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In this paper we study the Coupling Darcy-Stokes Systems. We establish a coupled variational formulation with the velocity and the pressure. The velocity is approximated with curl conforming finite elements and the pressure with standard continuous elements. We establish optimal a priori and a posteriori error estimates. We conclude our paper with some numerical simulations.

Introduction.

The numerical simulation of underground flows can be treated as cracks in porous media. Indeed, the flow of a viscous incompressible fluid in a porous medium is usually modelled by Darcy equations and, when the thickness of the crack is too large to be neglected, the Stokes system must be considered in the crack and coupled with these equations. In this work, we consider the following system already studied in [START_REF] Bernardi | Pironneau Coupling Darcy and Stokes Equations for the porous media with craks[END_REF], [START_REF] Bernardi | Mghazli Mortar finite element discretization for the flow in a non homogeneous porous medium[END_REF] and [START_REF] Bernardi | A new finite element discretization of the Stokes problem coupled with Darcy equations[END_REF]: Let Ω and Ω 𝐹 be bounded connected open domains in IR 3 with Lipschitz-continuous boundaries, such that Ω𝐹 is contained in Ω. For simplicity, we also assume that Ω 𝐹 is simply connected and has a connected boundary. We set Ω 𝑃 = Ω ∖ Ω 𝐹 and we denote by Γ = ∂Ω 𝐹 the interface between Ω 𝐹 and Ω 𝑃 . Let also n stand for the unit outward normal vector to Ω 𝑃 on its boundary ∂Ω 𝑃 . We consider the following system of equations:

(𝑃 ) ⎧              ⎨              ⎩ 𝜇u + ∇𝑝 = f in Ω 𝑃 -𝜈Δu + ∇𝑝 = f in Ω 𝐹 div u = 0 in Ω 𝑃 ∪ Ω 𝐹 u.n = 0 on ∂Ω (u |Ω 𝑃 -u |Ω 𝐹 ).n = 0 on Γ 𝑝 |Ω 𝑃 -𝑝 |Ω 𝐹 = 0 on Γ curl u |Ω 𝐹 × n = 0 on Γ (1.1)
where u is the velocity, 𝑝 the pressure, f the density of body forces and 𝜈 and 𝜇 positive constants.

For the Vorticity-velocity-pressure formulation for the Stokes problem, we refer to [START_REF] Dubois | Vorticity-velocity-pressure formulation for the Stokes problem[END_REF], [START_REF] Dubois | Vorticity-velocity-pressure and stream function-vorticity formulations for the Stokes problem[END_REF] and [START_REF] Salmon | Développement numérique de la formulation tourbillon-vitesse-pression pour le problème de Stokes[END_REF]. For the coupling problem, we cite the works [START_REF] Arbogast | A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium[END_REF], [START_REF] Badea | Quarteroni Mathematical analysis of the Navier-Stokes/Darcy coupling[END_REF], [START_REF] Discacciati | Quarteroni Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations[END_REF], [START_REF] Discacciati | Quarteroni Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations[END_REF], [START_REF] Mu | A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow[END_REF] and [START_REF] Rivière | Yotov Locally conservative coupling of Stokes and Darcy flows[END_REF]. In [START_REF] Abboud | A priori and a posteriori estimates for three dimentional Stokes equations with non standard boundary conditions[END_REF] and [START_REF] Chami | A posteriori error estimators for the fully discrete time dependent Stokes problem with some different boundary conditions[END_REF], we treat the Stokes problem with non-standard boundary conditions and we introduce velocity-pressure weak formulation.

In [START_REF] Bernardi | Pironneau Coupling Darcy and Stokes Equations for the porous media with craks[END_REF], [START_REF] Bernardi | Mghazli Mortar finite element discretization for the flow in a non homogeneous porous medium[END_REF] and [START_REF] Bernardi | A new finite element discretization of the Stokes problem coupled with Darcy equations[END_REF], the basic idea consists in introducing the vorticity w = curl u as a new unknown on the fluid domain Ω 𝐹 . However, we treat in this work the same systems with the unknowns u and 𝑝 without introducing the vorticity w. Since, we can discretize the pressure and the velocity independently without a discrete inf-sup condition to obtain matrix systems with an optimal dimension and optimal time of resolution.

The outline of the paper is as follows:

• In Section 2, we introduce the problem, establish a decoupled variational formulation and prove its wellposedness. • In section 3, we introduce the finite elements and a fully discrete system using the curl conforming finite elements for the velocity and the standard continuous elements for the pressure. • We prove the a priori and a posteriori estimates in sections 4 and 5, respectively.

• Section 6 is devoted to numerical experiments wich confirm the theoretical results.

Analysis of the model

In all the paper, we suppose that f ∈ 𝐿 2 (Ω) 3 and we denote by 𝐶 and 𝑐 generic positive constants.

In order to write the variational formulation of the previous problem, we introduce the following spaces:

𝑊 𝑚,𝑝 (Ω) = {v ∈ 𝐿 𝑝 (Ω) 3 , ∂ 𝛼 v ∈ 𝐿 𝑝 (Ω) 3 , ∀ | 𝛼 |≤ 𝑚}, 𝐻 𝑚 (Ω) = 𝑊 𝑚,2 (Ω),
equipped with the undermentionned semi-norm and norm:

| v | 𝑚,𝑝,Ω = ⎛ ⎝ ∑ |𝛼|=𝑚 ∫ Ω | ∂ 𝛼 v(𝑥) | 𝑝 𝑑𝑥 ⎞ ⎠ 1/𝑝 and ∥ v ∥ 𝑚,𝑝,Ω = ⎛ ⎝ ∑ 𝑘≤𝑚 | v | 𝑝 𝑘,𝑝,Ω ⎞ ⎠ 1/𝑝
As usual, we shall omit 𝑝 when 𝑝 = 2 and denote by (⋅, ⋅) the scalar product of 𝐿 2 (Ω). Also, recall the familiar notation:

𝐻 1 0 (Ω) = {v ∈ 𝐻 1 (Ω); v = 0 on ∂Ω}, with the Poincaré inequality ∀ v ∈ 𝐻 1 0 (Ω), ||v|| 0,Ω ≤ 𝐶|v| 1,Ω . (2.1)
Finally, we introduce the spaces:

𝐻(div, Ω) = {v ∈ 𝐿 2 (Ω) 3 , div v ∈ 𝐿 2 (Ω)}, 𝐻 0 (div, Ω) = {v ∈ 𝐻(div, Ω), v ⋅ n = 0 on ∂Ω}, 𝐻(curl, Ω) = {v ∈ 𝐿 2 (Ω) 3 , curl v ∈ 𝐿 2 (Ω) 3 }, 𝐻 0 (curl, Ω) = {v ∈ 𝐻(curl, Ω), v × n = 0 on ∂Ω},
normed respectively by:

∥ v ∥ 𝐻(div,Ω) = ( ∥ v ∥ 2 0,Ω + ∥ div v ∥ 2 0,Ω ) 1/2 ,
and

∥ v ∥ 𝐻(curl,Ω) = ( ∥ v ∥ 2 0,Ω + ∥ curl v ∥ 2 0,Ω ) 1/2 .
We recall that the trace operator: v → v.n is continuous from 𝐻(div, Ω) onto 𝐻 -1/2 (∂Ω) and the jump (v| Ω𝑃 -v| Ω𝐹 ).n vanishes on Γ. We recall an important lemma which will be useful in the rest of the paper:

Lemma 2.1. There exists a unique solution w in 𝐻 1 (Ω)/IR such that

(∇w, ∇v) = (f , ∇v), ∀ v ∈ 𝐻 1 (Ω)/IR,
and there exists a positive constant 𝐶 such that

∥ w ∥ 1,Ω ≤ 𝐶 ∥ f ∥ 0,Ω .
For the following regularity theorem, we refer to Nedelec [START_REF] Nedelec | Eléments finis mixtes incompressibles pour l'équation de Stokes dans IR 3[END_REF].

