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Abstract

In this article, we study the local existence of solutionsdovave equation with a nonlocal in time nonlinearity.
Moreover, a blow-up results are proved under some conditnthe dimensional space, the initial data and the
nonlinear forcing term.
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1. Introduction

We study the following nonlinear wave type equation whichtams a nonlocal in time nonlinearity
1 t
Wt — AU= —— f (t—97u(s)Pds xe RN, t>0, (1.2)
I(1-v) Jo

where 0< y < 1, p> 1, N > 1, A is the standard Laplacian afdis the Euler gamma function. The nonlinear
nonlocal term can be considered as an approximation of #ssiclal semilinear wave equation

U — Au = |u(t)|P

since the limit

1
lim ——— <7 =
Vl—rpl r'1-vy) S = 0(9)

exists in distribution sense.

It is clear that this nonlinear term involves memory typdistdraction and can be considered as Riemann-Liouville
integral operator

t
aDr” = Jg,0(t) == TZ) f (t-9""g(s)ds

introduced witha = —co by Liouville in 1832 and witha = 0 by Riemann in 1876 (see Chapter V in [4]). Therefore,
(1.1) takes the form

Uz — Au = D} (lu®)P), (1.2)

whereD;* = Jg ande = 1-.
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In this work we study blow up phenomena for this semilineavevaquation and small initial data
u(0, %) = Ug(x), U(0,X) = () xeRN, (1.3)

where
(uo, ug) € H* = H"(RN) > H”_l(RN)

andH#(RN) is the classical Sobolev space of orger 0.

The study of the non-existence of global solutions to semdr wave equations has been initiated in the early
sixties by Keller and intensively developed since then bynJand Kato. It is based on an averaging method for
positive solutions, usually with compact support. Much bhasn devoted to the case of the equation

Ut —Au=|uP, p>1 (1.4)

Itis well known that this problem does not admit a global §olufor anyp > 1 when the initial values, andu; are
large in some sense (cf. [9, 13, 15]). On the other hand, Jabwed in [10], wherN = 3, that nontrivial solutions
with compactly supported initial data must blow up in finibmé when 1< p < 1 + V2. Interestingly, Strauss
discovered the same number as the root of a dimension depgmalgnomial in his work on low energy scattering
for the nonlinear Klein-Gordon equation [22]. This led hiondonjecture that the critical valupg(N), generalizing
John'’s result to\ dimensions, should be the positive root of

(N-1)p>-~(N+1)p-2=0.

Glassey [9] verified the conjecture wh&éh= 2 under the additional assumption thgtandu; have both positive
average. The technique used by Glassey, John and Sidesidésive diterential inequalities which are satisfied by
the average functioh +— f]RN u(x, t)dx The fact that the support af-,t) is included in the congx; X <t + R}
plays a fundamental role in deriving thefférential inequalities.

Sideris [21] completes this conjecture fdr> 3 and proved that global solutions do not exist whea p < po(N),
provided that the initial data are compactly supported atidfy the positivity condition

f X" lup >0 and f IX/"uz > 0,
RN RN

wheren = 0 if N is odd and 12 if N is even.

The critical case = po(N) was studied by Scltier [20] in dimensiorN = 2 andN = 3, and then completed in 2006
by Yordanov and Zhang [23] for the cakke> 4.

A slightly less sharp result under much weaker assumptiass abtained by Kato [11] with a much easier proof.
In particular, Kato pointed out the role of the expondxt{1)/(N — 1) < po(N), for N > 2, in order to have more
general initial data, but still with compact support.

In this paper, we generalize Kato and Glassey-Straussairigkponents and give iicient conditions for finite
time blow-up of a new type of class of equationsljlwith nonlocal in time nonlinearities. Let us mention toar
blow-up results and initial conditions are similar to thaKato and Glassey-Strauss respectively.

Our first point to discuss the existence of local solutiongltd) with initial data (13). Formally, the equation
(1.4) can be rewritten as integral equation

u(t) = K()up + K(t)uy + N(U)(t),, te[0,T],

whereK (t) = wtsinwt, w := (-A)Y2 and
t
N = [ K(t- 907 (uPeds
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The general setting for the well — posedness of this integgaktion with o, u1) € H* requires to define for any
T > 0 a closed subspace

X(T) € C([0, T], H*(RM)) n CH([0, T], H*"{R™))
such that _

(uo, U1) € H¥ = K(t)up € X(T), K(t)uz € X(T)
and

ue X(T) = N(u) € X(T).
Then the integral equation is well — posed#ft, if for any R > 0 one can findl = T(R) > 0 so that for any initial
data satisfying
lI(uo, Un)llgen < R,
the integral equation _
u(t) = K(t)uo + K(t)up + N(u)(t), te[0,T],

has a unique solution € X(T). Once the well posedness of the integral equation is edtoljone can easily prove
there exist a maximal tim&nyax > 0 and a unique solutiome X(T) for anyT € [0, Thay, such that ifTmax < o0, then

Jim )l + @l = o0

i.e. theH* — norm of the solution blows up &t Thax
Wheny = 1 andp satisfies

one can take
X(T) = C([0, T], HY(RM)) n C*([0, T], LA(RY))

and using contraction mapping principle to obtain uniquatsan u € X(T). (see our Theorem 6 in Section 3 below)
These type of solutions are called mild solutions and thefgrbthe existence and uniqueness of mild solutions needs
only energy type estimates and Sobolev embeddings.

The intervalp € (1, N/(N - 2)) is not optimal for the local existence of solutions, boakles us to obtain first
blow-up results. To state them we first define

3y
(N=-2+7y)’

so thatp; is the Kato exponent foy = 1. The other quantity that generalizes Glassey-Strauss exp¢at least for
N = 3) and it is the positive rogh, = p2(N, y) of the equation

(N-2)p>-(N-9)p-1=0, N=>3. (1.6)

pr=p(N,y) =1+ (1.5)

Taking N = 3 one can see that standard observation that Kato's exp@betow the exponent of Glassey -
Strauss, might be not trueyfvaries in the interval (AL). Indeed

lim pu(3,7) = 2 <lim pz(3,7) = 1+ V2,
P1(3,1/3) = 3 = p(3,1/3)

. . 3+ V13
lim p1(3,y) =4 > lim p2(3,y) = .
b P1(3,7) > Iy P2(3,7) >

while

Ouir first blow up result treats the cage [1/3, 1), since in this case we have

P1(3,7) < p2(3,7) < N/(N-2) =3,

i.e. local existence requirements for mild solutions inrggespace are satisfied.
Then we have the following blow up result.



Theorem 1. Suppose € [1/3,1) and(up, u;) € HY(R3) x L2(R3) satisfy

suppuc B(r) :={xeR": |x|<r}, r>0,i=0,1,

f u > 0, and f X" ug > 0, (1.7)
RS R3
If p < p2 = p2(3,7), where p is given in(1.6), then the solution of1.1) blows up in finite time.

and

Our more general result for the cade> 5 odd andy € [(N — 2)/N, 1) can be found in Theorem 10
Turning to the cas@&l = 4 we can use the following property

y€[1/2,1) = p2(4.7) < pa(4,7) <N/(N-2) =2
The corresponding blow up result reads as.

