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BOUNDARY TRACE OF POSITIVE SOLUTIONS OF
SEMILINEAR ELLIPTIC EQUATIONS IN LIPSCHITZ
DOMAINS: THE SUBCRITICAL CASE

MOSHE MARCUS AND LAURENT VERON

ABSTRACT. We study the generalized boundary value problem for non-
negative solutions of of —Au+ g(u) = 0 in a bounded Lipschitz domain
), when g is continuous and nondecreasing. Using the harmonic mea-
sure of €2, we define a trace in the class of outer regular Borel measures.
We amphasize the case where g(u) = |u|7"'u, ¢ > 1. When Q is (lo-
cally) a cone with vertex y, we prove sharp results of removability and
characterization of singular behavior. In the general case, assuming that
() possesses a tangent cone at every boundary point and ¢ is subcritical,
we prove an existence and uniqueness result for positive solutions with
arbitrary boundary trace.
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1. INTRODUCTION

In this article we study boundary value problems with measure data on
the boundary, for equations of the form

(1.1) —Au+g(u) =0 in Q

where Q is a bounded Lipschitz domain in RY and g is a continuous nonde-
creasing function vanishing at 0. A function u is a solution of the equation
if u and g(u) belong to L. _(2) and the equation holds in the distribution
sense. The definition of a solution satisfying a prescribed boundary condi-
tion is more complex and will be described later on.

Boundary value problems for ([L.1]) with measure boundary data in smooth
domains (or, more precisely, in C? domains) have been studied intensively
in the last 20 years. Much of this work concentrated on the case of power
nonlinearities, namely, g(u) = |u[?"'u with ¢ > 1. For details we address
the reader to the following papers and the references therein: Le Gall [1-
2], Dynkin and Kuznetsov [1-3], Mselati [1] (employing in an essential way
probabilistic tools) and Marcus and Veron [1-4] (employing purely analytic
methods).

The study of the corresponding linear boundary value problem in Lip-
schitz domains is classical. This study shows that, with a proper inter-
pretation, the basic results known for smooth domains remain valid in the
Lipschitz case. Of course there are important differences too: in the Poisson
integral formula the Poisson kernel must be replaced by the Martin kernel
and, when the boundary data is given by a function in L', the standard sur-
face measure must be replaced by the harmonic measure. The Hopf principle
does not hold anymore, but it is partially replaced by the Carleson lemma
and the boundary Harnack principle due to Dahlberg [f]]. A summary of the
basic results for the linear case, to the extent needed in the present work, is
presented in Section 2.

One might expect that in the nonlinear case the results valid for smooth
domains extend to Lipschitz domains in a similar way. This is indeed the
case as long as the boundary data is in L'. However, in problems with
measure boundary data, we encounter essentially new phenomena.

Following is an overview of our main results on boundary value problems

for ([L.1).

A. (General nonlinearity and finite measure data.
We start with the weak L' formulation of the boundary value problem
(1.2) —Au+g(u)=0 inQ, u=p ond ,

where p € M(0NQ).
Let ¢ be a point in €2, to be kept fixed, and let p = p, denote the first
eigenfunction of —A in Q normalized by p(z¢) = 1. It turns out that the



BOUNDARY TRACE IN LIPSCHITZ DOMAINS 3
family of test functions appropriate for the boundary value problem is
(1.3) X(Q) = {77 e WH(Q) : p Ay € LOO(Q)} .

If n € Q then sup |n|/p < co.

Let K[u] denote the harmonic function in © with boundary trace . Then
u is an L'-weak solution of (L) if

(1.4) we Ly(Q), g(u) € Ly(Q)
and
15 [ cuantgtmde = - [ Kands e X(@)

Note that in ([.§) the boundary data appears only in an implicit form.
In the next result we present a more explicit link between the solution and
its boundary trace.

A sequence of domains {2} is called a Lipschitz exhaustion of € if, for
every n, {1, is Lipschitz and

(16) Q, C Qn C Quy1, Q=UQ,, HN_l(aQn) — HN_l((?Q).

Proposition 1.1. Let {Q,} be an exhaustion of Q0, let xo € Q1 and denote by
wp, (respectively w) the harmonic measure on 9SY, (respectively OS2) relative

to xo. If u is an L'-weak solution of ([LQ) then, for every Z € C(£),

(1.7) lim Zudwn:/ Z dp.
0 onN

n—o0

We note that any solution of ([L1)) is in wkp (Q) for some p > 1 and
consequently possesses an integrable trace on 0€,,.

In general problem ([L.2) does not possess a solution for every p. We de-
note by MMI(0N2) the set of measures p € M(IN) for which such a solution
exists. The following statements are established in the same way as in the

case of smooth domains:

(i) If a solution exists it is unique. Furthermore the solution depends mono-
tonically on the boundary data.
(ii) If u is an L'-weak solution of ([.J) then |u| (resp. u,) is a subsolution
of this problem with p replaced by |u| (resp. u4).

A measure p € M(9N) is g-admissible if g(K[|u|]) € Ly(2). When
there is no risk of confusion we shall simply write ’admissible’ instead of
"g-admissible’. The following provides a sufficient condition for existence.

Theorem 1.2. If u is g-admissible then problem (L.9) possesses a unique
solution.

B. The boundary trace of positive solutions of ([L.1]); general nonlinearity.

We say that u € L} () is a regular solution of the equation (1)) if g(u) €
L1 ().
p
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Proposition 1.3. Let u be a positive solution of the equation (L.1). If u is
reqular then u € L})(Q) and it possesses a boundary trace p € M(ON). Thus
u is the solution of the boundary value problem ([L2) with this measure p.

As in the case of smooth domains, a positive solution possesses a boundary
trace even if the solution is not regular. The boundary trace may be defined
in several ways; in every case it is expressed by an unbounded measure. A
definition of trace is 'good’ if the trace uniquely determines the solution. A
discussion of the various definitions of boundary trace, for boundary value
problems in C? domains, with power nonlinearities, can be found in [Rj],
[H] and the references therein. In [RT] the authors introduced a definition of
trace — later referred to as the 'rough trace’ by Dynkin [§] — which proved
to be ’good’ in the subcritical case, but not in the supercritical case (see
[B2)). Mselati [27] obtained a 'good’ definition of trace for the problem with
g(u) = u? and N > 4, in which case this non-linearity is supercritical. His
approach employed probabilistic methods developed by Le Gall in a series
of papers. For a presentation of these methods we refer the reader to his
book [R(]. Following this work the authors introduced in [J] a notion of
trace, called ’the precise trace’, defined in the framework of the fine topology
associated with the capacity Cy/, o on 9. This definition of trace turned
out to be ’good’ for all power nonlinearities g(u) = u?, ¢ > 1, at least in
the class of o-moderate solutions. In the subcritical case, the precise trace
reduces to the rough trace. At the same time Dynkin [J] extended Mselati’s
result to the case (N +1)/(N —1) <g<2.

In the present paper we confine ourselves to boundary value problems
with rough trace data and in the subcritical case (see the definitions below).
In a forthcoming paper [Rf] we study the supercritical case and we develop
a framework for the study of existence and uniqueness (see Theorem [[.1(]
below) which can be applied to a large class of nonlinearities and can be
adapted to other notions of trace as well. This study emphasizes the analysis
in polyhedron and the role of capacities modeled on specific Besov spaces
corresponding to the different geometric components of the boundary. In
particular, it can be adapted to the 'precise trace’ for power nonlinearities
(in smooth domains) and to a related notion of trace for Lipschitz domains.

Here are the main results in this part of the paper, including the relevant
definitions.

Definition 1.4. Let u be a positive supersolution, respectively subsolution,
of (L1)). A point y € 0 is a regular boundary point relative to u if there
exists an open neighborhood D of y such that gou € L},(Q N D). If no such
neighborhood exists we say that y is a singular boundary point relative to u.

The set of regular boundary points of u is denoted by R(u); its complement
on the boundary is denoted by S(u). Evidently R(u) is relatively open.

Theorem 1.5. Let u be a positive solution of (1)) in Q. Then u possesses
a trace on R(u), given by a Radon measure v.
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Furthermore, for every compact set F C R(u),

(1.9 | (—ubn+ gl do =~ [ (Kivxslan) da
for every n € X () such that suppn N OQ C F and vxp € MI(ON).

Definition 1.6. Let g € G. Let u be a positive solution of (L)) with regular
boundary set R(u) and singular boundary set S(u). The Radon measure v
in R(u) associated with u as in Theorem is called the regular part of the
trace of u. The couple (v,S(u)) is called the boundary trace of u on Of).
This trace is also represented by the (possibly unbounded) Borel measure v
given by

E f B
19) mm:{”)’” < R(u)
0, otherwise.
The boundary trace of u in the sense of this definition will be denoted by
troqu.
Let
(1.10) V, i=sup{u,,,. : F C R(u), F compact}

where u,,, denotes the solution of ([L.4) with p = vxp. Then 'V, is called
the semi-regular component of u.

Definition 1.7. A compact set F' C 99 is removable relative to (LD) o
the only non-negative solution u € C(Q\ F) which vanishes on Q\ F is the
trivial solution u = 0.

Lemma 1.8. Let g € G and assume that g satisfies the Keller-Osserman
condition. Let F C 9 be a compact set and denote by Ur the class of
solutions w of ([L.I) which satisfy the condition,

(1.11) ueCQ\F), u=0 ondQ\F.
Then there exists a function Up € Up such that

u<Up YuéelUp.
Furthermore, S(Ur) =: F' C F; F' need not be equal to F.

Definition 1.9. U s called the maximal solution associated with F'. The
set F' = S(Up) is called the g-kernel of F' and denoted by kq(F).

Theorem 1.10. Let g € G and assume that g is convex and satisfies the
Keller-Osserman condition.

EXISTENCE. The following set of conditions is necessary and sufficient for
existence of a solution u of the generalized boundary value problem

(1.12) —Au+g(u)=0 in Q, tropou= (v, F),

where F' C 0 is a compact set and v is a Radon measure on 0\ F.
(i) For every compact set E C O\ F, vy € MI(0N).
(ii) If kg(F) = F', then F\ F' C S(V,).
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When this holds,

(1.13) Vi, <u <V, +Up.
Furthermore if F is a removable set then ([[.2) possesses exactly one solution.
UNIQUENESS. Given a compact set F' C 02, assume that

(1.14) Uk is the unique solution with trace (0,kq(E))

for every compact E C F. Under this assumption:

(a) If u is a solution of (L.13) then

(1.15) max(V,,Up) <u <V, + Up.

(b) Equation ([L1) possesses at most one solution satisfying ([L15).

(¢) Condition ([L.14) is necessary and sufficient in order that (L.12)) possess
at most one solution.

MONOTONICITY.

(d) Let uy,ug be two positive solutions of (L)) with boundary traces (v1, Fy)
and (v2, F2) respectively. Suppose that Fy C Fy and that vy < voxp, =: Vj.
If (L.14) holds for F = Fy then uy < ug.

In the remaining part of this paper we consider equation ([.1) with power
nonlinearity:

(1.16) — Au+ |u|T =0
with ¢ > 1.

C. Classification of positive solutions in a conical domain possessing an
1solated singularity at the vertez.

Let C, be a cone with vertex 0 and opening S C SN~! where S is a
Lipschitz domain. Put Q = CgNB1(0). Denote by Ag the first eigenvalue and
by ¢s the first eigenfunction of —A’ in VVO1 ’2(5 ) normalized by max ¢, = 1.
Put

os = %(N—2+ VN =27 + )

and 1
Py = ;fo‘sfﬁs(x/ )

where 4 is a positive number. ®; is a harmonic function in Cg vanishing
on Cg \ {0} and + is chosen so that the boundary trace of ®; is dy (=Dirac
measure on dCs with mass 1 at the origin). Further denote Qg = CsNB(0).

It was shown in [ that, if ¢ > 1+ % there is no solution of ([[.1§) in Q
with isolated singularity at 0. We obtain the following result.

Theorem 1.11. Assume that 1 < g < 1+ a—QS Then dqg is admissible for
Q and consequently, for every real k, there exists a unique solution of this
equation in  with boundary trace kég. This solution, denoted by uy satisfies

(1.17) ug(x) = k®1(z)(1 4+ 0(1)) asx — 0.
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The function

Uso = lim ug
k—o00

is the unique positive solution of (b)) in Qg which vanishes on 02\ {0}
and is strongly singular at 0, i.e.,

(1.18) / ul pdr = oo
Q

where p is the first eigenfunction of —A in Q normalized by p(zo) = 1 for
some (fized) xg € Q. Its asymptotic behavior at 0 is given by,

(1.19) Uso(T) = |x|7q%1wg(x/|x|)(1 +o(l)) as x—0
where w is the (unique) positive solution of

(1.20) ~ANw-Ay w+ww=0

on SN with

(1.21) A, = % (q2__q1 _ N> .

As a consequence one can state the following classification result.

Theorem 1.12. Assume that 1 < ¢ < ¢4 =1+ 2/a, and denote

1
Gs=5(2-N+ VN = 2)2+4)).
If u € C(Qs \ {0}) is a positive solution of ([1.18) vanishing on (OC, N
B,,(0)) \ {0}, the following alternative holds:

Either
lim sup || % u(z) < oo
z—0
or
there exist k > 0 such that ) holds,
or

(Z13) holds.

In the first case u € C(2); in the second, u possesses a weak singularity
at the vertex while in the last case u has a strong singularity there.

D. Criticality in Lipschitz domains.

Let © be a Lipschitz domain and let £ € 0€2. We say that g is the critical
value for (L.16) at £ if, for 1 < ¢ < g¢, the equation possesses a solution
with boundary trace d¢ while, for ¢ > g¢ no such solution exists. We say

that qg is the secondary critical value at £ if for 1 < ¢ < qg there exists a

non-trivial solution of (JL.16) which vanishes on 9Q \ {¢{} but for ¢ > qg no

such solution exists.
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In the case of smooth domains, g = qg and ¢¢ = (N +1)/(N — 1) for
every boundary point {. Furthermore, if ¢ = g¢ there is no solution with
isolated singularity at &, i.ee, an isolated singularity at & is removable.

In Lipschitz domains the critical value depends on the point. Clearly
qe < qg, but the question whether, in general, g = qg remains open. However

we prove that, if 2 is a polyhedron, g¢ = qg at every point and the function
§ — q¢ obtains only a finite number of values. In fact it is constant on each
open face and each open edge, of any dimension. In addition, if ¢ = g¢, an
isolated singularity at £ is removable. The same holds true in a piecewise C?
domain € except that { — ¢¢ is not constant on edges but it is continuous
on every relatively open edge.

For general Lipschitz domains, we can provide only a partial answer to
the question posed above.

We say that 2 possesses a tangent cone at a point £ € 02 if the limiting
inner cone with vertex at £ is the same as the limiting outer cone at &.

Theorem 1.13. Suppose that €} possesses a tangent cone C’? at a point
£ € 0Q and denote by q.¢ the critical value for this cone at the vertex &.
Then

Ge = G = qee.
Furthermore, if 1 < q < q¢ then d¢ is admissible, i.e.,

M = /QK(x,f)qp(x)dx < 0.

We do not know if, under the assumptions of this theorem, an isolated
singularity at ¢ is removable when ¢ = q.¢. It would be useful to resolve
this question.

E. The generalized boundary value problem in Lipschitz domains: the sub-
critical case.

In the case of smooth domains, a boundary value problem for equation
(L.1€) is either subcritical or supercritical. This is no longer the case when
the domain is merely Lipschitz since the criticality varies from point to point.
In this part of the paper we discuss the generalized boundary value problem
in the strictly subcritical case.

Under the conditions of Theorem we know that, if £ € 9Q and
1 < g < q¢ then K(-,§) € L})(Q). In the next result, we derive, under an
additional restriction on ¢, uniform estimates of the norm ||K (-,{)HL}J -
Such estimates are needed in the study of existence and uniqueness. For its
statement we need the following notation:

If z € 0F), we denote by S, the opening of the largest cone Cg with
vertex at z such that Cs N B,(z) C QU{z}. If E is a compact subset of 92
we denote:

qp = liminf {qs,, : 2 € 0Q, dist (2, E) <r}.
r—0 ’
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We observe that

qp <inf{q..:z € E}
but this number also measures, in a sense, the rate of convergence of interior
cones to the limiting cones. If  is convex then ¢}, < (N +1)/(N — 1) for
every non-empty set E. On the other hand if Q is the complement of a
bounded convex set then ¢j, = (N +1)/(N —1).

Theorem 1.14. If E is a compact subset of 02 and 1 < q < qj, then, there
exists M > 0 such that,

(1.22) /QKq(x,y)p(x)dx <M VyekE.

Using this theorem we obtain,

Theorem 1.15. Assume that Q is a bounded Lipschitz domain and u is a
positive solution of ([L.10). Ify € S(u) (i.e. y € ON is a singular point of u)
and 1 < q < qf{‘y} then, for every k > 0, the measure ko, is admissible and

(1.23) u > ugs, = solution with boundary trace kdy.

