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Abstract—Mnesic evocation occurs under the action of a
stimulus. A successful evocation is observed as the overrun of a
certain threshold of the neuronal activity followed by a medical
imaging instrument like a PET-scanner. Within the neural system,
this successful evocation corresponds to an effective activity
that induces other activations in other parts of the brain and
conscious actions. Populations of coupled neuronal oscillators can
dynamically store information in the form of a periodic attractor
of large dimension. In this context, the overrun of such an activity
threshold is due to a maximization of the global activity of
the population of oscillators. It is allowed by a synchronized
activity of the – neuronal – oscillators, which can be provided
by the action of an external stimulation. One can hold this
process as an elementary process of mnesic evocation. We use an
isochron-based analysis to understand the relevant aspects of this
synchronization phenomenon. The temporal gap resulting from
the perturbation of a large population of uncoupled oscillators
(initially distributed in an equal manner on the latent phase)
gives us a direct characterization of the phase space. We obtain
a method to classify the phase space into fast an slow synchro-
nization regions, thus allowing a qualitative understanding of the
behaviour adopted by oscillators in response to perturbations.

I. INTRODUCTION

By studying the isochrons profil of a dynamical system

having a limit cycle attractor, one can classify the phase space

into different regions : fast and slow synchronization regions.

A population of oscillators having the same dynamics can

be synchronized via a common perturbation undergone in a

certain direction and having a sufficient amplitude to bring

them all to fast or slow synchronization areas.

In this article, we focus on 3 different dynamical systems,

the van der Pol oscillator a well-known self-driven dynamical

system [1], the phospho-fructo kinase (PFK) that can show

in certain conditions periodic dynamics of the fructose-6-

phosphate (the product) and the available chemical energy

(ATP/ADP) [2], and more particularly on the Wilson-Cowan

neuronal oscillator. The Wilson-Cowan model [3] consists in

a couple of inhibitory and excitatory neurons. Its dynamical

behaviour exhibits a limit cycle attractor and an unstable

equilibrium at the origin.

We highlight the synchronization phenomena and their analy-

sis, starting with a description of the isochron-based analysis

and the maximum phase shift analysis. We determin the

isochrons of the limit cycles of these systems in their whole

phase spaces. Then we perform several simulations (perturba-

tion and relaxation) which show correlations between phase

synchronization and the amplitude of perturbation through a

measure of the maximum phase shift. Then we discuss about

their importance in the understanding of the mnesic evocation

process.

A. Definition of the isochrons

Let us consider the space E ⊂ ℜn (where ℜ is the set of

the real numbers) of all states of a dynamical system and the

times set T ⊂ ℜ (containing time 0), and denote by x(t) the

state of the system at time t. A trajectory (or flow) ϕ is an

application from the Cartesian product E×T onto E defined

by: ∀(x, t) ∈ E × T , then: (i) ϕ(x, t) = x(t), (ii) x(0) = x,

(iii) ϕ(ϕ(x, t), s) = ϕ(x, t+ s). The orbit of a state y iterated

by the flow ϕ is the set of points O(y) = {ϕj(y)}j∈T .

We define the Birkhoff limit set L(x) of any state x of E
taken as initial condition of the trajectory ϕ(x, .), as the set

of temporal accumulation points of this trajectory. If B(y, ε)
denotes the set of states at distance of y less than ε (B(y, ε)



is reduced to {y} in the discrete case): L(x) = {y ∈ E;∀ε >
0,∀t ∈ T, ∃s ∈ T / s > t and O(ϕ(x, s)) ∩B(y, ε) 6= ∅}
The attractor basin B(A) of a subset A of E is the set of all

initial conditions x not in A, but such as L(x) ⊂ A. Let us

denote L(A) = ∪x∈AL(x). A is the set A completed by all

possible shadow trajectories [4]. An attractor A verifies [5],

[6]:

i) A is a fixed set for the composed set operator

LoB : A = L(B(A)), where

ii) there is no set C such as A ⊂ C ⊂ A,C 6= A, verifying

i),

iii) there is no set D ⊂ A,D 6= A, verifying i) and ii).

An attractor A is invariant in the dual operations consisting

firstly in considering all the trajectories of its basin from all

initial conditions not in A, but finishing their life in A, and

secondly to restrict them to their ends of life (Figure 1).

