

which spans Z
d (i.e. ∪{C ∈ C} = Z

d) and such that

the intersection of any two cubes in C is either empty
or reduced to a point. We will show that there are two

chessboards on Z
2. The gray squares shown in Figs. 2a

and b constitute subsets of these two chessboards. The

gray cubes shown in Fig. 10 constitute a subset of
a chessboard on Z

3. The perfect fusion grids are the

graphs induced by the chessboards on Z
d (see, for

instance, the graphs of Figs. 2a and b).
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2

1

u = (1,1)

u = (1,−1)

x

x

1

2

3u = (1,1,1) u = (1,−1,1)

u = (1,1,−1) u = (1,−1,−1)

x x

x x

Fig. 9 First (resp. second) column: all possible local configurations in a local chessboard on Z
2 (resp. Z

3). In each column, we assume

that Z
d is oriented as shown by the arrows. Then, the element u ∈ U

d
⋆ which “generates” each configuration C(u, x)∪ Ĉ(u, x) is written

under the configuration.

Fig. 10 The gray cubes constitute a subset of a chessboard
on Z

3.

Let us now give formal definitions of these notions.

Let B = {0, 1}. Every element of B
d is a binary word

of length d. We set 0 = 1 and 1 = 0. If b = (b1, . . . , bd)
is in B

d, we define b as the binary word of B
d such that

for any i ∈ [1, d], (b)i = (bi).

We remind that Cd denotes the set of all d-cubes
of Z

d and that ϕ is the index map of Cd. We define the

map ψ from Cd to B
d such that for any C ∈ Cd and

any i ∈ [1, d], ψ(C)i is equal to [ϕ(C)i mod 2], that is
the remainder in the integer division of ϕ(C)i by 2.

Fig. 11 shows the values of ψ associated with a

(rectangular) subset of Z
2.

Definition 8 (chessboard & perfect fusion grid)

Let b ∈ B
d.

We set Cd
b = {C ∈ Cd | ψ(C) = b} and we say that the

set Cd
b ∪ Cd

b
is a (global) chessboard on Z

d.

Let C be the chessboard on Z
d defined by Cd

b ∪ Cd

b
. We

denote by Λd
b the adjacency relation induced by C and

2
3
4

10 2 3 4
0
1

(0,1)

(1,0)(1,0)(0,0)

(1,1)(0,1)(0,1)

(1,0)(1,0)

(0,1)

(0,0)

(1,1)(1,1)

(0,0)

(1,1)

(0,0)

Fig. 11 The map ψ associated with a subset of Z
2.

we say that the pair (Zd, Λd
b) is a perfect fusion grid

on Z
d.

Figs. 11 and 2 illustrate these definitions on Z
2. In

Figs. 11, the cubes which belong to C2
(0,0), C

2
(0,1), C

2
(1,0)

and C2
(1,1) are represented with distinct gray levels. The

gray cubes in Fig. 2a and b belong respectively to the

chessboard C2
(0,0) ∪ C2

(1,1) and to the chessboard C2
(1,0) ∪

C2
(0,1). The depicted graphs are the two associated

perfect fusion grids Λ2
(1,1) and Λ2

(1,0).

From their very definition, the number of distinct

perfect fusion grids can be easily determined. The

cardinality of B
d is 2d. Let b and b′ in B

d. Since Cd
b ∪C

d

b
=

Cd

b
∪Cd

b , and since Cd
b ∪Cd

b
6= Cd

b′ ∪Cd

b′
whenever {b, b} 6=

{b′, b′}, there exist 2d−1 distinct chessboards on Z
d.

Thus, there are also 2d−1 distinct perfect fusion grids

on Z
d. However, any two (distinct) perfect fusion grids

are equivalent up to a “binary translation”.
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Property 9 (Property 58 in [3]) Let b and b′ be

two elements of B
d. There exists t ∈ B

d such that, for
any x and y in Z

d, we have y ∈ Λd
b(x) if and only

if y + t ∈ Λd
b′(x+ t).

Certain classes of graphs (such as the PFGs, see

Theorem 2.iii) can be locally characterized. It means
that it can be tested if an arbitrary graph belongs to

such a class by independently checking a condition in

a limited neighborhood of each point. The following
properties (Property 12 and Theorem 20) show that

the chessboards and the perfect fusion grids can also

be locally characterized.

Definition 10 (local chessboard) Let C be a set of

d-cubes of Z
d. We say that C is a local chessboard on Z

d

if, for any x ∈ Z
d, there exist two d-cubes C and Ĉ of Z

d

such that:

1. C and Ĉ are the only two elements of C which
contain x; and

2. C ∩ Ĉ = {x}.

For instance, it may be seen that, on Z
2 (resp.

Z
3), a local chessboard C is a set of 2-cubes (resp.

3-cubes) such that, for any point x, the cubes of C
which contain x match one of the two (resp. four)

configurations depicted in the first (resp. second)
column of Fig. 9. Observe that this notion of a local

chessboard corresponds exactly to the intuitive idea

given in the introduction of the section. As assessed by

the following property, we can indeed prove that any
global chessboard is necessarily a local chessboard.

Observe that two d-cubes C and Ĉ of Z
d are such

that C ∩ Ĉ = {x} for some x ∈ Z
d if and only if there

exists u ∈ U
d
⋆ such that C = C(u, x) and Ĉ = Ĉ(u, x).

Thus, the local chessboards can be characterized as
follows.

Remark 11 Let C be a set of d-cubes of Z
d. The set C

is a local chessboard on Z
d if and only if, for any x ∈ Z

d,

there exists u ∈ U
d
⋆ such that C(u, x) and Ĉ(u, x) belong

to C and such that they are the only two elements in C
which contain x.

Property 12 Let b ∈ B
d. The chessboard C = Cd

b ∪ Cd

b

is a local chessboard such that for any x ∈ Z
d, the

only two d-cubes of C which contain x are C(u, x)

and Ĉ(u, x), where u ∈ U
d
⋆ and ui = (−1)(xi−bi) for

any i ∈ [1, d].

Proof Let x ∈ Z
d. As usual, let ϕ be the index map

of Cd. By the very definition of ϕ, it may be seen that

any d-cube C of Z
d which contains x is such that,

for any i ∈ [1, d], ϕ(C)i = xi − 1 or ϕ(C)i = xi.

