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ERROR STUDIES OF THE COUPLING DARCY-STOKES SYSTEM

FIDA EL CHAMI†, GIHANE MANSOUR‡ AND TONI SAYAH‡

Abstract. In this paper we study the Coupling Darcy-Stokes Systems. We establish a coupled varia-

tional formulation with the velocity and the pressure. The velocity is approximated with curl conforming
finite elements and the pressure with standard continuous elements. We establish optimal a priori and
a posteriori error estimates.

Keywords Stokes equations, Darcy equations, a piori and a posteriori errors.

1. Introduction.

The numerical simulation of underground flows can be treated as cracks in porous media. Indeed, the
flow of a viscous incompressible fluid in a porous medium is usually modelled by Darcy equations and,
when the thickness of the crack is too large to be neglected, the Stokes system must be considered in the
crack and coupled with these equations. In this work, we consider the following system already studied
in [2], [3] and [4]:
Let Ω and Ω𝐹 be bounded connected open domains in IR3 with Lipschitz-continuous boundaries, such that
Ω̄𝐹 is contained in Ω. For simplicity, we also assume that Ω𝐹 is simply connected and has a connected
boundary. We set Ω𝑃 = Ω ∖ Ω𝐹 and we denote by Γ = ∂Ω𝐹 the interface between Ω𝐹 and Ω𝑃 . Let also
n stand for the unit outward normal vector to Ω𝑃 on its boundary ∂Ω𝑃 .

 

Figure 1. The geometry

We consider the following system of equations:

(𝑃 )

⎧⎨
⎩

𝜇u+∇𝑝 = f in Ω𝑃

−𝜈Δu+∇𝑝 = f in Ω𝐹

div u = 0 in Ω𝑃 ∪ Ω𝐹

u.n = 0 on ∂Ω

(u∣Ω𝑃
− u∣Ω𝐹

).n = 0 on Γ

𝑝∣Ω𝑃
− 𝑝∣Ω𝐹

= 0 on Γ

curl u∣Ω𝐹
× n = 0 on Γ

(1.1)
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2 EL CHAMI, MANSOUR AND SAYAH

where u is the velocity, 𝑝 the pressure, f the density of body forces and 𝜈 and 𝜇 positive constants.

For the Vorticity-velocity-pressure formulation for the Stokes problem, we refer to [6], [7] and [12].
In [1] and [8], we treat the Stokes problem with non-standard boundary conditions and we introduce
velocity-pressure weak formulation. In [2], [3] and [4], the basic idea consists in introducing the vorticity
w = curl u as a new unknown on the fluid domain Ω𝐹 . However, we treat in this work the same systems
with the unknowns u and 𝑝 without introducing the vorticity w. Since, we can discretize the pressure
and the velocity independently without a discrete inf-sup condition to obtain matrix systems with an
optimal dimension and optimal time of resolution.

The outline of the paper is as follows:

∙ In Section 2, we introduce the problem, establish a decoupled variational formulation and prove
its wellposedness.

∙ In section 3, we introduce the finite elements and a fully discrete system using the curl conforming
finite elements for the velocity and the standard continuous elements for the pressure.

∙ We prove the a priori and a posteriori estimates in sections 4 and 5, respectively.

2. Analysis of the model

In all the paper, we suppose that f ∈ 𝐿2(Ω)3 and we denote by 𝐶 and 𝑐 generic positive constants.

In order to write the variational formulation of the previous problem, we introduce the following spaces:

𝑊𝑚,𝑝(Ω) = {v ∈ 𝐿𝑝(Ω)3, ∂𝛼v ∈ 𝐿𝑝(Ω)3, ∀ ∣ 𝛼 ∣≤ 𝑚},
𝐻𝑚(Ω) =𝑊𝑚,2(Ω),

equipped with the undermentionned semi-norm and norm:

∣ v ∣𝑚,𝑝,Ω=

⎛
⎝ ∑

∣𝛼∣=𝑚

∫
Ω

∣ ∂𝛼v(𝑥) ∣𝑝 𝑑𝑥
⎞
⎠

1/𝑝

and ∥ v ∥𝑚,𝑝,Ω=

⎛
⎝∑

𝑘≤𝑚

∣ v ∣𝑝𝑘,𝑝,Ω

⎞
⎠

1/𝑝

As usual, we shall omit 𝑝 when 𝑝 = 2 and denote by (⋅, ⋅) the scalar product of 𝐿2(Ω). Also, recall the
familiar notation:

𝐻1
0 (Ω) = {v ∈ 𝐻1(Ω); v = 0 on ∂Ω},

with the Poincaré inequality

∀v ∈ 𝐻1
0 (Ω), ∣∣v∣∣0,Ω ≤ 𝐶∣v∣1,Ω. (2.1)

Finally, we introduce the spaces:

𝐻(div,Ω) = {v ∈ 𝐿2(Ω)
3
, div v ∈ 𝐿2(Ω)}, 𝐻0(div,Ω) = {v ∈ 𝐻(div,Ω),v ⋅ n = 0 on ∂Ω},

𝐻(curl,Ω) = {v ∈ 𝐿2(Ω)
3
, curl v ∈ 𝐿2(Ω)

3}, 𝐻0(curl,Ω) = {v ∈ 𝐻(curl,Ω),v × n = 0 on ∂Ω},

normed respectively by:

∥ v ∥𝐻(div,Ω)=
(∥ v ∥20,Ω + ∥ div v ∥20,Ω

)1/2
,

and

∥ v ∥𝐻(curl,Ω)=
(∥ v ∥20,Ω + ∥ curl v ∥20,Ω

)1/2
.

We recall that the trace operator: v → v.n is continuous from 𝐻(div,Ω) onto 𝐻−1/2(∂Ω) and the jump
(v∣Ω𝑃

− v∣Ω𝐹
).n vanishes on Γ.

We recall an important lemma which will be useful in the rest of the paper:
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Lemma 2.1. There exists a unique solution w in 𝐻1(Ω)/IR such that

(∇w,∇v) = (f ,∇v), ∀v ∈ 𝐻1(Ω)/IR,

and there exists a positive constant 𝐶 such that

∥ w ∥1,Ω≤ 𝐶 ∥ f ∥0,Ω .

For the following regularity theorem, we refer to Nedelec [10].

Theorem 2.2. All functions v ∈ 𝐿2(Ω𝐹 )
3 satisfying:

div v = 0, curl v ∈ 𝐿2(Ω𝐹 )
3, v.n = 0 on Γ,

verify
∣∣v∣∣0,Ω𝐹

≤ 𝐶∣∣ curl v∣∣0,Ω𝐹

If Ω𝐹 is convex, v belongs to 𝐻1(Ω𝐹 ) and we have

∣∣v∣∣1,Ω𝐹
≤ 𝐶∣∣curl v∣∣0,Ω𝐹

.

