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ERROR STUDIES OF THE COUPLING DARCY-STOKES SYSTEM WITH
VELOCITY-PRESSURE FORMULATION

FIDA EL CHAMI!, GIHANE MANSOUR} AND TONI SAYAH?

ABSTRACT. In this paper we study the Coupling Darcy-Stokes Systems. We establish a coupled varia-
tional formulation with the velocity and the pressure. The velocity is approximated with curl conforming
finite elements and the pressure with standard continuous elements. We establish optimal a priori and
a posteriori error estimates. We conclude our paper with some numerical simulations.

Keywords Stokes equations, Darcy equations, a piori and a posteriori errors.

1. INTRODUCTION.

The numerical simulation of underground flows can be treated as cracks in porous media. Indeed, the
flow of a viscous incompressible fluid in a porous medium is usually modelled by Darcy equations and,
when the thickness of the crack is too large to be neglected, the Stokes system must be considered in the
crack and coupled with these equations. In this work, we consider the following system already studied
in [4], [5] and [6]:

Let Q and Q5 be bounded connected open domains in R? with Lipschitz-continuous boundaries, such that
Qp is contained in Q. For simplicity, we also assume that Q2 is simply connected and has a connected
boundary. We set Qp = Q\ QF and we denote by I' = 0QF the interface between QO and Qp. Let also
n stand for the unit outward normal vector to Qp on its boundary 0Qp.

Qp

FIGURE 1. The geometry
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2 EL CHAMI, MANSOUR AND SAYAH

We consider the following system of equations:

pa+Vp=f~ in Qp
—vAu+Vp=~f in Qp
divu=0 in QpUQpE
(p){ un= 0 on Of) (1.1)
(), — 4, )n=0 onT
Plo, —Plo, =0 onI'
curl u, xn=0 on T

where u is the velocity, p the pressure, f the density of body forces and v and p positive constants.

For the Vorticity-velocity-pressure formulation for the Stokes problem, we refer to [10], [11] and [20]. For
the coupling problem, we cite the works [2], [3], [8], [9], [16] and [21]. In [1] and [12], we treat the Stokes
problem with non-standard boundary conditions and we introduce velocity-pressure weak formulation.
In [4], [5] and [6], the basic idea consists in introducing the vorticity w = curl u as a new unknown
on the fluid domain Qp. However, we treat in this work the same systems with the unknowns u and p
without introducing the vorticity w. Since, we can discretize the pressure and the velocity independently
without a discrete inf-sup condition to obtain matrix systems with an optimal dimension and optimal
time of resolution.

The outline of the paper is as follows:

e In Section 2, we introduce the problem, establish a decoupled variational formulation and prove
its wellposedness.

e In section 3, we introduce the finite elements and a fully discrete system using the curl conforming
finite elements for the velocity and the standard continuous elements for the pressure.

e We prove the a priori and a posteriori estimates in sections 4 and 5, respectively.

e Section 6 is devoted to numerical experiments wich confirm the theoretical results.

2. ANALYSIS OF THE MODEL

In all the paper, we suppose that f € L?(Q)3 and we denote by C and ¢ generic positive constants.

In order to write the variational formulation of the previous problem, we introduce the following spaces:
WmP(Q) = {v € LP(Q)?, 0°v € LP(Q)3, ¥ | a |< m},
H™ () = Wm2(Q),

equipped with the undermentionned semi-norm and norm:
1/p 1/p

1V mpo= | 3 / | 8°v(z) P dx and |V fpo= | IV, 0

lee|=m k<m

As usual, we shall omit p when p = 2 and denote by (-,-) the scalar product of L?(f2). Also, recall the
familiar notation:

HY(Q) = {v e H(Q); v=0on 00N},
with the Poincaré inequality
Vv e Hy(Q), [[vloo < Clv

1,Q- (2.1)
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Finally, we introduce the spaces:
H(div,Q) ={v e LQ(Q)g,diV veL*Q)}, Hy(div,Q)={ve H(div,Q),v-n=0 on 90},
H(curl,Q)={v e L2(Q)3, curlv € LQ(Q)?’}, Ho(curl, Q) = {v € H(curl,Q),vxn=0 on 9N},

normed respectively by:
. 1/2
I v laavo= 1V o + Il div v [30) ",

and
2 2 \1/2
v &)= (v 5.0 + [ curlv [[§ o) "~

We recall that the trace operator: v — v.n is continuous from H(div,2) onto H~/2(9Q) and the jump
(V|apr — V] ).n vanishes on T'.
We recall an important lemma which will be useful in the rest of the paper:

Lemma 2.1. There exists a unique solution w in H*(Q)/R such that
(Vw,Vv) = (f,Vv), Vv € H(Q)/R,
and there exists a positive constant C such that
[wlie< Clfogo-
For the following regularity theorem, we refer to Nedelec [18].
Theorem 2.2. All functions v € L*(Qr)? satisfying:
divv =0, curlveL?Qp)® vn=0onT,

verify
IVllo.0r < Cllcurl v]lo,o

If QF is convex, v belongs to H (Qr) and we have

IVll10r < Clleurlvijoo,.-

We have also from [4] (page 10 lemma 2.2) the next lemma:
Lemma 2.3. For all functions v € L?(Q)3 satisfying:
curl v, € L*(Qp)®, divv=0 inQ, vn=0 on 09
there exist a constant o such that:
1/2
IV lloor< a0 (Il v II5.op + [l curlv [Fo,) "
In order to give the variational formulation of the problem (P), we introduce the space:
X ={veL*9)? curl v, €L*Qr)’},
provided with the norm
1/2
IV llx= (V[ .ot [ curl v [[§ o)
We consider the following weak variational formulation, denoted by (V):
Find u € X and p € H'(Q)/R such that
w(u,v)o, +v (curlu,curlv)g, + (Vp,v) = (f,v), VveX (2.2)
(Vg,u) =0, Yqge H'(Q)/R (2.3)
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Theorem 2.4. The problem (P) is equivalent to the weak variational formulation (V).

Proof: Suppose that (u,p) € X x H}(Q)/R is a solution of (V).

The equation (2.3) gives the third equation of (P) in the distribution sense. Since D(p) C X and
D(Qp) C X, we deduce from (2.2) and the relation —Au = curl curl u (as we have div u = 0) the first
and the second equation of (P). On the other hand, u € H(div,Q) and (u, Vq) = 0 for all ¢ € H*(Q) gives
us (u),, —uj,, )n=0 onI'andun=0in H~'/2(0Q). Since p € H'(2)/R we have (Pla, —Pla,.) 0.
Finally, the second equation of (P) and the equation (2.2) gives

Ir =

(curlcurlu,v)q, = (curlu, curlv)q,, Vv e H(curl,Qp),

which leads to the last condition curlu, xn=0 onT.

Inversely, let (u,p) € X x H*(Q)/IR be a solution of (P). Multiplying the first equation of (P) by v € X
and integrating over Qp and using the Green formula, and the second equation by v and integrating over
Qp gives the first equation of (V). The next three equations of (P) give the second equation of (V). O

The variational formulation (V') can be splitted into a system for the velocity and a Poisson equation for
the pressure. Let us introduce the space

U={veX; (Vqgv)=0 Yqgec H'(Q)/R}.

and remark that every v € U verify the lemma 2.3.
The lemmas 2.1 and 2.3 allow us to establish the following theorem:

Theorem 2.5. The problem (V) is equivalent to the problem
Findu € U such that

w(u, v)q, + v(curlu,curlv)q, = (f,v), VveU (2.4)
Find p € H*(Q)/R such that
w(u,Vg)a, + (Vp,Vq) = (£,Vq), Vqe H'(Q)/R. (2.5)

Furthermore, there exists a unique solution and we have the following bounds

lallo.op + [[eurlufloa, < Cif[f|

Ipl10 < Collf]]o,q-
Proof: The equivalence of the two problems comes from the fact that every element v € X can be
written as v =w + V¢ where w € U and ¢ € H'(Q)/IR.
The Lax-Milgram theorem gives the existence and the uniqueness of the solution of (2.4). Having the
velocity, the Lax-Milgram theorem gives the existence and the uniqueness of the solution of (2.5). We
obtain the inequalities by first taking v = u in the equation (2.4), next by taking ¢ = p in the equation
(2.5). O

0,9,

We denote by (V1) the problem defined by (2.4) and (2.5). Then, it is easy to show that (V1) is equivalent
to the following problem denoted (V2):

