
HAL Id: hal-00511248
https://hal.science/hal-00511248

Submitted on 24 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal prefix codes for pairs of
geometrically-distributed random variables

Frédérique Bassino, Julien Clément, Gadiel Seroussi, Alfredo Viola

To cite this version:
Frédérique Bassino, Julien Clément, Gadiel Seroussi, Alfredo Viola. Optimal prefix codes for pairs of
geometrically-distributed random variables. IEEE Transactions on Information Theory, 2013, 59 (4),
pp.2375 - 2395. �10.1109/TIT.2012.2236915�. �hal-00511248�

https://hal.science/hal-00511248
https://hal.archives-ouvertes.fr

Optimal prefix codes for pairs of

geometrically-distributed random variables
Frédérique Bassino

LIPN UMR 7030
Université Paris 13 - CNRS, France

bassino@lipn.univ-paris13.fr

Julien Clément
GREYC UMR 6072

CNRS, Université de Caen, ENSICAEN, France
julien.clement@info.unicaen.fr

Gadiel Seroussi
HP Labs, Palo Alto, California and

Universidad de la República, Montevideo, Uruguay
gseroussi@ieee.org

Alfredo Viola
Universidad de la República, Montevideo, Uruguay, and
LIPN UMR 7030, Université Paris 13 - CNRS, France

viola@fing.edu.uy

Abstract

Optimal prefix codes are studied for pairs of independent, integer-valued symbols emitted by a source
with a geometric probability distribution of parameter q, 0<q<1. By encoding pairs of symbols, it is
possible to reduce the redundancy penalty of symbol-by-symbol encoding, while preserving the simplicity
of the encoding and decoding procedures typical of Golomb codes and their variants. It is shown that
optimal codes for these so-called two-dimensional geometric distributions are singular, in the sense that
a prefix code that is optimal for one value of the parameter q cannot be optimal for any other value of q.
This is in sharp contrast to the one-dimensional case, where codes are optimal for positive-length intervals
of the parameter q. Thus, in the two-dimensional case, it is infeasible to give a compact characterization
of optimal codes for all values of the parameter q, as was done in the one-dimensional case. Instead,
optimal codes are characterized for a discrete sequence of values of q that provide good coverage of the
unit interval. Specifically, optimal prefix codes are described for q = 2−1/k (k ≥ 1), covering the range
q ≥ 1

2 , and q = 2−k (k > 1), covering the range q < 1
2 . The described codes produce the expected

reduction in redundancy with respect to the one-dimensional case, while maintaining low complexity
coding operations.

This work was supported in part by ECOS project U08E02, and by PDT project 54/178 2006–2008.

I. INTRODUCTION

In 1966, Golomb [1] described optimal binary prefix codes for some geometric distributions over the

nonnegative integers, namely, distributions with probabilities p(i) of the form

p(i) = (1− q)qi , i ≥ 0,

for some real-valued parameter q, 0 < q < 1. In [2], these Golomb codes were shown to be optimal for all

geometric distributions. These distributions occur, for example, when encoding run lengths (the original

motivation in [1]), and in image compression when encoding prediction residuals, which are well-modeled

by two-sided geometric distributions. Optimal codes for the latter were characterized in [3], based on

some combinations and variants of Golomb codes. Codes based on the Golomb construction have the

practical advantage of allowing the encoding of a symbol i using a simple explicit computation on the

integer value of i, without recourse to nontrivial data structures or tables. This has led to their adoption

in many practical applications (cf. [4],[5]).

Symbol-by-symbol encoding, however, can incur significant redundancy relative to the entropy of the

distribution, even when dealing with sequences of independent, identically distributed random variables.

One way to mitigate this problem, while keeping the simplicity and low latency of the encoding and

decoding operations, is to consider short blocks of d>1 symbols, and use a prefix code for the blocks.