Remark. It can be shown that, if ¢ > q?y}, ([:23) may not hold. For instance,
such solutions exist if {2 is a smooth, obtuse cone and y is the vertex of the
cone. Therefore the condition ¢ < q?y} for every y € 01} is, in some sense
necessary for uniqueness in the subcritical case.

As a consequence we first obtain the existence and uniqueness result in
the context of bounded measures.

Theorem 1.16. Let E C 092 be a closed set and assume that 1 < q < qj,.
Then, for every u € M(Q) such that supppu C E there exists a (unique)
solution u,, of (B.J]) in Q with boundary trace p.

Further, using Theorems [1.10, [L.11] and [l.14, we establish the existence
and uniqueness result for generalized boundary value problems.

Theorem 1.17. Let Q be a bounded Lipschitz domain which possesses a
tangent cone at every boundary point. If

1<q<ghn

then, for every positive, outer reqular Borel measure U on 0}, there exists a
unique solution u of ([.1§) such that tr,,(u) = v.

2. BOUNDARY VALUE PROBLEMS

2.1. Classical harmonic analysis in Lipschitz domains. A bounded
domain  C R¥ is called a Lipschitz domain if there exist positive numbers
r0, Ao and a cylinder

(2.1) Opy = {€ = (€1,€) e RV - [¢']| <o, |&1] < 70}
such that, for every y € 0f) there exist:
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(i) A Lipschitz function ¥ on the (N — 1)-dimensional ball B; (0) with
Lipschitz constant > Ag;

(ii) An isometry 7% of RY such that
Ty(y) =0, (Ty)_l(Oro) =0/

0?7

(2.2) V(00N 0y) ={(¥(¢).¢) : & € B, (0)}
TY(QNOY) = {(&1,€) : & € B, (0), —ro < & < ¥¥(¢)}

The constant rq is called a localization constant of €; Ao is called a Lips-
chitz constant of Q2. The pair (rg, \o) is called a Lipshitz character (or, briefly,
L-character) of Q. Note that, if Q has L-character (rg, \g) and ' € (0,79),

N € (Ao, 00) then (', \) is also an L-character of Q.

By the Rademacher theorem, the outward normal unit vector exists H¥ "1 —a.e.
on 09, where HV~! is the N-1 dimensional Hausdorff measure. The unit
normal at a point y € 992 will be denoted by n,,.

We list below some facts concerning the Dirichlet problem in Lipschitz
domains.

A.1- Let zg € 2, h € C(09) and denote L,,(h) := v,(xo) where vy, is the
solution of the Dirichlet problem

{—AU:O e

(2:3) v=~h on 0f.

Then L, is a continuous linear functional on C(9€2). Therefore there exists
a unique Borel measure on 952, called the harmonic measure in €2, denoted
by w¢ such that

(2.4) vp (o) = /8Q hdwd Vh € C(09).

When there is no danger of confusion, the subscript (2 will be dropped.
Because of Harnack’s inequality the measures w® and w®, xg, x € () are
mutually absolutely continuous. For every fixed z € ) denote the Radon-
Nikodym derivative by

dw®
(2.5) K(z,y) = T
Then, for every = € Q, the function y — K (Z,y) is positive and continuous
on 09 and, for every y € 01, the function x — K (z,y) is harmonic in
and satisfies

(y) for w™-a.e. y € 0N.

lim K(z,y) =0 VYyeoQ\{y}.

T—Y

By [1L4]

. Gz, 2)
(26) ;I‘I};J G(mo,z)

Thus the kernel K defined above is the Martin kernel.

= K(z,y) Yye€ o0
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The following is an equivalent definition of the harmonic measure [[[4]:
For any closed set E C 0f)

w(E) =
(27) inf{o(zg) : ¢ € C(Q)+ superharmonic in 2, lim iélf o(x) > 1}.

The extension to open sets and then to arbitrary Borel sets is standard.

By (B:4), (B.5) and (R.7), the unique solution v of (R.3) is given by

/ K(z,y)h(y)dw™ (y) =
inf{¢ € C() : ¢ superharmonic, liminf ¢(x) > h(y), Yy € 00Q}.

T—Y

For details see [[4].

A.2- Let (xo,y0) € © x 0Q. A function v defined in € is called a kernel
function at yp if it is positive and harmonic in €2 and verifies v(z¢) = 1 and
lim,_,, v(z) = 0 for any y € 9N\ {yo}. It is proved in [[[4, Sec 3] that the
kernel function at yo is unique. Clearly this unique function is K (-, yo).

A.3- We denote by G(z,y) the Green kernel for the Laplacian in £ x .
This means that the solution of the Dirichlet problem

—Au=f inQ,
(2.9) { u=0 on 99,

with f € C%(Q), is expressed by
(2.10) /G (z,y)f(y)dy Vy €.

We shall write (R.10) as u = G[f].

A.4- Let A be the first eigenvalue of —A in W(}’Q(Q) and denote by p the
corresponding eigenfunction normalized by maxq p = 1.
Let 0 < § < dist (zg,2) and put

Coros := max G(x,x0)/p(x).

lz—zo|=0

Since Cyy5p — G(+,z0) is superharmonic, the maximum principle implies
that

(2.11) 0 < G(x,20) < Chy5p(x) Ve Q\ Bs(xo).

On the other hand, by [[7, Lemma 3.4]: for any z( € Q there exists a
constant Cy, > 0 such that

(2.12) 0 < p(x) < CpyG(x,29) Ve
A.5- For every bounded regular Borel measure p on 02 the function
(213) o@) = [ Kw)duty) voeo,

oN

is harmonic in Q. We denote this relation by v = K|u].
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A..6- Conversely, for every positive harmonic function v in €2 there exists a
unique positive bounded regular Borel measure g on 99 such that (P.13)
holds. The measure y is constructed as follows [[[4, Th 4.3].

Let SP(Q) denote the set of continuous, non-negative superharmonic
functions in Q. Let v be a positive harmonic function in €.

If E denotes a relatively closed subset of 2, denote by RE the function
defined in €2 by

RE(z) = inf{é(z) : ¢ € SP(Q), ¢ > v in E}.

Then RE is superharmonic in Q, RY decreases as E decreases and, if F is
another relatively closed subset of §2, then

REVE < RE 1+ RE.
Now, relative to a point x € (), the measure p is defined by,
(2.14) pZ(F) =inf{RE(z): E=DnNQ, Dopenin R D> F},

for every compact set F' C 9€). From here it is extended to open sets and
then to arbitrary Borel sets in the usual way. )
It is easy to see that, if D contains 9Q then R = v. Therefore

(2.15) g (02) = v(z).

In addition, if F' is a compact subset of the boundary, the function x —
we(F') is harmonic in © and vanishes on 992\ F.

A.7- If z,x¢9 are two points in €2, the Harnack inequality implies that u
is absolutely continuous with respect to p°. Therefore, for pl°-a.e. point
y € 09, the density function du?/dut®(y) is a kernel function at y. By the
uniqueness of the kernel function it follows that

dpy
dp°
Therefore, using (R.17),

() wWi(F)= /F K (2, y)di™ (y),

() w(x)= [ K(z,y)du™(y).
o0
A 8- By a result of Dahlberg [, Theorem 3], the (interior) normal derivative
of G(-, ) exists Hy_1-a.e. on I and is positive. In addition, for every
Borel set £ C 09,

(2.16)

(y) = K(,I,y), :U’ﬁo_a'e' Y€ oQ.

(2.17)

(2.18) w™(E) = WN/E@G(g,xO)/ﬁng dSg,

where yx (N —2) is the surface area of the unit ball in RY and dS is surface
measure on 0f). Thus, for each fixed x € (), the harmonic measure w”
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is absolutely continuous relative to ‘H N_1| 5o With density function P(z,-)
given by

(2.19) P(x,£) = 0G(§,x)/0On¢ for a.e. &€ 0NN
In view of (R.§), the unique solution v of (R.3) is given by
(2:20 oa) = [ Pl Oh)dse

Q

for every h € C(092). Accordingly P is the Poisson kernel for Q. The
expression on the right hand side of (R:2() will be denoted by P[h]. We
observe that,

(2.21) K[hw®] = P[h] Vh € C(0).

A..9- The boundary Harnack principle , first proved in [ff], can be formulated
as follows [[L5].

Let D be a Lipschitz domain with L-character (rg, Ag). Let £ € 9D and
0 € (0,79). Assume that u, v are positive harmonic functions in D, vanishing
on 0D N Bs(§). Then there exists a constant C' = C'(N,rp, Ag) such that,

(222)  C7lu(x)/v(z) < uly)/v(y) < Cu(x)/v(z) Y,y € Bsp(f).

A.10- Let D, D’ be two Lipschitz domains with L-character (rg, Ag). Assume
that D’ € D and 0D N 9D’ contains a relatively open set I'. Let zyp € D’
and let w,w’ denote the harmonic measures of D, D’ respectively, relative

to zg. Then, for every compact set F' C I', there exists a constant cp =
C(F,N,rg, Ao, xo) such that

(2.23) N pLw|pL epw | .

Indeed, if G, G’ denote the Green functions of D, D’ respectively then, by
the boundary Harnack principle ,
(2.24)
OG' (€,x0)/Ong < OG(&,x0)/One < cpOG(E,20)/On¢ for ae. & € F.

Therefore (R.23) follows from (R.1§).
A.11- By [[[4, Lemma 3.3], for every positive harmonic function v in €,

(2.25) /Qv(ﬂ:)G(x,xo)dx < 0.

In view of (R.12), it follows that v € L;(Q).

2.2. The dynamic approach to boundary trace. Let €} be a bounded
Lipschitz domain and {€,,} be a Lipschitz exhaustion of £). This means that,
for every n, €, is Lipschitz and

(2.26) Q, C Qn C Qn+1, Q= U, HN,l((?Qn) — HN,l((?Q).

Lemma 2.1. Let zg € Qy and denote by wy, (respectively w) the harmonic

measure in £y, (respectively Q) relative to xg. Then, for every Z € C(S),

(2.27) lim Z dwy, = / Z dw.
o0
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Proof. By the definition of harmonic measure

/ dw,, = 1.
0y,

We extend w, as a Borel measure on () by setting w,(Q2\9Q,) = 0, and keep
the notation wy, for the extension. Since the sequence {w, } is bounded, there
exists a weakly convergent subsequence (still denoted by {w,}). Evidently
the limiting measure, say w is supported in 9Q and @(9Q2) = 1. It follows

/ Z dwy, — Z dw.
I 0

that for every Z € C(92),
Let ¢ := Z |gq and z := K?[¢]. Again by the definition of harmonic measure,

/ z dwy, = Cdw = z(xp).
0

oN

for every ¢ € C(09). Consequently @ = w. Since the limit does not depend
on the subsequence it follows that the whole sequence {w,, } converges weakly

to w. This implies (2.27). O

In the next lemma we continue to use the notation introduced above.

It follows that

Lemma 2.2. Let zg € Oy, let pu be a bounded Borel measure on 982 and put
v:=K®u]. Then, for every Z € C(£),

(2.28) lim Zv dwr, :/ Z dyp.
o0

Proof. 1t is sufficient to prove the result for positive pu. Let h, := v |sq,, -
Evidently v = K% [h,w,] in Q,. Therefore

v(zp) = /aQ hpdwy, = p(092).

Let j,, denote the extension of h,w, as a measure in ) such that ,un(Q\
0€,) = 0. Then {u,} is bounded and consequently there exists a weakly
convergent subsequence {i,;}. The limiting measure, say i, is supported
in 9Q and

(2.29) fi(09) = v(xo) = p(092).

It follows that for every Z € C'(),

/ Z dpin; — Z dj.
O, a0

To complete the proof, we have to show that i = u. Let F' be a closed
subset of 92 and put,

pF = pxr, " =K F).
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Let bl := o |5q, and let uf denote the extension of hf'w, as a measure in
Q such that pf(Q\ 0,) = 0. As in the previous part of the proof, there
exists a weakly convergent subsequence of {,uffj}. The limiting measure jif’
is supported in F' and

A (F) = i (09) = vF (n0) = uF (99) = pu(F).
As v < w, we have if" < fi. Consequently
(2.30) u(F) < ().
Observe that fi depends on the first subsequence {,,}, but not on the
second subsequence. Therefore (R.3Q) holds for every closed set F' C 09,

which implies that ¢ < ji. On the other hand, p and ji are positive measures
which, by (2.29), have the same total mass. Therefore p = fi. O

Lemma 2.3. Let pn € M(0Q) (= space of bounded Borel measures on 0S2).
Then K[u] € L;(Q) and there exists a constant C' = C(Q) such that

(2.31) K1l 3y < € llullaneae -
In particular if h € L'(0Q;w) then
(2.32) Pl ) < C IR L1 o0sw) -

Proof. Let x¢ be a point in  and let K be defined as in (2.5). Put ¢(-) =
G(-, o) and do = dist (zg,2). Let (9, A\g) denote the Lipschitz character of
Q.

By [, Theorem 1], there exist positive constants c1(N,rg, Ao, dp) and
co(IN, 70, Ao, dp) such that for every y € 09,

(2.33) 01*1 (;é((z)/) |z — y|2—N < K(z,y) < (;2((22) |z — y|2—N

for all z, 2’ € Q such that

)

1
(2.34)  colr —y| < dist (2/,00Q) < |2/ —y| < |z —y| < 1 min(do, 79/8).

Therefore, by (P.12) and (R.11]), there exists a constant ca(N, 79, Ao, dg) such

that , 2
051 5:2((;)) |z — y|2fN <plz)K(x,y) < co 5:2((;)) |z — y|27N

for z, 2’ as above. There exists a constant ¢y, depending on ¢y, N, such that,
for every x € Q satisfying |z —y| < I min(dp,r9/8) there exists 2’ € Q which
satisfies (R.34) and also

|z — 2’| < & min(dist (x, 0Q), dist (', 0Q)).

By the Harnack chain argument, ¢(z)/¢(x’) is bounded by a constant de-
pending on N, ¢y. Therefore

(2.35) ;e —yPP N < p(@)K(z,y) < csla—y



16 MOSHE MARCUS AND LAURENT VERON

for some constant c3(N, 79, \g,dp) and all x € Q sufficiently close to the
boundary.
Assuming that u > 0,

| K@@= [ | K.opole)dadu© < Cllilmee -

In the general case we apply this estimate to 4 and p—. This implies (R.31)).
For the last statement of the theorem see (R.21)). O

Proposition 2.4. Let v be a positive harmonic function in Q with boundary
trace p. Let Z € C?(Q) and let G € C™(Q) be a function that coincides
with © +— G(z,x0) in Q NQ for some neighborhood Q of O and some fized

zo € Q. In addition assume that there exists a constant ¢ > 0 such that
(2.36) IVZ-VG| < ep.

Under these assumptions, if ¢ := ZG then

(2.37) - /Q VAC di = /a Zin

Remark. This result is useful in a k-dimensional dihedron in the case where
1 is concentrated on the edge. In such a case one can find, for every smooth
function on the edge, a lifting Z such that condition (R.36) holds. See Section
8 for such an application.

Proof. Let {Q,} be a C! exhaustion of Q. We assume that 09, C Q
for all n and 2y € Q). Let G,(x) be a function in C'(Q,) such that G,
coincides with G (-, o) in Q N Qy, Gl 20) — G(-,20) in C?(Q\ Q) and
Gn( ) = G(-,z0) in Lip (Q). If ¢, = ZG,, we have,

— / VA, dr = / 0O dS = vZ00Gr(€,x0) dS
n (21979 O

= / vZ P (x,€)dS = vZ dwy,.
0 (7978

By Lemma P.9,

/ vZ dwy — Z du.
o197 o0N

On the other hand, in view of (R.36), we have
ACp = GoAZ + ZAG, +2VZ - VG, — AZ

in L})(Q); therefore,

—/ vACndx%—/vACdx.
n Q
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Definition 2.5. Let D be a Lipschitz domain and let {D,} be a Lipschitz
exhaustion of D. We say that {D,,} is a uniform Lipschitz exhaustion if
there exist positive numbers 7, \ such that D,, has L-character (¥, \) for all
n € N. The pair (7,)) is an L-character of the exhaustion.

Lemma 2.6. Assume D, D’ are two Lipschitz domains such that

I'coDNaD c d(DUD)

where T is a relatively open set. Suppose D,D’', D U D’ have L-character
(ro, Ao). Let xg be a point in DN D" and put

do = min(dist (xg, 0D), dist (zg, 0D")).

Let u be a positive harmonic function in D U D’ and denote its boundary
trace on D (resp. D') by u (resp. '). Then, for every compact set F C T,
there exists a constant cp = ¢(F, 19, Ao, do, N) such that

(2.38) cp W F< ulr< eri|p.

Proof. We prove (R.3§) in the case that D’ C D. This implies (R.3§) in the
general case by comparison of the boundary trace on dD or 0D’ with the
boundary trace on 9(D U D’).