Find u € X, p € H'(Q)/R such that
p(u,v)a, + v(curlu, curlv)g, + (Vp,v) = (f,v), VYveX
—p(u, Vo), + (Vp,Vq) = (£,Vq), VqeH (Q)/R. (2.7)

3. FINITE ELEMENT DISCRETIZATION

In what follows and for simplicity, we make the further assumption that both 2 and Qg are polyhedra.
We introduce a regular family of triangulation (73,)p, in the sense that:

e for each h, Q is the union of all elements of 7y;
e for each h, the intersection of two different elements of 7, if not empty, is a corner, a whole edge
or a whole face of both of them:;
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e the ratio of the diameter h, of an element x in 7, to the diameter of its inscribed sphere is
bounded by a constant independent of k and h;
As usual, h denotes the maximum of the diameters of the elements of 7;,. We denote by 7f (resp. 71)
the set of elements k of 7, which are contained in Qg (resp. Qp).

Next, for each x in 73, we introduce the spaces P(k) of the restrictions to x of constant functions on
R?, IP;(x) of the restrictions to  of affine functions on IR and the space P (k) of the restrictions to x
of polynomials v of the form:

vix)=a+bxx, acR)becR’
The space Pk () and the corresponding finite elements are studied in [17]. Their degrees of freedom are
the average flux along the edges [ (v.t)dl, for the six edges [ of k, t is the direction vector of I.

1
Hence, we associate the operator r, where r,(u) is the unique polynomial of IPx that has the same flux
along the edges as u. We define also the operator I, where I,;(¢) is the unique polynomial of P; (k) that
has the same values on the vertex of k as ¢. We have for all k € 7:

rs(Vq) = VI.(q) Vg € W% (k) for some t > 2.
Next, let us introduce the discrete spaces:
Xn = A{un € X5up, € Px(k), VK €}, (3.1)
Qn {qn € Co(ﬁ);qhh ePi(k), VK €},
With these spaces, the finite dimensional analogues of U is:
Up={vn € Xun; (Van,vn) =0, Van € Qn},
We define the interpolation operators r;, from H ()3 onto X, I, from H?(Q2) onto @, by

rpu =rg(u) on Kk, Vk € 7, (similarly for I ).
We have the following result:
Theorem 3.1. Assume that T is reqular family of triangulations. We have:
lu—rpulloq +h || curl(u—rpu) o< Ch|uli o, Yue Wl’t(Q)3, for some t > 2.
Moreover, when u € H> (Q)S, we have:
| u—rpu o< Ch? |ulag

and
| curl (u—rpu) llo,o< Ch 20

Theorem 3.2. Let Q be a polyhedron and Qp a convex polyhedron. Let 13, be a uniformly reqular family
of triangulation of Q0. We have:

1/2
lunllo.or < ao(|[unlZq, + llcurl uyl2q,)"?, vu, €U, (3.3)

Proof: The inequality (3.3) is valid for every v € U. Let Qp be convex, for every function uy, in Uy,
we consider the Dirichlet problem:

(Vz,Vi)a, = (an, Vo, Vu € H' (Qp)/R.
The difference w = up, — Vz belongs to the space
Ua, = {v € H(curl,Qr); (v,Vq)a, =0Vq € H' (Qr)/R},
and curl w = curl u. It follows from theorem 2.2 that
Iwlli.0r < Cilf curl wljo.qp.
Therefore, as curl u;, € L>°(Q2)3, we have (see Nedelec [[17],[18]]) for s > 2 :

||WH1,5’QF < CQH curl uh||0,S,QF‘
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and
lrnw = wllo,o, < Csl| curl uplo,q-
Then, we can apply the interpolation operator 7, to w, and uy splits into:
u, =rp,w+ Vz, with z, € Q.
Hence
lunllo.er < llrnw = wllo,op + [IWllo0r + [[V2allo,0x-

Since on one hand
[lw —rpwl|o,0r < Cs3l||curl usloqp,

and on the other hand
IWllo.cr < [IWllap < Cilfcurl upflo,op-
We see that it suffices to estimate ||Vzy||0,0,. For all py, € Qp we have:
(Van, Vun)or = (an —7rw, Viun)op
(un, Vin)op + (W — 1w, Vi )op
—(an, Vin)ap + (W = raw, Vs o,

