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Super-replication price for asset prices having bounded increments in discrete time

We consider a discrete time financial model where the support of the conditional law of the risky asset is bounded. We show that, for convex option, the super-replication problem reduces to the replication one in a Cox-Ross-Rubinstein model whose parameters are the law support boundaries.

Introduction

We consider a discrete time financial market consisting of one risky asset S and one risk-less bond normalized to one. It is well-known that discrete time models are intrinsically incomplete and thus, as perfect replication is not always possible, the full hedging of risk goes through super-replication. The super-replication price is the minimal initial wealth needed to hedge without risk the contingent claim. It has been introduced in the binomial setup for transaction costs by Bensaid-Lesne-Pagès-Scheinkman [START_REF] Bensaid | Derivative asset pricing with transaction costs[END_REF], in a L 2 -setup for transaction costs and short-sales constraints by Jouini-Kallal [START_REF] Jouini | Arbitrage in securities markets with short-sales constraints[END_REF][START_REF] Jouini | Martingales and arbitage in securities markets with transaction costs[END_REF] and in the diffusion setup for incomplete markets by El Karoui-Quenez [START_REF] El | Dynamic programming and pricing of contingent claims in an incomplete market[END_REF]. The so called dual formulation of the superreplication price has been extensively studied and we refer to Föllmer-Kramkov [START_REF] Föllmer | Optional decompositions under constraints[END_REF] and the references therein. In our context, the super-replication cost of an European contingent claim H is the supremum over the risk neutral probability set of the expectation of H. Nevertheless it is well known that this dual formulation does not enable in general to effectively compute the super-replication price. Note that Cvitanić-Shreve-Soner [START_REF] Cvitanić | There is no nontrivial hedging portfolio for option pricing with transaction costs[END_REF], Cvitanić-Pham-Touzi [START_REF] Cvitanić | Super-replication in stochastic volatility models under portfolio constraints[END_REF][START_REF] Cvitanić | A closed formula for the problem of super-replication under transaction costs[END_REF] and Patry [START_REF] Patry | Couverture apporchée optimale des options europénnes[END_REF] are able to prove, in various context, that for an European call option, the super-replication price is equal to the initial price of the underlying and that the hedging strategy is just the "Buy and Hold" one. In Carassus-Gobet-Temam [START_REF] Carassus | A class of financial products and models where super-replication prices are explicit[END_REF], the authors consider a discrete time model and provide a closed formula in order to compute the super-replication cost of European and American style options and also the hedging strategy. In the case of European vanilla options, finding the super-replication price reduces to compute some concave envelope of the payoff function. For more general options, it involves recursive computations using again a kind of concave envelopes. The coefficients of the affine function which appears in the concave envelope give the hedging strategy.

The formula comes from the dynamic programming principle and enlighten the crucial role plaid by the conditional distribution of the underlying. When this distribution admits a density with respects to the Lebesgue measure which is strictly positive over all the positive real line1 , the authors provide effective computation for the super-replication price of European and American style exotic options (including Asian, Lookback or Barrier options) and show that those price are too high to be used in practice.

Here, we focus on another class of models: the one such that the support of the conditional distribution of the underlying increments is bounded. This is of course the case for tree models. It is also true in continuous time models such that, conditionally to the information at time t, the distribution of S t+1

St is equivalent to the Lebesgue measure on [d t+1 , u t+1 ]. This is in particular true if the regulator imposes some bounds on the maximal variation of the asset price in a given time interval. This for example the case in some US Stock Exchange, where the asset can not fluctuate of more of 10% in 5 minutes. We prove that, for options having convex payoff, the super-replication price is equal to the replication price in a Cox-Ross-Rubinstein model (see [START_REF] Cox | Option pricing: a simplified approach[END_REF]), whose parameters are the maximum bounds of the law support. We thus generalize the result found in Scagnellato and Vargiolu [START_REF] Scagnellato | Explicit solutions for shortfall risk minimization in specific multinomial models[END_REF] for a trinomial model.

The paper is organized as follows. In Section 2, we describe the financial model, give the notation of the paper and recall the algorithm found in Carassus-Gobet-Temam [START_REF] Carassus | A class of financial products and models where super-replication prices are explicit[END_REF]. Then, in Section 3 we present and prove our main results.