Let @ be an open set such that Q N D is Lipschitz and

FcQ, QNnDcD, QnoDcT.

Then there exist uniform Lipschitz exhaustions of D and D', say {D,,} and
{D!,}, possessing the following properties:

(i) D/NQ=D,NQ.

(ii) 2o € D} and dist (zo,0D}) > 1dp.

(ili) There exist g > 0 and Ag > 0 such that both exhaustions have
L-character (g, Ag).

PutT',, := 0D,,NQ = dD,,NQ and let w,, (resp. w/,) denote the harmonic
measure, relative to xg, of D,, (resp. D). By Lemma P.3,

u(y) dwy, du,
Fn¢ (y) (y)—>/F¢ 1

and

pu(y)dwy,(y) — /F ¢ dp

I

for every ¢ € C.(Q). By A.10 there exists a constant cg = ¢(Q, rg, A\, do, N)
such that

This implies (R.39). O
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2.3. L' data. We denote by X () the space of test functions,
(2.39) X(Q) = {77 e WH(Q): plAn € LOO(Q)} .

Let X, (2) denote its positive cone.
Let f € L>*(Q), and let u be the weak I/VO1 2 solution of the Dirichlet
problem

(2.40) —Au=f inQ, u=0 ond

If Q is a Lipschitz domain (as we assume here) then u € C(2) (see [9)).
Since G[f] is a weak W, solution, it follows that the solution of (B-40),
which is unique in C(Q), is given by v = G[f]. If, in addition, |f| < ci1p
then, by the maximum principle,

(2.41) ul < (e1/M)p,

where A is the first eigenvalue of —A in Q.

In particular, if n € X(Q) then n € C(Q) and it satisfies
(2.42) —G[An] =,
(2.43) [l < A7 o™ A e p.
If, in addition,  is a C? domain then the solution of (R.4() is in C*(Q).

Lemma 2.7. Let Q be a Lipschitz bounded domain. Then for any f € L})(Q)
there exists a unique u € Ly(Q) such that

(2.44) —/uAndx:/fndx Vn € X ().
Q Q

Furthermore u = G[f]. Conversely, if f € L} (), f > 0 and there exists

loc

xo € Q such that G[f](zg) < oo then f € L;(Q). Finally

(2.45) lull £,y < AL, 0

Proof. First assume that f is bounded. We have already observed that, in
this case, the weak VVO1 2 solution u of the Dirichlet problem (B40) is in C(€2)
and u = G[f]. Furthermore, it follows from [H] that

/ Vn - Vudx = —/uAndx.
Q Q

Thus u = G[f] is also a weak L; solution (in the sense of (2.44))).
Let ny be the weak T/VO1 2 solution of (B40) when f = sgn(u)p; evidently
no € X(Q). If u € Ly(Q) is a solution of (R:49) for some f € L} () then

(2.46) /Q fulpdz: = /Q Frode < A1 /Q \flode.

The second inequality follows from (R.41). This proves (R.45) and implies
uniqueness.
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Now assume that f € L})(Q) and let {f,} be a sequence of bounded
functions such that f,, — f in this space. Let u, be the weak I/VO1 2 solution
of (B-40) with f replaced by f,. Then u, satisfies (P.44) and u,, = G[f,].

By (B45), {un} converges in L})(Q), say u, — u. In view of (R.I1)) it follows
that u = G[f] and that u satisfies (.44).

If f e L, (Q), f>0and G[f](z0) < oo then, by (R.13), f € L;(Q). O

Lemma 2.8. Let Q2 be a Lipschitz bounded domain. If f € L})(Q) and
h € LY(0Q;w), there exists a unique u € L})(Q) satisfying

(2.47) / (—uln — fn)dx = —/ Plh]Andz Vi € X(Q)
Q Q

or equivalently

(2.48) u = G[f] — P[h].

The following estimate holds

(2.49) lallzaey < e (1113 + PNy o)

< ¢ (I ey + 1Al 21 o) -

Furthermore, for any nonnegative element n € X (), we have

(2.50) —/Q\u]Andm < —/QIP’HhHAndx—i—/ansgn(u) dx,
and
(2.51) — /Qu+A77dx < —/SZP[h+]A77dm+/§277fsgn+(u) dx.

Proof. Ezistence. By Lemma P.3, the assumption on h implies that P[|h]] €
L;(Q). If we denote by v the unique function in L;(Q) which satifies

—/vAndx = —/fndx Vn € X(Q),
Q

then u = v — P[h] € ) and (2:47) holds.
By Lemma .7, (2 ‘ is equivalent to (R.47).
Estimate (2.49) This inequality follows from (2.47) and (R.49).

Estimate ). Let {Q,} be an exhaustion of 2 by smooth domains. If u
is the solution of (£:47) and hy, := u/,, then, in Qy,

u =G [f] — P [h,] inQ,,

or equivalently,

(2.52) /Q (—ulAn — fn)dz = —/Q Plh,|Andx

:i/(wmmmm W € X(Q).
121919
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We recall that, since €, is smooth, n € X (£2,,) implies that n € C*(Q,). In
addition it is known that (see e.g. [BQ]), for every non-negative n € X (£2,),

(2.53) / (—|u|An — fnsignu) dz < —/ on/onlh, |dzx
Q, 0,

Let p, be the first eigenfunction of —A in ,,, normalized by p,(z) =1 for
some Z € Q. Let 7 be a non-negative function in X (£2) and let 7, be the
solution of the problem

Az = (An)pn/p in Qy,, z=0 on 08,.
Then 7, € X(Q2,,) and, since p,, — p,
An, = An,  np — .
If v := P[|h|] then v > |ul so that
h

n = U‘BQn > |y

Therefore

(2.54) —/ Oy /Onlhy, |dx < —/ on/on|hy,|dx =
0 Ny

- / P2 [, | Annde = —/ vAn,dr — —/ vAndz.
Finally, (-53) and (R-54) imply (R-50).
Estimate (R.51) This inequality is obtained by adding (2.47) and (2.50). O

Definition 2.9. We shall say that a function g : R — R belongs to G(R) if
it is continuous, nondecreasing and g(0) = 0.

Lemma 2.10. Let Q be a Lipschitz bounded domain and g € G(R). If
fe L})(Q) and h € LY(0%w), there exists a unique u € L},(Q) such that
g(u) € L,(2) and
(2.55) / (—uln + (g(w) — f)n)dz = — / PlhAnds Vi€ X().

Q Q

The correspondence (f,h) — u is increasing.
If u,u’ are solutions of (R.53) corresponding to data f,h and f’,h' respec-
tively then the following estimate holds:

(2.56) = ']l 3 ) + o (w) = 9 ()] 1
< (I = 7l sgay + B~ Kl 10

<e (I = oy + 10 =¥l an.) -

Finally, for any nonnegative element n € X (Q2), we have

(2.57) - /Q ] Ary dz: + /Q 9wy dz < — /Q P{h]|Andz + /Q nfsen(u) de,
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and

(2.58) —/u+A77d:c+/ g(u)yndr < —/P[h+]Andx+/nfsgn+(u) dzx.
Q Q Q Q

Proof. 1If u,u’ are two solutions as stated above then v = u — v’ satisfies

(2.59) / (—vAn+ Fn)dz = —/P[h — ]Ahdz Vn e X(Q)
Q Q

where F = g(u) — g(u') — (f — f') € L})(Q). Applying (R.50) to this equation
and using the properties of g described in Definition .9 we obtain (R.56).
Similarly we obtain () and (R.5§), using (B-50) and (B.51)). These in-
equalities imply uniqueness and monotone dependence on data.

In the case that f and h are bounded, existence is obtained by the stan-
dard variational method. In general we approach f in L})(Q) by functions
in C2°(Q2) and h in L}(0Q;w) by functions in C(9) and employ (£:54). O

3. MEASURE DATA

Denote by 9,(€2) the space of Radon measures v in € such that p|v| is a
bounded measure.

Lemma 3.1. Let Q be a Lipschitz bounded domain. Let v € IM,(§2) and

u € L}, (Q) be a nonnegative solution of

—Au=v in .

Then u € L},(Q) and there ezists a unique positive Radon measure p on OS2
such that

(3.1) u = Ku] + G[v].

Proof. Let D be a smooth subdomain of  such that D C . Since u €

Wllgf(Q) for some p > 1 it follows that w possesses a trace, say hp, in

Wlf%’p(aD). Put v := u — GP[v]. Then —Av = 0in D and v > 0 on
0D and therefore in D. If {D,} is an increasing sequence of such domains,
converging to €, then G”»[v] 1+ G%[v]. Thus v = u — G%[v] is a non-
negative harmonic function in  and consequently possesses a boundary
trace p € M(ON) such that v = K[u]. O

Lemma 3.2. Let Q be a Lipschitz bounded domain. If v € IM,(Q) and
w € M(ON), there exists a unique u € L})(Q) satisfying

(3.2) / —ulAndr = / ndu—/K[,u]Andx Vn € X ().
Q Q Q
This is equivalent to

(3.3) u = Glv] + Ky
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The following estimate holds
(3.4) el zagay < & (1l + 1K L] 30 )

< ¢ (I llan, gy + Nillamcon)

In addition, if dv = fdx for some f € L;(Q) then, for any nonnegative
element n € X(Q), we have

65) = [ Wlande<— [ Kiulands+ [ afsentu)do.
and
(3.6) - /QquAndx < —/QK[MJF]Andx—i- /ﬂnfsgn#u) dx.

Proof. We approximate p by a sequence {h,P(zg,-)} and v by a sequence
{fn} such that

hnP(20,-) € LY(0R), hnP(xo,)Hn_1 — p weakly in measure
and
fn € L})(Q), fn — v weakly relative to C,(£2),

where C), denotes the space of functions ¢ € C(£2) such that p{ € L>(12).

Applying Lemma R.§ to problem (R.49) (f, h replaced by f,, h,) and taking
the limit we obtain a solution u € L,(§2) of (B.2) satisfying (B.4).

Lemma P.7 implies that any solution u of (B.2) satisfies (B-3). Therefore
the solution is unique and hence (B-4)) holds for all solutions.

Inequalities (B.§) and (B.§) are proved in the same way as the correspond-
ing inequalities in Lemma P.§ O

Definition 3.3. Let Q be a bounded Lipschitz domain and let g € G(R). If
w e MON), a function u € L;(Q) is a weak solution of

{ —Au+g(u)=0 inQ

(3.7) w=pu in oS

if g(u) € L}(Q) and

(3.8) u+ Glg(w)] = K[
a.e. in . FEquivalently
(3.9) /Q (—ulhy + g(u)y) dz = — /Q (K[uJAn)dz ¥ e X(Q).

The measure p is called the boundary trace of u on 0f).
Similarly o function u € L;(Q) is a weak supersolution, respectively sub-

solution, of (B2) if g(u) € L(2) and
(3.10) u+ Glg(u)] > K[u] respectively u+ Glg(u)] < K[u].

This is equivalent to (B.9), with = replaced by > or <, holding for every
positive n € X(Q).
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Remark. It follows from this definition and Lemma that, if

pn — p weakly in M(0N), u, = u, g(u,) = g(u) in L;(Q),
and if

un, = Klpn] — Glg(un)],

then u = K[u] — G[g(u)].
Lemma 3.4. Let Q be a Lipschitz bounded domain and let g € G. Suppose
that 1 € M(OQ) and that there exists a solution of problem (B.4). Then the
solution is unique.

If p,p' are two measures in M(ON), for which problem (B1) possesses
solutions w,u’ respectively, then the following estimate holds:

(3.11) [ =[] 1 + [l9w) = 9|y < (Kl = ][ 1)
< HM - //Hzm(aﬂ) :

If p <y then u < u/'.
In addition, for any nonnegative element n € X (), we have

(312) - [ (el an = lg(lndo < ~ [ Kllujands

and

(3.13) - /Q(U+A77—9(U)+77) de < —/QK[M]AWSE-

Proof. This follows from Lemma B.J in the same way that Lemma P.I(
follows from Lemma P.§. O

Definition 3.5. Assume that u € Wllgf(Q) for some p > 1. We say that
u possesses a boundary trace pu € M(IN) if, for every Lipschitz exhaustion

{0} of Q,

(3.14) lim Zu dwy, :/ Z dy,
o0

holds for every Z € C(Q).
Similarly we say that u possesses a trace j on a relatively open set A C 0S)

if (B.14) holds for every Z € C(Q) such that supp Z C QU A.

Remark. Ifu € VVlf)’f(Q) for some p > 1 then, by Sobolev’s trace theorem, for
every relatively open (N —1)- dimensional Lipschitz surface 3, u possesses a
1
trace in W'~ »?(2). In particular the trace is in L(X). In fact there exists
an element of the Lebesgue equivalence class of u such that the trace on X
is precisely the restriction of u to X. When it is relevant, as in (B.14), we
assume that u is represented by such an element.
1

If u € WLP(12) then, by the same token, u possesses a trace in W'~ 77(5).

If {€,} is a uniform Lipschitz exhaustion and h,, (resp. h) denotes the trace
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of uw on 08, (resp. 0f2) then

ol g = I8

(@ pP00)

This follows from the continuity of the imbedding
WLP(Q) < W' 5P (Q)
and the fact that C1(Q) is dense in W1P(Q).

Similarly, if {€2,} is a Lipschitz exhaustion (not necessarily uniform, but
satisfies (R.2¢)) then
thHLl(BQn) - HhHLl(aQ)'
In particular, if u € I/VO1 P(Q)) then its boundary trace is zero, in the sense
of the above definition.

Proposition 3.6. Let u be a weak solution of (B.7). If {0} is a Lipschitz

exhaustion of Q0 then, for every Z € C(52),

(3.15) lim Zudwn:/ Z dy,
o0

where wy, is the harmonic measure of )y, (relative to a point xy € ).

Proof. 1f v := Glgou] then v € L}(92) and u+ v is a harmonic function. By
(B-8), v +v = K?[u]. Therefore, by Lemma .2,

(3.16) lim Z(u+v)dw, = / Z dp
o0 J o0, i)

for every Z € C(Q). As v € W,P(Q) for some p > 1 its boundary trace is

zero. Therefore (B.16) implies (B.19). O

Definition 3.7. A measure p € M(IN) is called g-admissible if g(K[|u|]) €
L1 ().
p

Theorem 3.8. If j1 is g-admissible then problem (B.7) possesses a unique
solution.

Proof. First assume that p > 0. Under the admissibility assumption, U =
K([u] is a supersolution of (B.7). Let {D,} be an increasing sequence of
smooth domains such that D,, C D,y C Q and D,, T Q. Let u, be the
solution of problem (B.7) in D, with boundary data h, = U| op,- Then
{un} decreases and the limit v = lim u,, satisfies (B.7).

In the general case we define U = K][|u|] and U, u,, as before. By assump-
tion g(U) € L(Q) and U dominates |uy,| for all n. Let n be a non-negative
function in X () and let (, be the solution of the problem

AC = (An)pn/p in D, (=0 on dD,.
Then ¢, € X(D,,) and, since p, — p,
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In addition, (A¢,)/pn = (An)/p is bounded and, by (R.41)), the sequence
{¢n/pn} is uniformly bounded.
The solutions u,, satisfy,

(3.17) / (—un Ay + g(un)Cpn) de = —/ PP [h, | AC,da.

The sequence {uy : k > n} is bounded in W'P(D,,) for every n. Conse-
quently there exists a subsequence (still denoted by {u,}) which converges
pointwise a.e. in Q. We denote its limit by u. Since {u,} is dominated by
U it follows that

lim (—unAGy + g(un)p) de = /Q (—uln + g(u)n) de.

n—o0 D
n

Furthermore,
/ PP [h, | AC,dx :/ UAn(pn/p) de — / UAndz = / K[p]Andz.
n Dy, Q Q
Thus u is the solution of (B.7). O

Remark. If we do not assume that g(0) = 0 the admissibility condition
becomes,

(3.18) g(Klus]+p(g(0)1) € Ly() and g(—Klu-] - p(g(0))-) € Ly(€).

4. THE BOUNDARY TRACE OF POSITIVE SOLUTIONS

As before we assume that Q is a bounded Lipschitz domain and g € G.
We denote by p the first eigenfunction of —A in  normalized by p(zg) = 1
at some (fixed) point zy € .

A function u € L} () is a solution of the equation

(4.1) —Au+g(u) =0 in Q,

if gou € Li,.(Q) and u satisfies the equation in the distribution sense.

A function u € L} () is a supersolution (resp. subsolution) of the

equation (1)) if gou € L} (Q) and

loc
—Au+gou>0 (resp. <0)
in the distribution sense.

Proposition 4.1. Let u be a positive solution of (). If gou € L})(Q)
then u € L}(Q) and it possesses a boundary trace p € IM(IN), i.e., u is the
solution of the boundary value problem (B.7) with this measure pu.