Theorem 2.2. All functions v ∈ 𝐿 2 (Ω 𝐹 ) 3 satisfying:

div v = 0, curl v ∈ 𝐿 2 (Ω 𝐹 ) 3 , v.n = 0 on Γ, verify ||v|| 0,Ω𝐹 ≤ 𝐶|| curl v|| 0,Ω𝐹
If Ω 𝐹 is convex, v belongs to 𝐻 1 (Ω 𝐹 ) and we have ||v|| 1,Ω𝐹 ≤ 𝐶||curl v|| 0,Ω𝐹 .

We have also from [START_REF] Bernardi | Pironneau Coupling Darcy and Stokes Equations for the porous media with craks[END_REF] (page 10 lemma 2.2) the next lemma:

Lemma 2.3. For all functions v ∈ 𝐿 2 (Ω) 3 satisfying:

curl v |Ω 𝐹 ∈ 𝐿 2 (Ω 𝐹 ) 3 , div v = 0 in Ω, v.n = 0 on ∂Ω
there exist a constant 𝛼 0 such that:

∥ v ∥ 0,Ω𝐹 ≤ 𝛼 0 ( ∥ v ∥ 2 0,Ω𝑃 + ∥ curl v ∥ 2 0,Ω𝐹 ) 1/2 .
In order to give the variational formulation of the problem (𝑃 ), we introduce the space:

𝑋 = {v ∈ 𝐿 2 (Ω) 3 , curl v |Ω 𝐹 ∈ 𝐿 2 (Ω 𝐹 ) 3 },
provided with the norm

∥ v ∥ 𝑋 = ( ||v|| 2 0,Ω + ∥ curl v ∥ 2 0,Ω𝐹 ) 1/2 .
We consider the following weak variational formulation, denoted by (𝑉 ): 

Find u ∈ 𝑋 and 𝑝 ∈ 𝐻 1 (Ω)/IR such that 𝜇(u, v) Ω𝑃 + 𝜈 (curl u, curl v) Ω𝐹 + (∇𝑝, v) = (f , v), ∀ v ∈ 𝑋 (2.2) (∇𝑞, u) = 0, ∀ 𝑞 ∈ 𝐻 1 (Ω)
𝜇(u, v) Ω𝑃 + 𝜈(curl u, curl v) Ω𝐹 = (f , v), ∀ v ∈ 𝑈 (2.4) Find 𝑝 ∈ 𝐻 1 (Ω)/IR such that 𝜇(u, ∇𝑞) Ω𝑃 + (∇𝑝, ∇𝑞) = (f , ∇𝑞), ∀ 𝑞 ∈ 𝐻 1 (Ω)/IR. (2.5)
Furthermore, there exists a unique solution and we have the following bounds

||u|| 0,Ω𝑃 + ||curl u|| 0,Ω𝐹 ≤ 𝐶 1 ||f || 0,Ω , |𝑝| 1,Ω ≤ 𝐶 2 ||f || 0,Ω . Proof:
The equivalence of the two problems comes from the fact that every element v ∈ 𝑋 can be written as v = w + ∇𝑞 where w ∈ 𝑈 and 𝑞 ∈ 𝐻 1 (Ω)/IR. The Lax-Milgram theorem gives the existence and the uniqueness of the solution of (2.4). Having the velocity, the Lax-Milgram theorem gives the existence and the uniqueness of the solution of (2.5). We obtain the inequalities by first taking v = u in the equation (2.4), next by taking 𝑞 = 𝑝 in the equation (2.5). □

We denote by (𝑉 1 ) the problem defined by (2.4) and (2.5). Then, it is easy to show that (𝑉 1 ) is equivalent to the following problem denoted (𝑉 2 ):

Find u ∈ 𝑋, 𝑝 ∈ 𝐻 1 (Ω)/IR such that 𝜇(u, v) Ω𝑃 + 𝜈(curl u, curl v) Ω𝐹 + (∇𝑝, v) = (f , v), ∀ v ∈ 𝑋 (2.6) -𝜇(u, ∇𝑞) Ω𝐹 + (∇𝑝, ∇𝑞) = (f , ∇𝑞), ∀ 𝑞 ∈ 𝐻 1 (Ω)/IR.
(2.7)

Finite element discretization

In what follows and for simplicity, we make the further assumption that both Ω and Ω 𝐹 are polyhedra. We introduce a regular family of triangulation (𝜏 ℎ ) ℎ in the sense that:

• for each ℎ, Ω is the union of all elements of 𝜏 ℎ ;

• for each ℎ, the intersection of two different elements of 𝜏 ℎ , if not empty, is a corner, a whole edge or a whole face of both of them;

• the ratio of the diameter ℎ 𝜅 of an element 𝜅 in 𝜏 ℎ to the diameter of its inscribed sphere is bounded by a constant independent of 𝜅 and ℎ;

As usual, ℎ denotes the maximum of the diameters of the elements of 𝜏 ℎ . We denote by 𝜏 𝐹 ℎ (resp. 𝜏 𝑃 ℎ ) the set of elements 𝜅 of 𝜏 ℎ which are contained in Ω 𝐹 (resp. Ω 𝑃 ).

Next, for each 𝜅 in 𝜏 ℎ , we introduce the spaces IP 0 (𝜅) of the restrictions to 𝜅 of constant functions on IR 3 , IP 1 (𝜅) of the restrictions to 𝜅 of affine functions on IR and the space IP 𝐾 (𝜅) of the restrictions to 𝜅 of polynomials v of the form:

v(x) = a + b × x, a ∈ IR 3 , b ∈ IR 3 .
The space IP 𝐾 (𝜅) and the corresponding finite elements are studied in [START_REF]Nedelec Mixed finite element in IR 3[END_REF]. Their degrees of freedom are the average flux along the edges ∫ 𝑙 (v.t)𝑑𝑙, for the six edges 𝑙 of 𝜅, t is the direction vector of 𝑙.

Hence, we associate the operator 𝑟 𝜅 where 𝑟 𝜅 (u) is the unique polynomial of IP 𝐾 that has the same flux along the edges as u. We define also the operator 𝐼 𝜅 where 𝐼 𝜅 (𝑞) is the unique polynomial of IP 1 (𝜅) that has the same values on the vertex of 𝜅 as 𝑞. We have for all 𝜅 ∈ 𝜏 ℎ :

𝑟 𝜅 (∇𝑞) = ∇𝐼 𝜅 (𝑞) ∀𝑞 ∈ 𝑊 2,𝑡 (𝜅) for some 𝑡 > 2.
Next, let us introduce the discrete spaces:

𝑋 ℎ = {u ℎ ∈ 𝑋; u ℎ| 𝜅 ∈ IP 𝐾 (𝜅), ∀ 𝜅 ∈ 𝜏 ℎ }, ( 3.1 
)

𝑄 ℎ = {𝑞 ℎ ∈ 𝐶 0 (Ω); 𝑞 ℎ| 𝜅 ∈ IP 1 (𝜅), ∀ 𝜅 ∈ 𝜏 ℎ }, ( 3.2) 
With these spaces, the finite dimensional analogues of 𝑈 is:

