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ABSTRACT

Harmony and metrical structure are some of the most impbatan
tributes of Western tonal music. In this paper, we preseng\a n
method for simultaneously estimating the chord progresaial the
downbeats from an audio file. For this, we propose a specifialio
ogy of hidden Markov models that allows us to model chordsdep
dency on metrical structure. The model is evaluated on sebttd

66 popular music songs from the Beatles and shows improvemel?

over the state of the art.

Index Terms— HMM, Chroma, Chord, Downbeat, Metrical
structure

1. INTRODUCTION

the context of music analysis. Two paths have been explogad.
the one hand, hierarchical frameworks based on rule-bgg@dach
have been proposed (see for instance [3], [4]). On the othed,h
statistical framework including graphical models and Bzae ap-
proach have been proposed (see [2], [8], [9], [10], [6]).tiStizal
approaches are more flexible than rule-based approachesffand
large opportunities to explore the interaction betweenlevel fea-
tﬁres with high-level music information. Our purpose istiow how
e metrical information and the harmonic information ofiece of
music interact and how this can be used into a mutually infiogm
manner to improve both the estimation of the chord progoessind
the downbeat positions. For this, we propose a specific tgyobf
HMM that allows us to extract simultaneously the chord pesgion
and the downbeats from an audio file. Our approach is somehow
related in spirit to Bayesian modeling. Indeed, we intenchtalel

Musical signals are highly structured in terms of harmony an global dependencies within the chords. Although HMM usuedin-
rhythm. Thus, these two components are essential in therundecentrate on local dependencies, itis not the case here.

standing of music.
many applications within the context of music informatietrieval
such as music classification, structural audio segmentaiioin
general all applications based on music content analysis\Vdst-

ern tonal music, the chord progression determines the h@emo

structure of a piece of music. It is strongly related to therival

structure of the piece [1]. The meter is “the sense of stramg) a

weak beats that arises from the interaction among hiereatlgvel
of sequences having nested periodic components” [2]. Ireeepodf
music, each chord is locally related to the surrounding d@f@rc-
cording to the harmonic progression of the piece (local ddgacy).
Furthermore, the position that a chord occupies in a measumere
generally in the global metrical structure has to be takemaccount
(global dependency). For example, chords will change méisno
on strong beats than on other positions. This musical cteaisiic
has already been explored in previous works ([3], [4] [2], [6]).
Metrical level is a hierarchical structure. The most sdliaetri-

cal level, called theéactusor beat level, is a moderate metrical level

which corresponds to the foot tapping rate. Here, we wilb @isn-

sider another common metrical level calledum The tatum level
corresponds to the “shortest durational values in musicatestill

more than accidentally encountered ” [7]. Musical signaiks @i-

vided into units of equal time value calledeasuresr bars The

relationship between measures and tactus/tatum is defiypeteb
meter which is usually indicated bytane signature One impor-
tant problem related to metrical analysis is finding the tasiof

the downbeabr the first beat of each measure.

In the last few years, there has been an increasing interest

modeling higher-level information with low-level signadtures in

Thanks to ANR Projet Ecoute and All Project Quaero for fugdin

Harmonic analysis and rhythm analysig fin

The paper is organized as follows. In section 2.1, we prabkent
extraction of a set of meter-related feature vectors thaesent the
audio signal. We introduce a probabilistic model for siraotous
chord progression and downbeat positions estimation ithose2.2.
In section 3, the proposed model is evaluated on a set of ladreded
songs of the Beatles.

2. MODEL

In order to extract the chord progression and the downbeatsthe
audio signal, one first needs to extract a set of meter-cefatgure
vectors that describe the signal. Pitch Class Profiles [Léhmma-
based representation [12] have become common featurettoaid
ically estimate chords or musical key from audio recordi(j@8],
[14], [15], [16], [17]). PCP/chroma vectors represent thiemsity
of the twelve semitones of the pitch classes. The chord pssipn
is represented using a hidden Markov model that takes irtouendt
global dependencies on meter. The tactus/tatum positiawves theen
extracted using the method proposed in [18]. In our evanative
have only considered songs with0% tactus recognition rate.
Our model is general and could be applied to songs with any
kind of time-signature (3/4, 4/4, ...). However, becauseaifiset
availability, we have concentrated our evaluation on trsecd pop-
ular music and limited our experiments to songs built on fioemt
meters (most common case in popular music). We will assugte th
the time signature is known (4/4) and constant. We will aEsuane
that chord changes can only occur on beats or after beatse3 hg-
pothesis correspond to the characteristics of a wide pagpbpfilar
music. For instance, if we consider the first eight CDs of teatkes
(110 songs), only songs do not fit the assumptions we made.