Proof. If v := G[g o u] then v € L(€) and u + v is a positive harmonic

function. Hence u + v € L;(Q) and there exists a non-negative measure
p € M(AN) such that u + v = K[u]. In view of (B.§), this implies our
assertion. 0
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Lemma 4.2. If u is a non-negative solution of ([.1]) then u € C1(Q).

Let {u,} be a sequence of non-negative solutions of (1) which is uni-
formly bounded in every compact subset of 2. Then there exists a subse-
quence {uy,} which converges in C* () for every ' € Q to a solution u of

ED.

Proof. Since g ou € L. (Q) it follows that u € W;2(€) for some p €
[1, N/(N —1)). Let ' be a smooth domain such that ' € Q. By the trace
imbedding theorem, u possesses a trace h € LY(9§Y'). If U is the harmonic
function in Q' with boundary trace h then v < U. Thus u (and hence

gou) is bounded in every compact subset of ). By elliptic p.d.e. estimates,

u € CL(Q).
The second assertion of the lemma follows from the first by a standard
argument. U

Theorem 4.3. (i) Let u be a non-negative supersolution (resp. subsolution)
of (B1)). Then u € Wlf,;p(Q) for some p € [, N/(N —1)). In particular, if
Q' is a C' domain such that ' € §) then u possesses a trace h € L'(9Q).

(4i) If u is a positive supersolution, there exists a non-negative solution u < u
which is the largest among all solutions dominated by u.

Ifu is a positive subsolution and u is dominated by a solution w of (1))
then there exists a minimal solution u such that v < w. In particular, if
g € G satisfies the Keller-Osserman condition then such a solution exists.

(id) Under the assumptions of (ii), if gou € L)(Q) (resp. gou € Ly(Q))
then the boundary trace of u (resp. u) is also the boundary trace of u in the
sense of Definition [3.4.

Proof. First consider the case of a supersolution. Since —Au + g(u) > 0
there exists a positive Radon measure 7 in €2 such that

—Au+g(u) =7 in Q.

Therefore u € I/Vli’cp (€2) and consequently u possesses an L' trace on 9 for
every ) as above.

Next, let {€2,} be a C! exhaustion of Q which is also uniformly Lipschitz.
Let v,, be the solution of the boundary value problem

(4.2) —Av+g(v) =0 in Q,, v=u on IY,.

Since u possesses a trace in L' (9,,) this boundary value problem possesses a
(unique) solution. By the comparison principle 0 < v,, < u in €,,. Therefore
the sequence {v,} decreases and consequently it converges to a solution u
of ({.1)). Evidently this is the largest solution dominated by wu.

Now suppose that g ou € L,(2) (but not necessarily g o u € L;(£2)). By
Proposition [.1, u € L;(Q) and u possesses a boundary trace pu. By the
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definition of v,

/mn wa":/mn P (20, y)u(y)dS = v, (x0) / G (2, 20)g(vn () da
u(zo) /G z,20)g(u(z))dz.

Hence, taking a subsequence if necessary, we may assume that

/
UX o, Wn — M

where 4/ is a measure on 9f2 such that

W (0Q) = u(xg) + /Q G, x0)g(u(z))dz.

On the other hand, as p is the boundary trace of u,

u(a) + | G2av)glula))ds = u(00).

Thus p(09Q) = 1/ (02). However, as u < u, we have p < p/. This implies
that pu =y’

Next we treat the case of a subsolution. The proof of (i) is the same as
before. We turn to (ii). In the present case, the corresponding sequence
{vn} is increasing and, in general, may not converge. But, as we assume
that u is dominated by a solution w, the sequence converges to a solution
which is clearly the smallest solution above u. In particular, if g satisfies the
Keller-Osserman condition then {v, } is uniformly bounded in every compact
subset of 2 and consequently converges to a solution.

The proof of (iii) for subsolutions is again the same as in the case of
supersolutions. O

Corollary 4.4. 1. Let u be a non-negative supersolution of (f.1). Let A be
a relatively open subset of . Suppose that, for every Lipschitz domain Q'
such that

(4.3) QcQ, o9 NoNCA,
we have
(4.4) gou € L;(Q').

Then both w and u possess traces on A and the two traces are equal.

II. Let u be a non-negative subsolution of (f1). Let A be a relatively open
subset of OQ. Suppose that for every Lipschitz domain ' satisfying (f.3)
we have

(4.5) gou € L;(Q/).

Then both w and u posses traces on A and the two traces are equal.
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Proof. Let u be a supersolution and let €' be a domain as above. Denote
by p’ the first eigenfunction of —A in Q' normalized by p’(x¢) = 1 for some
zp € . Since p’ < cp, (E.J) implies that gou € L;,(Q’). Let v/ denote the
largest solution of ([.1]) in ' dominated by u. Then gou' € L}),(Q’ ) and,

by Theorem (.3, u' € L,(€) and v’ has a trace v/ on 8¢’ which is also the
boundary trace of u on 0f2.

Let {Q,,} be an increasing uniformly Lipschitz sequence of domains such
that 9§, NN is a C! surface, D, := 2\ Q,, is Lipschitz and

F,=00,\QCF),CA, UQ =0, UF)=A,

where FV is the relative interior of F,,. Denote by u, the largest solution
dominated by w in €2,, and observe that {u,,} is decreasing and converges to
a solution. Obviously this is the largest solution dominated by u, namely,
U.

Let 7, be the trace of u,, on 0,. Put v, = 7,x5,. Recall that 7, is also
the trace of u so that

/
Uy, = Tp — Vp = UXoan\Fa 5.

Assertion A. There exists a Radon measure v on A such that v, — v and
v is the trace of u, as well as of u, on A.

Let E be a compact subset of A and denote,
n(E):=inf{imeN: EC Fo}.

In view of the fact that, for n > n(F), v, is the trace of u, relative to ,,
on a set FS( p) in which F is strongly contained and the fact that {€,} is
Lipschitz, Lemma P.6 implies that the set {v,,(E) : n > n(E)} is bounded.
By taking a sequence if necessary we may assume that

Unle— VE.

Applying this procedure to £ = F,, for each m € N and then using the
diagonalization method we obtain a subsequence, again denoted by {v,},
such that

Vp — UV

where v is a Radon measure on A (not necessarily bounded).

Next we wish to show that v is the trace of u on A relative to 2. To this
purpose we construct a C! exhaustion of Q, say {D, }, such that D, € Q,
and 0D, =T, UT, where

I =00,N{yeQ: dist(y, F,) > e}
Iy C{y e, dist(y, F,) < €.},
where 0 < €, < 3dist (Fj,,0Q \ A) is chosen so that

Hy_ixr, = Hy_1xa and uxp,dw”™ — v.
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Here dw™ is the harmonic measure in D,,. This is possible because, if I}, is
sufficiently close to 0€2,, then

uxr, dw" — vpXp, — 0.

(As usual in this paper, v, x5, denotes the Borel measure in RY that is equal
to v, on F,, and zero elsewhere.) This implies that v is the trace of u on A.

Since v, is also the trace of u, on F), it follows that, if I',, is sufficiently
close to 082,

Up X, dw" — VpXp, — 0.

As u,, | u we deduce that v is also the trace of u on A.

If w is a subsolution the argument is essentially the same. Let u, be
the smallest solution that dominates u in ,. Then the sequence {u,} is
increasing, but it is dominated by a solution w. Therefore it converges to
a solution and this is the smallest solution dominating u, namely, u. By
Theorem @, u,, and u| possess the same trace on 0€2,. Let 7,, be the trace
of u,, on 02, and put v, = 7, Xp,. The rest of the proof is as before. O

Definition 4.5. Let u be a positive supersolution, respectively subsolution,
of (). A point y € 0 is a regular boundary point relative to u if there
exists an open neighborhood D of y such that gou € L},(Q N D). If no such
neighborhood exists we say that y is a singular boundary point relative to u.

The set of regular boundary points of u is denoted by R(u); its complement
on the boundary is denoted by S(u). Evidently R(u) is relatively open.

Theorem 4.6. Let u be a positive solution of (1) in Q. Then u possesses
a trace on R(u), given by a Radon measure v.
Furthermore, for every compact set F C R(u),

(4.6 | (—ubn+ gl do =~ [ (Kivxslan) da
for every n € X () such that suppnNOQ C F.

Proof. The first assertion is an immediate consequence of Corollary [i.4.

We turn to the proof of the second assertion. Let F' be a compact subset
of R(u) and let n € X(92) be a function such that the following conditions
hold for some open set Ej;:

suppn C QNE,, FCE,NIN, E,NSu)=0, =z¢€D,:=0NE,.

By Definition [L.H, if D is a subdomain of Q such that D N S(u) = @ then
gou € L})(D), where p is the first normalized eigenfunction of (). Let E be
a C? domain such that

E,CE, Hy_1(00NndE)=0, ENS(u)=0.

Put D := ENQ and note that gou € L;(D).
If ¢ denotes the first normalized eigenfunction in D then ¢ < c¢p for some
positive constant c¢. Therefore the fact that g ou € L;(D) implies that
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gou € L(lé(D) and the properties of n imply that n € X (D). Hence u
possesses a boundary trace 7° on 9D and

(4.7 /D (—uln+ g(u)n) dz = —/ (KP[rP]An) dz.

D
Let I' = ENJQ and I = D \ T; note that I'N S(u) = ) and 7 vanishes
in a neighborhood of OE N Q. Put ¥ = 7Py and TIQ = 7P — 7P, Then
drf) = udS on I" and, as u € C(D\ I),
KP[rf)] € C(D\T).

Furthermore 7 vanishes in a neighborhood of I'" and consequently

/D (KD[TIQ]An) de = /D </6D\F PD(x,y)u(y)dSy> An(z)dx

_ /8 . ( /D PD(x,y)An(x)dx> u(y)dS, = 0.
Thus

(4.8) / (—ulAn+ g(u)n) de = —/ KP [P An dz.
Q Q
(Changing the domain of integration from D to 2 makes no difference since
7 vanishes in Q \ D.)
Now, TIP is the trace of u on I' relative to D while vy is the trace of u
on I relative to Q. Since D C it follows that

(4.9) 7 < vxr.
Let {E7} be an increasing sequence of C? domains such that each domain
possesses the same properties as F and,
(4.10) EInoQ=EndQ=T, and D’ := E?NQ1Q.
For each j € Nand y € I, the function K D’ (-,) is harmonic in D7, vanishes

on D7\ {y} and K"’ (z9,y) = 1. Furthermore the sequence {K"'(-,9)}
is non-decreasing. Therefore it converges uniformly in compact subsets of
(QUT)\ {y}. The limit is the corresponding kernel function in 2, namely
K% y). (Recall that the kernel function is unique.)

In view of ([£.9), the sequence {Tlpj} is bounded. Therefore there exists a
subsequence, which we still denote by {r” }, such that

T FD N T
weakly relative to C(I"). Combining these facts we obtain,
KD [rf'] — K% ].

Hence, by (IE3),

(4.11) /Q(—uAn + g(u)n) dz = — /Q (K2[rr]An) da.
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Finally, as TIP 7 is the trace of u on I relative to D; then, in view of ([L10),
the limit 77 is the trace of u on I relative to €2, i.e.,

T = VXr-
This relation and ([L.11)) imply ({£.4). O

Theorem 4.7. 1. Let u be a positive supersolution of (L)) in Q and let u
be the largest solution dominated by w. Then,

(4.12) Su)=8w), R(u)=7R(w).

Both u and u possess a trace on R(u) and the two traces are equal.
II. Let u be a positive subsolution of (E1]) in Q and let u be the smallest
solution which dominates u. If u is dominated by a solution w of (1)) then
both w and u possess a trace on R(w) (which is contained in R(u)) and the
two traces are equal on this set.

In particular, if R(w) = R(u) then ({.12), with u replaced by @, holds
and both u and u possess a trace on R(u), the two traces being equal.
III. Let v denote the trace of uw on R(u). Then, for every compact set
F C R(u),

> — [ (Klvxe]An)dz, u supersolution,
< — [o Klvxr]An) dz, u subsolution

(4.13) /Q (—uln + g(u)n) dw{

for every n € X (), n > 0, such that suppn N O C F.

Proof. Part 1. is a consequence of Corollary .4 1.

The first assertion in II. follows from Corollary 4 II. with A = R(w).
The second assertion in II. is an immediate consequence of the first.

By Theorem [£.6, u (resp. @) satisfy (f.6), where v is the trace of u (resp.
@) on R(u). Since v is also the trace of u on R(u) we obtain statement
I1I. O

Theorem 4.8. Assume that g € G satisfies the Keller-Osserman condition.
(i) Let u be a positive solution of ([f1]) and let {Q,} be a Lipschitz exhaustion

of Q. If y € S(u) then, for every nonnegative Z € C'(§2) such that Z(y) # 0

(4.14) lim Zudw, = co.

0
(i) Let u be a positive supersolution of (B.1]) and let {Q,} be a Ct exhaustion
of Q. Ify € S(u) then (.14) holds for every nonnegative Z € C(Q) such
that Z(y) # 0.

The proof of satement (i) is essentially the same as for the corresponding
result in smooth domains 24, Lemma 2.8] and therefore will be omitted. In
fact the assumption that g satisfies the Keller-Osserman condition implies
that the set of conditions II in [24, Lemma 2.8] is satisfied. Here too, the
Keller-Osserman condition can be replaced by the weaker set of conditions
IT in the same way as in [P4].

Part (ii) is a consequence of Theorem [£.7 and statement (i). O
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Definition 4.9. Let g € G. Let u be a positive solution of (f.1) with regular
boundary set R(u) and singular boundary set S(u). The Radon measure v
in R(u) associated with u as in Theorem [[.§ is called the regular part of the
trace of u. The couple (v,S(u)) is called the boundary trace of u on O).
This trace is also represented by the (possibly unbounded) Borel measure v
given by

(4.15) w(E) = Y E) T ECR)
00, otherwise.
The boundary trace of w in the sense of this definition will be denoted by
troqu.
Let
(4.16) V, i=sup{u,,,. : F C R(u), F compact}
where u,, . denotes the solution of BA) with u = vxp. Then V, is called

the semi-regular component of u.

Remark. Let 7 be a Radon measure on a relatively open set A C 0Of).
Suppose that for every compact set F' C A, u,,,. is defined. If V; is defined
as above, it need not be a solution of (f.1]) or even be finite. However, if g
satisfies the Keller-Osserman condition or if u,,, is dominated by a solution
w, independent of F', then V; is a solution.

Definition 4.10. A compact set F' C 052 is removable relative to () 4f
the only non-negative solution u € C(Q\ F) which vanishes on Q\ F is the
trivial solution u = 0.

Remark. In the case of power nonlinearities in smooth domains there exists
a complete characterization of removable sets (see [2J] and the references
therein). In a later section we shall derive such a characterization for a
family of Lipschitz domains.

Lemma 4.11. Let g € G and assume that g satisfies the Keller-Osserman
condition. Let F C 99 be a compact set and denote by Ur the class of
solutions u of (f.1]) which satisfy the condition,

(4.17) ue CQ\F), u=0 ondQ\F.
Then there exists a function Up € Up such that
u<Up YuéelUp.
Furthermore, S(Up) =: F' C F; F' need not be equal to F.
The proof is standard and will be omitted.

Definition 4.12. Uy is called the maximal solution associated with F'. The
set F' = S(Up) is called the g-kernel of F' and denoted by kq(F).
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Note. The situation S(Up) C F occurs if and only if there exists a closed
set F' C F such that F\ F’ is a non-empty removable set. In this case
Ur =Up.

Lemma 4.13. Let Fy, F5 be two compact subsets of ). Then,

(4.18) F CF, = Up <Up
and
(4.19) UFlqu < UF1 + UFQ.

If F is a compact subset of 02 and {Ny} is a decreasing sequence of
relatively open neighborhoods of F' such that Ny+1 C N and NNy = F then

(4.20) Uy, = Ur
uniformly in compact subsets of €.

Proof. The first statement is an immediate consequence of the definition of
maximal solution.

Next we verify ([£.20). By ([.1§) the sequence {Upy, } decreases and there-
fore it converges to a solution U. Clearly U has trace zero outside F' so that

U < Ur On the other hand, for every k, UNk > Ug. Hence U = Up

We turn to the verification of ([.19). Let u be a positive solution of (f.1])
which vanishes on 9\ (F; U Fy). We shall show that there exists solutions
uy,uz of (p.J]) such that

(4.21) u; =0 on O\ F;, u < uy + us.

First we prove this statement in the case where Fy N Fy = (). Let Ey, E5 be
C' domains such that By NEy = 0 and F; C E;NOQ, (i=1,2). Let {Q,} be a
Lipschitz exhaustion of Q and put A4, ; = 0Q, N E;, (i=1,2). Let v, ; be the
solution of (p.1]) in Q,, with boundary data wy 4,,; and vy be the solution in
2y, with boundary data u(l — x4, ,ua4,,)- Then

u < vy + Un,1 + Un,2-

By taking a subsequence if necessary we may assume that the sequences
{vn}, {vn1}, {vnz2} converge. Then limwv,; = U; where U; vanishes on
o0\ E;, (i=1,2). In addition, as the trace of u on 9\ (F} U Fy) is zero, we
have lim v,, = 0. Thus

u < Uy + Us.
Now take decreasing sequences of C'! domains {E}y. 1}, {Ek 2} such that
Ek71 N Ekg =0, F;C E]m‘ N o1, E]m‘ NN L F, i=1,2.