Thus, by definition of ψ, there exists a unique d-

cube C which contains x and which belongs to Cd
b .

Let u ∈ U
d
⋆ be defined by ui = (−1)(xi−bi) for

any i ∈ [1, d]. We set C ′ = C(u, x) and we will

prove that C ′ = C. By definition, C ′ is equal to
the Cartesian product C ′ = {x1, x1 + (−1)(xi−bi)} ×
· · · × {xd, xd + (−1)(xd−bd)}. Let i ∈ [1, d]. Let us first

suppose that (xi − bi) is even. Then, (−1)(xi−bi) = 1.
Thus, by definition of ϕ, ϕ(C ′)i = xi. In this case,

either xi and bi are both even or xi and bi are both odd.

Thus, ψ(C ′)i = bi. Suppose now that (xi − bi) is odd.

Then, ϕ(C ′)i = xi − 1. In this case, (xi mod 2) = bi.
Hence, ψ(C ′) = (ϕ(C ′)i mod 2) = bi. Thus, for any

i ∈ [1, d], we have ψ(C ′)i = bi. Hence, C ′ ∈ Cd
b .

Furthermore, by definition of C ′, x ∈ C ′. Thus, by
definition of C, C = C ′. Using similar arguments, we

can prove that Ĉ(u, x) is the only d-cube of Cd

b
which

contains x. This completes the proof of Property 12.
⊓⊔

The previous property allows us to study Λd
b(x), for

any b ∈ B and x ∈ Z
d. In particular, it is clear that,

for any x ∈ Z
d, any subset of Λd

b(x) contains at most

two connected components. Hence, by Theorem 2.iii,

we deduce the following property.

Corollary 13 Let b ∈ B
d. Then the graph (Zd, Λd

b) is
a PFG.

Another consequence of Property 12 is that any

perfect fusion grid on Z
d is between the graphs induced

by the 1-adjacency and the d-adjacency.

Corollary 14 Let b ∈ B
d. Then, we have Γ d

1 ⊆ Λd
b ⊆

Γ d
d .

Proof 1) Let us prove the first inclusion relation. It

follows from Property 12 that, for any x ∈ Z
d, there

exists u ∈ U
d
⋆ such that C(u, x) ∪ Ĉ(u, x) ⊆ Λd

b(x).

If y is a point which is 1-adjacent to x, then, by

definition of Γ d
1 , there exists a unique j ∈ [1, d] such

that |yj − xj | = 1 and, for any i ∈ [1, d] \ {j},
yi = xi. If yj − xj = uj , then y belongs to C(u, x)

and if yj − xj = −uj , then y belongs to Ĉ(u, x). In
these two cases, y belongs to Λd

b(x), which proves the

first inclusion.

2) By definition, the relation Λd
b is induced by a

chessboard and Γ d
d is induced by Cd. Thus, to establish

the second inclusion, it suffices to note that any

chessboard on Z
d is a subset of Cd. ⊓⊔

Property 12 also explicits a practical way to manip-
ulate the perfect fusion grids. Let b ∈ B

d and suppose

for instance that we are interested in constructing the

graph (Zd, Λd
b). To reach this goal, starting from an
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empty relation Γ , a straightforward algorithm, accord-

ing to Property 12, consists of repeating the following
three steps for each point x ∈ Z

d:

– u := ((−1)(x1−b1), . . . , (−1)(xd−bd));

– C := C(u, x) and Ĉ := Ĉ(u, x);
– for each y ∈ C ∪ Ĉ do Γ := Γ ∪ (x, y).

Let us now prove an essential result (Theorem 20)

that will be used in the sequel and which states that any

local chessboard is a global chessboard. To this end, we
start by four lemmas (Lemmas 15, 17, 18 and 19).

Lemma 15 Let C be a local chessboard. Let C and C ′

be distinct d-cubes of Z
d such that C ∩ C ′ 6= ∅ and

suppose that C ∈ C. Then, C ′ ∈ C if and only if there

exists u ∈ U
d
⋆ such that ϕ(C ′) = ϕ(C) + u.

Proof Let us first suppose that C ′ ∈ C. Let x ∈ C∩C ′.

By the very definition of a local chessboard C ∩ C ′ =

{x}. Thus, since {x} is a 0-cube, by Property 5, there
exists an element in U

d
⋆ (i.e., an element in U

d whose

dimension is d) such that ϕ(C ′) = ϕ(C)+u. This proves

the forward implication.
Let us now suppose that there exists u ∈ U

d
⋆ such

that ϕ(C ′) = ϕ(C) + u. Then,

C = {ϕ(C)1, ϕ(C)1 + 1} × · · · ×

{ϕ(C)d, ϕ(C)d + 1}; and (1)

C ′ = {ϕ(C)1 + u1, ϕ(C)1 + u1 + 1} × · · · ×

{ϕ(C)d + ud, ϕ(C)d + ud + 1}. (2)

Let us consider the point x ∈ Z
d defined by xi =

ϕ(C)i + 1 if ui = 1 and xi = ϕ(C)i if ui = −1, for

any i ∈ [1, d]. If ui = 1, then {ϕ(C)i, ϕ(C)i + 1} =

{xi − 1, xi} = {xi − ui, xi} and {ϕ(C)i + ui, ϕ(C)i +
ui+1} = {xi−1+ui, xi+ui} = {xi, xi+ui}. If ui = −1,

then {ϕ(C)i, ϕ(C)i + 1} = {xi, xi + 1} = {xi, xi − ui}
and {ϕ(C)i+ui, ϕ(C)i+ui+1} = {xi+ui, xi+ui+1} =
{xi +ui, xi}. Hence, equations 1 and 2 can be rewritten

as:

C = {x1, x1 − u1} × · · · × {xd, xd − ud} (3)

C ′ = {x1, x1 + u1} × · · · × {xd, xd + ud}. (4)

Thus, C = Ĉ(u, x) and C ′ = C(u, x). Therefore,

since C ∈ C and since both C and C ′ contain x, by
Remark 11, we deduce that C ′ ∈ C. ⊓⊔

For instance, in Fig. 10, if the central gray cube
belongs to a local chessboard on Z

3 then and only then

the other depicted gray cubes also belong to this local

chessboard.