𝑈 ℎ = {v ℎ ∈ 𝑋 ℎ ; (∇𝑞 ℎ , v ℎ ) = 0, ∀ 𝑞 ℎ ∈ 𝑄 ℎ },
We define the interpolation operators

𝑟 ℎ from 𝐻 1 (Ω) 3 onto 𝑋 ℎ , 𝐼 ℎ from 𝐻 2 (Ω) onto 𝑄 ℎ by 𝑟 ℎ 𝑢 = 𝑟 𝜅 (𝑢) on 𝜅, ∀𝜅 ∈ 𝜏 ℎ (similarly for 𝐼 ℎ ).
We have the following result:

Theorem 3.1. Assume that 𝜏 ℎ is regular family of triangulations. We have:

∥ u -𝑟 ℎ u ∥ 0,Ω +ℎ ∥ curl (u -𝑟 ℎ u) ∥ 0,Ω ≤ 𝐶ℎ | u | 1,𝑡,Ω , ∀ u ∈ 𝑊 1,𝑡 (Ω) 3 , for some 𝑡 > 2.
Moreover, when u ∈ 𝐻 2 (Ω) 3 , we have:

∥ u -𝑟 ℎ u ∥ 0,Ω ≤ 𝐶ℎ 2 | u | 2,Ω and ∥ curl (u -𝑟 ℎ u) ∥ 0,Ω ≤ 𝐶ℎ | u | 2,Ω Theorem 3.2.
Let Ω be a polyhedron and Ω 𝐹 a convex polyhedron. Let 𝜏 ℎ be a uniformly regular family of triangulation of Ω. We have:

||u ℎ || 0,Ω𝐹 ≤ 𝛼 0 ( ||u ℎ || 2 0,Ω𝑃 + ||curl u ℎ || 2 0,Ω𝐹 ) 1/2 , ∀u ℎ ∈ 𝑈 ℎ (3.3)
Proof: The inequality (3.3) is valid for every v ∈ 𝑈 . Let Ω 𝐹 be convex, for every function u ℎ in 𝑈 ℎ , we consider the Dirichlet problem:

(∇𝑧, ∇𝜇) Ω𝐹 = (u ℎ , ∇𝜇) Ω𝐹 ∀𝜇 ∈ 𝐻 1 (Ω 𝐹 )/IR.
The difference w = u ℎ -∇𝑧 belongs to the space

𝑈 Ω𝐹 = {v ∈ 𝐻(curl, Ω 𝐹 ); (v, ∇𝑞) Ω𝐹 = 0 ∀𝑞 ∈ 𝐻 1 (Ω 𝐹 )/IR},
and curl w = curl u ℎ . It follows from theorem 2.2 that

||w|| 1,Ω𝐹 ≤ 𝐶 1 || curl w|| 0,Ω𝐹 .
Therefore, as curl u ℎ ∈ ̷ L ∞ (Ω) 3 , we have (see Nedelec [[17], [START_REF] Nedelec | Eléments finis mixtes incompressibles pour l'équation de Stokes dans IR 3[END_REF]]) for 𝑠 > 2 :

||w|| 1,𝑠,Ω𝐹 ≤ 𝐶 2 || curl u ℎ || 0,𝑠,Ω𝐹 . and ||𝑟 ℎ w -w|| 0,Ω 𝐹 ≤ 𝐶 3 || curl u ℎ || 0,Ω 𝐹 .
Then, we can apply the interpolation operator 𝑟 ℎ to w, and u ℎ splits into:

u ℎ = 𝑟 ℎ w + ∇𝑧 ℎ with 𝑧 ℎ ∈ 𝑄 ℎ . Hence ||u ℎ || 0,Ω 𝐹 ≤ ||𝑟 ℎ w -w|| 0,Ω 𝐹 + ||w|| 0,Ω 𝐹 + ||∇𝑧 ℎ || 0,Ω 𝐹 .
Since on one hand ||w -𝑟 ℎ w|| 0,Ω𝐹 ≤ 𝐶 3 || curl u ℎ || 0,Ω𝐹 , and on the other hand

||w|| 0,Ω𝐹 ≤ ||w|| 1,Ω𝐹 ≤ 𝐶 1 || curl u ℎ || 0,Ω𝐹 .
We see that it suffices to estimate ||∇𝑧 ℎ || 0,Ω𝐹 . For all 𝜇 ℎ ∈ 𝑄 ℎ we have:

(∇𝑧 ℎ , ∇𝜇 ℎ ) Ω𝐹 = (u ℎ -𝑟 ℎ w, ∇𝜇 ℎ ) Ω𝐹 = (u ℎ , ∇𝜇 ℎ ) Ω𝐹 + (w -𝑟 ℎ w, ∇𝜇 ℎ ) Ω𝐹 = -(u ℎ , ∇𝜇 ℎ ) Ω𝑃 + (w -𝑟 ℎ w, ∇𝜇 ℎ ) Ω𝐹 , ≤ ||u ℎ || 0,Ω𝑃 ||∇𝜇 ℎ || 0,Ω𝑃 + 𝐶 3 || curl u ℎ || 0,Ω𝐹 ||∇𝜇 ℎ || 0,Ω𝐹 We choose 𝜇 ℎ ∈ 𝑄 ℎ such that 𝜇 ℎ | Ω𝐹 = 𝑧 ℎ | Ω𝐹 and 𝜇 ℎ | ∂Ω = 0,
and we obtain:

||∇𝜇 ℎ || 0,Ω𝑃 ≤ 𝑐 1 ||𝑧 ℎ || 1/2,Γ ≤ 𝑐 2 ||∇𝑧 ℎ || 0,Ω𝐹 We deduce ||∇𝑧 ℎ || 0,Ω 𝐹 ≤ 𝐶 ( ||u ℎ || 0,Ω 𝑃 + || curl u ℎ || 0,Ω 𝐹 )
and finally the result. □

We discretize (𝑉 ) by: Find u ℎ ∈ 𝑈 ℎ and 𝑝 ℎ ∈ 𝑄 ℎ /IR such that

𝜇(u ℎ , v ℎ ) Ω 𝑃 + 𝜈(curl u ℎ , curl v ℎ ) Ω 𝐹 + (∇𝑝 ℎ , v ℎ ) = (f , v ℎ ) ∀ v ℎ ∈ 𝑋 ℎ . (3.4)
As in the continuous way, the last problem can be splited to

Find u ℎ ∈ 𝑈 ℎ such that 𝜇(u ℎ , v ℎ ) Ω𝑃 + 𝜈(curl u ℎ , curl v ℎ ) Ω𝐹 = (f , v ℎ ), ∀ v ℎ ∈ 𝑈 ℎ , (3.5) Find 𝑝 ℎ ∈ 𝑄 ℎ /IR such that 𝜇(u ℎ , ∇𝑞 ℎ ) Ω𝑃 + (∇𝑝 ℎ , ∇𝑞 ℎ ) = (f , ∇𝑞 ℎ ), ∀ 𝑞 ℎ ∈ 𝑄 ℎ /IR. (3.6)
Let Ω 𝐹 be convex, it is easy to show, using the theorem 3.2, that these two last discrete problems have a unique solution and we have:

||u ℎ || 0,Ω𝑃 + ||curl u ℎ || 0,Ω𝐹 ≤ 𝐶 3 ||f || 0,Ω and |𝑝 ℎ | 1,Ω ≤ 𝐶 4 ||f || 0,Ω .
It is obvious that the last problem is equivalent to:

Find u ℎ ∈ 𝑈 ℎ and 𝑝 ℎ ∈ 𝑄 ℎ /IR such that 𝜇(u ℎ , v ℎ ) Ω𝑃 + 𝜈(curl u ℎ , curl v ℎ ) Ω𝐹 + (∇𝑝 ℎ , v ℎ ) = (f , v ℎ ), ∀ v ℎ ∈ 𝑋 ℎ , (3.7) Find 𝑝 ℎ ∈ 𝑄 ℎ /IR such that -𝜇(u ℎ , ∇𝑞 ℎ ) Ω𝐹 + (∇𝑝 ℎ , ∇𝑞 ℎ ) = (f , ∇𝑞 ℎ ), ∀ 𝑞 ℎ ∈ 𝑄 ℎ /IR. (3.8)

A priori error analysis

In this section, we will establish the error estimates for the pressure and the velocity. First of all, we consider the quantity u ℎ -𝑟 ℎ u and we consider the finite dimensional problem: Find 𝜆 ℎ ∈ 𝑄 ℎ /IR such that

∀𝑞 ℎ ∈ 𝑄 ℎ /IR, ∫ Ω ∇𝜆 ℎ ∇𝑞 ℎ = ∫ Ω (u ℎ -𝑟 ℎ u)∇𝑞 ℎ
which admits a unique solution 𝜆 ℎ such that w ℎ = (u ℎ -𝑟 ℎ u) -∇𝜆 ℎ is in the space 𝑈 ℎ with curl (u ℎ -𝑟 ℎ u) = curl w ℎ . Furthermore we consider, for all 𝑞 ℎ ∈ 𝑄 ℎ /IR, the relation

∫ Ω ∇𝜆 ℎ ∇𝑞 ℎ = ∫ Ω (u ℎ -𝑟 ℎ u)∇𝑞 ℎ = - ∫ Ω (𝑟 ℎ u -u)∇𝑞 ℎ
which gives by taking 𝑞 ℎ = 𝜆 ℎ and supposing that u ∈ 𝐻 2 (Ω) 3 :

|𝜆 ℎ | 1,Ω ≤ 𝐶 ℎ 2 ||u|| 2,Ω
To obtain the a priori error estimate for the velocity, it suffices to show an error estimate of w ℎ and we conclude an error estimate of u ∈ 𝐻 2 (Ω) 3 by using the theorem 3.2. Let Ω 𝐹 be convex. For all u ℎ ∈ 𝑈 ℎ , we have: 

||u -u ℎ || 2 𝑋 ≤ ||u -𝑟 ℎ u|| 2 0,Ω + ||𝑟 ℎ u -u ℎ || 2 0,Ω + || curl (u -𝑟 ℎ u)|| 2 0,Ω𝐹 + || curl (𝑟 ℎ u -u ℎ )|| 2 0,Ω𝐹 ≤ 𝐶 1 (𝑢, Ω) ( ℎ 2 + ||𝑟 ℎ u -u ℎ || 2 0,Ω + || curl (𝑟 ℎ u -u ℎ )|| 2 0,Ω 𝐹 ) ≤ 𝐶 2 (𝑢, Ω) ( ℎ 2 + ||∇𝜆 ℎ || 2 0,Ω + ||w ℎ || 2 0,Ω + || curl w ℎ || 2 0,Ω𝐹 ) ≤ 𝐶 3 (𝑢, Ω) ( ℎ 2 + ||∇𝜆 ℎ || 2 0,Ω + ||w ℎ || 2 0,Ω𝑃 + || curl w ℎ || 2 0,Ω𝐹 ) (4 
𝜇 ∫ Ω𝑃 (u -u ℎ )v ℎ + 𝜈 ∫ Ω𝐹 curl (u -u ℎ ) curl v ℎ + ∫ Ω ∇(𝑝 -𝑝 ℎ )v ℎ = 0
We insert ±𝑟 ℎ u in the first and the second terms, ±𝐼 ℎ 𝑝 in the third term and we obtain:

𝜇 ∫ Ω 𝑃 (𝑟 ℎ u -u ℎ , v ℎ ) + 𝜈 ∫ Ω 𝐹 curl (𝑟 ℎ u -u ℎ ) curl v ℎ = 𝜇(𝑟 ℎ u -u, v ℎ ) Ω𝑃 + 𝜈(curl (𝑟 ℎ u -u ℎ ), curl v ℎ ) Ω𝐹 -(∇(𝑝 -𝐼 ℎ 𝑝), v ℎ ) -(∇(𝐼 ℎ 𝑝 -𝑝 ℎ ), v ℎ )
We replace u ℎ -𝑟 ℎ u = ∇𝜆 ℎ + w ℎ and we choose v ℎ = w ℎ to obtain:

𝜇||w ℎ || 2 0,Ω𝑃 + 𝜈|| curl w ℎ || 2 0,Ω𝐹 = -𝜇 ∫ Ω 𝑃 ∇𝜆 ℎ w ℎ + 𝜇(𝑟 ℎ u -u, w ℎ ) Ω𝑃 + 𝜈(curl (𝑟 ℎ u -u ℎ ), curl w ℎ ) Ω𝐹 -(∇(𝑝 -𝐼 ℎ 𝑝), w ℎ )
By supposing that 𝑝 ∈ 𝐻 2 (Ω) and u ∈ 𝐻 2 (Ω) 3 , we deduce using the properties of 𝑟 ℎ and 𝐼 ℎ , the formula

𝑎.𝑏 ≤ 1 2𝜀 𝑎 2 + 1 2
𝜀𝑏 2 with a suitable choice of 𝜀 and the previous upper bound of 𝜆:

𝜇||w ℎ || 2 0,Ω𝑃 + 𝜈|| curl w ℎ || 2 0,Ω𝐹 ≤ 𝐶(Ω)ℎ 2 (||u|| 2 2,Ω + ||𝑝|| 2 2,Ω
) Now, we will show an estimate for the pressure. We subtract the equation (2.5) with 𝑞 = 𝑞 ℎ ∈ 𝑄 ℎ /IR from the equation (3.6) to get

𝜇 ∫ Ω 𝑃 (u -u ℎ )∇𝑞 ℎ + ∫ Ω ∇(𝑝 -𝑝 ℎ )∇𝑞 ℎ = 0
We insert ±𝐼 ℎ 𝑝 in the second term and we choose 𝑞 ℎ = 𝑝 ℎ -𝐼 ℎ 𝑝 to obtain

|𝑝 ℎ -𝐼 ℎ 𝑝| 1,Ω ≤ 𝜇||(u -u ℎ )|| 0,Ω𝑃 + |𝑝 -𝐼 ℎ 𝑝| 1,Ω
We deduce the error estimate: 

|𝑝 -𝑝 ℎ | 1,Ω ≤ |𝑝 -𝐼 ℎ 𝑝| 1,Ω + |𝐼 ℎ 𝑝 -𝑝 ℎ | 1,Ω ≤ 𝐶(Ω)(||𝑝||
||u -u ℎ || 𝑋 + |𝑝 -𝑝 ℎ | 1,Ω ≤ 𝐶(Ω, u, 𝑝) ℎ (4.3)

A posteriori error analysis

We now intend to prove a posteriori error estimates between the exact solution (u, 𝑝) of the problem (2.4)-(2.5) and the numerical solution (u ℎ , 𝑝 ℎ ) of the problem (3.7)-(3.8).