2 The financial model and the super-replication algorithm

Notations and definitions

We consider a discrete time financial model with finite horizon T and set T = {0, 1, . . . , T }. The market consists of one riskless asset with price process normalized to one and a risky asset with price process S = {S t , t = 0, . . . , T } which takes values in (0, ∞). The stochastic price process (S t ) t∈T is defined on a complete probability space (Ω, F, P ) equipped with the filtration IF = {F t , t ∈ T }, where the σ-field F t is generated by the random variables S 0 , S 1 , • • • , S t . We make the usual assumption that F 0 is trivial and F T = F.

Here we focus on price processes satisfying Assumption 2.1 below. Recall that the support of a generic probability measure Q in IR is the smallest closed set K such that Q(K) = 1. It is easy to see that for every x ∈ K and for every ε > 0, we have Q(B(x, ε)) > 0, where B(x, ε) is the ball of IR with center x and radius ε (see for example example Ex. 12.9 in Billingsley [START_REF] Billingsley | Probability and Measure John Wiley and Sons[END_REF]). St with respect to

F t is contained in [d t+1 , u t+1 ]. Remark 2.2. Note that condition d t+1 ≤ 1 ≤ u t+1 is
implied by the no arbitrage assumption. Assumption 2.1 implies that for all t ∈ {0, 1, . . . , T -1}, for all ε > 0, s 0 , . . . , s t ∈ IR :

IP (S t+1 ∈ [s t d t+1 , s t d t+1 ] | S 0 = s 0 , . . . , S t = s t ) = 1, (2.1) IP (S t+1 ∈ B(s t d t+1 , ε) | S 0 = s 0 , . . . , S t = s t ) > 0, (2.2) IP (S t+1 ∈ B(s t u t+1 , ε) | S 0 = s 0 , . . . , S t = s t ) > 0. (2.3)
Two main kinds of price processes fulfill this assumption. The first one are processes such that conditionally to F t , the distribution of S t+1 is discrete and finite. Tree models are prototype of such models. The second family of models are the one such that conditionally to F t , the distribution of S t+1 St is equivalent to the Lebesgue measure on [d t+1 , u t+1 ]. Of course, any combinations of both types are taken into account.

Next we define a trading portfolio by a IR-valued IF -adapted process φ = {φ t , t = 0, . . . , T -1}, where φ t denotes the number of risky asset held at time t. The IR-valued IF -adapted process C = {C t , t ∈ T } represents the cumulative consumption process. We assume that C 0 = 0 and that C is non-decreasing. We also use the notation ∆S t = S t -S t-1 and ∆C t = C t -C t-1 , for t = 1, . . . , T.

Given an initial wealth x ∈ IR, a trading portfolio φ and a cumulative consumption process C, the wealth process X x,φ,C is governed by

X x,φ,C 0 = x X x,φ,C t = X x,φ,C t-1 + φ t-1 ∆S t -∆C t , for t = 1, . . . , T. (2.4) 
The condition C = 0 means that the portfolio φ is self-financed. (x, φ, C) will be called a hedging strategy. Following the presentation of Föllmer and Kramkov [START_REF] Föllmer | Optional decompositions under constraints[END_REF], we recall basic definitions related to the super-replication prices. A European contingent claim will be represented by a F T -measurable random variable H. We denote by A e H , the set of hedging strategIES for

H such that X x,φ,C T ≥ H IP-a.s. Then, (x, φ, Ĉ) ∈ A e H is minimal if for all (x, φ, C) ∈ A e H , X x,φ,C t ≥ X x, φ, Ĉ t
IP-a.s for all t ∈ T . It is easy to see that x is then the so-called superreplication cost p e (H) of H, i.e the minimal initial capital needed for hedging without risk H: p e (H) = inf{x ∈ IR : ∃ (φ, C) s.t. (x, φ, C) ∈ A e H }. We now define the same notion for an American contingent claim (H t ) t∈T . A a H will be the set of American hedging strategies such that, for all t ∈ T , X x,φ,C t ≥ H t a.s. Then

(x, φ, Ĉ) ∈ A a H is minimal if for all (x, φ, C) ∈ A a H , X x,φ,C t ≥ X x, φ, Ĉ t
a.s, for all t ∈ T . Again x is the super-replication cost p a (H) of H, i.e

p a (H) = inf{x ∈ IR : ∃ (φ, C) s.t. (x, φ, C) ∈ A a
H }. Now, we introduce the set of equivalent martingale measure:

P = Q ∼ P : dQ dP ∈ L ∞ , ∆S t ∈ L 1 (Q) and E Q [∆S t |F t-1 ] = 0, 1 ≤ t ≤ T P -a.s. .
Note that the Dalang-Morton-Willinger Theorem [START_REF] Dalang | Equivalent martingale measures and no-arbitrage in stochastic securities market models[END_REF] asserts that the non-emptyness of P is equivalent to the economic meaningful assumption of no-arbitrage.

Super-replication algorithm

For the reader's convenience, we now recall the Carassus-Gobet-Temam (CGT) algorithm for super-replication of derivative assets presented in [START_REF] Carassus | A class of financial products and models where super-replication prices are explicit[END_REF]. We start with the European case. For a measurable function h from IR T +1 into IR, we define the sequence of operators Γ e T h(s 0 , . . . , s T ) = h(s 0 , . . . , s T ) (2.5) Γ e t h(s 0 , . . . , s t ) = ess inf (α,β)∈I Γ e t+1 h (s 0 ,...,st)

{α

+ βs t } 0 ≤ t ≤ T -1 (2.6)
where for a measurable function v from IR t+2 into IR we define

I v (s 0 , . . . , s t ) = (2.7) = {(α, β) ∈ IR 2 | IP (α + βS t+1 ≥ v(s 0 , . . . , s t , S t+1 ) | S 0 = s 0 , . . . , S t = s t ) = 1}.
The essential infimum in (2.6) is related to the the law of the vector (S 0 , . . . , S t ), which we indicate with IP t . Then, the following theorem holds.

Theorem 2.3. Assume that P = ∅. Let H = h(S 0 , . . . , S T ) be an European contingent claim, for some measurable function h from IR T +1 into IR. Assume that

sup Q∈P E Q [H] < ∞.
Then, there exists a minimal hedging strategy (x, φ, Ĉ) ∈ A e H and its value at time t ≤ T is

X x, φ, Ĉ t
= Γ e t h(S 0 , . . . , S t ) IP t -a.s.

In particular, p e (H) = Γ e 0 h(S 0 ).

An analogous result holds in the American case. Consider a family of measurable functions h = (h t ) t∈T such that for t ∈ T , h t maps IR t+1 into IR. We define a new sequence of operators Γ a as Γ a T h(s 0 , . . . , s T ) = h T (s 0 , . . . , s T ) (2.8) Γ a t h(s 0 , . . . , s t ) = ess inf (α,β)∈I Γ a t+1 h(s 0 ,...,s t ) {α + βs t } ∨ h t (s 0 , . . . , s t ), (2.9)

0 ≤ t ≤ T -1.
where the set I v is still defined by (2.7). Setting S t,T the set of all stopping w.r.t. the filtration IF such that t ≤ τ ≤ T , we get that Theorem 2.4. Assume that P = ∅. Let H = (H t ) t∈T be an American contingent claim such that

sup τ ∈S 0,T ,Q∈P E Q [H τ ] < ∞.
For t ∈ T , we denote by h t a measurable function from IR t+1 into [0, ∞) such that H t = h t (S 0 , . . . , S t ) a.s.

Then, there exists a minimal hedging strategy (x, φ, Ĉ) ∈ A a H and its value at time t ≤ T is

X x, φ, Ĉ t = Γ a t h(S 0 , . . . , S t ) IP t -a.s. (2.10)
In particular,

p a (H) = Γ a 0 h(S 0 ).
For both European and American option, we also get that the optimal portfolio φ is given step by step by the optimal β from (2.6) and (2.9), see [START_REF] Carassus | A class of financial products and models where super-replication prices are explicit[END_REF] 3 Main results

Now we present the result on super-replication when Assumption 2.1 is satisfied. First we prove the following lemma which shows that it is only necessary to super-replicate a convex function at the boundary of the support. Lemma 3.1. Let Assumption 2.1 hold true. For any convex function v : IR t+2 → IR, I v (s 0 , . . . , s t ) = {(α, β) ∈ IR 2 | α + βs t x ≥ v(s 0 , . . . , s t , s t x) for x ∈ {d t+1 , u t+1 }}.