We have also from [2] (page 10 lemma 2.2) the next lemma:

Lemma 2.3. For all functions v ∈ 𝐿2(Ω)3 satisfying:

curl v∣Ω𝐹
∈ 𝐿2(Ω𝐹 )

3, div v = 0 in Ω, v.n = 0 on ∂Ω

there exist a constant 𝛼0 such that:

∥ v ∥0,Ω𝐹
≤ 𝛼0

(∥ v ∥20,Ω𝑃
+ ∥ curl v ∥20,Ω𝐹

)1/2
.

In order to give the variational formulation of the problem (𝑃 ), we introduce the space:

𝑋 = {v ∈ 𝐿2(Ω)3, curl v∣Ω𝐹
∈ 𝐿2(Ω𝐹 )

3},
provided with the norm

∥ v ∥𝑋=
(∣∣v∣∣20,Ω+ ∥ curl v ∥20,Ω𝐹

)1/2
.

We consider the following weak variational formulation, denoted by (𝑉 ):

Find u ∈ 𝑋 and 𝑝 ∈ 𝐻1(Ω)/IR such that

𝜇(u,v)Ω𝑃
+ 𝜈 (curl u, curl v)Ω𝐹

+ (∇𝑝,v) = (f ,v), ∀ v ∈ 𝑋 (2.2)

(∇𝑞,u) = 0, ∀ 𝑞 ∈ 𝐻1(Ω)/IR (2.3)

Theorem 2.4. The problem (𝑃 ) is equivalent to the weak variational formulation (𝑉 ).

Proof: Suppose that (u, 𝑝) ∈ 𝑋 ×𝐻1(Ω)/IR is a solution of (𝑉 ).
The equation (2.3) gives the third equation of (𝑃 ) in the distribution sense. Since 𝒟(Ω𝑃 ) ⊂ 𝑋 and
𝒟(Ω𝐹 ) ⊂ 𝑋, we deduce from (2.2) and the relation −Δu = curl curl u (as we have div u = 0) the first
and the second equation of (𝑃 ). On the other hand, u ∈ 𝐻(div,Ω) and (u,∇𝑞) = 0 for all 𝑞 ∈ 𝐻1(Ω) gives
us (u∣Ω𝑃

−u∣Ω𝐹
).n = 0 on Γ and u.n = 0 in 𝐻−1/2(∂Ω). Since 𝑝 ∈ 𝐻1(Ω)/IR we have (𝑝∣Ω𝑃

−𝑝∣Ω𝐹
)∣Γ = 0.

Finally, the second equation of (𝑃 ) and the equation (2.2) gives

(curl curl u,v)Ω𝐹
= (curl u, curl v)Ω𝐹

, ∀v ∈ 𝐻(curl,Ω𝐹 ),

which leads to the last condition curl u∣Ω𝐹
× n = 0 on Γ.

Inversely, let (u, 𝑝) ∈ 𝑋 ×𝐻1(Ω)/IR be a solution of (𝑃 ). Multiplying the first equation of (𝑃 ) by v ∈ 𝑋
and integrating over Ω𝐹 and using the Green formula, and the second equation by v and integrating over
Ω𝑃 gives the first equation of (𝑉 ). The next three equations of (𝑃 ) give the second equation of (𝑉 ). □

The variational formulation (𝑉 ) can be splitted into a system for the velocity and a Poisson equation for
the pressure. Let us introduce the space

𝑈 = {v ∈ 𝑋; (∇𝑞,v) = 0, ∀𝑞 ∈ 𝐻1(Ω)/IR}.
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and remark that every v ∈ 𝑈 verify the lemma 2.3.
The lemmas 2.1 and 2.3 allow us to establish the following theorem:

Theorem 2.5. The problem (𝑉 ) is equivalent to the problem

Find u ∈ 𝑈 such that

𝜇(u,v)Ω𝑃
+ 𝜈(curl u, curl v)Ω𝐹

= (f ,v), ∀ v ∈ 𝑈 (2.4)

Find 𝑝 ∈ 𝐻1(Ω)/IR such that

𝜇(u,∇𝑞)Ω𝑃
+ (∇𝑝,∇𝑞) = (f ,∇𝑞), ∀ 𝑞 ∈ 𝐻1(Ω)/IR. (2.5)

Furthermore, there exists a unique solution and we have the following bounds

∣∣u∣∣0,Ω𝑃
+ ∣∣curl u∣∣0,Ω𝐹

≤ 𝐶1∣∣f ∣∣0,Ω,
∣𝑝∣1,Ω ≤ 𝐶2∣∣f ∣∣0,Ω.

Proof: The equivalence of the two problems comes from the fact that every element v ∈ 𝑋 can be
written as v = w +∇𝑞 where w ∈ 𝑈 and 𝑞 ∈ 𝐻1(Ω)/IR.
The Lax-Milgram theorem gives the existence and the uniqueness of the solution of (2.4). Having the
velocity, the Lax-Milgram theorem gives the existence and the uniqueness of the solution of (2.5). We
obtain the inequalities by first taking v = u in the equation (2.4), next by taking 𝑞 = 𝑝 in the equation
(2.5). □

We denote by (𝑉1) the problem defined by (2.4) and (2.5). Then, it is easy to show that (𝑉1) is equivalent
to the following problem denoted (𝑉2):

Find u ∈ 𝑋, 𝑝 ∈ 𝐻1(Ω)/IR such that

𝜇(u,v)Ω𝑃
+ 𝜈(curl u, curl v)Ω𝐹

+ (∇𝑝,v) = (f ,v), ∀ v ∈ 𝑋 (2.6)

−𝜇(u,∇𝑞)Ω𝐹
+ (∇𝑝,∇𝑞) = (f ,∇𝑞), ∀ 𝑞 ∈ 𝐻1(Ω)/IR. (2.7)

3. Finite element discretization

In what follows and for simplicity, we make the further assumption that both Ω and Ω𝐹 are polyhedra.
We introduce a regular family of triangulation (𝜏ℎ)ℎ in the sense that:

∙ for each ℎ, Ω̄ is the union of all elements of 𝜏ℎ;
∙ for each ℎ, the intersection of two different elements of 𝜏ℎ, if not empty, is a corner, a whole edge
or a whole face of both of them;

∙ the ratio of the diameter ℎ𝜅 of an element 𝜅 in 𝜏ℎ to the diameter of its inscribed sphere is
bounded by a constant independent of 𝜅 and ℎ;

As usual, ℎ denotes the maximum of the diameters of the elements of 𝜏ℎ. We denote by 𝜏𝐹ℎ (resp. 𝜏𝑃ℎ )
the set of elements 𝜅 of 𝜏ℎ which are contained in Ω𝐹 (resp. Ω𝑃 ).