Theorem 2. Assumey € [1/2, 1), N = 4 and let(up, u;) € HY(R*) x L2(R?*) be such that

f Up > 0, up > 0. (18)
R* R*

If p < p1 = pa(4,y), where p is given in(1.5), then the solution of1.1) blows up in finite time.

The generalization of this result for the cadec {1} U {2m, m € N*} andy € [(N — 2)/N,1) is presented in
Theorem 9

To treat values of > 0 such thaty < (N —2)/N, for N > 3, one has to take into account the fact that we have
N/(N - 2) < p2 < p1 < 1/y, so mild solutions with data in the energy space and nonliegaonenp < N/(N-2) are
not suficient to obtain blow up result for all values pfe (0, 1/y] and ally € (0, (N — 2)/N). One slight improvement
of the requirements op for the local well posedness can be done if we consider milgtisos with initial data of
higher regularity, i.e.up, u;) € H* with u > 1. Then the mild solution have to belong to the space

X(T) = C([0, T1, HX(RM)) N C*([0, T], H*{(R™)).

WhenN > 3 andp > N/(N - 2) satisfies

pz_p_2N+g20 (1.9)
one can use contraction mapping principle to obtain unigqhatisn u € X(T) with u = N/2 — 1/(p — 1)(see our
Theorem 7 in Section 3 below). The result is established lgumly energy type estimates and Sobolev embedding.
The condition (19) is always true for space dimensiong N < 8, but is still very restrictive for higher dimensions.

To cover larger interval fop where local existence and uniqueness can be establishexkeve t
X(T) = C(10. T], HY(R™M) n CH([0, TT, LARM)) n LY, T]; L),

where €, r) and the spacds’([0, T]; LY) are involved in the Stichartz estimates for the wave equati

Note that similar spaces have been used by Ginibre and V§&) and [7], where the local well posedness of the
Cauchy problem for the semilinear wave equation is studietbuthe assumptiop < (N + 2)/(N — 2). In our case of
nonlinear memory type term we are able to establish thevirtig.

Theorem 3. Given(uo, uy) € HY(RN) x L2(RN), N > 1, y € (0,1) and let p> 1 be such that

l<p<ow if N=1,2,
N+4-2
1<p<% ifN=3,4,5,
. (N+4-2y N+1 .
>
1<p<m|n( N_2 'N_3 if N>6



Then, there exists ¥ 0 depending only on the norm

lluollz + llugll2

and a unique solution u to the problgh1) such that ue C([0, T], HY(RN)) n CY([0, T], L2(RN)).
Since 4_2y
maxpy(N, ). 1/y} <1+ 5—

the above local existence result enables one to extend diaeup result to all values gb € (0, max pi(N,y), 1/y}]
and ally € (0, 1).

Theorem 4. Let N> 3,y € (0,1)and1 < p < maxp:(N,y), 1/y}. Assume thafuo, us) € HY(RN) x L2(RN) is such

that
f Up > 0, f u; > 0.
RN RN

Then the solution afl.1) blows up in finite time.

forall y € (0, 1),

The organization of this paper is as follows. In Sectiow@ give some properties, results and notations that will be
used in the sequel. In SectionwBe present the local existence results of solutions for theton (11). Section 4
contains the blow-up results of solutions tol(j1

2. Preliminaries, notations

In this section, we present some definitions, notations esdlts concerning the wave operator, fractional integrals
and fractional derivatives that will be used hereafter.Rore information see [8], [12], [14] and [19].
Let us consider the inhomogeneous wave equation

{ Ug — Au = f, (x,t) e RN x (0,T),

u(x, 0) = ug(x), u(x 0)=ui(x), xeRN. (2.1)

We defineK (t) andK (t) by K(t) := w™! sinwt andK (t) := coswt wherew™! is the inverse of the fractional laplacian
operatow := (-A)Y/? of order 1/2 defined above. The solution of the Cauchy problerh)(@an be written, according
to Duhamel’s principle, as

u(t) = K()up + K(t)uy + f K(t-9f(s)ds (2.2)
The initial data (o, u;) of the problem (2L) will be taken i?\ the energy space
H = HY(RN) x L2(RN) (2.3)
or more generally in
H* = HY(RN) x HHRN), > 1. (2.4)

We shall denote bi#(RN), 1 > 0, the homogeneous Sobolev space of ogder0 defined by
HA(RY) = {ue 8’5 (-AY"2ue L2(RM)],
whereS’ is the space of Schwartz’ distributions and\}*/? is the fractional laplacian operator defined by

(=AY"2u(¥) = 71 (EFF (U)(E) ()

and¥ ~* stands the Fourier transform and its inverse, respectively
The corresponding inhomogeneous Sobolev sp#¢&N) for any realu is defined as

HYRY) = fue 85 (1-Ay/2ue L2RY)).

Next, we give the admissible version of the Strichartz estés due to Keel and Tao [12]. Before we state the theorem
of Strichartz’ estimates, we give the definitioncofadmissible pair where = (N — 1)/2 for the wave equation.

5



Definition 1. ([12, Definition 1.1) We say that the exponents pd&dq,r) is c—admissible if gr > 2, (g,r,0) #
(2,00,1)and

+

=19

< % (2.5)

Q|

If equality holds in(2.5), we say that(q, r) is sharpo—admissible, otherwise we say th@ r) is nonsharpo—
admissible. Note in particular that when> 1 the endpoint

20
P=(2, —
[275)

is sharpo—admissible. O

Theorem 5. ([12, Corollary 1.3)) Suppose that N> 2 and (q,r) and (§,7) are (N — 1)/2—admissible pairs with
r,F < co. If uis a(weaR solution to the problen2.1)in RN x [0, T] for some data gie H*(RN), u; € H*1(RN), f €
L%([0, T]; LY) and time0 < T < oo, then
ullaqoryy  +  Ullego.; ke + 18tUllego 1 k-1
< C(IIuollgy + luallgyes + 1 Fllw o1y (2.6)
under the assumption that the dimensional analg@isgap” ) condition

1 N N 1 N

qu#q’F’

holds, whereC > 0is a positive constant independent of T O

Remark 1. In the above Theorem we denote by the conjugate exponents off and byL} := LP(RN) the
standard Lebesguespace for all 1< p < .

The estimate (B) involves homogeneous Sobolev spaces. If we admit deperdd the constants on the length of
the time interval = [Ty, T,], taking the lengthl| = T, — T1 < 1 andu > 1 we can establish the inequality

WUllagsey  +  NUlleqshey + 110eUlleq ;e
< Co(IIuollke + uallpers + 1 FllLw ) - (2.8)

whereCy is independent af| < 1. This inequality is sfficient for the proof of local existence result and the existen
of maximal interval of existence of the solution.