Remark 16 Let C be a local chessboard. Let 〈u1, . . . , uℓ〉
be a sequence of elements in U

d
⋆ and C be a d-cube

of Z
d. If C belongs to C, by induction on Lemma 15,

it may be deduced that the d-cube C ′ of Z
d, defined

by ϕ(C ′) = ϕ(C) +
∑ℓ

k=1 u
k, also belongs to C.

C

C′

x

v1,3v1,1

v2,1

v1,2 v1,4

v2,2

Fig. 12 Illustration of the method used to prove Lemma 17. We

suppose that Z
2 is oriented as shown in Fig. 9 and that x = (0, 0)

and we consider C and C′ as the 2-cubes of C2
(0,1)

defined

by ϕ(C) = (0, 1) and ϕ(C′) = (4, 3).

For instance, in Fig. 12, if the 2-cube C belongs to a

local chessboard C on Z
2, then the 2-cube C ′ also belong

to C since ϕ(C ′) = ϕ(C) + v1,1 + v1,2 + v1,3 + v1,4 +
v2,1 + v2,2.

Lemma 17 Let C be a local chessboard on Z
d. Let b ∈

B
d and C ∈ Cd

b . If C belongs to C, then any C ′ ∈ Cd
b

belongs to C.

Proof Let C ′ ∈ Cd
b . We are going to show that there

exists a sequence s = 〈u1, . . . , uℓ〉 of elements in U
d
⋆ such

that ϕ(C ′) = ϕ(C) +
∑ℓ

k=1 u
k. Hence, by Remark 16,

this will complete the proof of Lemma 17. In order to

build such a sequence, we will proceed dimension by
dimension. Let i ∈ [1, d]. We set Ri = [ϕ(C ′)i −ϕ(C)i].

We observe that Ri is even since ψ(C) = ψ(C ′) = b.

We consider si = 〈vi,1, . . . , vi,|Ri|〉, the sequence of |Ri|
elements in U

d
⋆ defined, for any j ∈ [1, |Ri|], by:

(vi,j)i = 1 if Ri ≥ 0 and (vi,j)i = −1 if Ri < 0 and

(vi,j)k = (−1)j for any k ∈ [1, d] \ {i}.

Fig. 12 shows the sequences s1 and s2 when C and C ′

are the 2-cubes of C2
(0,1) defined by ϕ(C) = (0, 1)

and ϕ(C ′) = (4, 3).

Let σi =
∑|Ri|

j=1 v
i,j . We have:

(σi)i = Ri; and

(σi)k = 0 for any k ∈ [1, d] \ {i} (since, as seen above,

Ri is even).

Thus, ϕ(C ′) = ϕ(C)+
∑d

i=1 σ
i. Let s = 〈u1, . . . , uℓ〉 be

the sequence defined by concatenation of s1, s2, . . ., and

sd, i.e., s = 〈v1,1, . . . , v1,|R1|, v2,1, . . . , v2,|R2|, . . . , vd,|Rd|〉.
It can be seen that

∑ℓ

k=1 u
k =

∑d

i=1 σ
i. Hence, ϕ(C ′) =

ϕ(C)+
∑ℓ

k=1 u
k. Therefore, according to Remark 16, C ′

belongs to C. ⊓⊔

Lemma 18 Let C be a local chessboard on Z
d and

let b ∈ B
d. Let C ∈ Cd

b . If C belongs to C, then

any C ′ ∈ Cd

b
belongs to C.
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Proof Let u ∈ U
d
⋆. From Lemma 15, the cube D such

that ϕ(D) = ϕ(C) + u also belongs to C. It may be
seen that, for any i in [1, d], ψ(D)i = ψ(C)i. Hence,

since C ∈ Cd
b , D ∈ Cd

b
. Thus, by Lemma 17, any C ′ ∈ Cd

b

belongs to C. ⊓⊔

Lemma 19 Let C be a local chessboard on Z
d, let b ∈

B
d and let C ∈ Cd

b . If C belongs to C, then any C ′ ∈
Cd \ [Cd

b ∪ Cd

b
] does not belong to C.

Proof Let C ′ ∈ Cd \ [Cd
b ∪ Cd

b
]. We set c ∈ B

d

such that, for any i ∈ [1, d], ci = 0 if ψ(C ′)i = bi
and ci = 1 otherwise. Let D ∈ Cd be defined by ϕ(D) =

ϕ(C ′) + c. For any i ∈ [1, d], ψ(D)i = [(ϕ(C ′)i + ci)
mod 2] = [(ψ(C ′)i + ci) mod 2] which, by definition

of ci, equals bi. Thus, D ∈ Cd
b . Therefore, according

to Lemma 17, D belongs to C. By Property 5, we
have D ∩ C ′ 6= ∅. Furthermore, there exist distinct i

and j in [1, d] such that ci = 0 and cj = 1 (otherwise, C ′

would belong to Cd
b ∪ Cd

b
). Thus, c /∈ U

d
⋆. Hence, by

Lemma 15, C ′ does not belong to C. ⊓⊔

From Property 12, Lemmas 17, 18 and 19, we

can establish the equivalence between global and local

chessboards.

Theorem 20 Let C be a set of d-cubes of Z
d. The

set C is a chessboard on Z
d if and only if C is a local

chessboard on Z
d.

Thus, to check whether a graph (Zd, Γ ) is a perfect

fusion grid it suffices to verify that it is induced by a
local chessboard. This can be done by independently

analyzing the neighborhood of each of its vertices.

4 Unicity theorem

We prove in this section one of the main result of
our paper. It states that the only PFGs which are

“between” Γ d
1 and Γ d

d are the perfect fusion grids.

Since any two perfect fusion grids are equivalent
up to a binary translation (Property 9), this result

establishes the uniqueness of the perfect fusion grid in

any dimension d ∈ N⋆.

Theorem 21 Let (Zd, Γ d) be a graph such that Γ d
1 ⊆

Γ d ⊆ Γ d
d . The pair (Zd, Γ d) is a PFG, if and only if it

is a perfect fusion grid on Z
d.

In other words, the perfect fusion grid is, in any

dimension, the only graph, “between” the direct and

indirect adjacencies, which verify the property that
any two neighboring regions can be merged through

their common neighborhood while preserving all other

regions.

We have seen that the perfect fusion grids are PFGs

between Γ d
1 and Γ d

d . Thus, thanks to Theorem 20, in
order to establish Theorem 21, it suffices to prove that

any PFG between Γ d
1 and Γ d

d is induced by a local

chessboard.