In this paper, we study optimal prefix codes for pairs (blocks of length d=2) of independent, identically

distributed geometric random variables, namely, distributions on pairs of nonnegative integers (i, j) with

probabilities of the form

P (i, j) = p(i)p(j) = (1− q)2qi+j i, j ≥ 0. (1)

We refer to this distribution as a two-dimensional geometric distribution (TDGD), defined on the alphabet

of integer pairsA = { (i, j) | i, j ≥ 0 }. For succinctness, we denote a TDGD of parameter q by TDGD(q).

Aside from the mentioned practical motivation, the problem is of intrinsic combinatorial interest. It

was proved in [6] (see also [7]) that, if the entropy1 −∑i≥0 P (i) logP (i) of a distribution over the

nonnegative integers is finite, optimal codes exist and can be obtained, in the limit, from Huffman codes

for truncated versions of the alphabet. However, the proof does not give a general way for effectively

constructing optimal codes, and in fact, there are few families of distributions over countable alphabets

for which an effective construction is known [8][9]. An algorithmic approach to building optimal codes is

presented in [9], which covers geometric distributions and various generalizations. The approach, though,

is not applicable to TDGDs, as explicitly noted in [9], and, to the best of our knowledge, no general

constructions of optimal codes for TDGDs have been reported in the literature (except for the case q = 1
2 ,

which is trivial, cf. also [10]).

Some characteristic properties of the families of optimal codes for geometric and related distributions

in the one-dimensional case turn out not to hold in the two-dimensional case. Specifically, the optimal

1log x and lnx will denote, respectively, the base-2 and the natural logarithm of x.

2

codes described in [1] and [3] correspond to binary trees of bounded width, namely, the number of

codewords of any given length is upper-bounded by a quantity that depends only on the code parameters.

Also, the family of optimal codes in each case partitions the parameter space into regions of positive

volume, such that all the corresponding distributions in a region admit the same optimal code. These

properties do not hold in the case of optimal codes for TDGDs. In particular, optimal codes for TDGDs

turn out to be singular, in the sense that if a code Tq is optimal for TDGD(q), then Tq is not optimal

for TDGD(q′) for any parameter value q′ 6= q. This result is presented in Section III. (A related but

somewhat dual problem, namely, counting the number of distinct trees that can be optimal for a given

source over a countable alphabet, is studied in [11].)

An important consequence of this singularity is that any set containing optimal codes for all values

of q would be uncountable, and, thus, it would be infeasible to give a compact characterization of such

a set, as was done in [1] or [3] for one-dimensional cases.2 Thus, from a practical point of view, the

best we can expect is to characterize optimal codes for countable sequences of parameter values. In this

paper, we present such a characterization, for a sequence of parameter values that provides good coverage

of the range of 0<q<1. Specifically, in Section IV, we describe the construction of optimal codes for

TDGD(q) with q = 2−1/k for integers k ≥ 1,3 covering the range q ≥ 1
2 , and in Section V, we do so

for TDGD(q) with q = 2−k for integers k > 1, covering the range q < 1
2 . In the case q < 1

2 , we observe

that, as k → ∞ (q → 0), the optimal codes described converge to a limit code, in the sense that the

codeword for any given pair (a, b) remains the same for all k > k0(a, b), where k0 is a threshold that can

be computed from a and b (this limit code is also mentioned in [10]). The codes in both constructions

are of unbounded width. However, they are regular [12], in the sense that the corresponding infinite trees

have only a finite number of non-isomorphic whole subtrees (i.e., subtrees consisting of a node and all of

its descendants). This allows for deriving recursions and explicit expressions for the average code length,

as well as feasible encoding/decoding procedures.

Practical considerations, and the redundancy of the new codes, are discussed in Section VI, where we

present redundancy plots and comparisons with symbol-by-symbol Golomb coding and with the optimal

code for a TDGD for each plotted value of q (optimal average code lengths for arbitrary values of q

were estimated numerically to sufficiently high precision). We also derive an exact expression for the

asymptotic oscillatory behavior of the redundancy of the new codes as q → 1. The study confirms the

redundancy gains over symbol-by-symbol encoding with Golomb codes, and the fact that the discrete

sequence of codes presented provides a good approximation to the full class of optimal codes over the

range of the parameter q.