Next, for each 𝜅 in 𝜏ℎ, we introduce the spaces IP0(𝜅) of the restrictions to 𝜅 of constant functions on
IR3, IP1(𝜅) of the restrictions to 𝜅 of affine functions on IR and the space IP𝐾(𝜅) of the restrictions to 𝜅
of polynomials v of the form:

v(x) = a+ b× x, a ∈ IR3,b ∈ IR3.

The space IP𝐾(𝜅) and the corresponding finite elements are studied in [9]. Their degrees of freedom are

the average flux along the edges

∫
𝑙

(v.t)𝑑𝑙, for the six edges 𝑙 of 𝜅, t is the direction vector of 𝑙.

Hence, we associate the operator 𝑟𝜅 where 𝑟𝜅(u) is the unique polynomial of IP𝐾 that has the same flux
along the edges as u. We define also the operator 𝐼𝜅 where 𝐼𝜅(𝑞) is the unique polynomial of IP1(𝜅) that
has the same values on the vertex of 𝜅 as 𝑞. We have for all 𝜅 ∈ 𝜏ℎ:

𝑟𝜅(∇𝑞) = ∇𝐼𝜅(𝑞) ∀𝑞 ∈ 𝑊 2,𝑡(𝜅) for some 𝑡 > 2.
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Next, let us introduce the discrete spaces:

𝑋ℎ = {uℎ ∈ 𝑋;uℎ∣𝜅 ∈ IP𝐾(𝜅), ∀ 𝜅 ∈ 𝜏ℎ}, (3.1)

𝑄ℎ = {𝑞ℎ ∈ 𝐶0(Ω); 𝑞ℎ∣𝜅 ∈ IP1(𝜅), ∀ 𝜅 ∈ 𝜏ℎ}, (3.2)

With these spaces, the finite dimensional analogues of 𝑈 is:

𝑈ℎ = {vℎ ∈ 𝑋ℎ ; (∇𝑞ℎ,vℎ) = 0, ∀ 𝑞ℎ ∈ 𝑄ℎ},
We define the interpolation operators 𝑟ℎ from 𝐻1(Ω)3 onto 𝑋ℎ, 𝐼ℎ from 𝐻2(Ω) onto 𝑄ℎ by

𝑟ℎ𝑢 = 𝑟𝜅(𝑢) on 𝜅, ∀𝜅 ∈ 𝜏ℎ (similarly for 𝐼ℎ ).

We have the following result:

Theorem 3.1. Assume that the triangulation 𝜏ℎ is regular. We have:

∥ u− 𝑟ℎu ∥0,Ω +ℎ ∥ curl (u− 𝑟ℎu) ∥0,Ω≤ 𝐶ℎ ∣ u ∣1,𝑡,Ω, ∀ u ∈ 𝑊 1,𝑡(Ω)
3
, for some 𝑡 > 2.

Moreover, when u ∈ 𝐻𝑘(Ω)
3
, 𝑘 = 1, 2, we have:

∥ u− 𝑟ℎu ∥0,Ω≤ 𝐶ℎ𝑘 ∣ u ∣𝑘,Ω
and, when u ∈ 𝐻2(Ω)

3
we have:

∥ curl (u− 𝑟ℎu) ∥0,Ω≤ 𝐶ℎ ∣ u ∣2,Ω

Theorem 3.2. Let Ω be a polyhedron and Ω𝐹 a convex polyhedron. Let 𝜏ℎ be a uniformly regular family
of triangulation of Ω. We have:

∣∣uℎ∣∣0,Ω𝐹
≤ 𝛼0

(∣∣uℎ∣∣20,Ω𝑃
+ ∣∣curl 𝑢ℎ∣∣20,Ω𝐹

)1/2
, ∀uℎ ∈ 𝑈ℎ (3.3)

Proof: The inequality (3.3) is valid for every v ∈ 𝑈 . Let Ω𝐹 be convex, for every function uℎ in 𝑈ℎ,
we consider the Dirichlet problem:

(∇𝑧,∇𝜇)Ω𝐹
= (uℎ,∇𝜇)Ω𝐹

∀𝜇 ∈ 𝐻1(Ω𝐹 )/IR.

The difference w = uℎ −∇𝑧 belongs to the space

𝑈Ω𝐹
= {v ∈ 𝐻(curl,Ω𝐹 ); (v,∇𝑞)Ω𝐹

= 0 ∀𝑞 ∈ 𝐻1(Ω𝐹 )/IR},
and curl w = curl uℎ. It follows from theorem 2.2 that

∣∣w∣∣1,Ω𝐹
≤ 𝐶1∣∣ curl w∣∣0,Ω𝐹

.

Therefore, we can apply the interpolation operator 𝑟ℎ to w, and uℎ splits into:

uℎ = 𝑟ℎw +∇𝑧ℎ with 𝑧ℎ ∈ 𝑄ℎ.

Hence
∣∣uℎ∣∣0,Ω𝐹

≤ ∣∣𝑟ℎw −w∣∣0,Ω𝐹
+ ∣∣w∣∣0,Ω𝐹

+ ∣∣∇𝑧ℎ∣∣0,Ω𝐹
.

Since on one hand
∣∣w − 𝑟ℎw∣∣0,Ω𝐹

≤ 𝐶2∣∣w∣∣1,Ω𝐹
≤ 𝐶3∣∣ curl w∣∣0,Ω𝐹

,

and on the other hand
∣∣w∣∣0,Ω𝐹

≤ ∣∣w∣∣1,Ω𝐹
≤ 𝐶4∣∣ curl w∣∣0,Ω𝐹

.

We see that it suffices to estimate ∣∣∇𝑧ℎ∣∣0,Ω𝐹
. For all 𝜇ℎ ∈ 𝑄ℎ we have:

(∇𝑧ℎ,∇𝜇ℎ)Ω𝐹
= (uℎ − 𝑟ℎw,∇𝜇ℎ)Ω𝐹

= (uℎ,∇𝜇ℎ)Ω𝐹
+ (w − 𝑟ℎw,∇𝜇ℎ)Ω𝐹

= −(uℎ,∇𝜇ℎ)Ω𝑃
+ (w − 𝑟ℎw,∇𝜇ℎ)Ω𝐹

,

≤ ∣∣uℎ∣∣0,Ω𝑃
∣∣∇𝜇ℎ∣∣0,Ω𝑃

+ 𝐶3∣∣ curl w∣∣0,Ω𝐹
∣∣∇𝜇ℎ∣∣0,Ω𝐹

We choose 𝜇ℎ ∈ 𝑄ℎ such that 𝜇ℎ∣Ω𝐹
= 𝑧ℎ∣Ω𝐹

and 𝜇ℎ = 0 in Ω𝑃 .