2.1. Features extraction time and the downbeat positions in a maximum likelihood eeihs
what follows, we denote by andT" the initial state distribution and

We work directly on the audio signal. In our analysis, thenalg  giate transition probability distribution.

is down-sampled td1025H z, converted to mono and converted

to the frequency domain by a DFT using a Blackman window of

length 0.48s with 25% overlap. Because of frequency resolution 2.2.2. Initial state distributionr
limits (the frequency distance between adjacent semitdokgs be-
comes small in low frequencies), we only consider frequenabove
60H z. The upper limitis set tak H z because the fundamentals and
harmonics of the notes in popular music are usually strotigerthe
non-harmonic components upt& H z [3]. This choice is also sup-
ported by the fact that the mapping operated between thggoér
the harmonics and the chroma vectors is only valid for theekiw 2.2.3. Observation probabilitieB (O (tm)|six)
harmonics, hence the lowest part of the spectrum. The twfitige
track is estimated using the method proposed in [16]. Theasig
is then re-sampled so that the rest of the system can be basad o
tuning of the standardl4 = 440H 2. The temporal sequence of
chroma vectors over time is known as chromagram. It is coetput
using the method proposed in [16]. First, the values of th& Bfe
mapped to a semitone pitch spectrum using the mapping amcti
n(fr) = 12logy (L) + 69,n € R, where f;, are the frequen-
cies of the Fourier transform amdcorrespond to the semitone pitc
scale values. Then, the semitone pitch spectrum is smoatved
time using a median filtering. This provides a reduction afsients
and noise in the signal. Finally, after this smoothing, temitone
pitchesn are mapped to the the semitone pitch clagsesing the

The prior probabilityr;, for each state is the prior probability to
observe a specific choiicbccurring orpim k. Since we do not know
a priori which chord the piece begins with and whigim the piece

starts with, we initializer at I*lK for each of thel * K states.

The observation probabilities are computed in the follgywaay.
Let P(O(tm)|six) denote the probability that observati@(t, )
has been emitted at time instant given that the model is in state
sik. Let P(O(tm)|ci) denote the one that it has been emitted by
chordc; and P(O () |pimy) the one that it has been emitted given
that the chord is occurring goim k. As said before, we rely upon
the assumption thathord changesre more likely to occur at the
h beginning of measures than at otlpém. We now assume indepen-
dence betweeghord type(CM, C#M, ..., cm, ..., bm) angim.
For instance, we consider that in any given song, even if werfa
chord changes opim = 1, we do not favor anghord type a D ma-
jor chord is as likely to occur at the beginning of a measura &s
major chord. The observation probabilities are computed as

mapping function:c(n) = mod (n,12). We obtain a sequence
of 12-dimensional vectors that are suitable feature vedimr our .
analysis. P(O(tm)sir) = P(O(tm)|ci) P(O(tm)|pimi) (1)

Tactus/tatum-related chroma vectors: Since we want to study the

\r;ilt%t'OQShr's ttJietr\leeer: c;hort?]s fmrd Teltrtlcedlltstiﬁct%ei V;’:‘r' tteelebal servation chord symbol probabilitie®(c;|O(¢.,)) are obtained
observation features that are refated to the meter. Y by computing the correlation between the observation vedthe

frame anaIyS|s_, does n_ot fit our needs: we nee_d to proceed tata bechroma vectors) and a set of chord templates which are tloeehe
related analysis. To this end, the chromagram is averagtdthswe

) . ical chroma vectors corresponding to the= 24 major and minor
obtain one feature per tactus/tatunin our study, we have consid- - :
. triads. For more details, see [19].
ered two cases. The chromagram has been averaged W'thtmspeCObservation im brobability distribution:  The bim probabilit
the beats or quarter notaa¢tug in the first case, and with respect to pim p Y ) pim p y

the eighth notesttun) in the second case. We will further discuss dlstrlbgtlo_nP(pzmk|O(tm)) IS conS|dered_ here as ‘.J.”'fc’r."%(.for .
eachpim in the measure). Note that this probability distribution
the relevance of both approaches.

could be derived from information given by the signal. Fatworks
will concentrate on that.