We first introduce the space

𝑍 ℎ = {g ℎ ∈ 𝐿 2 (Ω) 3 ; ∀𝜅 ∈ 𝜏 ℎ , g ℎ | 𝜅 ∈ IP 0 (𝜅)}
and we fix an approximation f ℎ of the data f in 𝑍 ℎ .

Next, we denote by 𝜀 ℎ the set of all faces of the elements. For every element 𝜅 in 𝜏 ℎ , we denote by 𝜀 𝜅 the set of faces of 𝜅 that are not contained in Γ, Δ 𝜅 (resp. Δ 𝐹 𝜅 or Δ 𝑃 𝜅 ) the set of union of elements of 𝜏 ℎ that intersect 𝜅 (resp. contained in Ω 𝐹 or contained in Ω 𝑃 ), Δ 𝑒 (resp. Δ 𝐹 𝑒 or Δ 𝑃 𝑒 ) the union of elements of 𝜏 ℎ that intersect the face 𝑒 (resp. contained in Ω 𝐹 or contained in Ω 𝑃 ), ℎ 𝜅 the diameter of 𝜅 and ℎ 𝑒 the diameter of the face 𝑒. Also, n 𝜅 stands for the unit outward normal vector to 𝜅 on ∂𝜅 and [⋅] 𝑒 the jump through the face 𝑒 of 𝜅. If the face 𝑒 is on Γ, [⋅] 𝑒 will be the trace on 𝑒 from the domain Ω 𝐹 or Ω 𝑃 containing 𝜅, multiplied by 2.

For the demonstration of the next theorems, we introduce for an element 𝜅 of 𝜏 ℎ , the bubble function 𝜓 𝜅 (resp. 𝜓 𝑒 of the face 𝑒) which is equal to the product of the 𝑑 + 1 barycentric coordinates associated with the vertices of 𝜅 (resp. of 𝑒) and ℒ 𝑒 (resp. ℒ 𝐹 𝑒 or ℒ 𝑃 𝑒 ) the lifting operator from polynomials defined on 𝑒 into polynomials defined on the elements 𝜅 and 𝜅 ′ containing 𝑒 (resp. elements contained in Ω 𝐹 or contained in Ω 𝑃 ), which is constructed by affine transformations from a fixed operator on the reference element.

Property 5.1. Denoting by 𝑃 𝑟 (𝑒) the polynomial of degrees 𝑟 on 𝑒, we have

∀ 𝑣 of 𝑃 𝑟 (𝑒) 𝑐 ∥ 𝑣 ∥ 𝐿 2 (𝑒) ≤∥ 𝑣𝜓 1/2 𝑒 ∥ 𝐿 2 (𝑒) ≤ 𝑐 ′ ∥ 𝑣 ∥ 𝐿 2 (𝑒)
and for any 𝑣 of 𝑃 𝑟 (𝑒) which vanishes on ∂𝑒, we have

∥ ℒ 𝑒 𝑣 ∥ 𝐿 2 (𝜅) +ℎ 𝑒 | ℒ 𝑒 𝑣 | 𝐻 1 (𝜅) ≤ 𝑐ℎ 1/2 𝑒 ∥ 𝑣 ∥ 𝐿 2 (𝑒) .
We denote by 𝑅 ℎ the Clément operator [START_REF] Clément | Approximation by finite element functions using local regularisation[END_REF]. For any function

𝑞 ∈ 𝐻 1 0 (Ω), 𝑅 ℎ 𝑞 ∈ 𝑄 ℎ verifies ∥ 𝑞 -𝑅 ℎ 𝑞 ∥ 𝐿 2 (𝜅) ≤ 𝑐ℎ 𝜅 ∥ 𝑞 ∥ 𝐻 1 (Δ𝜅) , ∥ 𝑞 -𝑅 ℎ 𝑞 ∥ 𝐿 2 (𝑒) ≤ 𝑐ℎ 1/2 𝑒 ∥ 𝑞 ∥ 𝐻 1 (Δ𝑒) . (5.1)
Furthermore, we define 𝜌 ℎ as the 𝐿 2 projection of 𝑧 onto 𝑍 0 such that, in each triangle 𝜅 we have: for

𝑧 ∈ 𝐿 2 (Ω), 𝜌 ℎ (𝑧) = 1 |𝑇 | ∫ 𝜅 𝑧(𝑥)𝑑𝑥.
We have the properties:

∀𝜅 ∈ 𝜏 ℎ , ∀𝑝 ∈ 𝐻 1 (Ω), ||𝑝 -𝜌 ℎ 𝑝|| 𝐿 2 (𝜅) ≤ 𝑐ℎ 𝜅 |𝑝| 1,𝜅 ||𝑝 -𝜌 ℎ 𝑝|| 𝐿 2 (𝑒) ≤ 𝑐ℎ 1/2 𝑒 |𝑝| 1,𝜅
We also denote by ℛ ℎ the Raviart-Thomas operator : for any smooth enough vectorial function v which is divergence-free on Ω, ℛ ℎ v belongs to 𝑋 ℎ and satisfies

∀𝑒 ∈ 𝜀 ℎ , ∫ 𝑒 (v -ℛ h v).n𝑑𝜏 = 0.
Moreover, this operator satisfies, see [START_REF] Raviart | A mixed finite element method for second order elliptic problems,Mathematical Aspects of Finite Element Methods[END_REF] : ∀v in 𝐻 1 (Ω) 3 and ∀𝜅 in 𝜏 ℎ ,

∥ v -ℛ ℎ v ∥ 𝐿 2 (𝜅) 3 ≤ 𝑐ℎ 𝜅 ∥ v ∥ 𝐻 1 (𝜅) 3 ∥ v -ℛ ℎ v ∥ 𝐿 2 (𝑒) 3 ≤ 𝑐ℎ 1/2 𝑒 ∥ v ∥ 𝐻 1 (Δ𝑒) 3 (5.2)
To prove the a posteriori estimates, we begin by decomposing u -u ℎ = ∇𝜆 + w where 𝜆 ∈ 𝐻 1 (Ω) and w ∈ 𝑈 . Then, we establish a posteriori estimate for 𝜆 and w to deduce using the lemma (2.3)

||u -u ℎ || 2 𝑋 = ||∇𝜆 + w|| 2 0,Ω + || curl w|| 2 0,Ω𝐹 ≤ 𝐶(|𝜆| 2 1,Ω + ||w|| 2 0,Ω𝑃 + || curl w|| 2 0,Ω𝐹
) and we finish with the a posteriori estimate for the pressure.

The error function u -u ℎ belongs to 𝑋, there exists a unique solution 𝜆 1 ∈ 𝐻 1 (Ω 𝐹 )/IR of the problem:

∫ Ω𝐹 ∇𝜆 1 ∇𝑞 = ∫ Ω𝐹 (u -u ℎ )∇𝑞 ∀𝑞 ∈ 𝐻 1 (Ω 𝐹 )/IR,
and the function

w 1 = (u-u ℎ )-∇𝜆 1 belongs to 𝑈 𝐹 = {v ∈ 𝐻(curl, Ω 𝐹 ); (v, ∇𝑞) Ω 𝐹 = 0, ∀𝑞 ∈ 𝐻 1 (Ω 𝐹 )}.
We define the function w, equal to w 1 in Ω 𝐹 and 0 in Ω 𝑃 , which belongs to 𝑈 and verifies curl w = curlw 1 in Ω 𝐹 . Furthermore, there exists a unique solution 𝜆 ∈ 𝐻 1 (Ω)/IR of the problem:

∫ Ω ∇𝜆∇𝑞 = ∫ Ω (u -u ℎ )∇𝑞 ∀𝑞 ∈ 𝐻 1 (Ω)/IR,
and the function w = (u -u ℎ ) -∇𝜆 belongs to 𝑈 and we have curlw

= curl w 1 = curl (u -u ℎ ) in Ω 𝐹 .
We have, for all 𝑞 ∈ 𝐻 1 (Ω)

∫ Ω ∇𝜆∇𝑞 = ∫ Ω (w + ∇𝜆)∇𝑞 = ∫ Ω (u -u ℎ )∇𝑞 = - ∫ Ω u ℎ ∇𝑞 = - ∫ Ω u ℎ ∇(𝑞 -𝑞 ℎ ) = - 1 2 ∑ 𝜅∈𝜏 ℎ ( ∑ 𝑒∈𝜀𝜅 ∫ 𝑒 [u ℎ .n](𝑞 -𝑞 ℎ )
)

, ∀𝑞 ℎ ∈ 𝑄 ℎ .