Our constructions and proofs of optimality rely on the technique of Gallager and Van Voorhis [2], which

was also used in [3]. As noted in [2], most of the work and ingenuity in applying the technique goes

2Loosely, by a compact characterization we mean one in which each code is characterized by a finite number of finite
parameters, which drive the corresponding encoding/decoding procedures.

3These are the same distributions for which optimality of Golomb codes was originally established in [1].

3

into discovering appropriate “guesses” of the basic components on which the construction iterates, and in

describing the structure of the resulting codes. With the correct guesses, the proofs are straightforward.

The technique of [2] is reviewed in Section II, where we also introduce some definitions and notation

that will be useful throughout the paper.

II. PRELIMINARIES

A. Definitions

We are interested in encoding the alphabet A of integer pairs (i, j), i, j ≥ 0, using a binary prefix code

C. As usual, we associate C with a rooted (infinite) binary tree, whose leaves correspond, bijectively, to

symbols in A, and where each branch is labeled with a binary digit. The binary codeword assigned to a

symbol is “read off” the labels on the path from the root to the corresponding leaf. The depth of a node

x in a tree T , denoted depthT (x), is the number of branches on the path from the root to x. By extension,

the depth (or height) of a finite tree is defined as the maximal depth of any of its nodes. A level of T

is the set of all nodes at a given depth ` (we refer to this set as level `). Let nT` denote the number of

leaves in level ` of T (we will sometimes omit the superscript T when clear from the context). We refer

to the sequence {nT` }`≥0 as the profile of T . Two trees will be considered equivalent if their profiles

are identical. Thus, for a code C, we are only interested in its tree profile, or, equivalently, the length

distribution of its codewords. Given the profile of a tree, and an ordering of A in decreasing probability

order, it is always possible to define a canonical tree (say, by assigning leaves in alphabetical order) that

uniquely defines a code for A. Therefore, with a slight abuse of terminology, we will not distinguish

between a code and its corresponding tree (or profile), and will refer to the same object sometimes as a

tree and sometimes as a code. All trees considered in this paper are binary and, unless noted otherwise,

full, i.e., every node in the tree is either a leaf or the parent of two children.4 A tree is balanced (or

uniform) if it has depth k, and 2k leaves, for some k ≥ 0. We denote such a tree by Uk. We will restrict

the use of the term subtree to refer to whole subtrees of T , i.e., subtrees that consist of a node and all

of its descendants in T .

We call s(i, j) = i + j the signature of (i, j) ∈ A. For a given signature s = s(i, j), there are s+1

pairs with signature s, all with the same probability, P (s)=(1− q)2qs, under the distribution (1) on A.

Given a code C, symbols of the same signature can be freely permuted without affecting the properties

of interest to us (e.g., average code length). Thus, for simplicity, we can also regard the correspondence

between leaves and symbols as one between leaves and elements of the multiset

Â = {0, 1, 1, 2, 2, 2, . . . , s, . . . , s︸ ︷︷ ︸
s+1 times

, . . . }. (2)

4We use the usual “family” terminology for trees: nodes have children, parents, ancestors and descendants. We also use
the common convention of visualizing trees with the root at the top and leaves at the bottom. Thus, ancestors are “up,” and
descendants are “down.” Full trees are sometimes referred to in the literature as complete.

4

In constructing the tree, we do not distinguish between different occurrences of a signature s; for actual

encoding, the s+1 leaves labeled with s are mapped to the symbols (0, s), (1, s−1), . . . , (s, 0) in some

fixed order. In the sequel, we will often ignore normalization factors for the signature probabilities P (s)

(in cases where normalization is inconsequential), and will use instead weights w(s) = qs.

Consider a tree (or code) T for A. Let U be a subtree of T , and let s(x) denote the signature associated

with a leaf x of U . Let F (U) denote the set of leaves of U , referred to as its fringe. We define the weight,

wq(U), of U as

wq(U) =
∑

x∈F (U)

qs(x) ,

and the cost, Lq(U), of U as

Lq(U) =
∑

x∈F (U)

depthU (x)qs(x)

(the subscript q may be omitted when clear from the context). When U = T , we have wq(T) = (1−q)−2,

and (1−q)2Lq(T) is the average code length of T . A tree T is optimal for TDGD(q) if Lq(T) ≤ Lq(T ′)
for any tree T ′.

