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Abstract: In production decision making systems, Master Production Schedule (MPS) states
the requirements for individual end items by date and quantity. The solution sensitivity to
demand forecast changes, unforeseen supplier and production problem occurrences, is known as
nervousness. This feature cause undesirable effects at tactical and operational levels. Some of
these effects are production and inventory cost increases and, also, negative impacts on overall
and labor productivity. To tackle this problem, we proposed a Mixed Integer Programming
(MIP) model where nervousness reduction is carry out finding minimal suboptimal solutions. We
perform a simulation under rolling planning horizon environment considering stochastic demand.
Results of simulation show that, at each time demand changes take place the model can adjust
the solution to achieve less nervousness without a significative change in cost performance.

Keywords: Industrial Production Systems, Nervousness, Rescheduling, Mixed Integer
Programming.

1. INTRODUCTION

In production decision making systems, Master Produc-
tion Schedule (MPS) states the requirements for individual
end items by date and quantity. Moreover, the MPS con-
siders availabilities of critical resources, management poli-
cies and goals. The main objective of this plan is to sched-
ule production quantities in each period of the planning
horizon, minimizing the cost and maximizing bottleneck
utilization. Therefore, the MPS is important to maintain
an adequate customer service level and an efficient pro-
duction system through well managed constraints. The
most common way to compute a MPS is to consider a
rolling planning horizon, i.e., the plan is constantly com-
puted with a specific periodicity over whole operational
horizon. Hence, this methodology regularly reschedules the
production quantities by period. The differences in the
planned quantities obtained by this rescheduling process,
are related to MPS nervousness or instability (our inter-
pretation of these characteristics is proposed in section 2).
MPS instability leads to negative effects at both, tactical
and operational levels. Some of these effects are production
and inventory cost increases and, also, negative impacts on
overall and labor productivity (Hayes and Clark, 1985).
This changes in the MPS are caused mainly by: end-item
forecast changes, lot-sizing rules and scheduled receipts
changes (Zhao and Lam, 1997).

When a stability criterion is considered for a MPS, it
is necessary to find a trade-off between stability and
cost performance (Kimms, 1998), i.e., when the MPS
is computed excluding stability, the plan can present
huge differences between scheduled quantities in successive
computations (cycles). Moreover, this situation makes
difficult to apply the plan in practice and leads to huge

work in process (WIP), and also, more difficult scheduling
(at shop floor level). The most commonly used methods to
obtain stable plans are: frozen intervals, planning fences
and safety stock. Basically, frozen intervals consist in
fixing periods in the planning horizon, in which, changes
hoped for later reschedules are not allowed. Planning
fences referred to only in certain period changes are not
allowed. Finally, safety stock fits inventory levels to absorb
uncertainty demand. Nevertheless these methods have a
strong static component, because they are based on the
idea to fix some variables. On the contrary, the approach
presented in this paper searches to reduce the instability by
a dynamic process. For this, a mixed integer programming
(MIP) model is proposed to compute the MPS, which
considers the instability minimization by an implicit way.

The rest of this paper is organized as follows. Section 2
describes the problem. A literature review of some con-
tributions related to MPS stabilization is presented in
section 3. In section 4 we describe the classic and pro-
posed MIP formulations of MPS, providing a parametric
programming based method to solve this one. Afterward,
section 5 explains the design of the simulation experiments
and its results are commented. Finally, section 5 presents
conclusions and future directions.

2. PROBLEM DESCRIPTION

In a rolling planning horizon, MPS computes quantities to
produce for a given planning horizon (n), with a specific
periodicity ∆t (cycles). Table 1 shows an example of
scheduled quantities resulting of a MPS, where quantity
Qkt represents the scheduled production quantity for one
end item, for period t obtained by the MPS computed in
the cycle k. In this example the paremeters are: n = 4 and
∆t = 1.



To analyze the stability, we make the difference between
MPS instability and nervousness. We define MPS insta-
bility, as the differences between production quantities
scheduled by a MPS in a cycle (e.g., in Table 1 for the
cycle k = 2, differences between Q22, Q23, Q24, Q25).
On the other hand, we define nervousness as the differ-
ence between quantities scheduled by the MPS in different
cycles, for a period in the planning horizon given (i.e. in
Table 1 for the period n = 5, differences between Q25,
Q35, Q45, Q55).

We define two measures for MPS instability , Mean In-
stability (MEI) and Maximum Instability (MAI). MEI is
defined as:

MEIi
k :=

2

n(n − 1)

k+n−1
∑

t=k

k+n
∑

t′=k+1

|xi
t − xi

t′ |, ∀i, ∀k. (1)

This measure represents the average of the differences of
scheduled quantities, between each period and its next
periods for all item i and for all cycle k.