Corollary 1. (Strichartz estimates forgl Suppose that N 2 and(q, r) is a(N — 1)/2—admissible pair with r< co.
If up € H*(RN), then

1K (t)UollLago, 7Ly + IK (®)Uollcqo.ry ey + IAK (©)Uolleqo.mL2) < Clltolle, (2.9)

under the assumption that the condition
%+$=g—1 (2.10)
holds. O

Corollary 2. (Strichartz estimates forill Suppose that N 2 and(q,r) is a(N — 1)/2—admissible pair with r< co.
If uy € L?(RN), then

IK®)ullLaqo.yLy + IK@UallcqoyHey + IK®Ullcqoryizy) < Cllugllcz, (2.11)

under the assumption that the gap condition
%+$=g—1 (2.12)
holds. O



Corollary 3. (Strichartz estimates for){Suppose that I+ 2 and(q, r) and(d, ) are (N - 1)/2-admissible pairs with
r,f <oco. If | = [Ty, T,] is any time interval of length| = T, — Ty < 1and f e LY([0, T]; L"), then

t t
”fo K(t—s)f(s)d% fOK(t—s)f(s)d%

t
+ + Hf K(t—s)f(s)d%
La(LL) C(1:HY) 0 C(iL?)
< C0||f|||_q’(|;|_i’), (2.13)
under the assumption that the gap condition
1 N N 1 N
—+—:——1:~—+~——2 (214)
q r 2 aq v
holds. d

Turning back to integral equation.@, we have to give a more precise definition of the integirahgeof the right
hand side.

For the purpose we suppose that for sdime 0 one can find admissible couplg f) such that the gap condition
(2.14) is satisfied and

u € X(T) = Xqr(T) = C([0, T], HYR™)) n CY([0, T], LAR™)) N LY([O, TT; LY.
Then estimates of Corollary 1 and Corollary 2 guarantee that
K(t)up € X(T), K(t)uy € X(T).

The estimate of Corollary 3 implies that
t
f e Y(T) = Yge(T) = LY([0, T, LY) = f K(t—9)f(s)dse X(T) (2.15)
0

provided € I') is admissible and the gap conditionX2) is fulfilled. Note that the integral in (P5) can be considered
as Bochner integral in .
H RN o LY
due to the Sobolev embedding with
1 1 Kk

7 2 N’
The final part of this section is devoted to some basic pr@sedf Riemann-Liouville fractional derivatives. If
AC[0, T] is the space of all functions which are absolutely contision [QT] with 0 < T < oo, then, forf €
AC[0, T], the left-handed and right-handed Riemann-Liouville fical derivativesDg, f(t) and D f(t) of order
a € (0,1) are defined by (see [14])

DG f(t) = DJIGf(b) (2.16)
a . 1 T -
DI f(t) = —met (s—1)*f(9ds (2.17)
forallt € [0, T], whereD := & and
t
J59(t) = Tla) fo (t— 9 g(s)ds (2.18)

is the Riemann-Liouville fractional integral (see [14Prfallg e L9(0, T) (1 < q < ).

Furthermore, for every, g € C([0, T]), such tha1Dg‘t f(t), D;"Tg(t) exist and are continuous, for alE [0, T],0 < a <

1, we have the formula of integration by parts (se®42 p. 46 in [19])

T T
fo (Dg.f) (gt dt = fo f(t) (Dfrg) (t) dt (2.19)
7



Note also that, for alf € AC™'[0, T] and all integen > 0, we have (see (2.30) in [14])
(-1)"D".Dg; f = Dgr“f,

where
AC™Y0,T]:={f : [0,T] » R andD"f € AC[O, T]}

andD" is the usuah times derivative.
Moreover, for all 1< g < o, the following formula (see [14, Lemma 2.4 p.74])

Dglt ‘]g\t = ldw)

holds almost everywhere on,[0].
Later on, we will use the following results.
If wi(t) =(1-t/T)7,t>0,T >0, 0> 1, then

Q-a+o)(oc+1)

Dfwia(t) ooy 1T
D w (t) (1-a ?g’z)(_‘fa_fg(” D o _ gy,
Dyrw) = L “)(‘Tr(_z‘)i)fjf) DO+ Doy o2,

forall @ € (0, 1); so
(Pfw) M =0 i (Dfw) @=C T

and N
(Dfz'wa)(T) =0 ; (DgF'wy)(0)=C T,
where

_(l-a+0)(c+1)

Co and éz(l—a+0')(0'—a)l“(0'+1).

r2-a+o) r2-a+o)
Indeed, using the Euler change of variapte (s—t)/(T —t), we get

DEwi(t) = _r(l—l_a)DUtT(s—t)a(l—?s)a ds]

- | [y

whereB(-; -) stands for the beta function. Then,Z2) follows using the relation

I'l-a)'(oc+1)

B(l-a;0+1)= fZ-at0)

Furthermore, (23) and (224) follow from the formula (20) applied to (22).

3. Local existence and uniqueness theorems for mild and wealolutions

First we recall the definition of local mild solution for thegblem (11).

(2.20)

(2.21)

(2.22)
(2.23)

(2.24)

(2.25)

(2.26)



Definition 2. (Mild solution of(1.1)) Given anyu > 1 and any T> 0 we say that
ue C([0, T]. HX(R™)) n C}([0, T], H*X(RY))

is a mild solution of1.1) with initial data
(Uo, Ul) € HH

if u satisfies the integral equation

t
u(t) = K(tuo + K(Hug + fo K(t- 99 (uP)(9ds te[0,T]. (3.1)

Definition 3. (Weak solution of1.1)) Given any T > 0 we say that u is a weak solution @f.1) if there exist
admissible couple&y, r) and(g, ¥') so that the gap conditio(®2.14) s fulfilled,

ue X(T) = C([O, T], Hl(RN)) N Cl([o’ T], LZ(RN)) A Lq([O, T]; L';(),
Jat(|ulp))(t) € Y(T) = Yge(T) = L& ([0, T1; Lf()

and u satisfies the integral equation

t
u(t) = K(tuo + K(Hug + fo K(t- 99 (uP)(9ds te[0,T]. (3.2)

Ouir first goal of this section is to establish the existenabariqueness of mild solutions.

Theorem 6. (local existence of unique mild solution(@f1))
Supposéup, Ug) € HY(RN) x L2(RN), N > 1,y € (0, 1) and let p> 1 be such that

N-2 _ (3.3)
l<p<oo if N=1,2

{ l<p< N if N>2
Then, there exist B 0 depending only on the norm
llUollz + lluall2
and a unique mild solution u to the problgt1) such that ue C([0, T], H{(RN)) n CY([0, T], L3(RN)).
Proor. For anyN > 1 we apply the energy estimate
lullcqo.mHey + l10eullcqo, L2y < Co (llUollye + llulliz) + CollIg (UIP)DlLrqo.1:12)-
Here and belovCy = Cy(T) remains bounded, whenT < 1. Then we have to show the estimates

196 (UP) Ollisgo.riazy < COMUIR o -1y (3.4)

and
136, (uP)(®) = 5 P Ollago:ry 2y < CDIU = Viiego:my ey (U180 7 ey + IMIEgo T54) (3.5)
with some constar@(T) satisfying the property

#Lno C(T)=0.
Once these estimates are established an application otraction mapping principle in
X(T) = C([0, T], HY(RM)) n CX([0, T], LAR™M))

will complete the proof.