B. Some basic objects and operations

For α ≥ 1, we say that a finite source with probabilities p1 ≥ p2 ≥ · · · ≥ pN , N ≥ 2, is α-uniform

if p1/pN ≤ α. When α = 2, the source is called quasi-uniform. An optimal code for a quasi-uniform

source on N symbols consists of 2dlogNe−N codewords of length blogNc, and 2N−2dlogNe codewords

of length dlogNe, the shorter codewords corresponding to the more probable symbols [2]. We refer to

such a code (or the associated tree) also as quasi-uniform, denote it by QN , and denote by QN (i) the

codeword it assigns to the symbol associated with pi, 1≤i≤N . For convenience, we define Q1 as a null

code, which assigns code length zero to the single symbol in the alphabet. Clearly, for integers k ≥ 0,

we have Q2k = Uk. The fringe thickness of a finite tree T , denoted fT , is the maximum difference

between the depths of any two leaves of T . Quasi-uniform trees T have fT ≤ 1, while uniform trees

have fT = 0. In Section IV we present a characterization of optimal codes of fringe thickness two for

4-uniform distributions, which generalizes the quasi-uniform case. This generalization will help in the

characterization of the optimal codes for TDGD(q), q = 2−1/k. The concatenation of two trees T and

U , denoted T · U , is obtained by attaching a copy of U to each leaf of T . Regarded as a code, T · U
consists of all the possible concatenations t · u of a word t ∈ T with one u ∈ U .

The Golomb code of order k ≥ 1 [1], denoted Gk, encodes an integer i by concatenating Qk(i mod k)

with a unary encoding of bi/kc (e.g., bi/kc ones followed by a zero). The first-order Golomb code G1

is just the unary code, whose corresponding tree consists of a root with one leaf child on the branch

labeled ’0’, and, recursively, a copy of G1 attached to the child on the branch labeled ’1’. Thus, we have

Gk = Qk ·G1.

5

C. The Gallager-Van Voorhis method

When proving optimality of infinite codes for TDGDs, we will rely on the method due to Gallager

and Van Voorhis [2], which is briefly outlined below, adapted to our terminology.

• Define a sequence of finite reduced alphabets (Ss)∞s=−1. The reduced alphabet Ss is a multiset

containing the signatures 0, 1, . . . , s (with multiplicities as in (2)), and a finite number of (possibly

infinite) subsets of Â, referred to as virtual symbols, which form a partition of the multiset of

signatures strictly greater than s. We naturally associate with each virtual symbol a weight equal to

the sum of the weights of the signatures it contains.

• Verify that the sequence (Ss)∞s=−1 is compatible with the bottom-up Huffman procedure. This means

that after a number of merging steps of the Huffman algorithm on the reduced alphabet Ss, one gets

Ss′ with s′ < s. Proceed recursively, until s′ = −1.

• Apply the Huffman algorithm to S−1.

While the sequence of reduced alphabets Ss can be seen as evolving “bottom-up,” the infinite code

C constructed results from a “top-down” sequence of corresponding finite codes Cs, which grow with s

and unfold by recursive reversal of the mergers in the Huffman procedure. One shows that the sequence

of codes (Cs)s≥−1 converges to the infinite code C, in the sense that for every i ≥ 1, with codewords of

Cs consistently sorted, the ith codeword of Cs is eventually constant when s grows, and equal to the ith

codeword of C. A corresponding convergence argument on the sequence of average code lengths then

establishes the optimality of C.
This method was successfully applied to characterize infinite optimal codes in [2] and [3]. While the

technique is straightforward once appropriate reduced alphabets are defined, the difficulty in each case

is to guess the structure of these alphabets. In a sense, this is a self-bootstrapping procedure, where one

needs to guess the structure of the codes sought, and use that structure to define the reduced alphabets,

which, in turn, serve to prove that the guess was correct. We will apply the Gallager-Van Voorhis method

to prove optimality of codes for certain families of TDGDs in Sections IV and V. In each case, we will

emphasize the definition and structure of the reduced alphabets, and show that they are compatible with

the Huffman procedure. We will omit the discussion on convergence, and formal induction proofs, since

the arguments are essentially the same as those of [2] and [3].