I[anllo.pVinlloopr + Csll curl upllo.ap|Vinlloor

IN

We choose up € Qp, such that “h‘ﬁp = Zh|§F and pplog = 0, and we obtain:

[IVunllo,or < allznllijzr < c2l|Vailloar
We deduce
IVznllo.or < C(llunlloop + |l curl usllo.q,)

and finally the result.
We discretize (V') by:
Find u, € Uy, and p;, € @Qp/R such that
w(up, vp)ap, + v(curluy, curlvy)o, + (Vpr, vy) = (£,vy) Vv, € X,

As in the continuous way, the last problem can be splited to

Find uy, € Uy, such that

w(up, vi)ap + v(curluy, curlvy)o,. = (f,vy), Vv, € Uy,
Find pp, € Qn/R such that
(un, Van)op + (Von: Van) = (£, Van), Vg € Qn/R.

(3.4)

(3.5)

(3.6)

Let Qp be convex, it is easy to show, using the theorem 3.2, that these two last discrete problems have

a unique solution and we have:
[unllo,cp + [leurl usflo.or < Cs|f]o.0

and

1,0 < C4||f]

\ph 0,Q-

It is obvious that the last problem is equivalent to:
Find uy € Uy, and pp, € Qp /IR such that
w(an, vi)a, + v(curlug, curlvy)a, + (Vor, vi) = (£,vy), V vy € X,
Find pp, € Qr/R such that
—p(un, Van)ar + (Von, Van) = (£, Van), Van € Qn/R.
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4. A PRIORI ERROR ANALYSIS

In this section, we will establish the error estimates for the pressure and the velocity. First of all, we
consider the quantity uy, — r,u and we consider the finite dimensional problem:
Find A, € Qr/R such that

Van € Qn/R, / VAV, = / (up, — rpu)Vap
0 0

which admits a unique solution A, such that wj, = (up —rpu) — VA, is in the space Uy, with curl (uy —
rpu) = curl wy,.
Furthermore we consider, for all g5, € @1, /IR, the relation

/ VA Vagy = / (up, —rpa)Van = — / (rhu—u)Vap
Q Q Q
which gives by taking g, = \; and supposing that u € H?(Q)3:

IAnl1,0 < CR?[|ull2,0

To obtain the a priori error estimate for the velocity, it suffices to show an error estimate of wj, and we
conclude an error estimate of u € H?(Q)3 by using the theorem 3.2. Let Qr be convex. For all u;, € Uy,
we have:

=B < o=l g + [ — o + || eurd (w = r)| 3 o, + ] curl (ru — ) 3 o,
< O, Q) (R + [l = w3 g + [l eurl (ru — wy) B,
< Cow, ) (W + VAl B g + [[Walld o + Il curl wil3, )
< Ca(w, ) (B2 + VMR g + [[wallZ o, + [l curl wall3q,)

(4.1)
Next, to obtain the error estimate for w, we consider the difference of the equation (2.2) with v = vy, € X},
and the equation (3.4):

u/ (u—up)vy, + 1// curl (u — u) curl v, + / V(p—pn)vh =0
Qp Qp Q

We insert +7,u in the first and the second terms, £1;p in the third term and we obtain:

u/ (rpu—up,vp) + 1// curl (rpu —uy) curl v, =
Qp Qp

M(Thu - u, Vh)QP + I/(Clll'l (Thu - uh)v curl Vh)QF - (V(p - Ihp)a Vh) - (V(Ihp - ph)v vh)
We replace uy, — rpu = VA, + wy, and we choose v;, = wy, to obtain:

pllwnlls o, + vl curl willg o, =

— 1 VArwn + p(rpu —u, wy)a, + v(curl (rpu — ug), curl wy)q, — (V(p — Inp), wp)
Qp
By supposing that p € H?(2) and u € H?(Q)3, we deduce using the properties of r;, and Iy, the formula

1
a.b < 2—(12 + 551)2 with a suitable choice of € and the previous upper bound of A:
5

1l wallg.a, + vl curl w3 o, < CQ)R*([[ull3q +[lpl3.0)