Fig. 1. Definition of an attractor (the character ’star’) and its basin (the gray
bubble) in the case of a Boolean network, whose the states space E is the
hypercube {0, 1}11 (left). Initial conditions are indicated in the gray disks
and attracting conditions for the majority rule and synchronous iterations (the
state of a node equals 1 if its activating neighbours in state 1 are equally or
more numerous than the inhibiting ones) are given outside blue disks (right).

Let us suppose now that the attractor A is a limit cycle, i.e.,

if we denote by p the period of the limit cycle, A = {a0, a1 =
ϕ(a0, 1), ..., , ap−1 = ϕ(a0, p − 1)} and there is a natural

isomorphism ψ between A and the set S = {0, ..., τ − 1}.

By denoting Ts = {t ∈ T/t = s + kτ}k∈N,s∈S we have:

T = ∪s∈STs.

The isochron Is of phase s is the attractor basin of {ψ(s) =
as} for the flow ϕs (equal to ϕ on E × Ts) and B(A) =
∪s∈SIs. If T = ℜ+ (the positive real numbers set), Is is

transversal to A, i.e., the tangent vector to Is at the state as

is not tangent to A [7], [8].

Examples of isochrons of some dynamical systems are shown

below in Figure 2. The fibration of equally phase-distributed

isochrons is a good tool for analysing the phase space.

The convergence (resp. the divergence) of isochrons indicates

a slow synchronization region (resp. a fast synchronization

region). This furnishes a quantitative information about the

direction and the strength of the perturbation to perform in

order to synchronize a homogeneous population of oscillators.

Fig. 2. Examples of Isochrons of 2 dynamical systems. (Up) A non-
symmetrical system: the PFK enzymatic balance. Isochrons and the limit cycle
attractor of the PFK system obtained for a very high precision (> 106). Note
that the region in the bottom is very sensitive to numerical imprecision. In this
region, the isochrons are overlapped. This indicates a sensitivity to numerical
precision and corresponds to a slow synchronization region. (Down) Isochrons
and the limit cycle attractor of the van der Pol oscillator. Fast (resp. slow)
synchronization regions, or isochron divergence (resp. isochron convergence)
regions of equally phase-distributed isochrons, are located overhead and
underneath (resp. on the right and on the left) of the limit cycle in the phase
space.

B. Numerical resolution of isochrons

All points delayed by a period T (period of the limit cycle)

are on the same isochron because they have the same latent

phase. The determination of these points can be done by using

numerical methods. Whatever the numerical method used is,

checking if points of the state space belong to the isochron

of a chosen phase can be obtained by verifying, when they

converge until the attractor via the equations of the dynamical

system, if they admit that phase of the attractor once consid-

ered a certain limit. Several numerical methods are possible:

a systematic exploration of the state space by dividing it in

small areas, a random exploration in all the state space, or

a local random exploration with a guidance of the research

area along a direction given by the points already founded (a

kind of intelligent paintbrush). We pull out a point of the state

space randomly, then we compute a discrete version of the

differential equations until the trajectory reaches for the first

time a point belonging to a neighbourhood of fixed thickness

10−k of the attractor, where k is a thickness parameter. The

phase of this point on the attractor is memorized. This phase

minus the phase of the nearest isochron of interest is compared

to a tolerance value in order to determine whether this point

can be considered as belonging on the isochron or not. This

tolerance value is equal to T
2np

(Figure 3) where T is the period

of the attractor considered as a limit cycle, n is the number

of isochrons considered and p ∈ [1,+ inf[ is a precision



parameter.

Fig. 3. Graphical description of the measure of precision Let us consider
8 isochrons equally spaced. The largest acceptable tolerance is T/16, ie.
the phase interval between 2 isochrons is equally divided. The precision
parameter is used to express the tolerance parameter as follow: Tolerance
= T/(Precision ∗ 2 ∗ Nisochrons)

C. Maximum phase shift computation

Once considered a population of uncoupled oscillators of

same nature, it may be of interest to have a measure of the

synchronization that occurs after a perturbation tranlating

the state of all the oscillators to an other region at the

same time, i.e. conserving that way the shape of the limit

cycle (see Figures 8 and 9). The isochronal fibration gives

a qualitative idea of the phase shift or on the contrary of

the resynchronization which may result from a perturbation

affecting this population. The divergence (resp. convergence)

of equally distributed isochrons in a particular region of the

phase space means indeed that this region is a fast (resp.

slow) synchronization one. A quantitative measurement can

be calculated from this fibration. We computed the phase

shift between the two isochrons containing the set of n points

(Pi)i∈[1,n] obtained after a translation of the limit cycle as

follows:

• The phase φi of each Pi is calculated as described in the

previous section.