We shall verify only (34), since the proof of (3) is similar. We have
196 (UP) o712y < ||J&t(||U||E§p)||L1([o,T])-
ForN = 1,2 we have the Sobolev embedding
HIRN) — L?RN), (3.6)

valid for 2 < 2p < . For N > 3 we have the same embedding provided the condjiieghN/(N — 2) is fulfilled.
Hence, we get
196 (UP) Lo 7,2y < Cf||~]&t(||ul|,’f|1(RN))|||_1([0,T])» (3.7)

whereC; is the positive constant of the Sobolev imbedding. Usindaleethatu € X(T), we have

T2 |jull?

1
@ p
9 (NUllys ey llrory < Z-9re=y) CO.TLH)"

This completes the check of.@ and the proof of the Theorem. O

To get local mild solution for somp > N/(N — 2) we have to impose flerent assumptions ds, p.

Theorem 7. (local existence of unique mild solution(@f1))
Suppose N> 3,y € (0, 1) and let p> N/(N — 2) be such that

pZ—%N+gzo. (3.8)

If (up,uy) € Hﬂ(RN) X Hﬂ—l(RN), whereu = N/2 - 1/(p— 1) > 1. Then, there exists B 0 depending only on the
norm
lUollHe + [lUgllHe-

and a unique mild solution u to the problgt1) such that ue C([0, T], HA(RN)) n C1([0, T], H¥"Y(RN)).

Proor. We follow the proof of the previous result and take

q ; 2N
— OO, = -
(N = 2u)
Using the Sobolev embedding with some 1, we get
IUllsqorgLsy < CIC=A)“D2Ull oo 1y < Cllullego.r:rnys (3.9)

where

o 2N

YTN-2

These Sobolev embeddings are fulfilled because

1 1 wu-1 1 1 1
—_-=FE - -_—-_-= 3.10
r r N 2 r1 N ( )

and in the second inequality in.@ we use the classical Sobolev inequality
il < Cllflle

with f = (~A)E-D/2y
Note thatv = (-A)#~12y is a solution to the equation

Vie — AV = D} (=AU D2 (Ju() ),
10



so applying the classical energy estimate for this wave tamuave find

lIulleqo.ry ki + 8tUllcqo.y ety < Co (lUollye + ullyus) + Coll I (—A)E 2P W)l 2 o.1:.12)-
From (39) we conclude
Iullisgomigy + =AUl wgorpny +  MllogoTyrm + (3.11)
8:Ullco ety < C (luollie + Uallpr)  + CING((=A)¥ 2P Ollrgo Ty2)-
Now we are in position to apply the following inequality (§ee example Lemma 2.3 in [7] or [17], [18])
UPlle-r < CI=A) 20l il
where ¥r; + 1/r, = 1/2 andn/r; > u — 1. Note that our choice af; impliesr, = N so we can use the relation

2N N

1
rzm,,uzg—m - N(p—l):r.

Itis important to notice that the above estimate of the mmdr termju|P is valid only foru—1 < p, sincep > 1 might
be not integer. The inequality— 1 < p, as well our choice of lead to the inequality

pz—p?N+gzo.

We can proceed further as in the proof of the previous Theanmsnve can show the estimates
195 (=A™ 2UP) Ollrgo:riizy < CDIUIE o 1y 1 (3.12)
and
196 ((=A)“ 2P ) = I (=) 2MP) Ol oryizy < CTIIU = Vlieqo vy (W10 3410y + IMIEGo-11)
(3.13)
whereC(T) is an increasing, continuous in, ([ function, satisfying the property
#Lno C(T)=0.
Once these estimates are established an application otrmaction mapping principle in
X(T) = C([0, T], H¥(R™)) n CY([0, T], H*H(RM))

and this completes the proof. O

Remark 2. The condition

, PN N
-—+=>0
P-Z%2=
is automatically satisfied if & N < 8. The condition becomes very restrictive in the case of spavernsions

9 < N < 20. One can show that the critical exponga(N) is strictly smaller than any of the roots pf — p—zN + % =0

is N is large enough, namely > 20.

Remark 3. The proof of the existence and uniqueness of mild solutis®hne without Strichartz’ estimate, using
only the energy estimate

lUlle(o,my:12) + N10tUlleqo.yLe) < 6(||Uo||Hu + ualles + ||f||L1([o,T];L§))

11



and Sobolev embedding. For this the restrictive assumpfitype

, PN N
e
p > + 5 2 0
can not be avoided. Nevertheless, one can prove the exéstéracmaximal time O< Tax < co and a unique mild
solutionu to the problem (11) such thati € C([0, Tmax); H*(RN)) N C1([0, Tmax); H#"X(RN)). Moreover, if Tmax < oo,
we have
(U@ leeny + U@ He2@n)) — 00 @S t — Tyax.

Furthermore, if
supp € B(r) ;= {xeR": |x<r}, r>0,i=0,1, (3.14)

u(t, -) is supported in the baB(t + r). We note that, we can extend our local existence theorem toabeN > 1
by assuming that the initial data satisfies furthermor&4Band using the fact th# is a skew-adjoint operator in
H! x L? (see [3, Theorem 6.2.2, p. 76]) instead to use Strichartzhase.

To cover completely the cad¢/(N — 2) < p < (N + 2)/(N — 2) and show that the problem.@} is locally well posed
in H! one has to usefiectively the Strichartz estimate ( as it is done in [6], [7ndavork with weak solutions of
Definition 3 In this work we need local existence and existence of maxima interval for the solution, while in in
[6], [7] the global Cauchy problem is studied. For this we paove that the problem (1) is locally well posed for a
larger intervalp € (1, min{(N + 4 — 2y)/(N — 2), (N + 1)/(N - 3)}).

Theorem 8. (local existence of unique weak solution(fl))
Given(up, u;) € HY(RN) x L2(RN), N > 1,y € (0, 1) and let p> 1 be such that

l<p<ow if N=1,2,
1<p< Nr4-2 if N =3,4,5,

(N+4-2y N+1 . (3.15)
1<p<m|n( N_2 'N_3 if N>6

Then, there exist B 0 depending only on the norm

lluoll + [lualle2

and a unique weak solution u to the probl€hil) such that ue C([0, T], HY(RN)) n CY([0, T], L2(RN)).

Proor. We shall consider only the cade> 2, since forN = 1,2 we already have established the existence of mild
solutions. There is no lack of generality if we suppose
N __N+4-2
N-2 P<NZ2

since for
l<p<

N-2
Theorem 6 guarantees that local mild solution exists argunique.
We take the following admissible couple

_ (N+1 N-2

. 1
F m|n(2p—N, W - 8), a = > (316)

with £ > 0 small enough.