Important remark. In the following, we assume

that the graph (Zd, Γ d) is a PFG such that Γ d
1 ⊆ Γ d ⊆

Γ d
d . Furthermore, when no confusion may occur, the

graph (Zd, Γ d) is simply written Γ d.

In the case d = 1, Γ d = Γ 1
1 (since Γ 1

1 ⊆ Γ d ⊆ Γ 1
1 )

which obviously is a PFG.

In order to give an intuition of the proof of
Theorem 21 in arbitrary dimension, let us first establish

it (in a combinatorial manner) in the case d = 2. To

this end, as said above, we have to show that Γ 2 is
induced by a local chessboard on Z

2. Thus, we must

show that, for any x ∈ Z
d, there exists u ∈ U

2
⋆ such

that the graph induced by Γ 2(x) is equal to the graph
induced by C(u, x) ∪ Ĉ(u, x). Since Γ 2

1 ⊆ Γ 2, we know

that the edges depicted in bold Fig. 13a belong to Γ 2.

In this figure, the subgraph induced by {x8, x, x2, x4}
is isomorphic to GN, thus, since Γ 2 is a PFG, by
Theorem 2.ii, either (x2, x4) ∈ Γ 2 or (x2, x8) ∈ Γ 2.

We will consider here the case (x2, x4) ∈ Γ 2 (such as

depicted in Fig. 13b). However, the arguments given
below also hold true (up to a rotation of π/2) in

the case where (x2, x8) ∈ Γ 2. If (x4, x6) ∈ Γ 2, then

the subgraph induced by {x4, x6, x2, w} is isomorphic
to GN (where w is the point shown in Fig. 13b). Thus,

according to Theorem 2.ii, (x4, x6) /∈ Γ 2 since Γ 2

is a PFG (Fig. 13c). Using similar arguments (with

the point w′ shown in Fig. 13c), it can be deduced
that (x6, x8) ∈ Γ 2 and that (x8, x2) /∈ Γ 2 (Fig. 13d).

If (x, x5) ∈ Γ 2, then the subgraph of Γ 2 induced

by {x, x2, x5, x8} would be isomorphic to GN. Thus,
again by Theorem 2.ii, (x, x5) /∈ Γ 2. Using symmetric

arguments, we obtain (x, x1) /∈ Γ 2 (Fig. 13f). By

considering the points x4, x, x3, x5, it may be seen
that necessarily (x, x3) ∈ Γ 2 (otherwise the subgraph

of Γ 2 induced by {x4, x, x3, x5} is isomorphic to GN).

Using symmetric arguments we obtain (x, x7) ∈ Γ 2

(Fig. 13e). Hence, it can be seen that there exists u ∈ U
2
⋆

such that the neighborhood of x for Γ 2 is induced

by C(u, x)∪ Ĉ(u, x). Thus, Γ 2 is a perfect fusion graph

only if it is induced by a local chessboard on Z
2.

Property 22 For any x ∈ Z
d, there exists u ∈ U

d
⋆

such that C(u, x) and Ĉ(u, x) are the only two maximal

cliques for Γ d which contain x.

The following corollary follows straightforwardly from

Property 22 and, by the observations stated below

Theorem 21, it completes the proof of Theorem 21.
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x8 x4

x6 x5

x1 x2 x3

x7

x
x8 x4

x6 x5

x1 x2 x3

x7

w
x

(a) (b)

x8 x4

x6 x5

x1 x2 x3

x7

w′

x
x8 x4

x6 x5

x1 x2 x3

x7

x

(c) (d)

x
x8 x4

x6 x5

x1 x2 x3

x7

x
x8 x4

x6 x5

x1 x2 x3

x7

(e) (f)

Fig. 13 Configurations used to prove Theorem 21 when the

dimension d equals 2 [see text]. In each sub-figure the bold (resp
dashed) edges indicate the edges which belong (resp. do not
belong) to the perfect fusion graph Γ 2.

Corollary 23 The graph Γ d is induced by a local
chessboard on Z

d.

The remaining of this section is devoted to the proof
of Property 22. It is done by induction. We have seen

(above the statement of Property 22) that Property 22

holds true for d = 2.

Important remark: From now on, we consider

that d > 2 and we assume that Property 22 holds true

in dimension d− 1:

Induction Hypothesis 24 Let the pair (Zd−1, Γ d−1)

be a graph such that Γ d−1
1 ⊆ Γ d−1 ⊆ Γ d−1

d−1 .

If (Zd−1, Γ d−1) is a PFG, then, for any x ∈ Z
d−1,

there exists u ∈ U
d−1
⋆ such that C(u, x) and Ĉ(u, x) are

the only two maximal cliques for (Zd−1, Γ d−1) which

contain x.

Under the Induction Hypothesis 24, we will prove that
the following lemma holds true in dimension d. Then,

to complete the proof of Property 22, it suffices to

note that the four conditions of this lemma imply that
Property 22 is verified in dimension d.

Lemma 25 Assume that the Induction Hypothesis 24
holds true.

Then, for any x ∈ Z
d, there exist two d-cubes C and Ĉ

such that:

1. there exists u ∈ U
d
⋆ such that C = C(u, x), Ĉ =

Ĉ(u, x) and Γ d(x) ⊆ C ∪ Ĉ;
2. any y in C or in Ĉ belongs to Γ d(x);

3. for any two elements y, z which are both in C \ {x}
or both in Ĉ \ {x}, we have (y, z) ∈ Γ d; and

4. for any y ∈ C\{x} and z ∈ Ĉ\{x}, we have (y, z) /∈
Γ d.

The proof of Lemma 25 relies on the assumption that

the Induction Hypothesis 24 holds true. The following
lemma constitutes the fundamental tool in order to use

this assumption in dimension d. It uses the notion of a

section introduced in Section 2.

Lemma 26 Assume that the Induction Hypothesis 24
holds true.

Let x ∈ Z
d, i ∈ [1, d], u ∈ [Ui−1

⋆ × O × U
d−i
⋆ ] and P =

P (u, x).
Then, there exists v ∈ [Ui−1

⋆ × O × U
d−i
⋆ ] such

that C(v, x) and Ĉ(v, x) are the only two maximal

cliques, which contain x, for the subgraph of Γ d induced

by P .