• The vector [Pi]i is sorted by order of the increasing values

of φi.

• The vector ((∆Φi,i+1)i∈[1,n−1],∆Φn,0) is determined.

∆Φi,i+1 = φi+1 − φi for i ∈ [1, n − 1] and ∆Φn,0 =
2π − (φn − φ0).

• The maximum phase shift is ∆ΦMax = 2π −
Max((∆Φi,i+1)i∈[1,n−1],∆Φn,0).

Those steps are repeated for several values of the amplitude

between 0 and Rmax (maximum perturbation). When the

system is symmetrical, we compute the maximum phase shift

along an arbitrary direction of perturbation 10. This is not

valid when the dynamical system is asymmetrical like the

phospho-fructo kinase (PFK) system (see Figure 4).

Fig. 4. Maximum phase shift of the PFK (Up) and the van der Pol

(Down) oscillators in response to perturbations (Up) The maximum phase
shift of the PFK. (Down) The maximum phase shift of the van Der Pol. Dark
(resp. bright) colors correspond to fast (resp. slow) synchronization regions.
White regions correspond to regions where the phase is not well-defined (very
strong sensitivity to numerical imprecision). This synchronization map is very
irregular and clearly shows that it is hard to sycnhronize the PFK (Up) due to a
(strong non linearity and asymmetry of the system). Synchronizing the whole
system needs to choose very precisely the direction and amplitude of the
perturbations. This is very different for the van der Pol (Down) system where
regions of synchronization (underneath and overhead) and desynchronization
(on the right and on the left) are well defined and localized in the phase space.

II. MNESIC EVOCATION

Let us consider a network (neural or genetic) made of

several subsystems, like modules, identical or different, and

weakly or strongly connected: in Figure 5, M1 is an arbitrary

subnetwork and M2 is made of a simplified Hippocampus

one-layered network, with one Cyto-Architectural 1 (CA1)

and one Cyto-Architectural 3 (CA3) pyramidal neuron, one

Entorhino-Cortical neuron (EC) and one Inter-Neuron (IN), all

interconnected. If we simplify this module in a subnetwork of

size 2, we obtain a structure called negative regulon, with one

negative circuit and 2 positive self-loops. We will consider in

the following that this subnetwork is sequentially repeated in

a chain of modules, each of them being weakly linked to the

following at the level of the CA3 neurons (the Xi’s in Figure

6): CA3 neurons send axons with excitatory synapses to CA1

and CA3 neurons, these latter sending axons with excitatory

synapses to EC neurons through the Subiculum (SB), and

EC forming global inhibitory connections with CA3 neurons

through Inter-Neurones (IN) of Dentate Gyrus (DG) [9], [10],

[11], [12], [13].



Fig. 5. Modular structure, in which the module M1 is arbitrary and M2
represents Hippocampus subnetwork.

Fig. 6. Scheme of a sequential modular structure made of a chain of negative
regulons, where X1 represents the activity of CA3 and X2 the activity of CA1
(see anatomy of CA3, CA1, DG and SB in the cartouche)

The Wilson-Cowan system WC [3] used to simulate the

dynamics of a subnetwork represented by a negative regulon

(Figure 6) is given by 2n differential equations: ∀i = 1, ..., n,

dXi/dt = −Xi/a + tanh(bXi) − tanh(bYi) + kXi−1,

dYi/dt = −Yi/a + tanh(bXi) + tanh(bYi). This system

is closed to a Hopfield neural network, when b is positive

and large, and a is negative and large [14]. Trajectories and

isochrons of WC are represented in Figure 7, showing fast

(resp. slow) regions, i.e., zones where the flow runs fast (resp.

slow).

Fig. 7. (Up) Isochronal and trajectory landscape for the Wilson-Cowan
dynamics of a negative regulon, showing fast (resp. slow) regions, where the
velocity is high (resp. low). (Down) Fast (resp. Slow) synchronization regions
in dark colors (resp. bright colors) of the Wilson-Cowan oscillator obtained
by computing the maximum phase shift in response to perturbations.