III. SINGULARITY OF OPTIMAL CODES FOR TDGDS

In the case of one-dimensional geometric distributions, the unit interval (0, 1) is partitioned into an

infinite sequence of semi-open intervals (qm−1, qm], m ≥ 1, such that the Golomb code Gm is optimal

for all values of the distribution parameter q in the interval qm−1 < q ≤ qm. Specifically, for m ≥ 0, qm
is the (unique) nonnegative root of the equation qm + qm+1 − 1 = 0 [2]. Thus, we have q0 = 0, q1 =

(
√

5 − 1)/2 ≈ 0.618, q2 ≈ 0.755, etc. A similar property holds in the case of two-sided geometric

distributions [3], where the two-dimensional parameter space is partitioned into a countable sequence of

patches such that all the distributions with parameter values in a given patch admit the same optimal

code. In this section, we prove that, in sharp contrast to these examples, optimal codes for TDGDs are

6

singular, in the sense that a code that is optimal for a certain value of the parameter q cannot be optimal

for any other value of q. More formally, we present the following result.

Theorem 1: Let q and q1 be real numbers in the interval (0, 1), with q 6= q1, and let Tq be an optimal

tree for TDGD(q). Then, Tq is not optimal for TDGD(q1).

We will prove Theorem 1 through a series of lemmas, which will shed more light on the structure of

optimal trees for TDGDs.

Lemma 1: Leaves with a given signature s in Tq are found in at most two consecutive levels of Tq.
Proof: Let d0 and d1 denote, respectively, the minimum and maximum depths of a leaf with signature

s in Tq. Assume, contrary to the claim of the lemma, that d1 > d0 + 1. We transform Tq into a tree T ′q as

follows. Pick a leaf with signature s at level d0, and one at level d1. Place both signatures s as children

of the leaf at level d0, which becomes an internal node. Pick any signature s′ from a level strictly deeper

than d1, and move it to the vacant leaf at level d1. Tracking changes in the code lengths corresponding

to the affected signatures, and their effect on the cost, we have

Lq(T ′q) = Lq(Tq) + qs(d0 − d1 + 2)− qs′δ, (3)

where δ is a positive integer. By our assumption, the quantity multiplying qs in (3) is non-positive, and

we have Lq(T ′q) < Lq(Tq), contradicting the optimality of Tq. Therefore, we must have d1 ≤ d0 + 1.

A gap in a tree T is a non-empty set of consecutive levels containing only internal nodes of T , and

such that both the level immediately above the set and the level immediately below it contain at least

one leaf each. The corresponding gap size is defined as the number of levels in the gap. It follows

immediately from Lemma 1 that in an optimal tree, if the largest signature above a gap is s, then the

smallest signature below the gap is s+ 1.

Lemma 2: Let Tq be an optimal tree for TDGD(q), and let k = 1+blog q−1c. Then, for all sufficiently

large s, the size g of any gap between leaves of signature s and leaves of signature s+ 1 in Tq satisfies

g ≤ k − 1.

Proof: Assume that an optimal tree Tq is given.

Case q > 1
2 . In this case, k = 1, and the claim of the lemma means that there can be no gaps in the tree

from a certain level on. Assume that there is a gap between level d with signatures s, and level d′ with

signatures s+ 1, d′ − d ≥ 2. By Lemma 1, all signatures s+ 1 are either in level d′ or in level d′ + 1.