12



To explain how we arrived at this choice and then how to coteyilee proof of the Theorem, we write the general
conditions of admissibility as well as the gap condition

1 N-1 N-1 1 N-1 N-1
= < —, = < .
a2 S 4§ ¥ - a4 (317)
1 N-2 N 1 N+2 N
a—T—?, a— 2 —F. (318)
To apply a contraction mapping principle we need to applicBartz estimate as well as the estimate
”D;Q(lu|p))(t)”Lq’([o,T];Li’) < C(T)”u”r_)q([oy-r]”_;)' (319)
For this we take
pf’ =r. (3.20)
The Sobolev embeddirfgg* (0, T) c L¥(0, T) with
1
— = = +
a q
combined with the Holder inequality imply
D" (UP) Ol oy < CUPOIILr 0.1y < CMIUI oo
with lim1_,o C(T) = 0 providedg*p < qi.e.
P < Nl + a. (3.21)
qa o

If we take the gap condition (88) and the relation (20) we see that we are able to express the paransg@rand
f’ as functions of, p.

1 N-2 N 1 N+2 pN 1 p
vy 2 P
Substitution in (1) leads to the inequality
N+4-2y
N-2
while admissible conditions and natural requirementsd < 2 < q < o can be rewritten as

1 1<N+1 N-3 1 N-2
r

2p “r = 2pN° 2N <N

<

This domain is non empty if and only if

1 _N-2 N-3 _N+1
2p 0 2N’ 2N " 2pN”

Since we already made the assumpfion N/(N — 2) we see that

N+1

P<N_3

has to be imposed too.
This observation suggests the choicd 6 withe > 0 so small that the domain

—_— <
2p “r = 2pN° 2N

1 1 N+1 N-3 1 N-2
<-<
r 2N

is nonempty and it is gficient to apply contraction principle.
13



To be more precise we have to prove the existence and uniggienthe fixed point for the integral equation

u(t) = K(t)uo + K(t)ug + ft K(t - 9D;*ulP(s)ds
0

such that
u(t) € X(T) = C([0, TI, HY(®RN)) n ([0, T, LARM)) N LY([0, TT; LY).

Applying the Strichartz estimate @) as in the proof of Theorem @e obtain estimate

i t
”K(t)uo+ K(t)u1+f K(t—s)D{"|u|p(s)ds‘
0

< Coll(uo, ug)llg + C(T)||U||§(T) (3.22)
X(T)

and .
H GEICRTCE Dt“ww(s))d{
where limr_o C(T) = 0.

Applying the contraction principle we get existence andqueness of weak solution. The fact that the time
interval depends only on the energy norm

—1 —1
< C(T)llu = Vlixr (IUIE + IMIE)
X(T)

[I(Uo, Uun)llw
of the initial data follows directly from (22) since the fixed point € X(T) will satisfies the estimate
lullxery < Coll(Uo, Ua)lle + C(T)||U||§(T)

and this estimate implies
llullxcry < 2Coll(Uo, U1l

C(T)2° (Coll(uo, tn)lly) " < 1.
This complete the proof of the theorem. O

Remark 4. Since the time interval [0'] depends only on the size of the energy norm of the initiahdahe can
prove the existence of a maximal time<0Tnax < o and a unique weak solutiamto the problem (11) such that
u € C([0, Tmax); HY(RN)) N CY([0, Tmax); L2(RN)). Moreover, if Tax < o0, we have

(@) lH@yy + lue®)llz@y)) — o0 ast 7 Tmax

Furthermore, if
supp C B(r) :i={xeR": |X <r}, r>0,i=0,1, (3.23)

u(t, - ) is supported in the baB(t +r).

Since

N+4-2y N+1) N+1
N-2 "N-3/ N-3
for 0 <y < (N -=5)/(N - 3) we have the following.

Corollary 4. Suppose N 6,

-5
O<y< N_3
and
1<p< N+1
P<N_3

Then, for any(uo, u;) € HY(RN) x L?(RN) there exists a maximal tin < Tmax < oo and a unique solution u to the
problem(1.1) such that ue C([0, Tmay), HX(RN)) N CY([0, Tmav, L2(RN)).
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4. Blow-up theorems

This section is devoted to the blow-up of solutions of thebpem (11), assuming initial data are in the energy
space
(Uo,n) € H

andp, y satisfy appropriate subcritical inequalities. To do thig, have to introduce the definition of the solution of
(1.1) in distributional sense and to prove that the mild and wsedidtions of (11) are solutions in distributional sense
of the same equation, because our blow up argument is bagaddact.

Remark 5. As we shall use solutions in distributional sense, the @tprestion is why we discussed mild and weak
solutions? The answer is the following property of weak arild solutions: eithe a1 = oo or elseTmax < o and
U2y + Uy — 0 ast — Trax.

Definition 4. (Solution in distributional senye et w, u; € Lt _(RN). We say that u is a solution ¢1.1) in distribu-

Loc
tional sense, if and only if @ LP((0, T), LEOC(RN)) satisfies

i
[ sstupiocoetxd+ [ w9ex0- [ woiiace0

= fo ! fg u(x, e (X, t) — fo ! fﬂ u(x, ) Ag(x, t) (4.1)

for all compactly supported functigne C2([0, T] x RN) such thate(-, T) = 0 andey(-, T) = 0, wherea := 1 -y €
(0,1), Q :=suppp.

Lemma 1. (Mild or Weak— Distributional) Assume thafug, u;) € H andvy € (0,1). Let u be the mild or weak
solution of(1.1) and let p> 1 satisfieq3.3) or (3.15) respectively witl{u, u;) € C([0, T], H), then u is a distributional
solution of(1.1), forall T > 0.

Proor. We shall consider the case of mild solutions, since theraggu works as well for the weak solutions. Let
T > 0, u be a mild solution of (11) andy € C?([0, T] x RN) be a compactly supported function such tpét T) = 0,
¢i(-, T) = 0 and supp =: Q. Then,uis a fixed point for the integral equation

u(t) = K(t)uo + AK(t)uy + (K x Jg,(ulP))(0), (4.2)

and we have _ _
W(t) = AK(Hup + K(Huy + (K = ngt(|u|p))(t). (4.3)

So, after multiplying (43) by ¢ and integrating oveRN, we obtain
fQ (X De(x.t) = fQ AK[®Uo(Ne(x 1) + fQ K (©)uz(x)¢(x, 1)
+ Lfotk(t—S)Jgs(lulp)(X, s) dsp(x, t).
Then
dEtLUt(X,t)‘P(X,t) = dgthAK(t)uo(X)‘p(X’t)JrdEtLK(t)ul(X)‘p(X’t)
t .
+ fg d% fo K(t = 9)J5s(UP)(, 5) dsp(x, 1). (4.4)
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Now, using the fact that the Laplacian is a negative selbiatlpperator, we have:
i | AKOuw9ex 0 + g [ KOuooey
— [ A[kuo00 + KOuEI]etx ) + [ [AKOUE) +KOU09] ()

= [ k0o + KOuiEa Actet + [ [AKOW) + KO iatxd.