We obtain : ∣∣∇𝜇ℎ∣∣0,Ω𝑃
≤ 𝐶1∣∣𝑧ℎ∣∣1/2,Γ ≤ 𝐶2∣∣∇𝑧ℎ∣∣0,Ω𝐹

and we deduce

∣∣∇𝑧ℎ∣∣0,Ω𝐹
≤ 𝐶3

(∣∣uℎ∣∣0,Ω𝑃
+ ∣∣ curl w∣∣0,Ω𝐹

)
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and finally the result. □

We discretize (𝑉 ) by:
Find uℎ ∈ 𝑈ℎ and 𝑝ℎ ∈ 𝑄ℎ/IR such that

𝜇(uℎ,vℎ)Ω𝑃
+ 𝜈(curl uℎ, curl vℎ)Ω𝐹

+ (∇𝑝ℎ,vℎ) = (f ,vℎ) ∀ vℎ ∈ 𝑋ℎ. (3.4)

As in the continuous way, the last problem can be splited to

Find uℎ ∈ 𝑈ℎ such that

𝜇(uℎ,vℎ)Ω𝑃
+ 𝜈(curl uℎ, curl vℎ)Ω𝐹

= (f ,vℎ), ∀ vℎ ∈ 𝑈ℎ, (3.5)

Find 𝑝ℎ ∈ 𝑄ℎ/IR such that

𝜇(uℎ,∇𝑞ℎ)Ω𝑃
+ (∇𝑝ℎ,∇𝑞ℎ) = (f ,∇𝑞ℎ), ∀ 𝑞ℎ ∈ 𝑄ℎ/IR. (3.6)

Let Ω𝐹 be convex, it is easy to show, using the theorem 3.2, that these two last discrete problems have
a unique solution and we have:

∣∣uℎ∣∣0,Ω𝑃
+ ∣∣curl 𝑢ℎ∣∣0,Ω𝐹

≤ 𝐶3∣∣f ∣∣0,Ω
and

∣𝑝ℎ∣1,Ω ≤ 𝐶4∣∣f ∣∣0,Ω.

It is obvious that the last problem is equivalent to:

Find uℎ ∈ 𝑈ℎ and 𝑝ℎ ∈ 𝑄ℎ/IR such that

𝜇(uℎ,vℎ)Ω𝑃
+ 𝜈(curl uℎ, curl vℎ)Ω𝐹

+ (∇𝑝ℎ,vℎ) = (f ,vℎ), ∀ vℎ ∈ 𝑋ℎ, (3.7)

Find 𝑝ℎ ∈ 𝑄ℎ/IR such that

−𝜇(uℎ,∇𝑞ℎ)Ω𝐹
+ (∇𝑝ℎ,∇𝑞ℎ) = (f ,∇𝑞ℎ), ∀ 𝑞ℎ ∈ 𝑄ℎ/IR. (3.8)

4. A priori error analysis

In this section, we will establish the error estimates for the pressure and the velocity. First of all, we
consider the quantity uℎ − 𝑟ℎu and we consider the finite dimensional problem:
Find 𝜆ℎ ∈ 𝑄ℎ/IR such that

∀𝑞ℎ ∈ 𝑄ℎ/IR,

∫
Ω

∇𝜆ℎ∇𝑞ℎ =

∫
Ω

(uℎ − 𝑟ℎu)∇𝑞ℎ

which admits a unique solution 𝜆ℎ such that wℎ = (uℎ − 𝑟ℎu)−∇𝜆ℎ is in the space 𝑈ℎ with curl (uℎ −
𝑟ℎu) = curl wℎ.
Furthermore we consider, for all 𝑞ℎ ∈ 𝑄ℎ/IR, the relation

∫
Ω

∇𝜆ℎ∇𝑞ℎ =

∫
Ω

(uℎ − 𝑟ℎu)∇𝑞ℎ = −
∫
Ω

(𝑟ℎu− u)∇𝑞ℎ

which gives by taking 𝑞ℎ = 𝜆ℎ and supposing that u ∈ 𝐻1(Ω)3:

∣𝜆ℎ∣1,Ω ≤ 𝐶 ℎ∣∣u∣∣1,Ω
To obtain the a priori error estimate for the velocity, it suffices to show an error estimate of wℎ and we
conclude an error estimate of u ∈ 𝐻2(Ω)3 by using the theorem 3.2. Let Ω𝐹 be convex. For all uℎ ∈ 𝑈ℎ,
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we have:

∣∣u− uℎ∣∣2𝑋 ≤ ∣∣u− 𝑟ℎu∣∣20,Ω + ∣∣𝑟ℎu− uℎ∣∣20,Ω + ∣∣ curl (u− 𝑟ℎu)∣∣20,Ω𝐹
+ ∣∣ curl (𝑟ℎu− uℎ)∣∣20,Ω𝐹

≤ 𝐶1(𝑢,Ω)
(
ℎ2 + ∣∣𝑟ℎu− uℎ∣∣20,Ω + ∣∣ curl (𝑟ℎu− uℎ)∣∣20,Ω𝐹

)
≤ 𝐶2(𝑢,Ω)

(
ℎ2 + ∣∣∇𝜆ℎ∣∣20,Ω + ∣∣wℎ∣∣20,Ω + ∣∣ curl wℎ∣∣20,Ω𝐹

)
≤ 𝐶3(𝑢,Ω)

(
ℎ2 + ∣∣∇𝜆ℎ∣∣20,Ω + ∣∣wℎ∣∣20,Ω𝑃

+ ∣∣ curl wℎ∣∣20,Ω𝐹

)
(4.1)

Next, to obtain the error estimate forw, we consider the difference of the equation (2.2) with v = vℎ ∈ 𝑋ℎ

and the equation (3.4):

𝜇

∫
Ω𝑃

(u− uℎ)vℎ + 𝜈

∫
Ω𝐹

curl (u− uℎ) curl vℎ +

∫
Ω

∇(𝑝− 𝑝ℎ)vℎ = 0

We insert ±𝑟ℎu in the first and the second terms, ±𝐼ℎ𝑝 in the third term and we obtain:

𝜇

∫
Ω𝑃

(𝑟ℎu− uℎ,vℎ) + 𝜈

∫
Ω𝐹

curl (𝑟ℎu− uℎ) curl vℎ =

𝜇(𝑟ℎu− u,vℎ)Ω𝑃
+ 𝜈(curl (𝑟ℎu− uℎ), curl vℎ)Ω𝐹

− (∇(𝑝− 𝐼ℎ𝑝),vℎ)− (∇(𝐼ℎ𝑝− 𝑝ℎ),vℎ)

We replace uℎ − 𝑟ℎu = ∇𝜆ℎ +wℎ and we choose vℎ = wℎ to obtain:

𝜇∣∣wℎ∣∣20,Ω𝑃
+ 𝜈∣∣ curl wℎ∣∣20,Ω𝐹

=

−𝜇
∫
Ω𝑃

∇𝜆ℎwℎ + 𝜇(𝑟ℎu− u,wℎ)Ω𝑃
+ 𝜈(curl (𝑟ℎu− uℎ), curl wℎ)Ω𝐹

− (∇(𝑝− 𝐼ℎ𝑝),wℎ)

By supposing that 𝑝 ∈ 𝐻2(Ω) and u ∈ 𝐻2(Ω)3, we deduce using the properties of 𝑟ℎ and 𝐼ℎ, the formula

𝑎.𝑏 ≤ 1

2𝜀
𝑎2 +

1

2
𝜀𝑏2 with a suitable choice of 𝜀 and the previous upper bound of 𝜆:

𝜇∣∣wℎ∣∣20,Ω𝑃
+ 𝜈∣∣ curl wℎ∣∣20,Ω𝐹

≤ 𝐶(Ω)ℎ2(∣∣u∣∣22,Ω + ∣∣𝑝∣∣22,Ω)
Now, we will show an estimate for the pressure. We subtract the equation (2.5) with 𝑞 = 𝑞ℎ ∈ 𝑄ℎ/IR
from the equation (3.6) to get

𝜇

∫
Ω𝑃

(u− uℎ)∇𝑞ℎ +
∫
Ω

∇(𝑝− 𝑝ℎ)∇𝑞ℎ = 0

We insert ±𝐼ℎ𝑝 in the second term and we choose 𝑞ℎ = 𝑝ℎ − 𝐼ℎ𝑝 to obtain

∣𝑝ℎ − 𝐼ℎ𝑝∣1,Ω ≤ 𝜇∣∣(u− uℎ)∣∣0,Ω𝑃
+ ∣𝑝− 𝐼ℎ𝑝∣1,Ω

We deduce the error estimate:

∣𝑝− 𝑝ℎ∣1,Ω ≤ ∣𝑝− 𝐼ℎ𝑝∣1,Ω + ∣𝐼ℎ𝑝− 𝑝ℎ∣1,Ω
≤ 𝐶(Ω)(∣∣𝑝∣∣2,Ω + ∣∣u∣∣2,Ω)ℎ

(4.2)

Theorem 4.1. If u ∈ 𝐻2(Ω)3 and 𝑝 ∈ 𝐻2(Ω), the theoretical solution (u, 𝑝) of the problem (2.4)-(2.5)
and the numerical solution (uℎ, 𝑝ℎ) of the problem (3.5)-(3.6) verify the error estimate:

∣∣u− uℎ∣∣𝑋 + ∣𝑝− 𝑝ℎ∣1,Ω ≤ 𝐶(Ω,u, 𝑝) ℎ (4.3)

5. A posteriori error analysis

We now intend to prove a posteriori error estimates between the exact solution (u, 𝑝) of the problem
(2.4)-(2.5) and the numerical solution (uℎ, 𝑝ℎ) of the problem (3.7)-(3.8). In all the rest of the paper, we
suppose that f ∈ 𝐻(div,Ω).

We first introduce the space

𝑍ℎ = {gℎ ∈ 𝐿2(Ω)3; ∀𝜅 ∈ 𝜏ℎ, gℎ∣𝜅 ∈ IP0(𝜅)}
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and we fix an approximation fℎ of the data f in 𝑍ℎ.

Next, we denote by 𝜀ℎ the set of all faces of the elements. For every element 𝜅 in 𝜏ℎ, we denote by 𝜀𝜅
the set of faces of 𝜅 that are not contained in Γ, Δ𝜅 (resp. Δ𝐹

𝜅 or Δ𝑃
𝜅 ) the set of union of elements of 𝜏ℎ

that intersect 𝜅 (resp. contained in Ω𝐹 or contained in Ω𝑃 ), Δ𝑒 (resp. Δ
𝐹
𝑒 or Δ𝑃

𝑒 ) the union of elements
of 𝜏ℎ that intersect the face 𝑒 (resp. contained in Ω𝐹 or contained in Ω𝑃 ), ℎ𝜅 the diameter of 𝜅 and ℎ𝑒
the diameter of the face 𝑒. Also, n𝜅 stands for the unit outward normal vector to 𝜅 on ∂𝜅 and [⋅]𝑒 the
jump through the face 𝑒 of 𝜅.

For the demonstration of the next theorems, we introduce for an element 𝜅 of 𝜏ℎ, the bull function 𝜓𝜅

(resp. 𝜓𝑒 of the face 𝑒) which is equal to the product of the 𝑑 + 1 barycentric coordinates associated
with the vertices of 𝜅 (resp. of 𝑒) and ℒ𝑒 (resp. ℒ𝐹

𝑒 or ℒ𝑃
𝑒 ) the lifting operator from polynomials defined

on 𝑒 into polynomials defined on the elements 𝜅 and 𝜅′ containing 𝑒 (resp. elements contained in Ω𝐹 or
contained in Ω𝑃 ), which is constructed by affine transformations from a fixed operator on the reference
element.

Property 5.1. Denoting by 𝑃𝑟(𝑒) the polynomial of degrees 𝑟 on 𝑒, we have

∀ 𝑣 polynom of 𝑃𝑟(𝑒) 𝑐 ∥ 𝑣 ∥𝐿2(𝑒)≤∥ 𝑣𝜓1/2
𝑒 ∥𝐿2(𝑒)≤ 𝑐′ ∥ 𝑣 ∥𝐿2(𝑒)

and for any polynom 𝑣 of 𝑃𝑟(𝑒) which vanishes on ∂𝑒, we have

∥ ℒ𝑒𝑣 ∥𝐿2(𝜅) +ℎ𝑒 ∣ ℒ𝑒𝑣 ∣𝐻1(𝜅)≤ 𝑐ℎ1/2𝑒 ∥ 𝑣 ∥𝐿2(𝑒) .

We denote by 𝑅ℎ the Clément operator [5]. For any function 𝑞 ∈ 𝐻1
0 (Ω), 𝑅ℎ𝑞 ∈ 𝑄ℎ verifies

∥ 𝑞 −𝑅ℎ𝑞 ∥𝐿2(𝜅)≤ 𝑐ℎ𝜅 ∥ 𝑞 ∥𝐻1(Δ𝜅),

∥ 𝑞 −𝑅ℎ𝑞 ∥𝐿2(𝑒)≤ 𝑐ℎ
1/2
𝑒 ∥ 𝑞 ∥𝐻1(Δ𝑒) .

(5.1)

We also denote by ℛℎ the Raviart-Thomas operator : for any smooth enough vectorial function v which
is divergence-free on Ω, ℛℎv belongs to 𝑋ℎ and satisfies

∀𝑒 ∈ 𝜀ℎ,

∫
𝑒

(v −ℛhv).n𝑑𝜏 = 0.