Proof To prove Lemma 26, we are going to show that

the subgraph of Γ d induced by P is isomorphic to

a PFG (Zd−1, Γ d−1) such that Γ d−1
1 ⊆ Γ d ⊆ Γ d−1

d−1 .

Thus, this is sufficient to complete the proof since
it is a graph for which the Induction Hypothesis 24

holds true. To this end, let us consider the “natural”

bijection f between P and Z
d−1 which is defined, for

any y ∈ P , by: f(y) = (y1, . . . , yi−1, yi+1, . . . , yd). It

can be seen that, for any y and z in P , (y, z) ∈
Γ d

1 (resp. (y, z) ∈ Γ d
d ) if and only if (f(y), f(z)) ∈

Γ d−1
1 (resp. (f(y), f(z)) ∈ Γ d−1

d−1 ). Let us also consider

the relation Γ d−1 on Z
d−1 defined by (y, z) ∈ Γ d−1

if and only if (f−1(y), f−1(z)) ∈ Γ d. Since Γ d
1 ⊆

Γ d ⊆ Γ d
d , we deduce that Γ d−1

1 ⊆ Γ d−1 ⊆ Γ d−1
d−1 .

By Corollary 3, the subgraph of Γ d induced by P

is a PFG. Hence (Zd−1, Γ d−1) is a PFG. Thus, from

the Induction Hypothesis 24, there exists u′ ∈ U
d−1
⋆

such that C(u′, f(x)) and Ĉ(u′, f(x)) are the only two

maximal cliques for (Zd−1, Γ d−1) which contain f(x).

Let v be the element of [Ui−1
⋆ ×O×U

d−i
⋆ ] such that v =

(u′0, . . . , u
′
i−1, 0, u

′
i, . . . , u

′
d−1). From the very definition

of f , it can be seen that y ∈ C(v, x) (resp. y ∈
Ĉ(v, x)) if and only if f(y) ∈ C(u′, f(x)) (resp. f(y) ∈
Ĉ(u′, f(x))). Thus, the proof of Lemma 26 is complete.
⊓⊔

Let i ∈ [1, d], we denote by ui the element of U
d

such that (ui)i = 0 and (ui)j = 1 for any j ∈ [1, d]\{i}.
Thus, if x ∈ Z

d, then the section P (ui, x) is the set of
all points y such that yi = xi.

From Lemma 26, we can deduce that if we take

an arbitrary (d − 1)-section of Z
d, the neighborhood
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of a point x in this section can take #(d − 1) = 2d−2

configurations (since there are 2d−1 elements in U
d−1
⋆

and since C(u, x) ∪ Ĉ(u, x) = C(−u, x) ∪ Ĉ(−u, x)).
Let us now suppose that we know the neighborhood

of x in one given (d − 1)-section P (ui, x) of Z
d and

let us denote by #′(d − 1) the number of possible

configurations that can be taken by the neighborhood

of x in a distinct section P (uj , x) of Z
d. The squares in

light gray Figs. 14a and b indicate the only two possible

configurations of the neighborhood of x in P ((1, 0, 1), x)

whenever the neighborhood of x in P ((0, 1, 1), x) is the

one indicated by the cubes in dark gray. Thus, #′(2) =
#(2) = 2. In other words, on Z

3, having fixed the

neighborhood of x in one section does not decrease the

number of possible neighborhoods of x in other sections.
Surprisingly, in higher dimensions, this number #′(d−
1) of possible configurations remain unchanged: ∀d ≥ 3

we have #′(d−1) = 2. The following lemma allows us to
establish this number. Furthermore, Lemma 27 gives all

the possible neighborhood of x in P (u2, x), knowing the

neighborhood of x in P (u1, x). Note that Lemma 27 can

be easily generalized to any pair of (d−1)-sections, i.e.
when i and j can take any two distinct values in [1, d].

x x x
w y

z

(a) (b) (c)

Fig. 14 In each sub-figure, we assume that Z
3 is oriented

as shown in Fig. 9. (a,b) Illustration of Lemma 27: the two

possible configurations of the neighborhood of x in P ((1, 0, 1), x)
(light gray) having fixed the neighborhood of x in P ((0, 1, 1), x)
(dark gray). (c), Illustration of a 3D configuration used in

the proof of Lemma 25.1. We assume that x = (0, 0, 0).

We suppose also that v = (0, 1, 1), that v′ = (1, 0, 1) and
that z = (0,−1, 1). The 2-cubes represented in gray correspond
to C(v, x), Ĉ(v, x), C(v′, x) and Ĉ(v′, x).

Lemma 27 Let x ∈ Z
d. Let v (resp. v′) be the element

of [O×U
d−1
⋆ ] (resp. [U⋆ ×O×U

d−2
⋆ ]) such that C(v, x)

and Ĉ(v, x) (resp. C(v′, x) and Ĉ(v′, x)) are the only
two maximal cliques, which contains x, for the subgraph

of Γ d induced by P (u1, x) (resp. (P (u2, x), Γ d)).

Then, we have either vk = v′k for any k ∈ [3, d]

or vk = −v′k for any k ∈ [3, d].

Proof (by contradiction) Let us suppose that there

exist distinct i and j in [3, d] such that vi = v′i
and vj = −v′j . Remark that v′i 6= 0 and v′j 6= 0. Let y, z

and w be three elements of Z
d defined for any k ∈ [1, d]

by yk = xk + vk, zk = xk + v′k and wk = xk − v′k. Thus,

y ∈ C(v, x), z ∈ C(v′, x) and w ∈ Ĉ(v′, x). Thus, by the

hypothesis of Lemma 27, we have: y ∈ Γ d(x), z ∈ Γ d(x)

and w ∈ Γ d(x). Since yj = xj+vj = xj−v
′
j , zj = xj+v

′
j

and v′j 6= 0, we deduce that (y, z) /∈ Γ d
d . Furthermore,

since yi = zi = xi + v′i, wi = xi − v′i and v′i 6= 0,

we deduce that (w, y) and (w, z) do not belong to Γ d
d .