MAI can be defined as:

MAIi
k := max

t
{

1

n− t

k+n
∑

t′=k+t

|xi
k+t−1 − xi

t′ |,

t = {1 . . . , n − 1}, ∀i, ∀k.

(2)

This measure represents the maximum of the differences
of scheduled quantities, between each period and its next
periods for all item i and for all cycle k.

Now, let Ωkt the set of overlapped periods in the cycle k
for the period t, i.e., all scheduled quantities for period t
obtained in the precedent cycles. And let,

nk =
n+k
∑

t=k

|Ωkt|, ∀k, (3)

the set of all overlapped periods for the MPS computed
in the cycle k, where |Ω| is the cardinality of the set Ω.
Hence,

NAi
k =

1

nk

k+n−1
∑

t=k

∑

h∈Ωkt

|xi
t − xi

h|, ∀i, ∀k, (4)

represents the nervousness computed as the average of the
differences of scheduled quantities between all periods in
the cycle k (t = k, k + 1, . . . , k + n − 1) and all quantities
scheduled in precedent cycles (the last period are not
overlapped periods), for all item i and for all cycle k. This
measure will be referred as Nervousness All Periods (NA).

Another measure defined is the nervousness for the first
period. This measure represents the nervousness computed
by similar way as above but, only considering the first
period. This is considered because, if ∆t = 1 hence the

Table 1. Example of MPS in a rolling horizon

k / t 1 2 3 4 5 6 7 8

1 Q11 Q12 Q13 Q14

2 Q22 Q23 Q24 Q25

3 Q33 Q34 Q35 Q36

4 Q44 Q45 Q46 Q47

5 Q55 Q56 Q57 Q58

implemented period is only the first period. This measure
is defined as:

NF i
k =

1

nkf

∑

h∈Ωkf

|xi
k − xi

h|, ∀i, ∀k, (5)

where nkf represents the number of overlapped periods
in the cycle k only for the first period in the MPS. This
measure will be referred as Nervousness First Period (NF).

Nervousness has a dynamic character because it takes
place when the differences of the computed quantities in
different cycles are obtained.

3. LITERATURE REVIEW

Many works study MPS stability and nervousness effects
and their impact on production planning and control
systems. In the following some contributions related to
MPS stabilization are presented.

Inderfurth (1994) studies the nervousness effect for stochas-
tic inventory control. For that, he defines a measure of
nervousness taking into account exclusively the setup vari-
able. The results show that, nervousness is affected by the
control rules. Following this work, the instability measures
defined in the previous subsection, can be classified as
long-term stability and quantity-oriented. This means that,
we consider the whole planning horizon for the computa-
tions of the differences between production quantities.

In the work of Kadipasaoglu and Sridharan (1995), the
following strategies to reduce nervousness are studied:
freezing the MPS, end-item safety stock and lot-for-lot
lotsizing rule for components. Some factors considered
are: item cost structure, items structure, level of demand
uncertainty and lot-sizing method. Decision variables are:
cost, instability, and customer service level. The main
result is that, frozen periods strategy, presents the best
performance under stochastic demand multilevel environ-
ment.

In Zhao and Lam (1997) the effects on the stability of
the plans produced by the interaction between several lot-
sizing rules and frozen interval selection are studied. The
study is performed with a simulation and a completely
randomized full factorial design, in order to test the dif-
ferent hypotheses. The results show a strong dependency
between MPS instability and lot-sizing rules as well as
frozen interval selection. Some works make a similar study
for different lot-sizing problems, see Xie et al. (2003, 2004).

From the perspective of production planning models,
Kimms (1998) explains the impact of the stability in three
problems of production planning. Also, some approaches
are proposed to measure stability, applying them to the
MPS. The effects for different cost structures are simulated
and analyzed. Finally, an iterative method is proposed to
solve MPS.

Kazan et al. (2000) propose three methods to reduce
MPS instability. The first two methods correspond to
modified versions of classic Wagner-Within and Silver-
Meal methods. Finally, a method based on MIP that takes
in consideration previous scheduled periods to solve MPS
is proposed. The results are analyzed by simulation, where,



the model based on mixed integer programming, obtains
good stability results in some cases.

For a scheduling problem Rangsaritratsamee et al. (2004)
considers jointly the optimization of efficiency and stability
measures. In the first part, the inclusion of the stability
as a variable to be optimized is justified. To solve the
problem, an approach of genetic algorithm is proposed.
Finally, the results are analyzed by statistical methods
concluding that, the stability does not affect drastically
the production system efficiency.