Now, we will show an estimate for the pressure. We subtract the equation (2.5) with ¢ = ¢q;, € Qr/RR
from the equation (3.6) to get

p/ (u—up)Vgn+ | Vip—pn)Vagn =0
Qp Q

We insert +1p in the second term and we choose g, = pr, — Inp to obtain

lpn — Inplio < pll(u—up)lloor + [P — Inplho
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We deduce the error estimate:
lp—pnlie < |p—Iwplio+ [Inp —prhig
C)(lIpll2.0 + [ull20) 2
Theorem 4.1. Ifu € H?(Q)? and p € H*(Q), the theoretical solution (u,p) of the problem (2.4)-(2.5)
and the numerical solution (un,pr) of the problem (8.5)-(3.6) verify the error estimate:

1,0 <C(Q,u,p) h (4.3)

(4.2)

IN

[lu—upl|x +[p— pn

5. A POSTERIORI ERROR ANALYSIS

We now intend to prove a posteriori error estimates between the exact solution (u,p) of the problem
(2.4)-(2.5) and the numerical solution (up,pp) of the problem (3.7)-(3.8).

We first introduce the space
Zn = {gn € L*(Q)°; Vi € 74, ghlx € Po(r)}

and we fix an approximation fj, of the data f in Z},.

Next, we denote by e}, the set of all faces of the elements. For every element x in 73, we denote by &,
the set of faces of x that are not contained in I', A,, (resp. AL or AF) the set of union of elements of 7,
that intersect & (resp. contained in Qr or contained in Qp), A, (resp. AL or AF) the union of elements
of 75, that intersect the face e (resp. contained in Qg or contained in Qp), h, the diameter of x and h,
the diameter of the face e. Also, n, stands for the unit outward normal vector to £ on Ok and [-]. the
jump through the face e of x. If the face e is on T, [-] will be the trace on e from the domain QF or Qp
containing x, multiplied by 2.

For the demonstration of the next theorems, we introduce for an element k of 75, the bubble function
¥y (resp. ¥, of the face e) which is equal to the product of the d 4+ 1 barycentric coordinates associated
with the vertices of k (resp. of €) and L. (resp. LI or £LF) the lifting operator from polynomials defined
on e into polynomials defined on the elements x and x’ containing e (resp. elements contained in Qg or
contained in Qp), which is constructed by affine transformations from a fixed operator on the reference
element.

Property 5.1. Denoting by P,(e) the polynomial of degrees r on e, we have
Voof P(e) vl v0d? 2= ¢ [l v 2
and for any v of P.(e) which vanishes on de, we have
| Lev [|L2my +he | Lev [ < ch? | v |l 22(e) -
We denote by Ry, the Clément operator [7]. For any function ¢ € Hg (), Rnq € Q), verifies

| ¢ = Rnq [|22(5)< chie || ¢ |51 (ak)
(%) (Ak) (5.1)

1/2
| ¢ — Rnq [|12(e)< cht? || q | ae) -

Furthermore, we define pj, as the L? projection of z onto Zy such that, in each triangle x we have: for
z € L3(Q),

1
pn(z) = m/z(x)da:
We have the properties: Vi € 1, Vp € H*(9),

[P — pupllL2(n) < chiclpliw
1/2
1P = pupllL2(e) < che’* |l
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We also denote by Ry, the Raviart-Thomas operator : for any smooth enough vectorial function v which
is divergence-free on 2, Ry v belongs to X} and satisfies

Ve € ey, /(v — Rpv).ndr = 0.

Moreover, this operator satisfies, see [19] : Vv in H*(Q)3 and Vx in 75,
|| vV — th ||L2(n)3§ Ch,.Q || v HHI(K):s

(5.2)
IV = Rav [l < che’ || v |1 (aeys

To prove the a posteriori estimates, we begin by decomposing u — u;, = VA + w where A € H(Q) and
w € U. Then, we establish a posteriori estimate for A and w to deduce using the lemma (2.3)

lu—un|lk% = [[VA+W[§q+[[curl w|f§,
< O(Miq+I1Iwlg o, +lcurl w5 g, )

and we finish with the a posteriori estimate for the pressure.
The error function u — uy, belongs to X, there exists a unique solution A\; € H'(Qr)/IR of the problem:
VA Vg = / (W—u)Vq Vge H'(Qp)/R,
QF QF
and the function w; = (u—u,)—VA; belongs to Ur = {v € H(curl, Qr); (v,Vq)a, =0, Vg € H'(Qr)}.