Proof. Fix some s 0 , . . . , s t ∈ IR. We prove the first inclusion ⊇. By Assumption 2.1 and more precisely by its consequence (2.1), we have that for IP-almost every ω ∈ Ω there exists

λ(ω) ∈ [0, 1] such that S t+1 (ω) = λ(ω)s t d t+1 + (1 -λ(ω))s t u t+1 . Now, let (α, β) ∈ IR 2 such that α + βs t x ≥ v(s 0 , . . . , s t , s t x) for x ∈ {d t+1 , u t+1 }. By convexity of v, we get that v(s 0 , . . . , s t , S t+1 (ω)) ≤ λ(ω)v(s 0 , . . . , s t , s t d t+1 ) + (1 -λ(ω))v(s 0 , . . . , s t , s t u t+1 ) ≤ α + β(λ(ω)s t d t+1 + (1 -λ(ω))s t u t+1 ) = α + βS t+1 (ω).
So we deduce that

IP (α + βS t+1 ≥ v(s 0 , . . . , s t , S t+1 ) | S 0 = s 0 , . . . , S t = s t ) = 1.
For the reverse inclusion ⊆, we argue by contradiction. Assume that for some (α, β) ∈ I v (s 0 , . . . , s t ), α + βs t d t+1 < v(s 0 , . . . , s t , s t d t+1 ). Then as v is a convex function on IR t+2 , it is also continuous and there exists ε such that for all x ∈ B(s t d t+1 , ε), α + βx < v(s 0 , . . . , s t , x). From (2.2), we get that IP (α + βS t+1 < v(s 0 , . . . , s t , S t+1 ) | S 0 = s 0 , . . . , S t = s t ) > 0

The case α + βs t u t+1 < v(s 0 , . . . , s t , s t u t+1 ) works similarly. Remark 3.2. Assume that v : IR t+2 → IR is not convex but that there exists a convex function v : IR t+2 → IR such that v ≥ v. Then it is easy to see that

{(α, β) ∈ IR 2 | α + βs t x ≥ v(s 0 , . . . , s t , s t x) for x ∈ {d t+1 , u t+1 }} ⊆ I v (s 0 , . . . , s t ),
but the reverse inclusion does not hold true.

We are now able to compute explicitly the operators Γ t defined in (2.6) and (2.9). We begin by the European case. Proposition 3.3. Let H = h(S 0 , . . . , S T ) be an European contingent claim, for some convex, measurable function h : IR T +1 → IR. Let Assumption 2.1 hold true. Then Γ e T h(s 0 , . . . , s T ) = h(s 0 , . . . , s T ) Γ e t h(s 0 , . . . , s t ) = π t+1 Γ e t+1 h(s 0 , . . . , s t , s t u t+1 ) + (3.11)

(1 -π t+1 )Γ e t+1 h(s 0 , . . . , s t , s t d t+1 ), t = 0, . . . , T -1, where π t := Thus, we obtain (3.11) for t -1 and the induction step follows.

We introduce a Cox-Ross-Rubinstein model (see [START_REF] Cox | Option pricing: a simplified approach[END_REF]) and define the new risky asset S crr by The super-replication price of H = h(S 0 , . . . , S T ) is thus the replication price of h(S crr 0 , . . . , S crr T ) in the Cox-Ross-Rubinstein model defined above. Remark 3.5. Using Remark 3.2 and calling ĥ the smallest convex function from IR T +1 into IR such that ĥ ≥ h, we can easily prove that Γ e t h(S crr 0 , . . . , S crr t ) ≤ IE crr ĥ(S crr 0 , . . . , S crr T ) | F crr t Remark 3.6. Now we want to see what happens when conditionally to F t , the support of the distribution of S t+1 St is IR + . To do that we assume that d 1 = . . . = d T = 0 and u