(4.5)
and
t .
LdgtfoK(t—s)f(x,s)ds,o(x,t)
t
=Lf(x,t)¢p(x,t)+fﬂfoA(K(t—s)f(x,s)) dsp(x, 1)
t .
+LfOK(t—s)f(x,s)ds,ot(x,t)
=ff(X,t)tp(X,'[)+f (K = f)(x,t)A<p(x,t)+f(K* £)(X, (X, 1) (4.6)
Q RN Q
wheref := J2 (lulP) € C([0, T]; LX(<Y).
Thus, using 6.42) — (4.3) and (45) — (4.6), we conclude that (4) implies that
d
G Juoveexd = [ ucnaeen s [ uctamo
+ fgf(x,t)go(x,t). 4.7)

Next, after integrating in time (%) over [Q T] and using the fact that(-, T) = 0 andg(-, T) = 0, we conclude that

fo ' fﬂ u(x, )Ap(x, t) - fo ' fg u(x, g (%, )

- fuo(x)got(x,0)+ff(x,t)¢(x,t). (4.8)
Q Q

- f Ur(X)(%,0)
Q

As 1
p1=p2=;=N/(N—2)‘=>7=(N—2)/N,

so we have to distinguish two cases> (N — 2)/N andy < (N — 2)/N. Moreover, in the case when> (N — 2)/N,
we note that 1y < p2 < p1 < N/(N-=2)forN =2m me N\ {0,1},and Yy < p1 < p2 < N/(N-2) forN = 2m+1,
m e N*, while N(N - 2) < pz < p1 < 1/y <wheny < (N — 2)/N. For that, we have the following blow-up theorems.

Theorem 9. (y > (N - 2)/N and Ne {1} U {2m, m e N*})
Letl< p<N/(N-=2),ifN > 3,and pe (1, ),if N = 1,2. Assume that N {1}u{2m me N*},(N-2)/N<y <1
and(up, u) € HY(RN) x L2(RN) such that
f Up > 0, up > 0. (49)
RN RN

If p < p1, where g is given in(1.5), then the solution ofl.1) blows up in finite time.
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Proor. The proof proceeds by contradiction. Lebe a global mild solution of the problem.{}, thenu is a mild
solution of (11) in C([0, T], HY(RN)) n C([0, T], L2(RN)) for all T > 1. Using Lemma 1we have

.
fo fsup Joe(UP) (X, Dep(x, t)+f ppul(x)t,o(x,O)dx— fsupgo Uo(X)¢t(X, 0)

=j: fsup u(x, e (X, t) — f f u(x, t)Ap(x t) (4.10)

for all compactly supported functiane C?([0, T] x RN) such thatp(-, T) = 0 andey(-, T) = 0, wherea :== 1 -y €
0, 1).
Now, we have to distinguish two cases:

e The case < pi: Letg(x.t) = Df; (B(x.1) = Dir ((e1(X)’ @2(t)) with @1(x) = © (X/T). @2t) = L -t/T)!,
wheref, n > 1 and® be a smooth non-increasing function such that

1 ifo<r<1,
(D(r):{ 0 ifr>2

0<® <1, |®(r)] < Cy/r, forallr > 0. Then, we have
f 32 (UP)(x HDE (x ) + f U (X)DEG(x, 0) - f Uo(X)D DS 3(x, 0)
_ f U(x DD2DEG(x 1) - f U(X DADEG(% 1), (4.11)
Qr Q

QTz[O,T]foorQ:z{xeRN;|x|<2T f fdxdl;f fdx
Qr

Moreover, from (219), (2.20), (2.25) and (226) we may write

where

f D2 (uP) § + C T f (e19) () + € T f (209)’ Uo(¥)
Qr Q Q
- f U (1)’ D ga(t) + f U(=0) (1(¥)’ DEzealt). (4.12)
Qr Qr
So, (221) and the formula (¢}) = £ei Ay + £(C — 1)¢ 2 Vi |? will allow us to write:
p ~ —a ¢ R T-a-1 ¢
fg WPpeCT f @) L) + CT f (2(9)’ Uo(¥)
- fQ U(@1(X) D s(t) — C f U (1) Axgr(%) Direpalt)
-C , U (@1() % IVer(X)I* Direpa(t)

< f Ul (e ()’ [Pz e2(t)] + C f Ul (@209)" " [Axpr(X) Dfreea(t)
Qr Qr
fg Ul (1(9) 2 Vg1 (X | Do) (4.13)
Therefore, as the condition.@) implies

f (gol(x))‘uo(x)zo,f (1(0)’ t(x) > O, (4.14)
Supfpy SUpfp1
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(here suppy = Q), we obtain

[ wes f U F/P5P (e (0)' [DZ ()
+C [ Ul 3PP (01(X) "t Axpr(X) Direa(t)|
Qr
+C [ 1 FP5 P (a0 P Va9 [Dfreal)]. (4.15)
Qr
So, using the Young inequality
1 31
ab< %ap+ 5 bP where pp=p+p, p>1,p>1 a>0b>0, (4.16)

with
lu &P
b =% (p1(¥)’ |DZa(t)],

in the first integral of the right hand side of.{5),

= |u| "
b Co p (¢1(X))€ HAxea(x) Dt|T‘P2(t)|’

in the second integral of the right hand side afl&) and with

= |ul &P,
- C &P (p100) 2 Vg1 (9P Direa(t)]

in the third integral of the right hand side of.{%), we obtain

[ uecoPaeen < [ P DRl
Qr Q
+ Cf (02) P () 71 |Ax<P1DﬁT<Pz|p
+C f (1) %P (£2) P71 V1 | D] (4.17)

At this stage, we introduce the scaled variabtes: T-'t and¢ = Tx; using formulas (22) and (224) in the right
hand-side of (4.7), we obtain:

lu(x, )P @(x,t) < C T, (4.18)

Qr

wheres ;= (2+ a)p—-1-N, C = C(|Q|, 1Q2]), (1| stands for the measure ©f, fori = 1, 2), with
={eeRY ;<2 . Qi=(r20; T<1).