We define the function w, equal to wy in Q2 and 0 in Q p, which belongs to U and verifies curlw = curlw;
in Qp. Furthermore, there exists a unique solution A € H'(Q)/IR of the problem:

/ VAVg = /(u —w)Vq  Vge H'(Q)/R,
Q Q

and the function w = (u —uy) — VA belongs to U and we have curlw = curlw; = curl (u—u,) in Qp.
We have, for all ¢ € H'(Q)

/QV/\Vq = /Q(W+V>\)Vq=/ﬂ(u—uh)Vq= —/Quth

1 (5.3)
=~ [w¥a-2)=—5 ¥ (X [imnla-a). Ve e
KET, e€e, €
We introduce the indicators
&= Y b | [wn] o (54)
EC€E,
Theorem 5.2. The following bounds hold
1/2
IVAlbe < C( Y &) (5.5)
KETH
and
&n < cl[VA[lo,a, (5.6)

Proof: First we take, in the equation (5.3), ¢ = A and ¢, = Ryq, the image of ¢ by the Clément type
regularization operator, and we obtain the upper bound. In order to find the lower bound, we take in
the equation (5.3) g, = 0 and ¢ = L([up.n]t).), and we obtain

I fwnen] flo.e< € (A2 Al )

which leads to
§e <M1 A, (5.7)
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To find a posteriori estimates for w, we begin to establish upper and lower bounds for curl w in Qp. We
introduce the indicators

v
Y. = e || £ — VDr lo.s —|—§ Z hL/2 || [curluy, x n] [|o., if & € Qp (5.8)
e€ey
Theorem 5.3. Let Qp be convex. The following bounds hold:
1/2
vlleurlwllo.o, < C( D2 R2IE-Hll3. + D 22r) (5.9
rerl rkerf

and 1o

Ter <€ ([lewrl Wi ap + 1D = pulf ap + B2~ £ull5 ar) (5.10)
ST

Proof : The error function u — uy, verifies, by using the equations (2.2) and (3.4):
Vv e X, Vv, € Xp,

,u/ﬂp(u—uh)vﬁ—v/QF curl(u—uh)curlv—i—/QV(p—ph)v
:,u/Q (u—uh)(v—vh)—|—u/Q curl(u—uh)curl(v—vh)—|—/§2V(p—ph)(v—vh)
=(f,v—vyp) _H/Qp up(v—vp) — V/QF curluy, curl (v — vy) — /QVp;L(v—vh) (5.11)

= ((f*f},,),V*Vh) +/

(B — Von) (v — vi) + / (s — Von — prun) (v — va)
Qp

Qp
71// curluy, curl (v — vy)
Qp

We replace u — uy, by w 4+ VA, take v = w and v;, = Ryv, remark that curlw = curlw in Qp and use
the integration by part formula to obtain:

v|curlwl|lg o, = /Q (f — £1)(W — RpW) — /Q (fn — Vpn) (W — Rpw)
v 5.12
-3 Z Z /e[curluh xn] (W—Rpw) (5:12)

NGT}ILT eCey

Since QF is convex, the theorem 2.2 and the lemma 2.3 give:

12 v 1/2
e wioa, < C( 30 (R20E =6l + B2 — Vonl3,)"* + 5 30 S hellleurlw, x n]l3, )

ety reTk e€ex
1/2
< o S RIE-RIR.+ Y 2e)
NET}I: HET}I;

(5.13)
and we obtain the upper bound. For the lower bound, we choose in the equation (5.11), v, = 0 and we
take for an element k € Qp, v = (f;, — Vpp )¢, and remark that

/curl u, curl v = / (curlup xn) v=0
K Ok
to obtain using the inverse inequality || curl v||o, < h,t||[v][o.x:
£ = Vpnlld e < |1E = £all3 o + [P = pali o + A [ curl wlff
Next, we take v = L.([curl uj, x nji.)|q, and integrate by part the last term of the equation (5.11) to

obtain

v||[curl uhxn]wé/zl\o,e < C(he_l/2|| curl W||O,A§+hl/2|p_ph|1,Af+hi/2||fh_Vph||O,Af+hé/2”f_fh‘|0,Af)