When the system WC is stimulated through a perturbation S
translating all the initial conditions on the limit cycle C into a

fast region (Figure 8 and 9), then all the return trajectories

go to the same phase x1, provoking a synchronization of

all the activities Xi’s. In other terms, if the Xi’s before the

stimulation are dispatched uniformly on the limit cycle C,

then their sum denoted A(t) =
∑

i=1,...,nXi(t) is about zero,

because the positive values of the Xi’s are compensated by

the negative ones. If the Xi’s run in phase, A(t) behaves like

nXi(t) and can be detected for example by a Pet-scanner of a

functional MRI device (Figure 11). Some dynamical systems

like the PFK system are not symmetrical and have numerous

regions of slow synchronization as revealed by their isochron

fibration (fig. 2) and by their synchronization map (fig. 4). In

those cases, translating the system to these regions causes a

loss of the synchrony of the Xi’s.



Fig. 8. Synchronizing stimulation S translating the limit cycle C in a fast
region of the states space E

Fig. 9. Isochronal and trajectory landscape with perturbations translating
the limit cycle C either in a desynchronizing slow region (C1), or in a
synchronizing fast region (C2)

Fig. 10. The phase shift between the two isochrons containing the limit
cycle after translating with respect to amplitude of perturbation. Slow (resp.
fast) synchronization area are situated (qualitatively) for an amplitude below
(resp. above) 2.

If the coupling between the WC subnetworks is made

at the level of the CA3 neurons (whose activities are the

Xi’s) is weak (which correspond to a permanent translation

to slow synchronization areas 10), then a desynchronization

occurs (Figure 11-1), allowing the exit out the perseveration

behaviour (Figure 11-2). If the neuronal activity is noised, the

desynchronization obtained with a weak coupling is not perfect

(Figure 11-3), as well as the perseveration (Figure 11-4), both

behaviours exhibiting a small residual synchronized activity.

Fig. 11. Post-stimulation global activity A(t) of CA3 neurons (A(t) =∑
i=1,...,n

Xi(t)), with a weak deterministic intra-CA3 coupling showing

a fast desynchronization (1), without coupling showing a perseveration (2),
with a weak noised coupling showing a fast desynchronization followed by a
residual synchronization (3) and with noise without coupling showing a slow
desynchronization (4)

Fig. 12. Post-stimulation global activity A(t) of CA3 neurons (A(t) =
Σn

i=1
Xi(t)), with a weak deterministic intra-CA3 coupling showing a fast

desynchronization (left), and with a high deterministic intra-CA3 coupling
showing a slow desynchronization (right)

In case of synchronization, the global activity A(t) of the

CA3 neurons ”evokes” the common limit cycle attractor [15]

of the Xi’s and can be considered as the phenomenologic

result of the recall of a mnesic temporal pattern stored

in the network [16], [17]. If the succession of states to

be transiently evoked is only a part of this attractor, then

a fast desynchronization is needed, which is ensured by

a weak coupling (Figure 12). The richness of the stored

souvenirs comes from the number and the complexity

of the common attractors of the Xi’s. If their number

increases (e.g., from 1 to 2) as well their complexity (e.g.,

passing from the circular limit cycle coming from a fixed

configuration of focus type through a Hopf bifurcation, to



a chaotic behaviour through doubling period bifurcations),

then we can locally store and evoke complicated temporal

patterns coding for complex cognitive entities or serving

for moving objects detection in a complex scene [18]. Such

a bifurcations landscape can be simply obtained from the

simulation of a fully connected Hopfield network of size

16, involved in a learning process, as shown on Figure 13 [19].

Fig. 13. Bifurcations of the attractors of the dynamics (X1(t−1), X1(t)) for
the first of 16 neurons fully connected in a classical Hopfield neural network,
when a function W of its synaptic weights wij vary during a learning process,
showing alternance of chaotic and periodic behaviours

III. CONCLUSION

The places were the isochrons diverge (resp. converge) are

fast (resp. slow) synchronization regions. This allows us to

classify the phase space so as to determine the minimal or the

suitable strenght and direction of perturbation to have an ac-

ceptable phase synchronization. Synchronization corresponds

to an increase of the global activity of a population of coupled

oscillators. The resulting signal in a neural cortex becomes

measurable by fMRI. Such a synchronized signal reveals the

occurence of a conscious event like mnesic evovation. The

desynchronization of neurons is then ensured by a weak

coupling between oscillators, which in other term corresponds

to a permanent perturbation towards slow synchronization

regions. Then, the understanding of the phase synchronization

by analysing the phase space constitutes a powerful tool

for designing new storage systems based on populations of

coupled oscillators, as proposed in [20], and an advance in

the researches on the memory and mnesic evocation.
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