Construct Uy ; corresponding to Ej; in the same way that U; corresponds
to E;. Then,

u < Ug1+ U2
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and, by ({.20), taking a subsequence if necessary,
w; = lim Ug; =0 on OQ\ F; , 1=1,2.
k—oo 7
This proves ({.21)) in the case where Fy, F; are disjoint.

In the general case, let {INV;} be a decreasing sequence of relatively open
neighborhoods of F} N Fy such that

Nj+1 CNj, ﬂNj:FlﬂFQ.
Put Fj, = Fy \ Nj. Let {M;} be a decreasing sequence of relatively open
neighborhoods of F; such that

M; C Mj, NM; = Fy, MjﬂF;Q:@.
Put F]{,l = Mj.
Let v; be the largest solution dominated by u and vanishing on the com-
plement of F | U Fj,:
00\ (Fjy U Fj,p) =00\ (FLUF2) \ (N;\ M)
= (0Q\ (F1 U F2)) U (N; \ M;).
Furthermore, (u — Ux;\ M],)+ is a subsolution which is dominated by v and
vanishes on the complement of Fj; U F},. Therefore v; satisfies
u>v; > (u—Ugpng)+s
which implies,
0 S u—vj S UN],\M], S UN],.
By (E.20), UN], 1 Upnr,- Taking a converging subsequence v;, — v we obtain
0<u—v<Uprnp-
By the previous part of the proof there exist solutions v;1, vj2, whose
boundary trace is supported in Fjﬂ1 and F ;72 respectively, such that
vj S U1+ vje.
Taking a subsequence we may assume convergence of {v; 1} and {v;2}. Then
u; = limv;; has boundary trace supported in F;. Finally,
U S v+ UFlﬁFQ S uy + () + UFlﬁFQ

and trypquy is supported in Fy while tryg(us + Up,nr,) is supported in Fb.
Since u — u; is a subsolution dominated by the supersolution uy + Up nF,
there exists a solution w9 between them and we obtain

u < up + wo

where tryqws is supported in F5. O
The next theorem deals with some aspects of the generalized boundary
value problem:

—Au+gou=0, u>0 in €,

(4.22) trom = (1, F),
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where F' C 0 is a compact set and v is a (non-negative) Radon measure
on 0N\ F.

Theorem 4.14. Let g € G and assume that g is convex and satisfies the
Keller-Osserman condition.
EXISTENCE. The following set of conditions is necessary and sufficient for
existence of a solution u of ([1.29):

(i) For every compact set E C O\ F, the problem

(4.23) —Au+g(u)=0 inQ, u=vxg on IR,
possesses a solution.
(ii) If kg(F) = F', then F\ F' C S(V,).
When this holds,
(4.24) V, <u<V,+Up.

Furthermore if F is a removable set then (f22) possesses exactly one solu-
tion.

UNIQUENESS. Given a compact set F' C 02, assume that

(4.25) Uk is the unique solution with trace (0, kq(E))

for every compact E C F. Under this assumption:

(a) If u is a solution of (fE.29) then

(4.26) max(V,,Up) <u <V, + Up.

(b) Equation (F.1) possesses at most one solution satisfying ([£.26).

(c) Condition (E28) is necessary and sufficient in order that ([£22) posses

at most one solution.

MONOTONICITY.

(d) Let uy,ug be two positive solutions of (1)) with boundary traces (11, Fy)
and (v9, F) respectively. Suppose that Fy C Fy and that v < voxe, =: vh.
If (E25) holds for F = Fy then uy < us.

Proof. First assume that there exists a solution u of (f:23). By Theorem [£.q
condition (i) holds. Consequently V,, is well defined by (ff.16)).

Since V,, < u the function w := u — V,, is a subsolution of ([LI). Indeed,
as ¢ is convex and g(0) = 0 we have

(4.27) g(a) +g(b) <gla+0b) Va,beR,.
Therefore
0=—Aw+ (g(u) — g(Vy) = —Aw + g(w).
By Theorem [1.3, as g satisfies the Keller-Osserman condition, there exists a
solution w of (% which is the smallest solution dominating w.

By Theorem W.7, the traces of w and w are equal on A = R(u) C R(w).
Clearly the trace of w on R(u) is zero. The definitions of V,, and @w imply,

(4.28) max(V,,w) <u <V, + .
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Therefore

S(w)US(V,) = S(u).
In addition, as w has trace zero in 9\ F, it follows, by the definition of the
maximal function, that

w < Up and consequently S(w) C kq(F).
These observations imply that condition (ii) must hold. Inequality ({.24))

follows from (4.2§) and this inequality implies that if F' is a removable set
then ([.23) possesses exactly one solution.

Now we assume that conditions (i) and (ii) hold and prove existence of a
solution. The function V,, is well defined and V,, + Up is a supersolution of
(E1)) whose boundary trace is (v, F'). Therefore, by Theorem [L.7, the largest
solution dominated by it has the same boundary trace, i.e. solves ({.29).

Next assume that condition (|1.29) is satisfied. It is obvious that (J.2]) is
necessary for uniqueness. In addition, ([£25) implies that Ur < u and conse-
quently ([:24) implies (f24). It is also clear that (b) implies the sufficiency
part of (c).

Therefore it remains to prove statements (b) and (d). Let u be the small-
est solution dominating the subsolution max(V,,Ur) and let v be the largest
solution dominated by V,, 4+ Ufr.

To establish (b) we must show that u = v. By (.26) v —u < V,. In
addition the subsolution v — u has trace zero on 9 \ F'. Therefore

(4.29) v—u <min(V,,Up).

Let {Ny} be a decreasing sequence of open sets converging to F' such that
Nii1 € Ng. Assuming for a moment that v is a finite measure, the trace of
V, on Ny is vy, := vxy, and it tends to zero as k — oo. Therefore, in this
case,

min(V,,Ur) <V,, =0
and hence u = v. Of course this also implies uniqueness (statement (c)) in
the case where v is a finite measure.

In the general case we argue as follows. Let vy be the unique solution with
boundary trace (v}, Nj) where v}, = v(1 —x ~,,)- By taking a subsequence if
necessary, we may assume that {vx} converges to a solution v’. By ),

maX(Vyl/E, UNk) <y < VVllc + UNk

and, by the previous part of the proof, vy is the largest solution dominated
by Vi 4 Uy, . We claim that if w is a solution of (B-1)) then

(4.30) VV§w§VV+UF:>w§V,,;€+UNk.
Indeed,
w<V,4Upr = w < Vyllg—i—V,,k—{—UF = w < VV]’Q_FUN]C_{_UF — w < VV;;_{_QUNk‘

Thus
OSU)—V,//I/€ §2UNk
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which implies
w — Vul’c < UNka

because any solution (or subsolution) dominated by 2Uy, is also dominated
by Uy, -
Hence v, > v and consequently v/ > v.

By (E20) U N, + Ur and by definition V,, 1 V,,. Therefore
max(V,,Ur) <v' <V, + Up.

Since v is the largest solution dominated by V, + Up and v < ¢’ it follows
that v = v'.
Let uy be the unique solution with boundary trace (v, ky(F)). By ([.26),

max(Vy, U, (r)) < ur < Vi + Ugy(r).-

Since ux < u and {ux} increases (because {V,,} increases) it follows that
u' = limug < u. Furthermore,

max(V,,, Uy, (7)) < <V, + Up, ()

If (E29) possesses a solution then condition (ii) holds. Therefore for any
solution w of (B.1))

max(V,, ng(F)) < w = max(V,,Ur) < w.

Hence max(V,,Ur) < ' and, as v’ < u we conclude that v’ = u.
Finally, for every € > 0,

(1 =€)V + eUpy(ry < uk
and consequently

vk =k < Vi +Ug, = (1= Vi + Uy, ))) =

U, — (1 = U, (r) + €V < Ugpii +Up — (1 = Uy, (r) + €V, <

E(UF + Vyllﬂ) — E(UF + Vl,).

This implies uy = v and hence v = v. This establishes statement (b) and
hence the sufficiency in (c).

Finally we establish monotonicity. Let v; be the unique solution of ([.1])
with boundary trace (v, F;), (i=1,2). Then v; is the largest solution domi-
nated by V,, + Ur, (i=1,2). The argument used in proving (£.30) yields

(4.31) Vo, Lw <V, +Up = w<V, +Up,,.

This implies v; < vs. O
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5. EQUATION WITH POWER NONLINEARITY IN A LIPSCHITZ DOMAIN

In this section we study the trace problem and the associated boundary
value problem for equation

(5.1) —Au+ultu=0

in a Lipschitz bounded domain €2 and ¢ > 1. The main difference between
the smooth cases and the Lipschitz case is the fact that the notion of critical
exponent is pointwise. If G is any domain in RY we denote

(5.2) U(G) = { the set of solutions (b.1]) in G} .

and U (G) = {u € U(G) : v > 0in G}. Notice that any solution is at
least C® in G and any positive solution is C*°. The next result is proved

separately by Keller [I§] and Osserman [R§].

Proposition 5.1. Let ¢ > 1, Q C RY be any domain and u > C(Q) be a
weak solution of

(5.3) —Au+Au! < B in Q.

for some A >0 and B > 0. Then there exists C;(N,q) >0 (i = 1,2) such
that

1 2/(g—1) B 1/q
5.4 < —=———- +Cy [ — Vz € Q.
(54)  ul@) <G (x/Zdist (z, am) 2 <A> v

For a solution of (B.1]) in Q which vanishes on the boundary except at one
point, we have a more precise estimate.

Proposition 5.2. Let ¢ > 1, Q C R]i be a bounded Lipschitz domain,
y € 02 and u € U () is continuous in Q\ {y}) and vanishes on 00\ {y}.
Then there exists C3(N,q,2) > 0 and « € (0,1] such that
(5.5) u(z) < Cs (dist (z,00))* |z —y| YD vz eq.
Furthermore a = 1 if Q is a W>* domain with s > N.
Proof. By translation we can assume that y = 0. Let @ be the extension of
u by zero outside Q\ {0}. Then it is a subsolution of (5.1]) in RV \ {0} (see
L3 e.g.). Thus

i(w) < Cila| 20D va £0,
and, with the same estimate for u_, we derive

(5.6) lu(z)] < Cilz|"2@D vz eq.

Next we set, for k > 0, Ty[u] defined by Ty[u](x) = k~2/(@= Dy (k1 x), valid
for any = € Qp = k. Then wuy := Ti[u] satisfies the same equation as u in
Qy, is continuous in Q \ {0} and vanishes on 99 \ {0}. Then

up(x) < Cplz|~2@D vz ey,
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thus, by elliptic equation theory in uniformly Lipschitz domains, (which is
the case if £ > 1)

[kl o (B )\Bs ) S C Nkl oo un(Ba\Br)) = C2-
This implies
lu(k™ ) —u(k™12")| < Cok 2@V 2 |% V(z,2) € QuxQy : 5/4 < ||, || < 7/4.

Let (z,z) in  x Q close enough to 0. First, if 5/7 < |z|/|z| < 7/5 there
exists k > 1 such that 5/4 < |kx|, |kz| < 7/4. Then

lu(@) — u(z)] < Cala 727Dz — 2|,

If we take in particular = such that z = Projyq(x) satisfies the above re-
striction, we derive

u(z) < Csla|~# @7 (dist (z, 90))"

Because 2 is Lipschitz, it is easy to see that there exists 5 € (0,1/2) such
that whenever dist (z,0Q) = | — Projaq(x)| < S|z|, there holds

5/7 < |z]/ [Projaq (x)| < 7/5.

Next we suppose |x — Projsq(x)| > S|z|. Then, by the Keller-Osserman
estimate,

u(x) < Cla| /4707 z|* < OB~V |& - Projsn(x)|*,

which is (B.§). If we assume that 99 is W%, with s > N, then we can
perform a change W?2* of coordinates near 0 with transforms 9Q N Br(0)
into RY N Br(0) and the equation into

SN - o (g ) 1Al a =0, i BY 0 Ba(0) (0}

where the a;; are the partial derivatives of the coordinates and thus belong
to Wl’S(BR). By developping, 4 satisfies

-0 “am,ax Z igg; HIAT @ =0.

7.]

Notice that, since s > N, the a;; are continuous while the b; are in L°. The
same regularity holds uniformly for the rescaled form of @y := Ty[u]. By
the Agmon-Douglis-Nirenberg estimates @, belongs to W#*. Since s > N,
@ satisfies an uniform C' estimates, which implies that we can take a = 1.
O
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5.1. Analysis in a cone. The removability question for solutions of (.1])
near the vertex of a cone has been studied in [[[1]], and we recall this result
below.

If we look for separable solutions of (f.1) under the form u(z) = u(r,o) =
rPw (o), where (r,0) € RT x SN~ are the spherical coordinates, one finds
immediately 5 = —2/(q¢ — 1) and w is a solution of

(5.8) —Aw—- A, w+|ww=0
on SN~ with
2 2q
. =——|——-N|.
(5:9) A q—1<q—1 >

Thus, a solution of (F.I]) in the cone Cy = {(r,0) : r > 0,0 € S C SN},
vanishing on 9Cy \ {0}, has the form u(r,o) = r~2/(7=Dw(0) if and only if
w is a solution of (b.§) in S which vanishes on 9S. The next result [LT], Prop
2.1] gives the the structure of the set of positive solutions of (f.§).

Proposition 5.3. Let A\ be the first eigenvalue of the Laplace-Beltrami
operator —A' in W01’2(S). Then
(i) If A\g = Ay, there exists no solution to (6.8) vanishing on 05S.
(i) If Ay < Ay, there ewists a unique positive solution w = wg to .4
vanishing on 0S. Furthermore S C §' = wy < w,,.

The following is a consequence of Proposition f.3

Proposition 5.4. [[[I] Assume Q a bounded domain with a purely conical
part with vertex 0, that is

QN B, (0) =CyN By (0) = {z € NB,,(0) \ {0} : z/ |z| € S} U{0}
and that 0\ {0} is smooth. Then, if Ay, > A, any solution u € U(Q)
which is continuous in Q0 \ {0} and vanishes on O\ {0} is identically 0.

Remark. 1f S € SN~1is a domain and ), the first eigenvalue of the Laplace-
Beltrami operator —A’ in VVO1 ’Q(S) we denote by &, and o the positive root
and the absolute value of the negative root respectively, of the equation

X?4+ (N -2)X -\, =0,
Thus

1
&S:§<2—N+\/(N—2)2+4)\S>,

aS:%<N—2+\/(N—2)2+4)\S>.

It is straightforward that

(5.10)

2
>\S Z)‘N,q — Oy > ﬁ,
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and, in case of equality, the exponent ¢ = ¢, satisfies ¢, = 1+ 2/a.

In subsection 6.2 we compute the Martin kernel K and the first eigen-
function p of —A for cones with k-dimensional edge. In particular, if £k =0
and Cg is the cone with vertex at the origin and ’opening’ S ¢ SV~ we
have

(5.11) K(2,0) = |2 *Sw,(0),  plz) = [a]*wg(0).

Combining the removability result with the admissibility condition The-
orem B.§, we obtain the following.

Theorem 5.5. The problem
—Au+ T lu=0 inCg,
(5.12) [l 8
ue C(Cs\{0}), u=0 ondCg\{0}
possesses a non-trivial solution if and only if
1<g<qgs=142/ay.

Under this condition the following statements hold.
(a) For every k # 0 there exists a unique solution vy, of (B.1]) with boundary
trace kéy. In addition we have

(5.13) vp/vi(z) — k  uniformly as x — 0.