Analyzing the effects of the system structure on the
stability, in the context of the supply chain, Meixell
(2005) studies a model for lot-sizing multi-level multi-
item problem and considers structural variables as: setup
cost, relationships between components and capacity. The
statistical results show a strong relation between the
considered variables and stability. The results of this
work highlight that it is possible to take emphasize in
the following fact: “fewer production orders and capacity
increase have stabilizing effects on the plans”. Following
this line, van Donselaar et al. (2000) study the impact of
material coordination concepts in supply chain stability,
with a more practical approach. Their results identify
three variables that affect strongly the stability, theses
are: lot-sizes, level of uncertainty in demand and items
structure.

The works of Richter and Sombrutzki (2000) and Tang and
Grubbström (2002) express the importance of considering
stability in MRP systems in the context of remanufactur-
ing process and MPS frozen interval selection.

Finally, Thomas et al. (2008) propose a mathematical pro-
gramming method to obtain a stable MPS. This approach
is developed with a two steps model at tactical level. In
the aggregated plan (S&OP), is proposed a procedure
called reference plan, that considers compromises between
successive planning periods to reduce changes. At detailed
plan level (MPS), a heuristic procedure is proposed to
obtain a stable MPS. The main result of this work is to
improve the stability of the detailed plan.

4. LESS MASTER PRODUCTION SCHEDULE
INSTABILITY FORMULATION

In the first part of this section, we present the classic
MIP formulation for a MPS (F1), which is considered as
a benchmark and our proposed formulation (F2) also.

4.1 Formulation

Formally, a mixed integer programming formulation for a
MPS, considering m items, n periods and r resources, can
be stated as follows:

Variables

xi
t : production of item i in period t.

si
t : inventory of item i in period t.

yi
t : setup variable for item i in period t, where

yi
t =

{

1 if xi
t > 0

0 if xi
t = 0

Parameters

di
t : demand of item i in period t.

p̄i
t : production cost of item i in period t.

hi
t : inventory cost of item i in period t.

qi
t : setup cost of item i in period t.

Lr
t : available capacity of resource r in period t.

αir : unitary consumption of resource r by
production of item i.

βir : setup time for item i on resource r.

M i
t =

n
∑

t=1
di

t, ∀i, upper bound of production of

item i in period t.

Formulation F1

min

m
∑

i=1

n
∑

t=1

(p̄i
tx

i
t + hi

ts
i
t + qi

ty
i
t) (6)

si
t−1 + xi

t = di
t + si

t, ∀i, t (7)

xi
t ≤ M i

ty
i
t, ∀i, t (8)

m
∑

i=1

(αirxi
t + βiryi

t) ≤ Lr
t , ∀r, t (9)

x ∈ R
mn
+ , s ∈ R

m(n+1)
+ , y ∈ {0, 1}mn. (10)

The objective function (6) searches to minimize the costs
of production, inventory and setup. Constraint (7) rep-
resents the inventory balance and constraint (8) the rela-
tionship between production and setup. The constraint (9)
represents the available capacity of resources by period.
This formulation can be found in Pochet and Wolsey
(2006) and will be referred as F1. The objective function
value of this formulation will be referred as z(F1).

Formulation F2

Without loss of generality, we assume s0 = 0, and using:

si
t =

t
∑

l=1

(xi
l − di

l), ∀i, 1 ≤ l ≤ n, (11)

now we can to replace inventory variable si
t in the objective

function (6) and to obtain:

min

m
∑

i=1

n
∑

t=1

(pi
tx

i
t + qi

ty
i
t) −

m
∑

i=1

n
∑

t=1

hi
td

i
t, (12)

where the new production cost (inventory included) is:

pi
t = p̄i

t +

n
∑

j=t

hi
j, ∀t, i. (13)

The constant term
m
∑

i=1

n
∑

t=1
hi

td
i
t can be eliminated of the ob-

jective function. In Brahimi et al. (2006) this formulation
is showed for the single-item lot-sizing problem (SILSP).
In our case the above formulation is applied to capac-
itated multi-item lot-sizing problem (CMILSP). A new



formulation without inventory variables also considering
stabilization of the MPS, can be expressed as follows:

min

m
∑

i=1

n
∑

t=1

(pi
tx

i
t + qi

ty
i
t) +

m
∑

i=1

n−1
∑

t=1

(λiωi
t) (14)

t
∑

j=1

xi
j ≥ Di

t, ∀i, ∀t (15)

xi
t − xi

t+1 ≤ ωi
t, ∀i and 1 ≤ t ≤ n − 1 (16)

xi
t+1 − xi

t ≤ ωi
t, ∀i and 1 ≤ t ≤ n − 1 (17)

xi
t ≤ M i

t y
i
t, ∀i, ∀t (18)

m
∑

i=1

(αirxi
t + βiryi

t) ≤ Lr
t , ∀r, t (19)

x ∈ R
mn
+ , ω ∈ R

m(n−1)
+ , y ∈ {0, 1}mn. (20)

The objective function (14) searches to minimize the
costs of production, inventory and setup, and also, the
differences between consecutive production quantities (in
the same cycle). In this formulation constraint (15) express
that cumulative production in any period for each item
must be equal or greater than the cumulative demand
Di

t in the same period (backlog is not allowed). This
formulation will be referred as F2. The new objective value
noted Z(F2) can be obtained computing the inventory
variable si

t from (11) using the optimal solutions computed
by F2. Note that in F2 we are only interested in the
new optimal solutions xi

t for a specific value of λi (for
the concerned cycle) to obtain a new objective function
value from (6). Moreover note that to compute F2 with
λi = 0, ∀i, is equivalent to compute F1.