Therefore, Γ d ⊆ Γ d
d implies (y, z) /∈ Γ d, (w, y) /∈ Γ d

and (w, z) /∈ Γ d. From the underlined observations,

we deduce that {y, z, w} ⊆ Γ d(x) is made of three

connected components and thus, by Theorem 2.iii, that

(Zd, Γ d) is not a PFG, a contradiction. ⊓⊔

Proof (of Lemma 25.1, by contradiction) By

Lemma 26, there exists v (resp. v′) in [O × U
d−1
⋆ ]

(resp. [U⋆ × O × U
d−2
⋆ ]) such that C(v, x) and Ĉ(v, x)

(resp. C(v′, x) and Ĉ(v′, x)) are the only two maximal

cliques, which contain x, for the subgraph of Γ d induced

by P (u1, x) (resp. P (u2, x)). Fig. 14c provides an

illustration of this proof. By Lemma 27, we have either
vi = v′i for any i ∈ [3, d] or vi = −v′i for any i ∈ [3, d].

Without loss of generality, we will assume that the

former assertion is the one which holds true. Let u ∈
U

d
⋆ be defined by (v′1, v2, . . . , vd). Suppose that there

exists z ∈ Γ d(x) \ [C(u, x) ∪ Ĉ(u, x)]. Then, there exist

two distinct i and j in [1, d] such that zi = xi + ui

and zj = xj − uj (otherwise z would belong either

to C(u, x) or to Ĉ(u, x)). Let us distinguish the two

following cases.

1) Suppose that i 6= 2 and that j 6= 1 (as this is the case
in Fig. 14c where i = 3 and j = 2). Then, we define y

and w in Z
d by y = (x1, x2 + u2, . . . , xd + ud) and w =

(x1 − u1, x2, x3 − u3, . . . , xd − ud). Hence, y ∈ C(v, x)
and w ∈ Ĉ(v′, x). Since j 6= 1 and i 6= 2, yj = xj + uj

and wi = xi − ui. Since zj = xj − uj and zi = xi + ui,

we deduce that (z, y) /∈ Γ d
d and that (z, w) /∈ Γ d

d .
2) Suppose that i = 2 or that j = 1. Then, we define y

and w in Z
d by y = (x1, x2 − u2, . . . , xd − ud) and w =

(x1 + u1, x2, x3 + u3, . . . , xd + ud). Hence, y ∈ Ĉ(v, x)

and w ∈ C(v′, x). Since i and j are distinct, it can
be seen that i 6= 1 and j 6= 2. Thus, yi = xi − ui

and wj = xj + uj . Since zi = xi + ui and zj = xj − uj ,

we deduce that (y, z) /∈ Γ d
d and that (w, z) /∈ Γ d

d .
As Γ d ⊆ Γ d

d , in any case we have: (y, z) /∈ Γ d and

(w, z) /∈ Γ d. Since y ∈ C(v, x) ∪ Ĉ(v, x) and w ∈

C(v′, x) ∪ Ĉ(v′, x), by definition of v and v′, we have:

y ∈ Γ d(x) and w ∈ Γ d(x). In case 1), y3 = x3 + u3

whereas w3 = x3 − u3 and, in case 2), y3 = x3 − u3

whereas w3 = x3 + u3. Thus, in both cases, (w, y) /∈
Γ d

d . Hence, Γ d ⊆ Γ d
d implies (w, y) /∈ Γ d. From

the underlined relations, we deduce that {w, y, z} ⊆
Γ d(x) is made of three connected components. By

Theorem 2.iii, this constitutes a contradiction with the

fact that (Zd, Γ d) is a PFG. ⊓⊔
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To establish Lemma 25.2, we first consider the

points which are (d− 1)-adjacent to x.

Lemma 28 Assume that the Induction Hypothesis 24

holds true.

Let x ∈ Z
d. Let C and Ĉ be two d-cubes of Z

d which
verify the condition (1) of Lemma 25.

Then, any (d−1)-cube included in C or in Ĉ and which

contains x is a clique for Γ d.

Proof (by contradiction) In this proof and the

following ones, we only consider the d-cube C. Exactly

the same arguments hold for Ĉ. By Lemma 25.1, there
exists u ∈ U

d
⋆ such that C = C(u, x), Ĉ = Ĉ(u, x)

and Γ d(x) ⊆ C∪ Ĉ. Suppose that there exists a (d−1)-

cube of Z
d denoted by Cd−1 which is included in C,

which contains x and which is not a clique for Γ d. By

Remark 6.1, there exists v ∈ U
d such that Cd−1 =

C(v, x). By Remark 6.4, the dimension of v is (d − 1).
Let i be the unique index in [1, d] such that vi = 0.

By Lemma 26, there exists w ∈ U
i−1
⋆ × O × U

d−i
⋆ such

that C(w, x) and Ĉ(w, x) are the only two maximal

cliques which contain x for the subgraph of Γ d induced
by P (v, x). By Remark 7.2, Cd−1 is a subset of P (v, x).

Since Cd−1 is not a clique for (Zd, Γ d), we deduce

that v 6= w and v 6= −w. Thus, there exist distinct
indices j and k in [1, d]\{i} such that vj = wj and vk =

−wk. Let y ∈ Z
d be defined by yj = xj + wj , yk =

xk + wk and yℓ = xℓ for any index ℓ ∈ [1, d] \ {j, k}.
The point y belongs to C(w, x). Thus, (x, y) ∈ Γ d.

But, since Cd−1 ⊆ C(u, x), from Remark 6.3, we know

that uj = vj and uk = vk (as j, k ∈ [1, d] \ {i} and as vi

is the only null coordinate of v). Therefore, uj = wj

and uk = −wk. As yj = xj + wj = xj + uj and yk =

xk +wk = xk − uk, y /∈ C(u, x) and y /∈ Ĉ(u, x) which,

by Lemma 25.1, is a contradiction with the fact that Γ d

is a PFG. ⊓⊔

Proof (of Lemma 25.2) If x and y belong to a same

(d − 1)-cube the proof is established by Lemma 28.

Suppose now that they do not. By Lemma 25.1, there

exists u ∈ U
d
⋆ such that C = C(u, x), Ĉ = Ĉ(u, x)

and Γ d(x) ⊆ C ∪ Ĉ. Without loss of generality, we

suppose that y ∈ C. Then, y = (x1 + u1, . . . , xd + ud)

(see, Fig. 15a). Let z = (x1 + u1, . . . , xd−1 + ud−1, xd)
and w = (x1 + u1, . . . , xd−1 + ud−1, xd − ud). It may

be seen that (y, z) ∈ Γ d
1 and (w, z) ∈ Γ d

1 . Since Γ d
1 ⊆

Γ d, we have: (y, z) ∈ Γ d and (w, z) ∈ Γ d. We can also
observe that x and z are (d− 1)-adjacent and that z ∈
C. Therefore, by Lemma 28, we deduce (x, z) ∈ Γ d.