Moreover, this operator satisfies, see [11] : ∀v in 𝐻1(Ω)3 and ∀𝜅 in 𝜏ℎ,

∥ v −ℛℎv ∥𝐿2(𝜅)3≤ 𝑐ℎ𝜅 ∥ v ∥𝐻1(𝜅)3

∥ v −ℛℎv ∥𝐿2(𝑒)3≤ 𝑐ℎ
1/2
𝑒 ∥ v ∥𝐻1(Δ𝑒)3

(5.2)

To prove the a posteriori estimates, we begin by decomposing u − uℎ = ∇𝜆 +w where 𝜆 ∈ 𝐻1(Ω) and
w ∈ 𝑈 . Then, we establish a posteriori estimate for 𝜆 and w to deduce using the lemma (2.3)

∣∣u− uℎ∣∣2𝑋 = ∣∣∇𝜆+w∣∣20,Ω + ∣∣ curl w∣∣20,Ω𝐹

≤ 𝐶(∣𝜆∣21,Ω + ∣∣w∣∣20,Ω𝑃
+ ∣∣ curl w∣∣20,Ω𝐹

)

and we finish with the a posteriori estimate for the pressure.

The error function u− uℎ belongs to 𝑋, there exists a unique solution 𝜆1 ∈ 𝐻1(Ω𝐹 )/IR of the problem:∫
Ω𝐹

∇𝜆1∇𝑞 =
∫
Ω𝐹

(u− uℎ)∇𝑞 ∀𝑞 ∈ 𝐻1(Ω𝐹 )/IR,

and the function w1 = (u−uℎ)−∇𝜆1 belongs to 𝑈𝐹 = {v ∈ 𝐻(rot,Ω𝐹 )/(v,∇𝑞)Ω𝐹
= 0 ; ∀𝑞 ∈ 𝐻1(Ω𝐹 )}.

We define the function w̃, equal tow1 in Ω𝐹 and 0 in Ω𝑃 , which belongs to 𝑈 and verifies curlw̃ = curlw1

in Ω𝐹 . Furthermore, there exists a unique solution 𝜆 ∈ 𝐻1(Ω)/IR of the problem:∫
Ω

∇𝜆∇𝑞 =
∫
Ω

(u− uℎ)∇𝑞 ∀𝑞 ∈ 𝐻1(Ω)/IR,
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and the function w = (u−uℎ)−∇𝜆 belongs to 𝑈 and we have curlw = curlw1 = curl (u−uℎ) in Ω𝐹 .
We have: ∀𝑞 ∈ 𝐻1(Ω),∫

Ω

∇𝜆∇𝑞 =

∫
Ω

(w +∇𝜆)∇𝑞 =
∫
Ω

(u− uℎ)∇𝑞 = −
∫
Ω

uℎ∇𝑞

= −
∫
Ω

uℎ∇(𝑞 − 𝑞ℎ) = −1

2

∑
𝜅∈𝜏ℎ

( ∑
𝑒∈𝜀𝜅

∫
𝑒

[uℎ.n](𝑞 − 𝑞ℎ)
)

∀𝑞ℎ ∈ 𝑄ℎ.
(5.3)

We introduce the indicators

𝜉𝜅 =
∑
𝑒∈𝜀𝜅

ℎ1/2𝑒 ∥ [uℎ.n] ∥0,𝑒 (5.4)

Theorem 5.2. The following bounds hold

∣∣∇𝜆∣∣0,Ω ≤ 𝐶
( ∑

𝜅∈𝜏ℎ

𝜉2𝜅

)1/2

and

𝜉𝜅 ≤ 𝑐∣∣∇𝜆∣∣0,Δ𝜅
(5.5)

Proof: First we take, in the equation (5.3), 𝑞 = 𝜆 and 𝑞ℎ = 𝑅ℎ𝑞, the image of 𝑞 by the Clément type
regularization operator, and we obtain the upper bound. In order to find the lower bound, we take in
the equation (5.3) 𝑞ℎ = 0 and 𝑞 = ℒ𝑒([uℎ.n]𝜓𝑒), and we obtain

∥ [uℎ.n] ∥0,𝑒≤ 𝐶
(
ℎ−1/2
𝑒 ∣𝜆∣1,𝜅∪𝜅′

)
which leads to

𝜉𝜅 ≤ 𝑐
(
∣𝜆∣1,Δ𝜅

)
. (5.6)

□

To find a posteriori estimates for w, we begin to establish upper and lower bounds for curl w in Ω𝐹 . We
introduce the indicators

𝛾𝜅,𝐹 = ℎ𝜅 ∥ fℎ −∇𝑝ℎ ∥0,𝜅 +
𝜈

2

∑
𝑒∈𝜀𝜅

ℎ1/2𝜅 ∥ [curl uℎ × n] ∥0,𝑒, if 𝜅 ∈ Ω𝐹 (5.7)

where [⋅]𝑒 is the jump through the face 𝑒 of 𝜅. If the face 𝑒 is on Γ, [⋅]𝑒 will be the trace on 𝑒 from the
domain Ω𝐹 containing 𝜅.

Theorem 5.3. Let Ω𝐹 be convex. The following bounds hold:

𝜈∣∣curlw∣∣0,Ω𝐹
≤ 𝐶

( ∑
𝜅∈𝜏𝐹

ℎ

ℎ2𝜅∣∣f − fℎ∣∣20,𝜅 +
∑
𝜅∈𝜏𝐹

ℎ

𝛾2𝜅,𝐹

)1/2
(5.8)

and

𝛾𝜅,𝐹 ≤ 𝑐
∑
𝑒∈𝜀𝜅

(∣∣ curl w∣∣20,Δ𝐹
𝑒
+ ℎ2𝑒∣𝑝− 𝑝ℎ∣21,Δ𝐹

𝑒
+ ℎ2𝑒∣∣f − fℎ∣∣20,Δ𝐹

𝑒

)1/2
(5.9)
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Proof : The error function u−uℎ verifies, by using the equations (2.2) and (3.4): ∀v ∈ 𝑋 and ∀vℎ ∈ 𝑋ℎ

𝜇

∫
Ω𝑃

(u− uℎ)v + 𝜈

∫
Ω𝐹

curl(u− uℎ)curl v +

∫
Ω

∇(𝑝− 𝑝ℎ)v

= 𝜇

∫
Ω𝑃

(u− uℎ)(v − vℎ) + 𝜈

∫
Ω𝐹

curl(u− uℎ)curl (v − vh) +

∫
Ω

∇(𝑝− 𝑝ℎ)(v − vℎ)

= (f ,v − vℎ)− 𝜇

∫
Ω𝑃

uℎ(v − vℎ)− 𝜈

∫
Ω𝐹

curl uℎ curl (v − vh)−
∫
Ω

∇𝑝ℎ(v − vℎ)