The variable ωi
t represents an auxiliary variable to mini-

mize the quantity differences between consecutive periods
in whole planning horizon n. The parameter λi represents
a control parameter (defined by user) for item instability
minimization. This formulation can be viewed as equiva-
lent to minimize λi|xi

t+1 − xi
t|, ∀i and 1 ≤ t ≤ n − 1.

Note that, in the measures (1) and (2) it is necessary to
compute the differences between all periods in a specific
cycle. This is equivalent to consider nC2 quantity dif-
ference combinations. Nevertheless, considering the high
computational cost of this, the minimization is performed
only in one step, i.e., for a given production quantity,
the model searches to minimize the difference between its
antecessor and successor values only.

Moreover, no explicit measure for nervousness minimiza-
tion have been considered in the model. The reduction of
nervousness is considered to be implicit in the instability
reduction.

5. SIMULATION

5.1 Experimental design

The results are obtained for a simulation horizon of H =
52 weeks, with rescheduling interval ∆t = 1 and for a
planning horizon n = 8.

For each cycle k = 1, 2, . . . , 52, we solve the model F2 for
λ = 0, 1, 2, . . .. Supposing that δ is the maximum deviation

from the optimal cost allowed, hence we compute F2 until
total cost not exceeds this value. For the simulation we
chose an arbitrary δ = 5%.

The parameters pi
t, h

i
t, q

i
t are randomly generated and

uniformly distributed. The demand for each period is
randomly generated as follows:

di
1j ∼ U(df i, dli), ∀i and 1 ≤ j ≤ n. (21)

This represents the demand for the first cycle, where
U(df i, dli) is the uniform distribution between parameters
df i and dli, for each item i. The demand quantities for the
following planning cycles are obtained as:

di
kj = di

(k−1)j + ǫj, ∀i and k ≤ j ≤ k + n − 1, (22)

where,

ǫj ∼ U [0, cj], k ≤ j ≤ k + n − 1, c ∈ N. (23)

Parameter ǫi
j represents a random error for period j and

item i, and c is used to control the error variance. The
demand quantities for the new last periods are generated
as:

di
k(k+n) ∼ U(df i, dli). (24)

The capacity parameter Lr
t must be consistent with con-

straint (7) and (15) for the formulations F1 and F2 re-
spectively, to insure feasibility (Pochet and Wolsey, 2008).
Hence this parameter is randomly generated such that the
following condition holds,

m
∑

i=1

(αirdi
t + βir) ≤ Lr

t , ∀r, t. (25)

Furthermore, r = 1 is considered, supposing this resource
as a fixed bottleneck of the system. Table 2 summarize the
simulation parameters.

Table 2. Simulation parameters

Parameter Value

Items 2
Planning horizon 8

Operational horizon 52
Demand (d) U[100,140]

Production (p) U([95,105])
Inventory (h) U([95,105])

Setup (q) U([10000,20000])
r 1

Capacity (L) 150
α U[0.01,0.02]
β U[2,3]
c 1

Simulation code was developed in Python 2.5. 1 . The MIP
programs were solved with Glpk 4.29 2 .

5.2 Results

Figure 1 highlights that for the λmax value (the most
expensive and the most stable choice) we obtain a drastic
instability reduction (about 60%). Note that probably the
decision maker prefers to choice λd for a best compromise,
i.e., not too high cost increasing and significative instabil-
ity reduction.
1 http://www.python.org
2 http://www.gnu.org/software/glpk/
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Fig. 1. Results of Z(F2) and NF (F2) varying λ at cycle
9.

In table 3 column Z(F2) shows the augmented cost and
columns NF (F2), NA(F2) the reduced values of nervous-
ness with respect to F1. These values are obtained using
λmax (δ = 5%) for the two items considered. We observe
that although the cost does not increase more than 5%
NF and NA have and important instability reduction.

6. CONCLUSIONS

In this paper we perform a simulation of a mixed integer
programming model for Master Production Schedule tak-
ing into account the minimization of MPS nervousness.
The results show that this formulation leads to reduce
MPS nervousness considerably without a great difference
in terms of total cost compared with a classical formula-
tion.

In future works others decision rules will be studied leading
to more robust solutions and muffling nervousness.
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