Clearly w /∈ C and w /∈ Ĉ. Thus, by the converse of
Lemma 25.1, (x,w) /∈ Γ d. Since wd = xd −ud and yd =

xd +ud, there is no d-cube that contains both w and y:

(w, y) /∈ Γ d
d . Thus, since Γ d ⊆ Γ d

d , (w, y) /∈ Γ d. From

the underlined relations, we deduce that {w, x, y} ⊆
Γ d(z). Furthermore, since Γ d is a PFG, {w, x, y}
contains at most two connected components. Thus,

from the underlined relations, we must have (x, y) ∈ Γ d.

⊓⊔

z
y

w

x

z

x

w y

(a) (b)

x
z

w
y

v

(c)

Fig. 15 (a,b,c) Illustrations of the configurations of the points
used in the proofs of Lemmas 25.2, 25.3 and 25.4. We assume
that Z

3 is oriented as shown in Fig. 9, that x = (0, 0, 0) and

that u = (1, 1, 1). In (b), we furthermore assume y = (0, 0, 1)
and z = (1, 1, 0), whereas in (c), we assume y = (1, 1, 0)
and z = (0, 0,−1).

Proof (of Lemma 25.3) Without loss of generality,
we suppose that y and z are both in C (see Fig. 15b).

By Lemma 25.1, there exists u ∈ U
d
⋆ such that C =

C(u, x), Ĉ = Ĉ(u, x) and Γ d(x) ⊆ C ∪ Ĉ. By
Lemma 25.2, y ∈ Γ d(x) and z ∈ Γ d(x). Let w ∈ Z

d such

that, for any i in [1, d], wi = xi − ui. It may be seen,

from the definition of Ĉ, that w ∈ Ĉ \ {x}. Therefore,
according to Lemma 25.2, (x,w) ∈ Γ d. Since, y and z

are in C \ {x} and since y 6= z, there exist distinct i

and j in [1, d] such that yi = xi + ui and zj = xj + uj .

As wi = xi−ui and wj = xj −uj , we deduce that there
is no d-cube that contains both w and y and there is no

d-cube that contains both w and z. Thus, neither (w, y)

nor (w, z) belongs to Γ d
d . Therefore, since Γ d ⊆

Γ d
d , we have (w, y) /∈ Γ d and (w, z) /∈ Γ d. From the

underlined relations, we deduce that {w, y, z} ⊆ Γ d(x).

Furthermore, since Γ d is a PFG, {w, y, z} contains
at most two connected components. Thus, from the

underlined relations, we must have (y, z) ∈ Γ d. ⊓⊔

Proof (of Lemma 25.4) If y and z are not d-adjacent
(i.e., (y, z) /∈ Γ d

d ), it is sufficient to note that Γ d ⊆ Γ d
d

to complete the proof. Suppose now that y and z

are d-adjacent (see Fig. 15c). By Lemma 25.1, there
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exists u ∈ U
d
⋆ such that C = C(u, x), Ĉ = Ĉ(u, x)

and Γ d(x) ⊆ C ∪ Ĉ. Since y ∈ C and y 6= x, there
exists i ∈ [1, d] such that yi = xi + ui. Since z ∈ Ĉ,

zi = xi or zi = xi − ui but, since y and z are d-

adjacent, zi = xi. Using the same arguments, we may
notice that there exists j 6= i such that zj = xj − uj

and yj = xj . We set w ∈ Z
d such that wi = xi + 2.ui

(which is also equal to yi +ui) and wk = yk for any k ∈
[1, d] \ {i}. We also set v ∈ Z

d such that vj = xj + uj

and vk = xk for any k ∈ [1, d] \ {j}. By the very

definition of C, we have v ∈ C, which, by Lemma 25.3,

implies (v, y) ∈ Γ d. It may be seen that (w, y) ∈ Γ d
1 .

Thus, since Γ d
1 ⊆ Γ d, we have (w, y) ∈ Γ d. As wi =

xi + 2.ui and vi = xi (since i 6= j), we deduce

that (v, w) /∈ Γ d
d . Therefore, since Γ d ⊆ Γ d

d , we
have (v, w) /∈ Γ d. With the same arguments, we obtain

the relation (w, z) /∈ Γ d. Furthermore, as vj = xj + uj

and zj = xj−uj , we have (v, z) /∈ Γ d
d . Hence, from Γ d ⊆

Γ d
d , we deduce (v, z) /∈ Γ d. If (y, z) ∈ Γ d, from the

underlined observations, we would have {v, w, z} ⊆
Γ d(y) and {v, w, z} would be made of three connected
components, which, by Theorem 2.iii, is a contradiction

with Γ d is a PFG. Thus, (y, z) /∈ Γ d. ⊓⊔

5 Line graphs

In image analysis, we are sometimes interested by
segmentations which do not consider graph vertices to

separate regions. Instead, a segmentation is considered

as a partition of the vertex set into connected classes.
In this case, the regions are the classes of the partition

and the separation between them is made of the edges

which link vertices belonging to distinct classes. For
instance, in Fig. 16a, the vertex set is partitioned

into three classes depicted with three different gray

levels. The set of edges depicted in bold represent the

separation between these three classes. In many cases,
this framework also falls in the scope of our study

thanks to the notion of a line graph, which is well-

known in graph theory (see e.g. [18]). In this section,
we recall the definition of a line graph and present three

properties which link line graphs, perfect fusion graphs

and perfect fusion grids.
Informally, the line graph of a graph G is a graph

whose vertex set corresponds to the edge set of G and

for which two vertices are adjacent if the corresponding

edges in G share a common vertex.

Definition 29 (line graph) Let (E,Γ ) be a graph.

The line graph of (E,Γ ) is the graph (E′, Γ ′) such
that E′ = {{x, y}, (x, y) ∈ Γ} and (u, v) belongs to Γ ′

whenever u ∈ E′, v ∈ E′, u 6= v and u ∩ v 6= ∅.
Let (E′, Γ ′) be a graph. We say that (E′, Γ ′) is a line

a

e

b

d f g
i j

c

h

ba
d e

f
i

j
g

h

c

(a) (b)

Fig. 16 (a): A graph (E,Γ ) and a partition of E into three
classes represented by distinct gray level. (b): The line graph
of (E,Γ ).

graph if there exists a graph (E,Γ ) such that (E′, Γ ′)

is isomorphic to the line graph of (E,Γ ).