= ((f − fℎ),v − vℎ) +

∫
Ω𝐹

(fℎ −∇𝑝ℎ) (v − vℎ) +

∫
Ω𝑃

(fℎ −∇𝑝ℎ − 𝜇uℎ)(v − vℎ)

−𝜈
∫
Ω𝐹

curl uℎ curl (v − vh)

(5.10)

We replace u− uℎ by w+∇𝜆, take v = w̃ and vℎ = ℛℎv, remark that curlw = curl w̃ in Ω𝐹 and use
the integration by part formula to obtain:

𝜈∣∣curlw∣∣20,Ω𝐹
=

∫
Ω𝐹

(f − fℎ)(w̃ −ℛℎw̃)−
∫
Ω𝐹

(fℎ −∇𝑝ℎ) (w̃ −ℛℎw̃)

−𝜈

2

∑
𝜅∈𝜏𝐹

ℎ

∑
𝑒∈𝜀𝜅

∫
𝑒

[curl uℎ × n] (w̃ −ℛℎw̃)
(5.11)

Since Ω𝐹 is convex, the theorem 2.2 and the lemma 2.3 get:

𝜈∣∣curlw∣∣0,Ω𝐹
≤ 𝐶

( ∑
𝜅∈𝜏𝐹

ℎ

(
ℎ2𝜅∣∣f − fℎ∣∣20,𝜅 + ℎ2𝜅∣∣fℎ −∇𝑝ℎ∣∣20,𝜅

)1/2
+
𝜈

2

∑
𝜅∈𝜏𝐹

ℎ

∑
𝑒∈𝜀𝜅

ℎ𝜅∣∣[curl uℎ × n]∣∣20,𝑒
)1/2

≤ 𝐶
( ∑

𝜅∈𝜏𝐹
ℎ

ℎ2𝜅∣∣f − fℎ∣∣20,𝜅 +
∑
𝜅∈𝜏𝐹

ℎ

𝛾2𝜅,𝐹

)1/2
,

(5.12)
and we obtain the upper bound. For the lower bound, we choose in the equation (5.10), vℎ = 0 and we
take for an element 𝜅 ∈ Ω𝐹 , v = (fℎ −∇𝑝ℎ)𝜓𝜅 and remark that∫

𝜅

curl uℎ curl v =

∫
∂𝜅

(curl uℎ × n) v = 0

to obtain using the inverse inequality ∣∣ curl v∣∣0,𝜅 ≤ ℎ−1
𝜅 ∣∣v∣∣0,𝜅:

∣∣fℎ −∇𝑝ℎ∣∣20,𝜅 ≤ ∣∣f − fℎ∣∣20,𝜅 + ∣𝑝− 𝑝ℎ∣21,𝜅 + ℎ−2
𝜅 ∣∣ curl w∣∣20,𝜅

Next, we take v = ℒ𝑒([curl uℎ × n]𝜓𝑒) and integrate by part the last term of the equation (5.10) to
obtain

𝜈∣∣[curl uℎ×n]𝜓1/2
𝑒 ∣∣0,𝑒 ≤ 𝑐

(
ℎ−1/2
𝑒 ∣∣ curl w∣∣0,Δ𝐹

𝑒
+ℎ1/2𝑒 ∣𝑝−𝑝ℎ∣1,Δ𝐹

𝑒
+ℎ1/2𝑒 ∣∣fℎ−∇𝑝ℎ∣∣0,Δ𝐹

𝑒
+ℎ1/2𝑒 ∣∣f−fℎ∣∣0,Δ𝐹

𝑒

)
and we deduce the lower bound. □

To show an upper and a lower bound of the pressure, we define the indicators:

𝜂𝜅 =

⎧⎨
⎩

𝜂𝐹𝜅 =
∑
𝑒∈𝜀𝜅

ℎ1/2𝑒 ∥ [(fℎ −∇𝑝ℎ).n] ∥𝐿2(𝑒) if 𝜅 ∈ Ω𝐹

𝜂𝑃𝜅 =
∑
𝑒∈𝜀𝜅

ℎ1/2𝑒 ∥ [(fℎ −∇𝑝ℎ − 𝜇uℎ).n] ∥𝐿2(𝑒) if 𝜅 ∈ Ω𝑃

(5.13)

where [⋅]𝑒 is the jump through the face 𝑒 of 𝜅. If the face 𝑒 is on Γ or ∂Ω, [⋅]𝑒 will be the trace on 𝑒 from
the domain (Ω𝑃 or Ω𝐹 ) containing 𝜅.
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Theorem 5.4. The following bounds hold

∣𝑝− 𝑝ℎ∣1,Ω ≤ 𝐶
{
𝜇∣∣ curl w∣∣20,Ω𝐹

+ 𝜇∣∣∇𝜆∣∣20,Ω𝐹

+
∑
𝜅∈𝜏ℎ

(
𝜂2𝜅 + ℎ2𝜅 ∥ div f ∥2𝐿2(𝜅) +

( ∑
𝑒∈𝜀𝜅

ℎ1/2𝑒 ∥ [(f − fℎ).n] ∥𝐿2(𝑒)

)2)}1/2 (5.14)

and⎧⎨
⎩

𝜂𝐹𝜅 ≤ 𝐶
(
∣∣w∣∣0,Δ𝑃

𝜅
+ ∣ 𝑝− 𝑝ℎ ∣𝐻1(Δ𝐹

𝜅 ) +ℎ𝑒 ∥ div f ∥𝐿2(Δ𝐹
𝜅 ) +

∑
𝑒∈𝜀𝜅

ℎ1/2𝑒 ∥ [(f − fℎ).n] ∥𝐿2(𝑒)

)

𝜂𝑃𝜅 ≤ 𝐶
(
∣∣∇𝜆∣∣0,Δ𝑃

𝜅
+ ∣ 𝑝− 𝑝ℎ ∣𝐻1(Δ𝑃

𝜅 ) +ℎ𝑒 ∥ div f ∥𝐿2(Δ𝑃
𝜅 ) +

∑
𝑒∈𝜀𝜅

ℎ1/2𝑒 ∥ [(f − fℎ).n] ∥𝐿2(𝑒)

) (5.15)

Proof : The error function 𝑝 − 𝑝ℎ belongs to 𝐻1(Ω) and satisfies, using (3.6), for all 𝑞 ∈ 𝐻1(Ω) and
𝑞ℎ ∈ 𝑄ℎ:

𝜇(u− uℎ,∇𝑞)Ω𝑃
+ (∇(𝑝− 𝑝ℎ),∇𝑞) = 𝜇(u− uℎ,∇(𝑞 − 𝑞ℎ))Ω𝑃

+ (∇(𝑝− 𝑝ℎ),∇(𝑞 − 𝑞ℎ))

=

∫
Ω

f∇(𝑞 − 𝑞ℎ)− 𝜇

∫
Ω𝑃

uℎ∇(𝑞 − 𝑞ℎ)−
∫
Ω

∇𝑝ℎ∇(𝑞 − 𝑞ℎ)