Observation chord symbol probability distribution: The ob-

2.2. Chord progression and downbeat estimation from the

chroma vectors using a “double state” HMM 2.2.4. State transition probability distributidh

2.2.1. Overview of the model The main reason why the problem is modeled using a Markov mode

We consider an ergodif « K-states HMM where each state, is is that in music pieces, the transitions between chorddtrésm
defined as an occurrence of a cherdi € [1 : I] at a “position in ~ Musical rules. Using a Markov model, we can model these rules

the measure” (position of a beat or tatum inside a meagure),, in the state transition matriX'. According to [1], chords are more
k € [1;K]: sa = [ci, pims]. In our experiments, our chord lexi- likely to change at the beginning of a measure than at gpiver
con is Composed of = 24 Major and minor triads (C Majorv ey Starting from this statement, we detect the downbeats bm@lv
B Major, C minor, ..., B minor). We assume that chord changedower self-transition probabilities in the state trarwitimatrix for
can only occur on beats or on after beats. The positions imgsee ~ chords occurring on th&™" beat.

sure where chord changes occur will be referred to “positiciine The I » K-states transition matri{" used in our HMM takes

measure” and denoted Ipym. For a song built on four-beats meter, into account both the chord transitions and their respegtasitions
K = 4if we consider the tactus-levet (€ [1;4] for a 4/4 measure) in the measure. Itis derived fromlastates chord transition matrix
andK = 8 if we consider the tatum-levek(c [1; 8] for a 4/4 mea- T based on music-theoretical knowledge about key-relztipss
sure). If there arés possiblepimin a measure, the total number of We refer the reader to [19] for more details. We nigi, ') the
states is thus | chords b pimi.e. I = K states. Each state in the transition probability between choridand chordi’. This matrix is
model generates with some probability an observation vedte,,)  represented in Figure 1 [left].

at timet,,,. This is defined by the observation probabilities. Given ~ We also define pimtransition matrixZ},;» which represents the
the observations, we estimate the most likely chord sequemer  probability to transit fronpim & to pim &’. Since we do not allow
our present system to jump ovepan (i.e. skip over or add one or
1The tactus/tatum positions are considered as inputs ofysters. several beats), only the valu@s;., (k, k') for ¥’ = k + 1[K] are




non-zero. All non-zero values are set to the same value. riiatsx
is represented in Figure 1 [right, top].

We need here to distinguish between two cases: the first cas

concerns transitions between two different choridsA i), the sec-
ond case concerns self-transitioris £ ) and corresponds to the
diagonal blocks off’. Since we want to favor chord changes on
downbeatsj.e. disfavor self-transition between the Igsitn of a

NM WM

TAC TAT
705:12,7 | 733123
SAME

TAC
739:124
7394123

TAT
75,3t12,1
759124

D

DU
DK

TAC
9242

TAT
78719

Table 1. Chord estimation rate and downbeat estimation rate.

measure and the firgim of the next measure, we need to define a

specific transition matrix for the self-transition case £ i). This
specific matrix is denoted by}, . This matrix is represented i
Figure 1 [right, bottom]. As one can sé&&,,, differs from Tpim
only in the valueT};,,, (K, 1) which is lower tharilyim (K, 1). The
consequence of this lower value is th,, disfavors transition be-
tween identical chords (self-transition) at measure batied. In
our experiments (casé/4 time-signature), we have attributed em-
pirical values toT,,,, (k, k'), k, k' € [1;4] with respect to the fact
that we want to favor chord changes on downbfedt®te that these
values could be learned from the dataset by counting theoptiop
of chord changes on each measure position in the dataset.
FromT., Tpim andT},,,, we construct the global transition ma-
trix 7' normalized so that the sum of each row is equdl (Bigure 1
[middle]). Each blockB; (k, k") of this matrix represents the tran-
sition from chordi atpim k to chordi’ atpim &”:

{ B (k, &) ;g

n

= Te(i, 1) - Tpim (
= Te(i, i)  Tpim

pim

k k) ifi
K ifi=d

2.2.5. Chord progression and downbeats detection

The optimal succession of states, pim;] over time is found using
the Viterbi decoding algorithm [20] which gives us the makelly
path trough the HMM states given our sequence of obsenstitin
gives us simultaneously the best sequence of chords overaimd
the downbeat positions.

3. EVALUATION AND RESULTS

3.1. Testset

The proposed model has been tested on a set of 66 hand-label

songs of the Beatlés All the songs are built on four-beat meter
with constant time signature. The chord annotations wenelxi
provided by C. Harte from QMUL. Note that since our chord lex-
icon only represents major and minor triads, we have perdrian

mapping of complex chords in the annotation (such as majdr an

minor 617, 7t"s 9ths augmented and diminished chords) to their
root triads. The tactus were obtained using the method pezpm
[18]. The ground-truth downbeats have been annotated by byn
the authors. All the recordings are polyphonic, multiinstental
songs containing drums and vocal parts.