For instance, the graph G′ (Fig. 16b) is the line

graph of G (Fig. 16a). Observe that the separation

made of the bold edges in G correspond to a separation
made of vertices (depicted in black in Fig. 16) in G′.

Therefore, by the means of line graphs, the framework

settled in this paper can be applied to separations made

of edges rather than vertices (under the restriction that
each connected component induced by the separating

set of edges is made of at least one edge).

Property 30 (from Property 29 in [3])

(i) Any line graph is a perfect fusion graph.
(ii) There exist perfect fusion graphs which are not line

graphs.

As an illustration, it can be verified that the graph in

Fig. 16 is indeed a perfect fusion graph. Examples of
perfect fusion graphs which are not line graphs can be

found in [3].

Property 31 Let b ∈ B
d. The perfect fusion grid (Zd, Λd

b)
is a line graph. More precisely, (Zd, Λd

b) is isomorphic

to the line graph of G = (C, Γ ) where C is the chessboard

Cd
b ∪C

d

b
and where Γ is the set of all pairs (C, Ĉ) ∈ C×C

such that C 6= Ĉ and C ∩ Ĉ 6= ∅.

Proof Let G′ = (E′, Γ ′) be the line graph of G. We
have to prove that G′ is isomorphic to (Zd, Λd

b). Since C
is a chessboard, by Theorem 20, for any point x ∈ Z

d,

there exists two d-cubes C and Ĉ of Z
d such that C

and Ĉ are the only two distinct elements of C which

contains x and such that C∩Ĉ = {x}. Let us define, for

any x ∈ Z
d, f(x) as the set {C, Ĉ} where C and Ĉ are

the two distinct elements of C such that C ∩ Ĉ = {x}.
Thus clearly, from the above remark, f is a bijection

from Z
d to E′. Then, in order to establish Property 31,

it suffices to prove that, for any x and y in Z
d, y ∈ Λd

b(x)
if and only if f(y) ∈ Γ ′(f(x)). Let x and y be any two

elements of Z
d.

1. Let us first suppose that y ∈ Λd
b(x). Then, by

definition of Λd
b , there exists a d-cube C ∈ C such
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that x and y belong to C. Thus, by definition

of f , there exist Ĉ ′ and Ĉ ′′ in C such that f(x) =
{C, Ĉ ′} and f(y) = {C, Ĉ ′′}. Hence, by definition

of Γ ′, f(y) ∈ Γ ′(f(x)).

2. Let us now suppose that f(y) ∈ Γ ′(f(x)). Then,
by definition of Γ ′, there exist three d-cubes C, Ĉ ′

and Ĉ ′′ in C such that f(x) = {C, Ĉ ′} and f(y) =

{C, Ĉ ′′}. By definition of f , {x} = C∩Ĉ ′ and {y} =
C ∩ Ĉ ′′. Thus x and y belong to C. Since C ∈ C and

since C = Cd
b ∪ Cd

b
, by definition of Λd

b , we deduce

that y ∈ Λd
b(x). ⊓⊔

(a) (b)

Fig. 17 Illustration of Property 31 [see text].

Property 31 is illustrated in Fig. 17. The gray
squares in Fig. 17a represent a sample of a chessboard

on Z
2. The graph represented in bold in Fig. 17a

correspond to the graph G associated to the depicted
chessboard and defined as in Property 31. It can be

verified that the perfect fusion grid, associated to the

depicted chessboard, is indeed isomorphic to the line

graph of the graph in bold. The case of Z
3 is illustrated

in the same manner in Fig. 17b. Observe also that in

the case of Z
2, the graph G is isomorphic to the graph

induced by the direct adjacency relation Γ 2
1 . A similar

statement is not true on Z
3. Indeed, on Z

3, any vertex

of the graph G (defined as in Property 31) is adjacent to

exactly eight vertices (see for instance Fig. 17b) whereas
in the graph (Z3, Γ 3

1 ) any vertex is adjacent to exactly

six vertices (since each element of Z
3 is included in

exactly six distinct 1-cubes).

Theorem 21 establishes that the only PFGs which
are “between” the direct and indirect adjacencies are

the perfect fusion grids. Furthermore, as stated by the

following corollary, the perfect fusion grids are also,
in any dimension, the only line graphs “between” the

direct and indirect adjacencies.

Corollary 32 Let (Zd, Γ d) be a graph such that Γ d
1 ⊆

Γ d ⊆ Γ d
d . The pair (Zd, Γ d) is a line graph, if and only

if it is a perfect fusion grid on Z
d.

Proof If (Zd, Γ d) is a perfect fusion grid on Z
d, then,

by Property 31, it is a line graph.
Conversely, if (Zd, Γ d) is a line graph, then by Prop-

erty 30, it is a perfect fusion graph and, thus, by The-

orem 21, it is a perfect fusion grid. ⊓⊔

Conclusion

In [3], we set up a theoretical framework for the study of

region merging in graphs. In particular, we introduced

the perfect fusion graphs as the graph in which, for
any set of regions (separated by a set of vertices),

any two neighboring regions can be merged through

their common neighborhood while preserving all other
regions. This class of graphs permits, in particular, to

rigorously define hierarchical schemes based on region

merging and to implement them in a straightforward

manner.

The graphs which are the most frequently used in

image analysis, namely the direct and indirect adja-
cency graphs, are not perfect fusion graphs. Therefore,

we introduced in [3] the perfect fusion grid, a regular

graph which is indeed a perfect fusion graph and which
is between the direct and indirect adjacency relations.

In this paper, we proved that the perfect fusion grid
is the only such graph on Z

d. This means that the per-

fect fusion grid is, in any dimension d ∈ N⋆, the only

graph, “between” the direct and indirect adjacencies,

which verify the property that any two neighboring re-
gions can be merged through their common neighbor-

hood while preserving all other regions.

In digital topology, there exists one result of unicity

of an adjacency relation in arbitrary dimension. It is

due to Kong [19] and, informally, it states that the only
Alexandroff topology on Z

d “between the direct and the

indirect adjacency relations” is the topology proposed

by Khalimsky [20].
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