S crr 0 = S 0 , S crr t+1 = S crr t U
= u 1 = . . . = u T goes to ∞. Let us fix t = T -1. If d 1 = . . . = d T = 0, then Γ e T -1 h(s 0 , . . . , s T -1 ) = h(s 0 , . . . , s T -1 , 0) + h(s 0 , . . . , s T -1 , S T -1 u) -h(s 0 , . . . , s T -1 , 0) u If u → ∞, then Γ e T -1 h(s 0 , . . . , s T -1 ) = h(s 0 , . . . , s T -1 , 0) + lim u→∞ h(s 0 , . . . , s T -1 , s T -1 u) u For h(s 0 , . . . , s T ) = (s T -K) + , Γ e T -1 h(S 0 , . . . , S T -1 ) = S T -1 , while for h(s 0 , . . . , s T ) = (K -s T ) + , Γ e
T -1 h(S 0 , . . . , S T -1 ) = K. Thus, we refind results already present in Carassus-Gobet-Temam [START_REF] Carassus | A class of financial products and models where super-replication prices are explicit[END_REF].

Remark 3.7. A similar result was found in Scagnellato-Vargiolu [START_REF] Scagnellato | Explicit solutions for shortfall risk minimization in specific multinomial models[END_REF] for a convex payoff h depending only of the last date in a trinomial model, where it was proved that the superreplication capital was given by the CRR price of a binomial model obtained by eliminating the "middle" branch. The proof used the characterisation of the marginals of the price process as convex combinations of two binomial models. Notice that here the result holds in wider generality, as we are only assuming that the convex hull of the support of the conditionnal law of S t+1

St is [d t+1 , u t+1 ], and it seems difficult to prove this result with the techniques of [START_REF] Scagnellato | Explicit solutions for shortfall risk minimization in specific multinomial models[END_REF], especially when the law of S t+1

St is absolutely continuous w.r. to the Lebesgue measure.

We now turn our attention to the American case. Proposition 3.8. Let H = (h t (S 0 , . . . , S t )) t∈T be an American contingent claim, where h t are measurable and convex functions from IR t+1 into [0, ∞). Let Assumption 2.1 hold true. Then Γ a T h(s 0 , . . . , s T ) = h T (s 0 , . . . , s T ), (

Γ a t h(S crr 0 , . . . , S crr t ) = IE crr Γ a t+1 h(S crr 0 , . . . , S crr t+1 ) | F crr t ∨ h t (S crr 0 , . . . , S crr t ).

Proof. The proof is similar to the one of Proposition 3.3 as the convexity of the operator is preserved since we consider at each time step the maximum of convex functions.

Assumption 2 . 1 .

 21 For all t ∈ {0, 1, . . . , T -1}, there exists real numbers u t+1 and d t+1 satisfying d t+1 = u t+1 and d t+1 ≤ 1 ≤ u t+1 and such that the support of the conditional law of S t+1

  The result is proved by induction. By (2.5), the result is true for T and by assumption Γ e T h is convex. Now assume that Γ e t h(s 0 , . . . , s t ) = π t+1 Γ e t+1 h(s 0 , . . . , s t , s t u t+1 ) + (1π t+1 )Γ e t+1 h(s 0 , . . . , s t , s t d t+1 ) and Γ e t+1 h is convex for some t ∈ {1, . . . , T -1}. First, it is straightforward that Γ e t h is a convex function from R t+1 into IR (0 ≤ π t+1 ≤ 1).

				From
	Lemma 3.1,		
	Γ e t-1 h(s 0 , . . . , s t-1 ) = ess	inf t h(s 0 ,...,s t-1 ,s t-1 x), x∈{dt,ut} (α,β)∈IR 2 | α+βs t-1 x≥Γ e (α + βs t-1 )
		= ᾱ + βs t-1
	where (ᾱ, β) are the unique (α, β) satisfying α+βs t-1 x = Γ e t h(s 0 , . . . , s t-1 , s t-1 x) for x = d t
	and u t , i.e.	ᾱ = β =	utΓ e t h(s 0 ,...,s t-1 ,s t-1 dt)-dtΓ e t h(s 0 ,...,s t-1 ,s t-1 ut) ut-dt Γ e t h(s 0 ,...,s t-1 ,s t-1 ut)-Γ e t h(s 0 ,...,s t-1 ,s t-1 dt) s t-1 (ut-dt)

1-dt 

ut-dt , t = 1, . . . , T .

Proof.

This case includes Black-Scholes model, general stochastic differential equations, stochastic volatility models, or models governed by Brownian motion and Poisson process, when they are observed at discrete time.