Passing to the limit in (48), asT goes towo, and taking into account the fact that< p; (< ¢ > 0), we conclude
that
T
lim f f lu(x, t)|P @(x,t) dxdt= 0.
T—eo Jo  Jix<2T
Using the dominated convergence theorem, we infer that

f f lu(x, t)[Pdxdt=0 = u=_0 foralltand a.ex.
0 RN

18



This contradicts the fact thgﬁ({N up > 0.
* The casep = py: In this case, we take(% t) = (g1(X))’ @2(t) With @1(X) == @ (IX/B™T), ga(t) := (1-t/T)!,
instead of the one used in the last case, wiigfe> 1 and 1< B < T large enough such that wh@n— oo, we don't

haveB — « at the same time. He® is the same function used above.
So, by repeating the same computations as in the gase;, we obtain

f P + C T f () ty(9) + G T f (20 to(¥)
f Ul 375747 (4() [D2:2a(0)

+C | U EYPEP (02(¥) T Axer(X) Direa(t)|

Ag
+C [ EYPE P (0u(X) 2 Ver (X | Dfrea(t)] (4.19)
Ag
where
%5 =[0,T]x Qs := [0, T] x {xeRY ; |X <2B7'T}, f:f dxdt = [ dx
Tg Zg Qg Qg
and
o N . p-1 ~1 _
Ag:=[0.TIx{xeR" ; BT <|x <2B7'T}, f = | dxdt
Ag Ag
Moreover, using the Young inequality
1 1 5
ab< —pap+ Bbp where pp=p+p, p>1p>1 a>0b>0, (4.20)

with

luj P
b=? (p1(¥)’ |DZa(t)],
in the first integral of the right hand side of.{®), and using Holder’s inequality

1/p VP
fabs (f ap) (f bp) , p>1Lp>1 a>0b>0,
A A A

ul
b=5"P (¢1(3) |Axpr(X) Do),
in the second integral of the right hand side afl@) and with

with

= |ul §MP,
- FYP (e100) 2 V()P Do)
in the third integral of the right hand side of.{9®), and taking account of (44), we obtain
lu(x, OIP &(x. 1)

g

o (P
<C f (1) (g2) 71 |Dﬁ$ ¢
B

1/p 3 . 5 1/p
+ C( f ulP 95) ( f (1) P (2) 7 |Axp1 D1 o] )
Ag

+c( Jowee ) ( J e |V¢1|2P|Dﬁ¢z|f’)l/p. (4.21)
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Taking account of the scaled variables= T~t, ¢ = (T/B)™! x, the formulas (22), (2.24) and the fact thap = px,
we get

1/
lux P p(x,ty < CBN + C BZ-%( u(x, t)|P gB(X,t)) y (4.22)

X}

Now, from (418) and the fact thato(= p; < 6 = 0), we have the following implication

Iimf|u(x,t)|p¢a(x,t)s C = f f lux, t)° < C,
Tooo s 0 RN

1/p T T 1/p
lim (f ulP 4,5) = (Iim f f [ulP @ — lim f f lulP @) =0.
T Ag T 0 [X|<2B-1T Too0 0 IX<B-1T

Thus, passing to the limitin (22), asT — o, we get

Ag
and so

f lu(x, t)|Pdxdt< C B™N.
0 RN

Then, taking the limit wheB goes to infinity, we obtain = O for allt and for almost every; contradiction with the
fact that fRN Up > 0. O

Theorem 10. (y > (N - 2)/N and N=2m+ 1, me N¥)
Letl<p<N/(N-2),N=2m+1,me N*, (N -2)/N <y < 1for N =3andmaxl-(p—1)(N-3)/2,(N - 2)/N} <
y < 1for N > 3. Assume thafp, u;) € HY(RN) x L2(RN) satisfy(3.14) such that

f up >0, forN=3 and f X" ug > 0, f up >0, forN>3. (4.23)
RN RN RN

If p < p2, where p is given in(1.6), then the solution ofl.1) blows up in finite time.

Proor. The first step is to obtain aftiéerential inequality. Leti be the mild solution of the problem ). Using the
proof of Lemma 1we have

2
d—f U(X,t)tp(X,t)dX=f U(X,t)Atp(X,t)dX+f ngt(|u|p)(x,t)¢p(x,t)dx (4.24)
dt Jsuppe suppe Suppp

for all 0 < t < Tmaxand all compactly supported functigne C3(RN). Fix 0 < Tg < Tmax and takep € C?(RN) with
¢ =10onB(r + Top). Then, for all 0< t < Ty, (4.24) implies

2
%LN u(x, t) dx = \[};N Jat(|U|p)(X,t)dX (4.25)

Actually, equation (£5) holds on [0Tnay) SinceTy was arbitrary.
Now, due to the positivity of the operatBronly in three dimension, we have to study two cases.
e The caseN = 3: Forr <t < Thmax (if Tmax < r there is nothing to prove) define

F(t) = f u(x, t)dx (4.26)
R3
Using the compact support af- , t) and Holder's inequality, it follows from (25) and (426) that

F(t) > Jg[(r+) P DIFC)IPI(). (4.27)
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For details, see [10]. On the other hand, it is well known thatoperatoK in the integral equation (3) is positive.
Therefore, (3L) implies that
u(x, t) > v(xt), (4.28)

wherev := K(t)up + K(t)uy. Since (?/dt?) [, v(x,t) dx= 0, we have

f V(X t)dx = Cyt+ Cy, (4.29)
R3

whereC,, := fui dx i =0, 1. Using the strong Huygen'’s principle, we have
suppv(xt) cf{t—r <|x <t+r}, t>r. (4.30)

Combining (428) — (4.30), using Holder's inequality, one has

1/p
Cu,t+Cy, < C(t + r)2<P1>/P( f u(x, t)|P dx) . (4.31)
R3
Next, as in (427), we obtain from (431)
F(t) > 3G, [ f lu(x, - )|de} (t) = I3 [(Cuyt + Cup)P(r+) 2P D] (1) > I (CP2) = Crr (P2, (4.32)
R3

where we have used the conditionZ38), fort large. Integrating twice, one has
F(t) > C P2 > r+t)™,  tlarge (4.33)
wherea; = 2+ a — (p — 2). Turning back to (£7) we can get after integration twice
F(t) > C(r + t)*,

where
ap = pa/1—3(p—1)+a+2.

Generally, we can write
F(t) > C(r + t)™,

where
a1 = pak—3(P-1)+a+2

To assure that this sequence is increasing we need
2 > Q1

and a simple calculation shows that this is equivalent t6)(This is exactly the condition that means that- 1
is subcritical i.e.p < pz. Once the conditiom, > «; is verified one can verify thaty tends toco and deduce the
following estimates

F(t) > Cn(t+n)N, VN> 1. (4.34)

t
F(t) > cf (t—9* F(9™ds 1< p;<p. (4.35)
0
Now we are in position to apply appropriate modification df,[Remma 4] and conclude th@ifax < .