ERROR STUDIES OF THE COUPLING DARCY-STOKES SYSTEM 11

and we deduce the lower bound. O

Before showing bounds on w, we need to show bounds on p — p;, in Qp. For k € Qp, we introduce the
indicator:

N, F = Z hi/Q || (fh - Vph).n ||L2(e) (5.14)

e€e,

Theorem 5.4. The pressure error verifies the bounds:

1/2
p—prlar C( D n2p+ 3 IE— 3 ) (5.15)
KETH KETH
and
e <e S (1=t llezar) + 1 Vo =) lr2ar) ) (5.16)
e€ey

Proof: For all ¢ € H*(2r), we take the second equation of the system (P), multiply by Vg, integrate
in QO and obtain:

Vqu:/ fVq
QF QF

Then we have by considering the definition of p; and by integrating by parts:

V(p—p)Vq = /Q (F - £,)Vq + / (£, — Vpn)Vg

Qr Qp
= Y {[e-tova+ [ (6 VeTia- ) Van € 7
= Z {L(f—fh)vq+ Z /e((fh — Vpr).n) (q—qh)}

which leads, by taking ¢ = p — pp, gn = pr(q) and using the properties of pp, to (5.15). In the last
equation and for every element x € Qp, we take g, = 0 and ¢ = L([(f,, — Vpn).n]tbe) to obtain (5.16).0

To complete the upper and lower bounds of the velocity error, we show bound on w in Q2p. We introduce
the indicators
Vx,P :H f;, — Vph — pup ||07,{ if kK € QP (517)

Theorem 5.5. The following bounds hold:
1/2 1/2
iiwloor <C(( 3 1E=0lB.) ~+ (X 92p) " +ullVAllz@e + IV = 2i)llr20r) ) (5.18)
/{E’rf NGT{

and
1/2
Yoo < C(IIF = £ull3 . + [IWIIE . + o — palT . + N7 k) (5.19)

Proof : In the equation (5.11), we replace u — up, = w + VA and we take v = w in Qp and 0 in Qp.
We choose v, = 0 and we obtain:

diwide, = [ @=ows [ OV —pmmw—p [ WA= [ Vo-pw  520)

Furthermore, we have:

[ vemw] = | [wn-m)

Wl e (aiv,2) [V (P — pn)]

<|[wal|_1/2rllp — Prlli/2,r

IN

0.2r = [[Wllo.2,[IV(p — pr)llo,ox

Then we get the upper bound (5.18). For the lower bound, we choose v = 0 in the equation (5.11) and
we take for an element k € Qp, v = (f), — Vpp, — puy)y,; to obtain the lower bound. O
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To show an upper and a lower bound of the pressure, we define the indicators:

N, F if ke Qp
= ep = Z he! || (Fn — Vpn — pap)m || z2(e) if ke p (5.21)
e€ey
Theorem 5.6. The following bounds hold
1/2
p—prlian < C{ullwiB o, + HIVAB o, + > (n2+ £~ 6 ey ) } (5:22)
rett
and

e < C(I9Alo,ag +11Wllo.ap+ 12— pn lunap) + 1 £ = 2 ) (5.23)

Proof : The error function p — p;, belongs to H*(£)) and satisfies, using the first equation of the system
(P), for all ¢ € HY(Q):

:u(u — Up, VQ)QP =+ (V(p - ph)v vq)QP = M(f - fha Vq)QP + (fh - Vph — HUp, VQ)QP (524)
We replace u — u by VA +w and we obtain for all ¢ € H*(Q2) and q;, € Z,:
(V(p—pn):Va)o, = / (f —£,)Vq — u/ VAVg—p [ wVq
Qp P Qp

(5.25)
+/ (fr, — Vpn — pup)V(g — qn)
Qp

Integrating by part, taking ¢ = p — pp, and g, = pn(q), remarking that div f;, = div up = div Vpp =0 in
every element k € 7, and using the properties of pj,, we obtain the upper bound (5.22).