(5.16)
We replace u− uℎ by ∇𝜆+w and we obtain for all 𝑞 ∈ 𝐻1(Ω) and 𝑞ℎ ∈ 𝑄ℎ:

(∇(𝑝− 𝑝ℎ),∇𝑞) =

∫
Ω

(f −∇𝑝ℎ)∇(𝑞 − 𝑞ℎ)− 𝜇

∫
Ω𝑃

uℎ∇(𝑞 − 𝑞ℎ)− 𝜇

∫
Ω𝑃

∇𝜆∇𝑞 − 𝜇

∫
Ω𝑃

w∇𝑞

=

∫
Ω

(f − fℎ)∇(𝑞 − 𝑞ℎ)− 𝜇

∫
Ω𝑃

∇𝜆∇𝑞 + 𝜇

∫
Ω𝐹

w∇𝑞

+

∫
Ω𝑃

(fℎ −∇𝑝ℎ + 𝜇uℎ)∇(𝑞 − 𝑞ℎ) +

∫
Ω𝐹

(fℎ −∇𝑝ℎ)∇(𝑞 − 𝑞ℎ)

(5.17)
Integrating by part and remarking that div fℎ = div uℎ = div ∇𝑝ℎ = 0 in every element 𝜅 ∈ 𝜏ℎ, we
obtain:

(∇(𝑝− 𝑝ℎ),∇𝑞) = −𝜇
∫
Ω𝑃

∇𝜆∇𝑞 + 𝜇

∫
Ω𝐹

w∇𝑞 +
∑
𝜅∈𝜏ℎ

{
−
∫
𝜅

div f (𝑞 − 𝑞ℎ) +
1

2

∑
𝑒∈𝜀𝜅

∫
𝑒

[(f − fℎ).n](𝑞 − 𝑞ℎ)
}

−1

2

∑
𝜅∈𝜏𝐹

ℎ

{ ∑
𝑒∈𝜀𝜅

∫
𝑒

[(fℎ −∇𝑝ℎ).n](𝑞 − 𝑞ℎ)
}
− 1

2

∑
𝜅∈𝜏𝑃

ℎ

{ ∑
𝑒∈𝜀𝜅

∫
𝑒

[(fℎ −∇𝑝ℎ + 𝜇uℎ).n](𝑞 − 𝑞ℎ)
}

(5.18)

We take 𝑞 = 𝑝 − 𝑝ℎ and 𝑞ℎ = 𝐼ℎ𝑞, we use the relation 𝑎.𝑏 ≤ 1

2𝜀
𝑎2 +

𝜀

2
𝑏2 with a suitable choice of 𝜀, the

properties of 𝐼ℎ and the theorem (2.2) to obtain the inequality (5.14).

To prove the inequality (5.15), we take 𝑞ℎ = 0, 𝑞 = ℒ𝐹
𝑒 ([(fℎ−∇𝑝ℎ).n]𝜓𝑒) (resp. 𝑞 = ℒ𝑃

𝑒 ([(fℎ−∇𝑝ℎ).n]𝜓𝑒))
in the equation (5.18) and we use the property (5.1) to obtain the first inequality of (5.15) (resp. the
second inequality). □

To complete the upper and lower bounds of w, we show bound on w in Ω𝑃 . We introduce the indicators

𝛾𝜅,𝑃 =∥ fℎ −∇𝑝ℎ + 𝜇uℎ ∥0,𝜅 if 𝜅 ∈ Ω𝑃 (5.19)

Theorem 5.5. The following bounds hold:

𝜇∣∣w∣∣0,Ω𝑃
≤

( ∑
𝜅∈𝜏𝑃

ℎ

∣∣f − fℎ∣∣20,𝜅
)1/2

+
( ∑

𝜅∈𝜏𝐹
ℎ

𝛾2𝜅,𝑃

)1/2
+ 𝜇∣∣∇𝜆∣∣𝐿2(Ω𝑃 ) + ∣∣∇(𝑝− 𝑝ℎ)∣∣𝐿2(Ω𝑃 ) (5.20)

and

𝛾𝜅,𝑃 ≤ 𝐶
(∣∣f − fℎ∣∣20,𝜅 + ∣∣w∣∣20,𝜅 + ∣𝑝− 𝑝ℎ∣21,𝜅 + ∣𝜆∣21,𝑘

)1/2
(5.21)
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Proof : In the equation (5.10), we replace u − uℎ = w +∇𝜆 and we take v = w in Ω𝑃 and 0 in Ω𝐹 .
We choose vℎ = 0 and we obtain:

𝜇∣∣w∣∣20,Ω𝑃
=

∫
Ω𝑃

(f − fℎ)w +

∫
Ω𝑃

(fℎ −∇𝑝ℎ + 𝜇uℎ)w − 𝜇

∫
Ω𝑃

w∇𝜆−
∫
Ω𝑃

∇(𝑝− 𝑝ℎ)w (5.22)

Then we get the upper bound. For the lower bound, we choose vℎ = 0 in the equation (5.10) and we
take for an element 𝜅 ∈ Ω𝑃 , v = (fℎ −∇𝑝ℎ + 𝜇uℎ)𝜓𝜅 to obtain the lower bound. □

To simplify the notations, we define the indicators:

𝛾𝜅 =

{
𝛾𝜅,𝐹 if 𝜅 ∈ Ω𝐹

𝛾𝜅,𝑃 if 𝜅 ∈ Ω𝑃

Corollary 5.6. Let Ω𝐹 be convex. The optimal a posteriori estimate holds

∣∣u− uℎ∣∣𝑋 + ∣𝑝− 𝑝ℎ∣1,Ω ≤
{ ∑

𝜅∈𝜏ℎ

(
𝛾2𝜅 + 𝜉2𝜅 + 𝜂2𝜅+ ∥ f − fℎ ∥20,𝜅 +ℎ2𝜅 ∥ div f ∥2𝐿2(𝜅)

)

+
( ∑
𝑒∈𝜀𝜅

ℎ1/2𝑒 ∥ [(f − fℎ).n] ∥𝐿2(𝑒)

)2}1/2 (5.23)

where 𝜂𝜅, 𝜉𝜅 and 𝛾𝜅 are given by the formulas (5.5), (5.9), (5.15) and (5.21).

Conclusion: We observe that estimate (5.23) is optimal: up to the terms involving the data, the full
error is bounded by a constant times the sum of all indicators. Estimates (5.5), (5.9), (5.15) and (5.21)
are local, i.e., only involve the error in a neighborhood of K or e. The indicators 𝜂𝜅, 𝜉𝜅 and 𝛾𝜅 can be
viewed as a measure for the error of the space discretization and can be used to adapt the mesh-size in
space.
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