3.2. Overall results

The results are indicated in Table 1. L% tlenote the total number of
songs in the dataset and let consider a sodiyided intoNV frames.
Each signal frame (tactus-frame or tatum-frame) of the iggiceuth
has been mapped to a chord of our lexicon. et n € [1; N]
denote the theoretical chord corresponding to framend letC,,

2 _
T;’)zm(l’2) - T;/)im._
T, (k, k") = 0 otherwise.
3The list of the tracks can be found at the following URL:
http://recherche.ircam.fr/equipes/analyse-syntipege/dopoulos/.

(2,8) =T.,,,(3,4) = 1.1, T,

pim

(4,1) = 0.85,

denote the estimated chord at that frame. We compute theatorr
chord recognition rate for songas:

Hs = % Zné[l;N](C" = én) (2)

The results we give in Table 1 correspond to the mean andastand
deviation of correctly identified frames per song:
n= % ng[l;s] ps ando = % 256[1;S](N —ps)? (3)

¢ NM (No Meter)WWM (With Meter) columns correspond to the
exact recognition rate on all the frames without/when tgkimo
account chords dependency on the metrical structure in tiaden
TAC corresponds to a tactus-frame analysis, TAT to a tattamé
analysis.

e DU (Downbeat Unknown) row corresponds to the case where
downbeats are estimated simultaneously with the chord¥
(Downbeat Known) row corresponds to the case where dowsbeat
are given by manual annotation. In this case, we only intend t
evaluate the influence of the knowledge of downbeats on chord
recognition.

e D corresponds to the percentage of songs where the down-
beats have been correctly estimated. Note that the datasttins
only pieces without skipped or added beats. For a given stweg,
estimated downbeats are then either all correct or all rectr

3.3. Analysis of the results

Downbeat estimation: The percentage of downbeats correctly esti-
mated is encouraging. It achieve®% (79% ) of correct estimation

in the case of tactus-frame (tatum-frame) analysis. Naié whth-
g'dt chord information, the downbeats estimation woul®$% for
tactus-frame analysis an@.5% for tatum-frame analysis.
Importance of the knowledge of the downbeat positions:In Ta-

ble 1 [left], we can see that the chord estimation task benibim
the knowledge of the downbeat positions either given may (2K)

or estimated through the model (DU). Taking into accountpine

of the chords in the measures allows to improve the chordgréeo
tion task by4.9% relative improvement in the case of tactus-frame
analysis an®.5% relative improvement in the case of tatum-frame
analysis. It is important to note that when we perform siamgpus
estimation of chord progression and downbeats, the glatalfor
chord recognition is better than when we do not take into aatco
the influence of the metrical structure, even if the dowrdbeaa¢ not
correctly estimated in all the pieces.

Tactus-frame/tatum-frame analysis: Table 1 indicates that the
tatum-frame analysis performs better in general than tobtuga
frame analysis. Some chords in our dataset do not changdéyexac
on the beats (voice effects, after beats). The tatum-framadysis
allows to take into account chord changes on more positioas t
the tactus-frame analysis and thus gives better results.

Chord changes and boundaries errors: The example in Figure 2
clearly shows how the chord progression estimation taskeasfit
from modeling chords dependency on the metrical structiitgs
piece is in C major key and it transits between C major and ®maj
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Fig. 1. Chord transition matrix for a singles-state HMM [left]atrsition matrices for Major to Major chords in the case oflietstates
HMM, without taking into account theim of the chord in the measure [middle left] and taking into actahepim of the chord [middle

right], pimtransition matrices [right].
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Fig. 2. Chord progression for the sohgve Me Donot considering
a)/considering b) chords dependency on meter, ground djuth

chords about every two measures (truth line). Without ggkimo
account global dependencies (NM line), chord transiticesbadly
detected and the estimated chord progression remains taithtise
time on G major chord instead of transiting between G majdr@n
major. The knowledge of downbeat positions (WM line) allaas
better detect transitions. Furthermore, using the choegeiddency
on the metrical structure also allows to improve the examtion of
chord changes (boudaries). Without taking into accoustdepen-
dency, chord changes are often detected a beat before pttadie
theoretical positions.

4. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a method that allows to egtima

simultaneously the chord progression and the downbeats &o

(1

(2]

[3]
4]
[5]
6]
[

8]
[0

(10]

(11]

(12]

(23]
(14]

(15]

audio file. This method has been evaluated on a large set of han[ig)

labeled files and gives very encouraging results. From tratue

ation, we can state that the chord progression of a piece sfcmu [17]

benefits from the knowledge of downbeat positions and caeler

that the downbeats of popular music songs can be estimategl us [18]

harmonic information. An interesting result from our ewlon is
that tatum-related analysis is better than tactus-relatedysis for
the estimation of chord progression. Future works will ésini
evaluating the performances of our model on songs with dtiner
signatures. Including a time-signature estimation atboriin our
system will allow us to deal with pieces with meter changes.

[19]

[20]
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