Lemma 2. If F(t) € C?([0, T)) is an increasing positive function that satisf(ds34) and (4.35) with some p > 1 >
a>0.Then T< co.
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Proor. Set .
qw=ﬁa—§¢©ms

whereg is a positive number such that
a

CED

B>

Then applying the Holder inequality, we find

(p1-1)/p1
) <

t 1/py t
G(t) < (f (t- S)‘”ﬁF(s)plds) (f (t— 9f@/(P-Dgs
0 0
t 1/p
< C('[ + r)(ﬁ+l)(P1—1)/P1—a/p1 (f (t _ S)a—lF(S)pldS) ’
0

sinceB — a/(p1 — 1) > —1. Hence,
t
f (t— 9" PF(9Pds> C(t + r)* E+DP=D G(t)P,
0

and applying the estimate
t t T
G(t) = f(t—r)ﬁlf(r)dr > f f (t— 7P - 9* F(9Pdsdr >
0 0 Jo

t
>C f (t— 9"PF(9Pds> C(t + r)* P G(p)Pr,
0

The estimates )
G(t) > C(t + r)*~G+DP-D) G(r)P

and
G(t) > Cn(t+n)N, VN>1

enables one to apply [21, Lemma 4] and concludeThateo. This completes the proof of the Lemma.
e The caseN > 3: Let
t
F(t) = f(t - s)(N‘5)/2f us x)dxds 1 <t<Tmax
0 RN

We know that in the casd = 3 the kerneK is positive while in the high dimension spalde> 3 is not. So, we follow
the approach of Sideris [21] and define@ ) with the purpose to use [21, Lemma 5] and get the positivity.
Differentiatingr(t) twice and using (£25), we obtain

. N-5 t s
Ft) = Tt(N’7)/2CUO +tN-92c, 4 fo (t—g)(N-9r2 fo (s— o)t fR (e, X)|P dx drds

Fort large, inverting the order of integration and then usingatwpact support ai(- , t), we get

t S
_ q)(N-5)/2 s a-1 o p
fo(t 9 fo(s ) fRN|u( . X)|Pdx dords
t t
_ Q(N-5)/2/a _ a-1
j(;(j(;(t 9 (s— o) ds)LNlu((r,x)lpdxdo-

t
C f (t — o) (N-5)/2+e ( f lu(o, x)|de) dor
0 [X|<r+o

t p
C(r + t)y"NCP-D f (t — g)(N-5)/2+e ( f lus, x)|dx) ds (4.36)
0 RN
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Using Holder’s inequality, we have

t t p 1/p
f (t—9)N-92 ( f s, x)|dx)dsg C(r+t)(N‘3)(p‘1)/(2p)“’/p( f (t — 9)(N-52+a ( f lu(s, x)|dx) ds) , (4.37)
0 RN 0 RN

where we have used the factthat 1 — (p— 1)(N — 3)/2. Then

‘ i CIF(®)°
_ Q(N-5)/2+a
fo (t-9) ( fR lu(s x)|dx) ds> w7 (4.38)

Therefore, combining (86) and (438), we obtain

CIF@®IP

F(t) = (r + HN-3-1/2N(p-Da (4.39)

On the other hand, by repeating the same calculation in [@dtj& 5 p. 391], we have

t t
f (t— s)(N’5)/2f u(s, x)dxdszf (t- s)(N’S)/Zf v(s, x)dxds  tlarge (4.40)
t-r |X|>t t-r [X|>t

wherev is the solution of the homogeneous equation

Vi—Av=0 (x,1) e RN x(0,T),
{ V(X 0) = Ug(X), (%, 0)=uy(x) xeRN,

Using Holder’s inequality and the compact supportiai the left of (440), one has

t t
f (t— s)‘N*5>/2f u(s, x)dxds < f(t - s)(N’S)/Zf lu(s, X)|dxds
t—r |X|>t 0 t<|x|<r+s
t p 1/p
< cr +t)(N—3)(p—1)/(2p)—a/p( f (t - 9522 ( f u(s X)|dx) ds)
0 t<|x|<r+t
< Cr + yN-IE-D/@D-alp(p 4 {)(N-Dp-1/p (lf(t))l/ P (4.41)
Next, to estimate the right sided of.4®), it follows from (4.23) and [21, Lemma 6] that
t
(t- s)(N‘5)/2f V(s x)dxds> C(r + )NV2 tlarge (4.42)
t-r |X|>t
Hence, (40), (4.41) and (442) imply
F(t) > (r + t)N—l—(N—1)p/2—(N—3)(p—l)/2+(t’
which leads after two integrations, for largehat
F(t) > (r + t)N+1—(N—l)p/Z—(N—S)(p—l)/2+a’ (443)

where we have used the fact tit- 1 — (N — 1)p/2— (N — 3)(p— 1)/2 + @ > 1. Finally, making use of [21, Lemma
4], it follows from (4.39) and (443) thatT max < co, providedp < ps. O

Theorem 11. (y < (N - 2)/N and N> 3)
Let N> 3and p> 1 satisfieg3.15). Assume thad < y < (N — 2)/N and(uo, u;) € HY(RN) x L?(RN) such that

f Uo > 0O, f u; > 0.
RN RN

If p < 1/v, then the solution of1.1) blows up in finite time.
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Proor. Letu be a global weak solution of (I). Our argument is the same one of Theorem 9. So we have two cases:

e The caseg < (1/y): We repeat the same argument as in the gasep;, introduced in Theorem 9, by choosing the

following function@(x, t) = (¢1(X))" @2(t) wherepi(X) = @ (IXI/R), ¢2(t) = (L -t/T)?, £,7 > 1 andR € (0, T) large
enough such that whéh — oo we don’t haveR — ~ at the same time, with the same functibnWe then obtain

(wgrcTe fc (10 U(x) + C T fc (209)’ Ua(¥)
< f Ul GYPG /P (1(X)’ | D2 (1)
Cr

+C | PGP (p1(x) ! |Axpr(X) Direa(t)|

+C | lu FPEHP(p1(X)) A Vi1 (X)I? | Dy pa(t)] . (4.44)

Cr=[0.T]xC:=[0.T] x{xeR" ; |x < 2R}, f =f dxdt f:fdx
Cr Cr C C

Now, by Young’s inequality (4.6), with the same andb as above and using.(#4), we get

where

(WP < c [ ) Geat) P |Df vt

+C [ (a0 (ea0) 7 [Augs 0Dz

C -2p *%1 \v/ 2 D« t p

+ i (©1(x)) 72 (02(t) 7T [Ver(X)1? | D7 ea(t)]” -

Then, the new variables= R1x, 7 = T~'t and formulas (22) and (224) allow us to obtain
f u(x, P p(x,t) < C TH-@DP RN | ¢ Tl-aP RN-25 (4.45)
Cr
Taking the limit asT — oo, we infer, asp < % (= 1-ap<0),that
f f'u(x’t)w(‘ﬁl(x))‘ dxdt=0.
0 C

Finally, by takingR — oo, we get a contradiction.

e The case = (1/y): Here, we take the same test function in the last case. Su,#@5), we obtain

f uxHIP e(x,t) < CT2PRY + C RV-2°,
Cr
Taking the limit asT — oo, we infer

f N f lu(x, )P (p1(x)) dxdt< C RV-2P.
0 C

Now, as the conditiond\ — 2)/N <y < 1 andp = 1/y imply thatN — 2p < 0O, therefore, after passing to the limit as

R — o0, we conclude that
fflu(x,t)ﬂ’dxdtzo;
0 JRN

contradiction and our result is established. O
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