To prove the inequality (5.23), we take g = 0, integrate by part the last term and take ¢ = LF((f, —
Vpn, — vup).ne)) in the equation (5.25) to obtain the inequality (5.23). O

To simplify the notations, we define the indicators:

Vr,F if k€ Qp
e = Yk, P if k € Qp

Corollary 5.7. Let Qg be convex. The optimal a posteriori estimate holds

1/2
ha—willx 4 p—paho < { 3 (F+E+ 2+ -6 l3,)} (5.26)

KETH

where &, Y, and n,, are given by the formulas (5.6), (5.10), (5.19), (5.16) and (5.23).

Conclusion: We observe that estimate (5.26) is optimal: up to the terms involving the data, the full
error is bounded by a constant times the sum of all indicators. Estimates (5.6), (5.10), (5.19), (5.16) and
(5.23) are local, i.e., only involve the error in a neighborhood of K or e. The indicators 7, &, and v, can
be viewed as a measure for the error of the space discretization and can be used to adapt the mesh-size
in space.

6. NUMERICAL RESULTS

To validate the theoretical results, we performed several numerical simulations using the FreeFem ++
software (see [15]). The geometry considered is a sphere centered at the origin of radius 0.5, contained
in the cubic domain | — 1,1[x] — 1,1[x] — 1,1[. The numerical velocity and the pressure are taken as
(u,p) = (curley, p), where:

b= (¢, 0 0) with @(z,y,2) = (z = 1>+ 1D*(y = D*(y + 1)*(z = 1)*(z + 1)*(2° + 9 + 2* = 0.25)°,
and p(z,y,2) = -z —y — 2.
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We take p and v equal to 1. To get the numerical solution of the problem (3.4), we use, for some small
parameter ¢, the modified problem
Find uy € X, and pp, € Qr/R such that
(un, vi)ap + (curluy, curlvy)op + (Vpp,vn) = (£, va), Vi € X, 61
and  (u, Van) + £(pr,an) =0, ¥ an € Qu/R. (6.1)

Indeed, in comparison with problem (3.4), we have added the term (pp, ¢,) multiplied by ¢ to obtain an
invertible matrix. We have checked that there is no dependency of the solution upon &, wich is fixed here
equal to 10710,

In what follows, we present the results obtained for the ”a priori” part. The geometry mesh is given by
figure 2.

FIGURE 2. The a priori geometry mesh

In figure 3, we can see a comparison between the theoretical velocity u and the numerical one uy, for
some random degrees of freedom (left figure) as well as a more precise vue of the behavior of u and wy.

0.015

T T T
1 Apriori velocity uh  +
& Apriori velocity u -------

T T
Apriori velocity uh -+
Apriori velocity u ------

0005 | i}

-0.005

o015 L -0.015 -

0,02 L L L L L L L 002 L L L L L L L L L
200 250 300 350 400 450 500 550 600 200 205 210 215 220 225 230 235 240 245 250

F1GURE 3. The left figure represent a comparison between the exact and the numerical
velocity for the ”a priori” part. The right figure represent a precise vue of u and up
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Finally, curves displayed in figure 4 describe the errors || u — uy, || x and |p — pp|1, in logarithmic scale.

04 T T T T T T T T

T T T T
Apriori errors |+ Apriori errors |+
Linear fit ------- Linear fit -

05 & R T

07} E Evys E

08| 4

log |p-phl
@
T

09|

log ||u-uhl|x

a1l

a2l R L

FIGURE 4. The left and right graphs represent respectively the a priori error of the
velocity and the pressure

We can see that the pressure slope is 1.072 and the velocity slope is 1.543. These results confirm the
theoretical ones.

Concerning the a posteriori results, we generate new adapted meshes (see [13] and [14], for instance) and
we consider a different velocity on Qg and Qp, the pressure remains the same. Indeed, we take

o(z,y,2) = 2*y*2* in Qp,

and ¢(2,y,2) = (x — D*(x + 1)*(y — 1) (y + D3z — 1)*(z + 1)?*(2* + y* + 2*) in Qp.

Figure 5 shows the considered adapted mesh. We can note that the geometry is more refined outside the
sphere rather than inside it, where the solution is more smooth.

FI1GURE 5. The a posteriori adapted mesh
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In figures 6 and 7, we present a comparison between the initial mesh and the adapted one for the velocity
and the pressure respectively.

FI1GURE 6. The left and right figures represent respectively the velocity before and after
the adapted mesh

F1GURE 7. The left and right figures represent respectively the pressure before and after
the adapted mesh
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