(5.3)

We introduce the indicators

𝜉 𝜅 = ∑ 𝑒∈𝜀𝜅 ℎ 1/2 𝑒 ∥ [u ℎ .n] ∥ 0,𝑒 (5.4) 
Theorem 5.2. The following bounds hold

||∇𝜆|| 0,Ω ≤ 𝐶 ( ∑ 𝜅∈𝜏 ℎ 𝜉 2 𝜅 ) 1/2 (5.5)
and

𝜉 𝜅 ≤ 𝑐||∇𝜆|| 0,Δ𝜅 (5.6) 
Proof: First we take, in the equation ( 5.3), 𝑞 = 𝜆 and 𝑞 ℎ = 𝑅 ℎ 𝑞, the image of 𝑞 by the Clément type regularization operator, and we obtain the upper bound. In order to find the lower bound, we take in the equation (5.3) 𝑞 ℎ = 0 and 𝑞 = ℒ 𝑒 ([u ℎ .n]𝜓 𝑒 ), and we obtain

∥ [u ℎ .n] ∥ 0,𝑒 ≤ 𝐶 ( ℎ -1/2 𝑒 |𝜆| 1,𝜅∪𝜅 ′ ) which leads to 𝜉 𝜅 ≤ 𝑐|𝜆| 1,Δ𝜅 .
(5.7)

□

To find a posteriori estimates for w, we begin to establish upper and lower bounds for curl w in Ω 𝐹 . We introduce the indicators

𝛾 𝜅,𝐹 = ℎ 𝜅 ∥ f ℎ -∇𝑝 ℎ ∥ 0,𝜅 + 𝜈 2 ∑ 𝑒∈𝜀𝜅 ℎ 1/2 𝜅 ∥ [curl u ℎ × n] ∥ 0,𝑒 , if 𝜅 ∈ Ω 𝐹 (5.8)
Theorem 5.3. Let Ω 𝐹 be convex. The following bounds hold:

𝜈||curl w|| 0,Ω𝐹 ≤ 𝐶 ( ∑ 𝜅∈𝜏 𝐹 ℎ ℎ 2 𝜅 ||f -f ℎ || 2 0,𝜅 + ∑ 𝜅∈𝜏 𝐹 ℎ 𝛾 2 𝜅,𝐹
) 1/2 (5.9)

and 𝛾 𝜅,𝐹 ≤ 𝑐 ∑ 𝑒∈𝜀𝜅 ( || curl w|| 2 0,Δ 𝐹 𝑒 + ℎ 2 𝑒 |𝑝 -𝑝 ℎ | 2 1,Δ 𝐹 𝑒 + ℎ 2 𝑒 ||f -f ℎ || 2 0,Δ 𝐹 𝑒 ) 1/2
(5.10)

Proof :

The error function u -u ℎ verifies, by using the equations (2.2) and (3.4):

∀v ∈ 𝑋, ∀v ℎ ∈ 𝑋 ℎ 𝜇 ∫ Ω𝑃 (u -u ℎ )v + 𝜈 ∫ Ω𝐹 curl(u -u ℎ )curl v + ∫ Ω ∇(𝑝 -𝑝 ℎ )v = 𝜇 ∫ Ω 𝑃 (u -u ℎ )(v -v ℎ ) + 𝜈 ∫ Ω 𝐹 curl(u -u ℎ )curl (v -v h ) + ∫ Ω ∇(𝑝 -𝑝 ℎ )(v -v ℎ ) = (f , v -v ℎ ) -𝜇 ∫ Ω𝑃 u ℎ (v -v ℎ ) -𝜈 ∫ Ω𝐹 curl u ℎ curl (v -v h ) - ∫ Ω ∇𝑝 ℎ (v -v ℎ ) = ((f -f ℎ ), v -v ℎ ) + ∫ Ω𝐹 (f ℎ -∇𝑝 ℎ ) (v -v ℎ ) + ∫ Ω𝑃 (f ℎ -∇𝑝 ℎ -𝜇u ℎ )(v -v ℎ ) -𝜈 ∫ Ω𝐹 curl u ℎ curl (v -v h ) (5.11) 
We replace u -u ℎ by w + ∇𝜆, take v = w and v ℎ = ℛ ℎ v, remark that curl w = curl w in Ω 𝐹 and use the integration by part formula to obtain:

𝜈||curl w|| 2 0,Ω𝐹 = ∫ Ω𝐹 (f -f ℎ )( w -ℛ ℎ w) - ∫ Ω𝐹 (f ℎ -∇𝑝 ℎ ) ( w -ℛ ℎ w) - 𝜈 2 ∑ 𝜅∈𝜏 𝐹 ℎ ∑ 𝑒∈𝜀𝜅 ∫ 𝑒 [curl u ℎ × n] ( w -ℛ ℎ w) (5.12)
Since Ω 𝐹 is convex, the theorem 2.2 and the lemma 2.3 give:

𝜈||curl w|| 0,Ω𝐹 ≤ 𝐶 ( ∑ 𝜅∈𝜏 𝐹 ℎ ( ℎ 2 𝜅 ||f -f ℎ || 2 0,𝜅 + ℎ 2 𝜅 ||f ℎ -∇𝑝 ℎ || 2 0,𝜅 ) 1/2 + 𝜈 2 ∑ 𝜅∈𝜏 𝐹 ℎ ∑ 𝑒∈𝜀𝜅 ℎ 𝜅 ||[curl u ℎ × n]|| 2 0,𝑒 ) 1/2 ≤ 𝐶 ( ∑ 𝜅∈𝜏 𝐹 ℎ ℎ 2 𝜅 ||f -f ℎ || 2 0,𝜅 + ∑ 𝜅∈𝜏 𝐹 ℎ 𝛾 2 𝜅,𝐹 ) 1/2 ,
(5.13) and we obtain the upper bound. For the lower bound, we choose in the equation (5.11), v ℎ = 0 and we take for an element

𝜅 ∈ Ω 𝐹 , v = (f ℎ -∇𝑝 ℎ )𝜓 𝜅 and remark that ∫ 𝜅 curl u ℎ curl v = ∫ ∂𝜅 (curl u ℎ × n) v = 0 to obtain using the inverse inequality || curl v|| 0,𝜅 ≤ ℎ -1 𝜅 ||v|| 0,𝜅 : ||f ℎ -∇𝑝 ℎ || 2 0,𝜅 ≤ ||f -f ℎ || 2 0,𝜅 + |𝑝 -𝑝 ℎ | 2 1,𝜅 + ℎ -2 𝜅 || curl w|| 2 0,𝜅 Next, we take v = ℒ 𝑒 ([curl u ℎ × n]𝜓 𝑒 )
| Ω𝐹 and integrate by part the last term of the equation (5.11) to obtain