(b) Equation (p.1) possesses a unique solution U in Cs such that S(U) = {0}
and its trace on 0Cg \ {0} is zero. This solution satisfies

(5.14) 2| U () = Ula/|2]) = ws(/|x])
and
(5.15) U =19 := kli_)m Vk-

Proof. (a) By (p-11),

1
/ Ki(z,0)p(z) dx < C/ rés 4o tN=lge < o0,
CsNB; 0

since
Gy —qag+N—-1=1—-(¢g—1)ag > —1.
Thus ¢ is admissible for Cg N By at 0. By Theorem B.§, for every k € R,
there exists a unique solution of (p.J]) with boundary trace kdo.
Observe that, for every a,j > 0, 9;(z) := a® @ Vy;(ax) is a solution of
(b)) in Cg. This solution has boundary trace k§y where k = PRACRORS
Because of uniqueness, v; = v;. Thus

(516) Uk(x) = 02/((1_1)?)]'(0,1')7 k= 02/(q_1)j.
This implies (p.13).
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(b) Let w be a solution in C'g such that S(w) = {0} and its trace on 9Cg\{0}
is zero. We claim that

(5.17) W > Voo 1= limk — ooy

Indeed, for every S’ € S, k > 0,
/ w dwg — 00, limsup/ vpdw, < 0o asa — 0
aS’ aS’

where dw, denotes the harmonic measure for a bounded Lipschitz domain
Q, such that a5’ c 99, and Q, 1 Cg. Therefore, using the classical Harnack
inequality up to the boundary, w/vy — oo as || — 0 in Cg/. In addition,
either by Hopf’s maximum principle (if S is smooth) or by the boundary
Harnack principle (if S is merely Lipschitz),

cloyy <w<evy in Cs\s'-
This inequality together with (f.16) yields,
¢y, <w< ey in Ca\s'
with ¢ independent of k. Therefore ¢ lvy < w in Cg. If 1/c > k/cj > 1

then %vj < v < cw and consequently v; < w. Here we used the fact that

%vj is a subsolution with boundary trace kdg.

Let Uy be the maximal solution with trace 0 on 9Cg \ {0} and singular
boundary point at 0. Then

Up(x) = a2/(q*1)U0(ax) Ya >0, x € Cg,

because a?(4~VUy(azx) is again a solution which dominates every solution
with trace 0 on dCg \ {0} and singular boundary point at 0. Hence,

(5.18) U(z) = |27/ Do (a/|z) = ||~/ Dws(x/|x]).

The second equality follows from the uniqueness part in Proposition [.d
since the function o — Up(x/|z|) is continuous in S and vanishes on 95.

Inequality (5.17) implies that vy is the minimal positive solution such
that S(w) = {0} and its trace on dCg \ {0} is zero. Using this fact we prove
in the same way that v, satisfies

vso() = || Ve (a/ |2]) = ||~ Dws (a/|2]).

This implies (p.19) and the uniqueness in statement (b). O
In the next theorem we describe the precise asymptotic behavior of solu-
tions in a conical domain with mass concentrated at the vertex.

Theorem 5.6. Let Cy be a cone with vertex 0 and opening S C SN~! and
assume that 1 < q < g4 = 1+2/ag. Denote by ¢g the first eigenfunction of
—A"in Wol’Q(S) normalized by max ¢, = 1. Then the function

g =" ps(x/ |x)),
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with ag as in (5.10), is harmonic in Cs and vanishes on 0Cs \ {0}. Thus
there exists v > 0 such that the boundary trace of ®g is the measure vdy.
Put ®; := 1 ®s.

Let ro > 0 and denote Qs = Cs N B,,(0). For every k € R, let uy be the
unique solution of (B.1]) in Q with boundary trace kdy. Then

(5.19) ug(r) = k®1(z)(1 +0(1)) asz — 0.
If vy is the unique solution of (B.1)) in Cs with boundary trace kdy then
(5.20) ug/vp = 1 and vg/(k®1) -1 asz — 0.

The function uee = limg_,oo Uy s the unique positive solution of () n Qg
which vanishes on 00g \ {0} and is strongly singular at 0 (i.e., 0 belongs to
its singular set). Its asymptotic behavior at 0 is given by,

(5.21) too() = |2 TTws(@/|2))(1 + o(1))  as = — 0.
Proof. Step 1: Construction of a fundamental solution. Put
(5.22) O(z) = |27 gy (a/ [z]), D(x) = |2[* ¢4(x/ |2])

with as, @ as in (5.10). Then ® and ® are harmonic in Cy, ® vanishes on
9C, \ {0} and ® vanishes on 0Cy. Furthermore, since ¢ < 1+ 2/ay,

/ Ypdr < oco.
CsNB1(0)

Therefore the boundary trace of ¢ is a bounded measure concentrated at
the vertex of Cg, which means that the trace is vy for some v > 0. (Here
dp denotes the Dirac measure on dCg concentrated at the origin.)

The function
1 5. —
() = ~(B(x) —rg° "
Y
is harmonic and positive in Q and vanishes on 0§, \ {0}. Its boundary

trace is dg.

5 ()

Step 2: Weakly singular behaviour. By Theorem B.§ , for any k > 0, there
exists a unique function uy € L}(€2) with trace kdy and by (B.g)

(5.23) up(z) = k¥(z) — Gflug|].
Since |z|“s uy is bounded, we set
v(t,o) =rsug(r,o), t=—lnr.
Then v satisfies
(5.24) w4 0y +2 = N)vg 4+ Agv + Alv — el@s @ D=2t 971y —
in Dg 4, = [to,00) xS (with ¢y := —Inr() and vanishes on [tp, 00) x9S. Since

0 < wug(x) < k¥(z), v is uniformly bounded, and, since a (¢ — 1) —2 < 0,

v(t,.) is uniformly bounded in C%(S) for some a € (0,1). Furthermore,
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V'v(t,.) (by definition V' is the covariant gradient on SV~1) is bounded in
L?(S), independently of ¢. Set

y(t) = /S o(t,0)bsdV (o), F(t) = /S (W17 0)(t, 0)6dV (o).

From (5.24), it follows
d
dt

where dV is the volume measure on SV ~1. By (F.10), 7 := 2a,+2— N > 0,

then

(e(2aS +2—N)tyl) — elatDas =Nyt pp

t
y'(t) = e 700y (1) + evt/ ellatlas=N)s p(g)ds,
to
and

/()] < cre 7010 4 gyelrs @121
This implies that there exists k¥* € Rt such that
(5.25) tlggo y(t) = k™.
Next we use the fact that the following Hilbertian decomposition holds
L2(S) = @2 1 ker(—A" — A\ )
where A is the k-th eigenvalue of —A’ in WOI’Q(S) (and Ay = A1). Let v
and F be the projections of v and |v|7" v onto ker(—A’ — A I)*. Since
(5.26) Oy + (205 +2 — N)O; + A0+ Ao — el@s@ D=2t F —
we obtain, by multiplying by @ and integrating on S,
V" + (205 +2 = N)V' — (Ag = A,V + el@s@D=2lg >

where V(1) = [|0(t, )| 12(s) and ®(¢) = Hﬁ’(t, ')HL2(S)' The associated o.d.e.

24+ (20, 42— N)2' — (Mg — Ag)z + elos@D=2tg —
admits solutions under the form
2(t) = are ™t + aget2t 4 d(t)el¥s (4= 12
where —p1 and po are respectively the negative and the positive roots of
X%+ (20, +2-N)X — (Mg —A,) =0,
and |d(t)] < ¢® if ag(q—1)—2 # —p1, or [d(t)] < ' @ if ag(g—1)—2 = —py.
Applying the maximum principle, to (5.2§), we derive
(5:27) [[5(t, M g2gs) < 19(t0, | 2gs) e 1 wd(t)el*s D720 it >
By the standard elliptic regularity results in Lipschitz domains [[[J], we

obtain from (5.27), for any t > to + 1,
(5.28)

[0(t, Mas) < e 0l p2(p-1,e41)x5) T €2 He(as (qfl)fz)sFH

Lo ((t=1,t+1)xS)
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for some « € (0,1] depending of the regularity of 9S. Thus

(5.29) [5(t, Yl gags) < ce1 + tels D21,
Combining (p.25)) and (p.29) we obtain that
(5.30) |z|*s ug(z) — kK ¢g(x/|x]) >0 asxz—0

in C*(S). Furthermore 0 < k* < k.

Step 3: Identification of k*.

45

Let {2, } be a Lipschitz exhaustion of Qg and denote by w,, (resp. w) the

harmonic measure on 9, (resp. 0€2s). By Proposition B.g

lim uy, dw, = k.

On the other hand, by (5.30),
up/(K*|x|"*S¢s) = 1 as x — 0.

Hence
lim ug dw, = k* lim |x|~ % ¢g dwp,
= k*v lim Dy dw, = k™.
Thus
(5.31) k= k.
This and (5.3() imply (5.19).
Further,

up < v < kO
since ®; is harmonic in Cg. Therefore (5.19) implies (5.20).

Step 4: Study when k — co. By Theorem B.5, equation (f.1)) possesses a
unique solution U in Cg such that U = 0 on dCyg \ {0} and U has strong
singularity at the vertex, i.e., 0 € S(U). By (5.14) and (p.15) this solution

satisfies

(5.32) U= := lim vy = |x|7ﬁws_
k—ro00

Let V be the maximal solution in g vanishing on 025\ {0}. Its extension

by zero to Clg is a subsolution and consequently, V < U.

Let w be the unique solution of (f.1]) in Qg such that w = U on 9Qg N
B,,(0) and w = 0 on the remaining part of the boundary. Then w < U
so that U — w is a subsolution of (p.]) in Qg which vanishes on 95 \ {0}.

Therefore U — w < V. Thus
(5.33) U-—w<V<U and U/V =1 as x — 0.
Assertion 1. If u is a solution of (p.1) in Qg such that

u=0 on 0Ng\{0} and u/U -1 as © —0
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then u = V.

By (p-33) u/V — 1 as x — 0. Therefore, by a standard application of the
maximum principle, u = V.

Let u be an arbitrary positive solution in Qg vanishing on 0 \ {0}.
Denote by u* its extension by zero to Cls. Then u* is a subsolution and, by
Theorem [.3, there exists a solution @ of (b.1) in Cs which is the smallest
solution dominating v*. The solution @ can be obtained from u* as follows.
Let {r,} be a sequence decreasing to zero, r; < ro, and denote

Dn :CS\BT‘n(O)a hn :u*LaDn.

Let w, be the solution of (5.1]) in D,, such that w, = h, on the boundary.
Then {w,} increases and

(5.34) = lim wy,.

If v has strong singularity at the origin then, of course, the same is true
with respect to @ and consequently, by Theorem .3,

(5.35) u=U.

In the the remaining part of the proof we assume only (p.35) and show that
this implies u = V.

Let z be the solution of (f.I) in Qg such that z = U on 9Qg N dB,, and
0 on Qg NACs. Then u + z is a supersolution in Qg. Let

Q, =Qg\ B;,(0) = D, N B, (0).
The trace of u + z on 052, is given by

£ = U on 09, N 0By,
" hp+ 2 on 0Qy, \ 0B,,.

Since U = @ > u* we have f, > h,,. Therefore, if w, is the solution of (.1])
in Q,, such that @, = f,, on the boundary then

Wy, < W, <u+z in Q,.

Hence, by (5:34),
U<u+z.

Since z — 0 as x — 0, it follows that

limsupU/u <1 as =z — 0.
Since u < V, (p.33) implies that
liminfU/u>1 as =z — 0.

Therefore U/u — 1 as  — 0 and consequently, by Assertion 1, u = V.
This proves the uniqueness stated in the last part of the theorem and (p.33)

implies (p.21). O
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Corollary 5.7. Suppose that u is a positive solution of (B.1) in Qs which
vanishes on 0Qg \ {0} and

(5.36) sup |z|*u = oco.
S
Then 4 = Uso-
Proof. Let u be as in (p.34). Since u > u it follows that
sup |z|*Su = oo.
S

By Theorem b.J @ = U. The last part of the proof shows that v = us. O

As a consequence of Theorem p.g we obtain the classification of positive
solutions of (B.1) in conical domains with isolated singularity located at the
vertex. In the case of a half space such a classification was obtained in [[LJ].

Theorem 5.8. Let C be as in Theorem p.4, Qs = Cy N By (0) for some

ro>0and 1 <qg<qy=1+2/a,. Ifue C(Qs\ {0}) is a positive solution

of (6-1) vanishing on 9Cy N By, (0) \ {0}, the following alternative holds:
Either ) B

(i) imsup,_,o x|~ s u(z) < co and thus u € C(Qy).

or
(ii) there exist k > 0 such that (5.19) holds

or
(111) holds.
Proof. Let u, be the solution of (B.1]) in Qg, = Q \ Bc(0) with boundary
data u on Qg N 9B(0) and zero on 9, \ 9B(0). Then
0<uc<u<uc+ Z(x) Vz € Qg ,

where Z is harmonic in €, vanishes on 0 \ 0B,,(0) and coincides with
u on Cg N 0B, (0). Furthermore 0 < € < ¢ = u, < ue in Q. Thus u,
converges, as € — 0, to a solution @ of (p.1]) which vanishes on 00, \ {0}
and satisfies

(5.37) 0 <a(z) <u(z) <ulx)+ Z(x) Yxell,.
If
(5.38) lim sup |z|*s u(z) < oo,
z—0
it follows from Theorem [.G-Step 2, that there exists k* > 0 such that
(5.39) w(x) = k" 2|7 ¢g(x/|z])(1 4+ o(1)) asz — 0.

If k* > 0 then wu satisfies (ii). If k* = 0, it is straightforward to see that, for
any € > 0, a(x) < e|z|”*s. Thus

(5.40) w(z) < Z(z) = c|z|® ¢y (x/|z))(1+o0(1)) asz— 0,

by standard expansion of harmonic functions at 0.
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Finally, if
(5.41) lim sup |z|*s u(z) = oo,
z—0

then, by Corollary p.7, @ = us and consequently, by Theorem f.6, @ — and
therefore u — satisfies (p.21)). O

5.2. Analysis in a Lipschitz domain. In a general Lipschitz bounded
domain tangent planes have to be replaced by asymptotic cones, and these
asymptotic cones can be inner or outer.

Definition 5.9. Let Q be a bounded Lipschitz domain and y € 0. For
r > 0, we denote by Czir (resp. Cg,,) the set of all open cones Cs, with
vertex at y and smooth opening S C 0Bi(y) such that Cs, N By(y) C
(resp. QN B,(y) C Csy). Further we denote

(542) C) . :=|J{Csy:CsycCy,}, CO :=({Csy:CsyecCs}
and
(5.43) cl=Jcl,., c¥:=Ncg.

r>0 r>0

The cone Cé (resp. Cyo) is called the limiting inner cone (resp. outer cone)

at y. Finally we denote
(5.44) S}, =Cl, NoBi(y), S, :=CS.NIB(y),
' SE=CInoBi(y), S :=CNaBi(y).

Remark. In this definition, we identify 9B;(y) with the manifold SN—1.

Notice that the following monotonicity holds
cl. ccl

(5.45) O<s<r= { yo’r i’s
Cys CCy,.

Definition 5.10. If Cg is a cone with vertex y and opening S and if Ag is
the first eigenvalue of —A' in WOI’2(S), we denote

2

Thus qg is the critical value for the cone Cg at its vertex.

1
(5.46) aS:—<N—2—|—\/(N—2)2—|—4)\S>, and g4 =1+2/cy.

Remark. As r — S is nondecreasing, it follows that r — A\, is nonin-

y,r Yy,
creasing and consequently r — g4r is nondecreasing. It is classical that
YT
5.47 limA , =X ,.
( ) r—0 S'ﬁ,r Sé

A similar observation holds with respect to Sgr if we interchange the
terms ‘nondecreasing’ and ‘nonincreasing’. In particular

(5.48) HmA, =A,.

r—0 Sy,r Sy
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3

In view of (p.46) we conclude that,

(5.49) limg, =g, limg

r—0
We also need the following notation:

Definition 5.11. Let © be a bounded Lipschitz domain. For every compact
set E2 C 09) denote,

(5.50) ¢y = lim inf {qsgr 1z €09, dist (2, FE) < ’I“} ,

r—0

If E is a singleton, say {y}, we replace g3, by q; .

Remark. For a cone Cg with vertex y, q; < gs. However if Cg is contained
in a half space then ¢; = gs. On the other hand, if Cg strictly contains a
half space then g < gs.

If © is the complement of a bounded convex domain then, for every y €
o9,

(5.51) g, =(N+1)/(N-1)

Indeed gey > (N +1)/(N —1). But for Hy_-a.e. point y € 0€2 there exists
a tangent plane and consequently ¢., = (N 4+ 1)/(N — 1). This readily

implies (p.51)).

Since 2 is Lipschitz, there exists rq > 0 such that, for every r € (0,7q) and
every z € 02, there exists a cone C with vertex at z such that CNB,(z) C €.
Denote

a(r,y) := inf {qsgr 1z €00N Br(y)} Vr € (0,rq), y € 0.
Then,
qy = lim inf{a(r,y) : y € E}
(5.52) 0 e s
gmf{hr%a(r,y) ry € B} =inf{q, :y € E}.
T—

Indeed, the monotonicity of the function r — ¢, (for each fixed y € 90Q)

Y,r
implies
5.53 g =lima(r,y) = sup a(r,y).
(5.53) y = lma(ry) = sup a(ry)
As

qp = liminf{a(r,y) : y € E}
r—0

inequality (5.52) follows immediately from (f.53).
Finally we observe that, if E' is a compact subset of 92 then
(5.54) (E)r ={2€0Q:dist (z,E) <r} = q( Taqg as r 0.

In order to deal with boundary value problems in a general Lipschitz
domain ) we must study the question of q-admissibility of d,,, y € 9€2. This
question is addressed in the following;:
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Theorem 5.12. Ify € 00 and 1 < q <q  =1+2/a_, then
Yy

Y

(5.55) /QKq(x,y)p(x)dx < 0.

Furthermore, if E is a compact subset of 02 and 1 < q < qJ, then, there
exists M > 0 such that,

(5.56) /QKq(x,y)p(x)dx <M VyeE.

Proof. We recall some sharp estimates of the Poisson kernel due to Bogdan
. Set x = 1/2(v/1 + K?2), where K is the Lipschitz constant of the domain,
seen locally as the graph of a function from RV~! into R. Let 2 € © and
set ¢(x) := G(x,x0). Then there exists ¢; > 0 such that for any y € 9Q and
x € Q satisfying |z — y| < rg, there holds

o1 () o(z)
(3 ?*(8)
for any £ such that By, () C QN Bjy_y(y). This implies

(5.57)

lz—y> N < K(z,y) < 2N

|$—y )

a+1( a+1(p
659 &' S ey < k(e ypte) < D Doy
for some ¢z since ¢ and p are comparable in B, (y), uniformly with respect
to y (provided we have chosen 79 < dist (xg,0§2)/2. Let Cs, be a smooth
cone with vertex at y and opening S := Cjs, N dB1(y), such that Cs, N
0B, (y) C 2. We can impose to the point ¢ in inequality (5.57) to be such
that £/|¢| := Eg € S, or, equivalently, such that |£ — y| < ~dist (£,09) for
some v > 1 independent of ¢, |z — y| and y. Then, by Carleson estimate [,
Lemma 2.4] and Harnack inequality, there exists ¢5 independent of y such
that there holds

¢(€)
5.59 2 >c
2% ole) =
for all x € QN By (y) and all £ as above. Consequently, (5.5§) yields to
(5.60) K(z,y)p(z) < e ()| —y| =M.

There exists a separable harmonic function v in C; , under the form
v(z) =z =y Vo ((z = ) /12 — yl)

where ¢ is the first eigenfunction of —A’in VVO1 ’2(5 ) normalized by max ¢, =
1, Ag the corresponding eigenvalue and o is given by (b10). By the maxi-
mum principle,

(5.61) v(z) <csh(z) Vze Cs, N By, (y).
Therefore there exists cg > 0 such that

(5.62) P(€) > col¢ —y|*s TN
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Because |z — y| > |£{ —y| > k |z — y| /2, from the choice of &, it follows

(5.63) Kz, y)p(x) o

‘(qfl)as +N-2

< Ve € QN Byy(y).
z—y

Clearly, if we choose ¢ such that 1 < ¢ < qu =1+ 2/0[31, then g <
Yy Yy

1+2/a  for some r small enough and we can take Cg, = C;T. Thus
Ty

(B-59) follows.

We turn to the proof of (5.56). To simplify the notation we assume that
q < q5q- The argument is the same in the case q < .

If we assume ¢ < lim,_,q inf{qsg ize€ 00}, then for € > 0 small enough,

there exists r. > 0 such that
O<r<re=1<g<inf{g, :2€09}—¢ YO<r<r.

Notice that the shape of the cone may vary, but, since 02 is Lipschitz there
exists a fixed relatively open subdomain S* C 9Bj such that for any y € 91,
there exists an isometry R, of RY with the property that Ry(g*) - S;T
for all 0 < r < r.. Here we use the fact that r — S;T is increasing when r
decreases. If we take & such that £/|¢| = Zy € R,(S*), then the constants
in Bogdan estimate (f.57) and Carleson inequality (f.59) are independent
of y € 90 if we replace ¢ by inf{r.,ro}. Hereafter we shall assume that
re < 1o. Set

vs(t) = [t — g1+ 2N (¢ — y)/It — o)
with S = Séﬂ,e. Then vg is well defined in the cone Cg, with vertex y and
opening S. Let

Yer, = {t € Q: dist (t,00) = cre}.

Because 0§ is Lipschitz, we can choose 0 < ¢ < 1 such that Cs, N X, C
B, (z). Then we can compare vg and ¢ on the set X . It follows by
maximum principle that estimate (F.61)) is still valid with a constant may
depend on r¢, but not on y. Because

min ¢ > cg
Ry(S*) Shre

where cg is independent of y, (5.69) holds under the form

a_; +2-N
(5.64) P(§) = cs |§ —y| T ;

where, we recall it, & satisfies £/|¢] € R,(S*), and is associated to any
r € B, (y) NQ by the property that Byj,_y(§) C Bjy—y(y) N, and thus
|z —y| > |£ —y| > x|z — y| /2. Then (§.63) holds uniformly with respect to
y, with 7o replaced by r.. This implies (5.50). O

The next proposition partially complements Theorem [.13.

Proposition 5.13. Let y € 002 and q > q_,. Then any solution of in
Y
Q which vanishes on O\ {0} is identically 0.
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Remark. This proposition implies that, if ¢ > 40>
Yy

(5.65) /Kq(x,y)p(x)dx = 0.
Q
Otherwise ¢, would be admissible.

Proof. We consider a local outer smooth cone with vertex at y, Cs, such that
QN By, (y) \ {0} C CanN Byy(y) := Capy. We denote by S* = Co N IB1(y)
its opening. For € > 0 small enough, we consider the doubly truncated cone
OS5y = NCayry \ Be(y)} and the solution v := v, to

—Av+v?7=0 inC§,,
v=00 on JdB(y)NCy
v=00 on dB(y)NCy
v=0 on dCsN By (y)\ Be(y),

where ¢ > ¢, := 1+ 2/a., and ag, is expressed by (5.10) with S replaced
by S*. Then v, dominates in Cg, N any positive solution u of (B.1)) in ©
which vanishes on 92\ {0}. Letting € — 0, v. converges to vy which satisfies

(5.66)

—Av4+v?9=0 in Cyy,
(5.67) v=o00 ondB, NCy
v=0 on dCyN By, (y).

Furthermore u < vg in B,, N 2. Because q. is the critical exponent in Cy ,

the singularity at 0 is removable, which implies that v(xz) — 0 when x — 0

in Cy. Thus u4(z) — 0 when x — 0 in Q. Thus uy = 0. But we can take

any cone with vertex y containing  locally in B,.(y) for » > 0. This implies

that for any ¢ > g, any solution of (b)) which vanishes on 99\ {0} is
Yy

non-positive. In the same way it is non-negative. U

Definition 5.14. If y € 0Q we say that an exponent q > 1 is:
(i) Admissible at y if
IEC )l Loy < oo
and we set
q1,y = sup{q > 1: ¢ admissible at y}.

(ii) Acceptable at y if there exists a solution of (.14) with boundary trace 6,
and we set

q2.y = sup{q > 1: ¢ acceptable at y}.

(iii) Super-critical at y if any solution of (B.1) which is continuous in Q\{0}
and vanishes on 9Q \ {0} is identically zero, and we set

¢34y = inf{q > 1: q super-critical at y}.
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Proposition 5.15. Assume Q2 is a bounded Lipschitz domain and y € 0S).
Then

(5.68) qsé Sy < Qoy S g3y < qsyo-

If1 < q < qo,y then, for any real a there exists exactly one solution of (B.1])
with boundary trace yo,.

tion that g3y < ¢ o It is clear from the definition and Theorem [3.§

that ¢1y < @2y < g3, Tghus (6.68) holds.

Now assume that ¢ < g2, so that there exists a solution u with boundary
trace ¢,. By the maximum principle v > 0 in Q. If a € (0,1) then au is
a subsolution of (p.]) with boundary trace ad, and au < u. Therefore by
Corollary [i.4 TI, the smallest solution dominating au has boundary trace
ady. If a > 1 then au is a supersolution and the same conclusion follows
from Corollary 4 I. If v, is the (unique) solution of (f.1) with boundary
trace ad, then —wv is the (unique) solution with boundary trace —aéd,. O

Proof. It follows from Theorem that dy < Quy and from Proposi-
Yy

Theorem 5.16. Assume y € 0N is such that Syo = S; =8, let Ay be the
first eigenvalue of —A in WOI’Q(S) and denote

(5.69) q.,=1+2/ag

with as as in (p.10). Then q1y = g2y = g3y = q..,, and

(i) if 1 < q<q,, then 0, is admissible;

(ii) if ¢ > q,,, then the only solution of (B.1]) in Q vanishing on O\ {y} is
the trivial solution.

(iil) if ¢ = q.,, and u is a solution of (B.1]) in Q vanishing on OQ\ {y} then

(5.70) u:o(1)|x—y|7% as x —y in Q.

Remark. We know that, in the conical case, the conclusion of statement
(ii) holds for ¢ = g, as well. Consequently, in a polyhedral domain €2, an
isolated singularity at a point y € 92 is removable if ¢ > ¢.(y). We do not
know if this holds in general Lipschitz domains.

Proof. The above assertion, except for statement (iii), is an immediate con-
sequence of Proposition p.15, Definition and the remark following that
definition.

It remains to prove (iii). We may assume that v > 0. Otherwise we
observe that |u| is a subsolution of (f.1]) and by Theorem [.3|(ii) there exists
a solution v dominating it. It is easy to verify that the smallest solution
dominating |u| vanishes on 0Q \ {y}.

For any r > 0 let u, be the extension of u by zero to D, := Cgo N B;(y).
Thus u, is a subsolution in D, u, € C(D, \ {y}) and u, = 0 on (0Cg0 N
B.(y)) \ {y}. The smallest solution above it, say @, is in C(D, \ {y}) and
i, =0 on (0Cg0 N By(y)) \ {y}. By a standard argument this implies that
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there exists a positive solution @, in D, such that o, vanishes on 0D, \ {y}
and

Uy <20, in D,.
We extend this solution by zero to the entire cone Cgo, obtaining a subso-
lution @, and finally (again by Theorem [E3(ii)) a solution w, in Cgo which
vanishes on dCgo \ {y} and satisfies

ur < 2w, in D,.

Observe that 50 lgyasr |0 Ifgy,= 450 for some r > 0 then the
existence of a solution w, as above is impossible. Therefore we conclude
that g, < 40 and therefore, by Theorem [.J, there exists a solution Voo,r
in Cgo such that

__2
Voo, (1) = [ =y lw o ((z —y)/[e —y[) Vo e Cgo.
This solution is the maximal solution in Cgo so that
Wy < Voo in Dy

But, since ¢ = ¢, it follows that W = 0 as r — 0. This implies (p.70).
' 0
The next result provides an important ingredient in the study of general
boundary value problems in Lipschitz domains.

Theorem 5.17. Assume that ¢ > 1, Q is a bounded Lipschitz domain and
u € UL(Q). Ify € S(u) and q < gy, then, for every k > 0, the measure ké,
18 admissible and

(5.71) u > uys, Vk>0.

Remark. 1f q > qp, (F-71) need not hold. For instance, consider the cone
Cs with vertex at the origin, such that S ¢ SN~ is a smooth domain and
SN=1\ S is contained in an open half space. Then g.o > (N +1)/(N — 1)
while ¢.» = (N +1)/(N — 1) for any = # 0 on the boundary of the cone.
Thus ¢*(0) < gco. Suppose that ¢ € (q3,¢c0). Let F' be a closed subset
of dCg such that 0 € F but 0 is a Cy/q »-thin point of F. Let u be the
maximal solution in Cs vanishing on dCs \ F. Then 0 € S(u) but (5.71))
does not hold for any k > 0.

Proof. Up to an isometry of RY, we can assume that y = 0 and represent
0N near 0 as the graph of a Lipschitz function. This can be done in the
following way: we define the cylinder C}, := {z = (¢/,zn) : 2’ € By} where
B, is the (N — 1)-ball with radius R. We denote, for some R > 0 and
0 <o <R,

INCL={z=(2',n(z")): 2" € By},
and

Y50 ={x = (2',n(z')+ ) : 2’ € BL},
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and assume that, if 0 < § < R,
O = {z = («/,zy) : 2’ € By, n(a’) < xy < n(z’) + R} C Q.

We can also assume that 7(0) = 0. Although the two harmonic measures
in Q and 992 N C}, differ, it follow by Dahlberg’s result that there exists a
constant ¢ > 0 such that, if § < dy < R/2,

(B < wé%(E +een) < cwy (E),

for any Borel set E C 9Q N C5. Therefore, if we set
Me o :/ u(x)dw™, (z),
26,0’

it follows that lim¢ .o M¢, = oo since 0 € S(u). We can suppose that o is
small enough so that there exists ¢ € (g, q;) and M > 0 such that, for any

p e [L,q]
(5.72) /Kp(x, 2)p(z)de < M Vze 00N B,.
Q

For fixed k there exists € = €(d) > 0 such that M., = k. There exists a
uniform Lipschitz exhaustion {Q.} of £ with the following properties:

(i) QenNCirn{zx = (2',zn) : a < zy < b} = X, g, for some fixed a and b.
(ii) The Q. and Q have the same Lipschitz character L.

It follows that the Poisson kernel K in €, respectively endows the same
properties (b.79) as K except 2 has to be replaced by ., p by pe :=
dist (., 092 and z has to belong to 99 N B,. Next, we consider the solution
U = Vg(q)) Of

“Av =0 in O
(5.73) { v+ in

v =uxy, , in 092

By the maximum principle, © > v in Q. Furthermore v < K% [uxs, ] Let
Gd=1(q+G4,)/2 and w C Q be a Borel subset. By convexity

/w <KQ [UXZS’U]>qu($)d,I < M M.,

Thus, by Holder’s inequality

/UJ <KQ€ [que,a])qP(x)dx < (/J)(x)dx)l_qm (M M, )",

By standard a priori estimates, v¢(y) — vo (up to a subsequence) a.e. in €2,

thus v?,_, — vl. By Vitali’s theorem and the uniform integrability of the
(o) 0

{Ve(o) }> Ve(o) = o in L}(£2). Because

Ve(o) + GQE [UZ((,)] = KQS [UXZS’U]
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where G is the Green operator in €, and
K [uxy, ] = MeoK(,y) = kK(.,y)
as 0 — 0, it follows that u > vy, and vy satisfies
v + GPug] = kK (., y).

Then vy = ugs,, which ends the proof. O
Corollary 5.18. Let {y; 71 COQ be a set of points such that

(5.74) q< inf{qzj :j=1,..,n}

Then, for any set of positive numbers ki,--- , k,, there exists a unique solu-

tion w, of (b)) in Q with boundary trace u = > i1 Kby,

Ifu e U () and {y;}7_y C S(u) then u > .
Proof. From Theorem p.17, v > Uk;s,, for any j = 1,...,n. Thus u >
gy = max(ukjgyj), which is a subsolution with boundary trace > k;dy, .
But 94y, the solution with boundary trace | ; kj0y; is the smallest solution

above . Therefore the conclusion of the corollary holds. O

As a consequence one obtains

Theorem 5.19. Let E C 052 be a closed set and assume that g < qj,. Then,
for every u € M(Q) such that supp u C E there exists a (unique) solution
uy, of (B1]) in Q with boundary trace p.

If {un} is a sequence in IM(QY) such that supp p, C E and p, — p weak™
then w,, — u, locally uniformly in 2.

Ifu e U (Q) and g < q:,(u) then, for every p € M() such that supp pu C
S(u),
(5.75) uy < u.

Proof. Without loss of generality we assume that g >). Let {u,} be a
sequence of measures on 9€) of the form

kn
Iu’n = : :a'jynéyj,n
7j=1

where y; , € E, a;, > 0 and Zfil ajn = ||pl|, such that p, — p weakly™*.
Passing to a subsequence if necessary, u,, — v locally uniformly in €. In
order to prove the first assertion it remains to show that v = u,,.

If 0 < r is sufficiently small, there exists ¢. € (¢, ¢};) and M, > 0 such
that, for any p € [1,¢,] and every z € 9 such that dist (z, F) < r, estimate
(b.79) holds. It follows that the family of functions

{K(-,2):2€09, dist (2, E) <r}
is uniformly integrable in L}(2) and consequently the family
{K[v];v € M(9N), |[v|lgy <1, suppr C {z € 90 : dist (2, E) < r}}
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is uniformly integrable in L(Q2). By a standard argument (using Vitali’s
convergence theorem) this implies that v = u,. This proves the first two
assertions of the theorem.

The last assertion is an immediate consequence of the above together
with Corollary p.1§. Indeed, if E = S(u) then, by Corollary .18, u > w,,.
Therefore u > u,.