𝜈||[curl u ℎ ×n]𝜓 1/2 𝑒 || 0,𝑒 ≤ 𝑐 ( ℎ -1/2 𝑒 || curl w|| 0,Δ 𝐹 𝑒 +ℎ 1/2 𝑒 |𝑝-𝑝 ℎ | 1,Δ 𝐹 𝑒 +ℎ 1/2 𝑒 ||f ℎ -∇𝑝 ℎ || 0,Δ 𝐹 𝑒 +ℎ 1/2 𝑒 ||f -f ℎ || 0,Δ 𝐹 𝑒 )
and we deduce the lower bound. □

Before showing bounds on w, we need to show bounds on 𝑝 -𝑝 ℎ in Ω 𝐹 . For 𝜅 ∈ Ω 𝐹 , we introduce the indicator:

𝜂 𝜅,𝐹 = ∑ 𝑒∈𝜀𝜅 ℎ 1/2 𝑒 ∥ (f ℎ -∇𝑝 ℎ ).n ∥ 𝐿 2 (𝑒) (5.14) 
Theorem 5.4. The pressure error verifies the bounds:

|𝑝 -𝑝 ℎ | 1,Ω𝐹 ≤ 𝐶 ( ∑ 𝜅∈𝜏 ℎ 𝜂 2 𝜅,𝐹 + ∑ 𝜅∈𝜏 ℎ ∥ f -f ℎ ∥ 2 𝐿 2 (𝜅)
) 1/2 (5.15)

and 𝜂 𝜅,𝐹 ≤ 𝑐 ∑ 𝑒∈𝜀𝜅 ( ∥ f -f ℎ ∥ 𝐿 2 (Δ 𝐹 𝑒 ) + ∥ ∇(𝑝 -𝑝 ℎ ) ∥ 𝐿 2 (Δ 𝐹 𝑒 ) ) (5.16) 
Proof: For all 𝑞 ∈ 𝐻 1 (Ω 𝐹 ), we take the second equation of the system (𝑃 ), multiply by ∇𝑞, integrate in Ω 𝐹 and obtain:

∫ Ω𝐹 ∇𝑝∇𝑞 = ∫ Ω𝐹 f ∇𝑞
Then we have by considering the definition of 𝜌 ℎ and by integrating by parts:

∫ Ω𝐹 ∇(𝑝 -𝑝 ℎ )∇𝑞 = ∫ Ω𝐹 (f -f ℎ )∇𝑞 + ∫ Ω𝐹 (f ℎ -∇𝑝 ℎ )∇𝑞 = ∑ 𝜅∈𝜏 𝐹 ℎ { ∫ 𝜅 (f -f ℎ )∇𝑞 + ∫ 𝜅 (f ℎ -∇𝑝 ℎ )∇(𝑞 -𝑞 ℎ ) } , ∀𝑞 ℎ ∈ 𝑍 ℎ = ∑ 𝜅∈𝜏 𝐹 ℎ { ∫ 𝜅 (f -f ℎ )∇𝑞 + ∑ 𝑒∈𝜀𝜅 ∫ 𝑒 ((f ℎ -∇𝑝 ℎ ).n) (𝑞 -𝑞 ℎ )
} which leads, by taking 𝑞 = 𝑝 -𝑝 ℎ , 𝑞 ℎ = 𝜌 ℎ (𝑞) and using the properties of 𝜌 ℎ , to (5.15). In the last equation and for every element 𝜅 ∈ Ω 𝐹 , we take 𝑞 ℎ = 0 and 𝑞 = ℒ 𝑒 ([(f ℎ -∇𝑝 ℎ ).n]𝜓 𝑒 ) to obtain (5.16).□

To complete the upper and lower bounds of the velocity error, we show bound on w in Ω 𝑃 . We introduce the indicators 𝛾 𝜅,𝑃 =∥ f ℎ -∇𝑝 ℎ -𝜇u ℎ ∥ 0,𝜅 if 𝜅 ∈ Ω 𝑃 (5.17)

Theorem 5.5. The following bounds hold:

𝜇||w|| 0,Ω 𝑃 ≤ 𝐶 (( ∑ 𝜅∈𝜏 𝑃 ℎ ||f -f ℎ || 2 0,𝜅 ) 1/2 + ( ∑ 𝜅∈𝜏 𝐹 ℎ 𝛾 2 𝜅,𝑃 ) 1/2 + 𝜇||∇𝜆|| 𝐿 2 (Ω𝑃 ) + ||∇(𝑝 -𝑝 ℎ )|| 𝐿 2 (Ω𝐹 ) ) (5.18) and 𝛾 𝜅,𝑃 ≤ 𝐶 ( ||f -f ℎ || 2 0,𝜅 + ||w|| 2 0,𝜅 + |𝑝 -𝑝 ℎ | 2 1,𝜅 + |𝜆| 2 1,𝑘 ) 1/2 (5.

19)

Proof : In the equation (5.11), we replace u -u ℎ = w + ∇𝜆 and we take v = w in Ω 𝑃 and 0 in Ω 𝐹 . We choose v ℎ = 0 and we obtain:

𝜇||w|| 2 0,Ω𝑃 = ∫ Ω𝑃 (f -f ℎ )w + ∫ Ω𝑃 (f ℎ -∇𝑝 ℎ -𝜇u ℎ )w -𝜇 ∫ Ω𝑃 w∇𝜆 - ∫ Ω𝑃 ∇(𝑝 -𝑝 ℎ )w (5.20)
Furthermore, we have:

∫ Ω𝑃 ∇(𝑝 -𝑝 ℎ )w = ∫ Γ w.n (𝑝 -𝑝 ℎ ) ≤ ||w.n|| -1/2,Γ ||𝑝 -𝑝 ℎ || 1/2,Γ ≤ ||w|| 𝐻(div,Ω𝑝) ||∇(𝑝 -𝑝 ℎ )|| 0,Ω𝐹 = ||w|| 0,Ω𝑝 ||∇(𝑝 -𝑝 ℎ )|| 0,Ω𝐹
Then we get the upper bound (5.18). For the lower bound, we choose v ℎ = 0 in the equation (5.11) and we take for an element 𝜅 ∈ Ω 𝑃 , v = (f ℎ -∇𝑝 ℎ -𝜇u ℎ )𝜓 𝜅 to obtain the lower bound. □

To show an upper and a lower bound of the pressure, we define the indicators:

𝜂 𝜅 = ⎧  ⎨  ⎩ 𝜂 𝜅,𝐹 if 𝜅 ∈ Ω 𝐹 𝜂 𝜅,𝑃 = ∑ 𝑒∈𝜀𝜅 ℎ 1/2 𝑒 ∥ (f ℎ -∇𝑝 ℎ -𝜇u ℎ ).n ∥ 𝐿 2 (𝑒) if 𝜅 ∈ Ω 𝑃 (5.21)
Theorem 5.6. The following bounds hold

|𝑝 -𝑝 ℎ | 1,Ω 𝑃 ≤ 𝐶 { 𝜇||w|| 2 0,Ω𝑃 + 𝜇||∇𝜆|| 2 0,Ω𝑃 + ∑ 𝜅∈𝜏 𝐹 ℎ ( 𝜂 2 𝜅 + ∥ f -f ℎ ∥ 2 𝐿 2 (𝜅)
)} 1/2 (5.22) and 𝜂 𝜅,𝑃 ≤ 𝐶

( ||∇𝜆|| 0,Δ 𝑃 𝜅 + ||w|| 0,Δ 𝑃 𝜅 + | 𝑝 -𝑝 ℎ | 𝐻 1 (Δ 𝑃 𝜅 ) + ∥ f -f ℎ ∥ 𝐿 2 (Δ 𝑃 𝜅 ) ) (5.

23)

Proof : The error function 𝑝 -𝑝 ℎ belongs to 𝐻 1 (Ω) and satisfies, using the first equation of the system (P), for all 𝑞 ∈ 𝐻 1 (Ω):

𝜇(u -u ℎ , ∇𝑞) Ω𝑃 + (∇(𝑝 -𝑝 ℎ ), ∇𝑞) Ω𝑃 = 𝜇(f -f ℎ , ∇𝑞) Ω𝑃 + (f ℎ -∇𝑝 ℎ -𝜇u ℎ , ∇𝑞) Ω𝑃 (5.24)
We replace u -u ℎ by ∇𝜆 + w and we obtain for all 𝑞 ∈ 𝐻 1 (Ω) and 𝑞 ℎ ∈ 𝑍 ℎ :

(∇(𝑝 -𝑝 ℎ ), ∇𝑞) Ω𝑃 = ∫ Ω𝑃 (f -f ℎ )∇𝑞 -𝜇 ∫ Ω𝑃 ∇𝜆∇𝑞 -𝜇 ∫ Ω𝑃 w∇𝑞 + ∫ Ω𝑃 (f ℎ -∇𝑝 ℎ -𝜇u ℎ )∇(𝑞 -𝑞 ℎ ) (5.25)
Integrating by part, taking 𝑞 = 𝑝 -𝑝 ℎ and 𝑞 ℎ = 𝜌 ℎ (𝑞), remarking that div f ℎ = div u ℎ = div ∇𝑝 ℎ = 0 in every element 𝜅 ∈ 𝜏 ℎ and using the properties of 𝜌 ℎ , we obtain the upper bound (5.22).

To prove the inequality (5.23), we take 𝑞 ℎ = 0, integrate by part the last term and take 𝑞 = ℒ 𝑃 𝑒 ((f ℎ -∇𝑝 ℎ -𝜈u ℎ ).n𝜓 𝑒 )) in the equation (5.25) to obtain the inequality (5.23). □

To simplify the notations, we define the indicators:

𝛾 𝜅 = { 𝛾 𝜅,𝐹 if 𝜅 ∈ Ω 𝐹 𝛾 𝜅,𝑃 if 𝜅 ∈ Ω 𝑃
Corollary 5.7. Let Ω 𝐹 be convex. The optimal a posteriori estimate holds

||u -u ℎ || 𝑋 + |𝑝 -𝑝 ℎ | 1,Ω ≤ { ∑ 𝜅∈𝜏 ℎ ( 𝛾 2 𝜅 + 𝜉 2 𝜅 + 𝜂 2 𝜅 + ∥ f -f ℎ ∥ 2 0,𝜅 ) } 1/2 (5.26)
where 𝜉 𝜅 , 𝛾 𝜅 and 𝜂 𝜅 are given by the formulas (5.6), (5.10), (5.19), (5.16) and (5.23).

Conclusion:

We observe that estimate (5.26) is optimal: up to the terms involving the data, the full error is bounded by a constant times the sum of all indicators. Estimates (5.6), (5.10), (5.19), (5.16) and (5.23) are local, i.e., only involve the error in a neighborhood of K or e. The indicators 𝜂 𝜅 , 𝜉 𝜅 and 𝛾 𝜅 can be viewed as a measure for the error of the space discretization and can be used to adapt the mesh-size in space.

Numerical results

To validate the theoretical results, we performed several numerical simulations using the FreeFem ++ software (see [START_REF] Hecht | FreeFem++[END_REF]). The geometry considered is a sphere centered at the origin of radius 0. We take 𝜇 and 𝜈 equal to 1. To get the numerical solution of the problem (3.4), we use, for some small parameter 𝜀, the modified problem

Find u ℎ ∈ 𝑋 ℎ and 𝑝 ℎ ∈ 𝑄 ℎ /IR such that (u ℎ , v ℎ ) Ω𝑃 + (curl u ℎ , curl v ℎ ) Ω𝐹 + (∇𝑝 ℎ , 𝑣 ℎ ) = (f , v ℎ ), ∀ v ℎ ∈ 𝑋 ℎ , and (u ℎ , ∇𝑞 ℎ ) + 𝜀(𝑝 ℎ , 𝑞 ℎ ) = 0, ∀ 𝑞 ℎ ∈ 𝑄 ℎ /IR. (6.1)
Indeed, in comparison with problem (3.4), we have added the term (𝑝 ℎ , 𝑞 ℎ ) multiplied by 𝜀 to obtain an invertible matrix. We have checked that there is no dependency of the solution upon 𝜀, wich is fixed here equal to 10 - 10 .

In what follows, we present the results obtained for the "a priori" part. The geometry mesh is given by figure 2. We can see that the pressure slope is 1.072 and the velocity slope is 1.543. These results confirm the theoretical ones.

Concerning the a posteriori results, we generate new adapted meshes (see [START_REF] Frey | Maillages, applications aux ´el ´ements finis[END_REF] and [START_REF] George | Non-isotropic grids. Handbook of Grid Generation[END_REF], for instance) and we consider a different velocity on Ω 𝐹 and Ω 𝑃 , the pressure remains the same. Indeed, we take 𝜑(𝑥, 𝑦, 𝑧) = 𝑥 2 𝑦 2 𝑧 2 in Ω 𝐹 , and 𝜑(𝑥, 𝑦, 𝑧) = (𝑥 -1) 2 (𝑥 + 1) 2 (𝑦 -1) 2 (𝑦 + 1) 2 (𝑧 -1) 2 (𝑧 + 1) 2 (𝑥 2 + 𝑦 2 + 𝑧 2 ) in Ω 𝑃 .

Figure 5 shows the considered adapted mesh. We can note that the geometry is more refined outside the sphere rather than inside it, where the solution is more smooth. 

Figure 1 .

 1 Figure 1. The geometry

1

 1 

. 1 )

 1 Next, to obtain the error estimate for w, we consider the difference of the equation (2.2) with v = v ℎ ∈ 𝑋 ℎ and the equation (3.4):

  5, contained in the cubic domain ] -1, 1[×] -1, 1[×] -1, 1[. The numerical velocity and the pressure are taken as (u, 𝑝) = (curl 𝜓, 𝑝), where: 𝜓 = (𝜑, 𝜑, 𝜑) with 𝜑(𝑥, 𝑦, 𝑧) = (𝑥 -1) 2 (𝑥 + 1) 2 (𝑦 -1) 2 (𝑦 + 1) 2 (𝑧 -1) 2 (𝑧 + 1) 2 (𝑥 2 + 𝑦 2 + 𝑧 2 -0.25) 3 , and 𝑝(𝑥, 𝑦, 𝑧) = -𝑥 -𝑦 -𝑧.

Figure 2 .Figure 3 .Figure 4 .

 234 Figure 2. The a priori geometry mesh

Figure 5 .

 5 Figure 5. The a posteriori adapted mesh

Figure 6 .Figure 7 .

 67 Figure 6. The left and right figures represent respectively the velocity before and after the adapted mesh

  The problem (𝑃 ) is equivalent to the weak variational formulation (𝑉 ).
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