O

Proposition 5.20. Let y € 00 and 1 < ¢ < Qg Then there exists a
Yy
mazimal solution u := Uy, of ([5.4) such that tr(U,) = ({y},0). It satisfies

(5.76) mli_r)nyinf |z —y|¥ VU, (z) > Wer (o),
E=ina

uniformly on any compact subset of Sé, where W, 18 the unique positive
Yy
solution of

(5.77) { —ANw— Ay W+ lwli"lw =0 in Sé

w=20 onabg,

normalized by w(og) = 1 for some fized oy € Sé.
For r > 0 small enough, we denote by Weo the unique positive solution
Yy,r

of
~Aw— A, wHwilw=0 inSY,
(5.78) "‘ v

w=0 on 853,,,

normalized in the same way. Then

(5.79) limsup |z — y|2/(q71)Uy(:c) <w, (0).
Ty vr
o=y 7

Finally, if Syo = Sé =S, then

(5.80) dim o=y 000, (@) = w, (0).

e T e
lz—y]

Proof. We recall that Cy{r (resp. CZ?T) is a r-inner cone (resp. r-outer cone)
at y with opening S;r C 0By (y) (resp. Sg,, C 0By (y)). This is well defined

for a r > 0 small enough so that ¢ < qyr - We denote by w the unique
y,r Yy,r

positive solution of
{ —Aw- Ay w+wfilw=0 inS],

5.81
(5.81) w=0 on 853%.
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We construct U, € U4 (€2), vanishing on 0 \ {y} in the following way. For
0 < e <7, we denote by v := U, the solution of

—Av+ v o =0 in Q\ Bc(y)
v=0 in 9N\ B(y)
v=o00 in QNOIB(y).
Let v := VI (resp. v := V.9) be the solution of
—~Av+ v~ v =0 in CSqﬁ,r \ B(y) (resp. Csqu \ B.(y))
v=0 1in OCS;T \ Be(y)  (resp. acsy% \ Be(v))
v=o00 in CS,&,T NOB(y) (resp. ngr N IB(y)).
Then there exist m > 0 depending on r, but not on ¢, such that
(5.82) VI(@) =m < Uye(x) <VO(x) +m

for all z € Cy{r \ {Bc(y)} for the left-hand side inequality, and = € 9Q N
B.(y) \ {Bc(y)} for the right-hand side one. When ¢ — 0, V. converges
to the explicit separable solution = — |z — y|~/ (qfl)wsl in C_, (the
Y,7 Y,7
positive cone with vertex generated by Sé,,,). Similarly V.© converges to the
explicit separable solution = +— |z — y|_2/ (q_l)wso in C’SO . Furthermore

T

e < ¢ = Uy, <Uyo. If U, = lime_,o{U, .}, there holds
(5.83)

ey (ETYN oy < 2y, (ETY
z w m x z w +m.
‘ y‘ 515,1"(|,I—y|) — y( )—‘ y‘ 515,1"(|,I—y|)
These inequalities imply
(5.84) liminf |z —y|?@ VU, (z) >w_, (o),

T —y Sy,r

=g
Inequality (b.79) is obtained in a similar way. Since lim, 0w , = w,,

y,r Yy
uniformly in compact subsets of Sé we also obtain (p.76). If Syo = Sé =5,
then w_, =w_, = wy, thus (b.80) holds. O
Y Y

Remark. Because Uy is the maximal solution which vanishes on 022\ {y}, the
function uss, = limg_o0 uks, also satisfies inequality B.79). We conjecture
that uss, always satisfies estimate (B.74). This is true if the outer and inner
cone at y are the same. In fact in that case we obtain a much stronger result:

Theorem 5.21. Assume y € 0X) is such that Syo = Szf =S and q < qcy-
Then Uy = oo, -

Proof. Without loss of generality we can assume that y = 0 and will denote
B, = B,(0) for r > 0. Let C! (resp. C?) be a cone with vertex 0, such
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that CI N B, \ {0} C Q (resp. QN B, C C?). We recall that the charac-
teristic exponents o and o, are defined according to Definition f.9 and

0
Definition .10 Since

a , =lima = lim o =a , <2 -1
s Thmag =lmaeg, =a,o <2/(g-1),

O

we can choose r such that

(5.85) qozsé’r - QSS),T <2-(q—- 1)(&5& - asg)r),
and for simplicity, we set aSém =aq,, as& = a,, and
a1
o 2+ a, —qo,

Step 1. We claim that there exists ¢ > 0 and ¢* > 0 such that, for any
m >0

(5.86) Uns, () > ¢*m|z| ™% Yz € By NCL

Since mK(.,0) is a super-solution for (f.1]),
Ums () > mK (z,0) — mq/ G(z,2)K(z,0)dz.
Q

If we assume that = € Cf N B, then dist (z, Q) > 0|z| for some 6 > 0 since
CIn B, \ {0} C Q. Using Bogdan’s estimate and Harnack inequality we
derive

| $|2_N
G(x’ xO) ’
for some fixed point zg in €. But the Green function in 2N B, is dominated
by the Green function in CO N B, thus G(x,79) < ca|z|% where a, =
2 — N + «a,. This implies

K(z,0) > ¢

(5.87) K(x,0) > c3|lz| ™% Vz e ClNB,.
Similarly (and it is a very rough estimate)
K(z,0) <cqlz|™ Ve
Because G(z,2) < cs|z — z|>~V, we obtain
/G(z,x)Kq(z,O)dz < 66/ lz — 2> Nz dz.
Q Br
We write

/ |z — 2|27V |2| 7% dz = / |z — 22N |2|79% dz
Br By

+ / |z — 2|>N|z| 9% dz.
Br\Ba|q|
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But
[ lo =P e de = oo [ (e oo
B)a| B2(0)
where £ = z/|z| is fixed. In the same way

/ |z — 2|27V |z|7%1dz < / | 2|2 N =90 |g|279% dz
BRr\Bg|q| Br\Bay|

<lafer [ e
Br/|e|\B2
R/|a|
< 07]36\2‘10‘1/ st=a% s,
2

Thus
cs if 1 —qo, > -1
(5.88) / |z — 2P N|z|7%dz < { cglln|z]| if1—qa, =—1
Br\Baja| cglz*7 1 if 1 —qa, < —1.
Combining (5.87) and (b.89) yields to (F.86).
Step 2. There holds

(5.89) oo, () > (]w\_Q/q_l) - 7’_2/(‘1_1)> o (z/|z]) VxeCINB,,

where w_, is the unique positive solution of (6.81)). For £ > 0, let ug&) be

the solutiron of

— q = i I
(5.90) { Au+u?=0 inC;

u= {5 on dC].
By comparing u£ s, with the Martin kernel in cl
(5.91) ui;o (z) < crol]z|™r Vo € CL.

Because
/ (0‘170‘0)7
(5.92) crol|z| % < *mlx|"%% Vr st |z| > en <—> ,
m

it follows
1

Vi (ajfao)_
(5.93)  Ups, (z) > uls(z) VYo st.oepn (E) <lz| <m0,

Notice that (p.85) implies

/ (a;—ap)~?
<—> =o(m~ ) as m — oo.

m

Since uééo (x) < \x]*Q/(qfl)wsg (x/|z]), it follows, by the maximum principle,
that

o () > gy, () =~V (2/|2])
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o)1
for every z € C/ N B, such that |z| > c1q ( %)(a’ %) Letting successively
m — oo and £ — oo and using

lim ufs () = ||~ Vw_ (x/[z]) Yz el
(=00 Sy

we obtain (.89).
Step 3. Let u € U (£2), u vanishing on 99 \ {0}. Because
u(z) < O gle| /@Y

and CIN B, \ {0} C Q, it is a classical consequence of Harnack inequality
that, for any 2 and 2’ € CI N B, 5 such that 271z| < |2/| < 2|z|, u satisfies

e u(2) < u(w) < erzu(a’),
where c12 > 0 depends on N, ¢ and min {dist (2,00)/]2] : z € m}
Step 4. There exists ¢13 = ¢13(q, Q) > 0 such that
(5.94) Up(z) < c13uces(z) Vo € Q.

Because of (p.79) and the fact that for » > 0 and any compact subset
K C S,

Woo (o)
1< <M VoeKk,
w (o)
0,r
where M depends on K, there exists cj4 > 0 such that
Uo(z)

1<

<ciy Vre€B, st z/lz|]€K.
uOO(So(x)

Using Step 3, there also holds

(5.95)
01—51 < min { UO(xl)7 Uoody (.%'/) } < max { UO(xl)7 Uoody (.%'/)
Uo(®) " toasy () Uo(@) " toosy (2)
provided z/|z| and 2'/|2'| € K and 27!|z| < |2/| < 2|z|. For 0 < s < /2,
set I's = QN 0B;. There exists ng € N, and k € (0,1/4), independent of
s, such that for any = € T'y such that x/|z| € K, there exists at most ng
points a; (j = 1,...5;) such that a; € I's, a1 € 09, ks < dist (a;,00) < s,
laj —aji1| < s/2 for j =1,...5, and aj, = z. Using Proposition p.1] and the
remark hereafter,
0 _ s Uo(2)
Uo(al) uoogo(al) - Uo(al)
Combining with (5.9) we derive

Un() < cciuses, (@) Ve €T

} <ci5 Vz,2' € By,

< Vz e I's N By,.

Because cc]2usg, is a super-solution of (B.1]) (clearly ccj? > 1),

Up < ccRuoes, in Q\ Bs Vs € (0,r].
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Thus (p.94) follows with c13 = cc}?.

Step 5. End of the proof. It is based upon an idea introduced in [T]]. If we
assume Uy > Usos,, the convexity of x — 29 implies that the function

1
v = u0050 - E(UO - u0050)

is a super solution such that

Aoy <V < U,

where a = 192 < 1. Since ausyg, is a subsolution, it follows that there
2c13 0

exists a solution w such that
Aloosy, < W <V < Usog, -

But this is impossible because, for any a € (0,1), the smallest solution
dominating atees, S Usos, - O

The next result extends a theorem of Marcus and Véron [21].

Theorem 5.22. Assume that Q is a bounded Lipschitz domain such that
Syo = S; = Sy for every y € 0N2. Further, assume that

1<q<gho-

Then for any outer reqular Borel measure U on O0S) there erists a unique
solution u of such that tr,, (u) = .

Proof. We assume 7 ~ (v, F) in the sense of Definition [.d where F' is a
closed subset of 92 and v a Radon measure on R = 9002 \ F'. We denote by
Ur the maximal solution of (@) defined in Lemma [£.11. Because g < 450
for any y € F there exists uqs, (and actually uss, = U, by Theorem ﬁ)
Then Up > ug, by Lemma [[.13, thus S(Ur) = F' = F with the notation of
Definition .19 By Theorem .19, any Radon measure is q-admissible thus
for any compact subset E C R there exist a unique solution w,,, of (B.1])
with boundary trace vyg. Therefore there exists a solution with boundary
trace v and, by Theorem [£.14), its uniqueness is reduced to showing that
Up is the unique solution with boundary trace (0, F'). Assume up is any

solution with trace (0, F'). By Theorem and Theorem B.21, there holds
(5.96) up () > Uses, () = Uy(w) Vy € F, Yz € Q.

Next we prove:

Assertion. There exists C > 0 depending on F, Q and q such that

(5.97) Up(z) < Cup(z) Vo € Q.

There exists rg > 0 and a circular cone Cy with vertex 0 and opening
So C 0By such that for any y € 9€) there exists an isometry R, of RY such
that R, (Co) N By, (y) C QU {y}. We shall denote by C; a fixed sub-cone of
Cp with vertex 0 and opening S; € Sy. In order to simplify the geometry,
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we shall assume that both Cy and Cy are radially symmetric cones. If x € Q
is such that dist (z, 99Q) < r(/2, either

(i) there exists some y € S and an isometry R, such that R, (Co)N By, (y) C
QU{y} and (z —y)/lz —y| € 51,

(ii) or such a y and R, does not exist.

In the first case, it follows from Proposition and Theorem that

(5.98) up(z) > ¢z —y| 7@,
Furthermore, the constant ¢; depends on r, S ¢ and €2, but not on ug. By
(335)
(5.99) Up(z) < ¢z (dist (z,80)) 2@~
Since in case (i), there holds dist (z,9Q) > cs|z —y| for some c¢3 > 1 depend-
ing on Sy and 51, it follows that (5.97) holds with ¢ = clcg/(qfl)/c;z,.

In case (ii),  does not belong to any cone radially symmetric cones with

opening S7 and vertex at some y € S. Therefore, there exists ¢4 < 1
depending on ('} such that

(5.100) dist (z, 00) < eqdist (z, S).
We denote 7, := dist (z,S). If
(5.101) dist (x, Q) < min{cy, 1071 }r,,

there exists ; € 0 such that v — &;|dist (z,0€2). Then By, /10(&x) C
B, (x). We can apply Proposition [6.] in QN By, /10(&z)-  Since = €
B, /5(&x), there holds

1ur(z) ur(@) o up(z)
> Ur(z) = Up(e) = "Ur(2)
We can take in particular z such that |z — &;| = r,/5 and dist (z,000) =
max{dist (£,0Q) : t € B, /5(&) N Q}. Since the distance from z to S is
comparable to dist (z,0f2), there exist ng € N, depending on the geometry
of 2 and ng points {a;} with the properties that dist (a;, 02) > dist (2, 09),
B, j10(a;) N By, jio(ajs1) # 0 for j =1,...,n9 — 1, a1 = 2z and ap, have the
property (i) above, that is there exists some y € S and an isometry R, such
that R, (Co) N Byy(y) C QU {y} and (an, — y)/|an, — y| € S1. By classical
Harnack inequality (see Theorem Step 3), there holds

up(aj) > coup(ajrr) and Up(aj) > cg'Up(aji)

for some cg > 1 depending on N, ¢ and €2 via the cone Cy. Therefore

(5.102)

Vz € By, (&) N

(5.103) Ur(x) < cseq up(z) < crup(x),

which implies (5.97) from case (i) applied to a,,.
Finally, if (p.100) holds, but also

(5.104) dist (x, 0Q) > min{cy, 10~ }ry,
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this means that dist (z, 9Q2) is comparable to r,. Then we can perform the
same construction as in the case (5.101)) holds, except that we consider balls
Bist (m,00)/ 4(a;) in order to connect x to a point a,, satisfying (i). The
number ng is always independent of urp. Thus we derive again estimate
(6.97) provided dist (x,09) < 79/2. In order to prove that this holds in
whole Q, we consider some 0 < 71 < 19/2 such that Q. = {z € Q :
dist (z,Q) > 71} is connected. The function v solution of

{ —Av+0v?=0 inQ,

(5.105) v=ciup in 0

is larger that Up in Q’rl. Since ciup is a super solution, v < ciup in Q;,l.

This implies that (5.97) holds in Q.

Inequality (p-97) implies uniqueness by the same argument as in the proof
of Theorem [.2]), Step 5. O

6. BOUNDARY HARNACK INEQUALITY

In this section we prove the following

Proposition 6.1. Assume Q is a bounded Lipschitz domain, A C 0f) is
relatively open and g > 1. Let (rg, o) be the Lipschitz characteristic of
(see subsection 2.1).

Let u; € C(QUA), i = 1,2, be positive solutions of

—Au+u?=0 in Q,

such that u; =0 on A. Put S =0Q\ A and d(x,S) = dist (z,5). Lety € A
and let

1
r = min(ry/8, Zd(y, S)

so that

8(B4r(y) N Q) = (Ellr(y) N aQ) U (8B4r (y) N Q)
Then
(6.1) ~al®) o wl) o mlE) B, (y) NQ,

ui(z) = wua(z) u1(2)
where the constant ¢ > 0 depends only on N,q and the Lipschitz character-
istic of Q.
Proof. Without loss of generality we assume that y = 0.
Let b = d(0, S) and put
Gi(x) = b Tuy (z/b), i=1,2.

Then 4; has the same properties as u; when Q is replaced by Q° = %Q, S
by S® = 1S and r by § = r/b. Of course d(0,S®) =1 so that

0 = min(ry/(8b),1/4).
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The functions u; satisfy the equation
—Ad; +a? =0 in By (0) N QP
and i; = 0 on Bys(0) N OQL. Therefore, by the Keller-Osserman estimate,
u; < ¢(N, q)5_2/(q_1) in B3s(0) N 0b.
If a(z) = @' then i satisfies
“Aiiy +a(z)is =0 in (%Q) A By (0),
and a(-) is bounded in Bss(0).
Let w be the solution of
—Aw+a(z)w=0 in Bss(0)NQ°
w=0 on Bss(0)N %89
w=17y on OBss(0) NN,

By applying the boundary Harnack principle in Bs;(0)NQ® (using the slightly
more general form derived in [, Theorem 2.1]) we obtain

a(¢) _wl) o ai({) , b
O S w© SCme oc € B0

where the constant ¢ depends only on the Lipschitz characteristic of QP

(which is (rg/b, \ob) and therefore ’better’ then that of  when b < 1).

Since w < 1o the above inequality implies,
W) _ i) | ()
1(9) 1(C) 1(Q)

which in turn implies

(6.2)

IN

w({) ti2(¢") / b
W@ = Cm(Q o¢ S POne
and therefore
i1(¢") < aa (') V¢, ¢’ € Bas(0) N Q.

1(¢) u2(¢)
Switching the roles of @; and s we obtain,
is(¢) _ pu(¢)
u2(¢) u1(¢)
This completes the proof. O

~—

<c V¢, ¢ € Bas(0) N Q.
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