By rearranging nodes within levels, we can assume that there is a subtree of Tq of height at most two,

rooted at a node v of depth d′− 1 ≥ d+ 1, and containing at least two leaves of signature s+ 1. Hence,

the weight of the subtree satisfies

w(v) ≥ 2qs+1 > qs , (4)

and switching a leaf s on level d with node v on level d′ − 1 decreases the cost of Tq, in contradiction

with its optimality (when switching nodes, we carry also any subtrees rooted at them). Therefore, there

can be no gap between the level containing signatures s and s+ 1, as claimed. Notice that this holds for

all values of s, regardless of level.

7

Fig. 1. Tree transformations.

Case q = 1
2 . In this case, the TDGD is dyadic, the optimal profile is uniquely determined, and it and has

no gaps (the optimal profile is that of G1 ·G1).

Case q < 1
2 . Assume that s ≥ 2k − 2, and that there is a gap of size g between signatures s at level

d, and signatures s + 1 at level d + g + 1. Signatures s + 1 may also be found at level d + g + 2. By

a rearrangement of nodes that preserves optimality, and by our assumption on s, we can assume that

there is a subtree of Tq rooted at a node v at level d+ g + 1− k, and containing at least 2k leaves with

signature s+ 1, including some at level d+ g + 1. Thus, we have

w(v) ≥ 2kqs+1 > qs = w(s), (5)

the second inequality following from the definition of k. Therefore, we must have d + g + 1 − k ≤ d,

or equivalently, g ≤ k − 1, for otherwise exchanging v and s would decrease the cost, contradicting the

optimality of Tq.
Next, we bound the rate of change of signature magnitudes as a function of depth in an optimal tree.

Together with the bound on gap sizes in Lemma 2, this will lead to the proof of Theorem 1. It follows

from Lemma 1 that for every signature s ≥ 0 there is a level of Tq containing at least one half of the

s+1 leaves with signature s. We denote the depth of this level by L(s) (with some fixed policy for ties).

Lemma 3: Let s be a signature, and ` ≥ 2 a positive integer such that s ≥ 2`+2 − 1, and such that

L(s′) = L(s) + ` for some signature s′ > s. Then, in an optimal tree Tq for TDGD(q), we have

`− 2

log q−1
≤ s′ − s ≤ `+ 1

log q−1
. (6)

Proof: Since s′ > s ≥ 2`+2 − 1 > 2`−1 − 1, by the definition of L(s′), there are more than 2`−2

leaves with signature s′ at level L(s′). We perform the following transformation (depicted in Figure 1(A))

on the tree Tq, yielding a modified tree T ′q : choose a leaf with signature s at level L(s), and graft to it a

tree with a left subtree consisting of a leaf with signature s (“moved” from the root of the subtree), and

8

a right subtree that is a balanced tree of height `− 2 with 2`−2 leaves of signature s′. These signatures

come from 2`−2 leaves at level L(s′) of Tq, which are removed. It is easy to verify that the modified tree

T ′q defines a valid, albeit incomplete, code for the alphabet of a TDGD. Next, we estimate the change,

∆, in cost due to this transformation. We have

∆ = Lq(T ′q)− Lq(Tq) ≤ qs − 2`−2qs
′
.

The term qs is due to the increase, by one, in the code length for the signature s, which causes an

increase in cost, while the term −2`−2qs
′

is due to the decrease in code length for 2`−2 signatures s′,

which produces a decrease in cost. Since Tq is optimal, we must have ∆ ≥ 0, namely,

0 ≤ qs − 2`−2qs
′

= qs
(

1− 2`−2qs
′−s
)
,

and thus, 2`−2qs
′−s ≤ 1, from which the lower bound in (6) follows. (Note: clearly, the condition

s ≥ 2`−1 − 1 would have sufficed to prove the lower bound; the stricter condition of the lemma will be

required for the upper bound, and was adopted here for uniformity.)

To prove the upper bound, we apply a different modification to Tq. Here, we locate 2`+1 signatures

s′ at level L(s′), and rearrange the level so that these signatures are the leaves of a balanced tree of

height ` + 1, rooted at depth L(s) − 1. The availability of the required number of leaves at level L(s′)

is guaranteed by the conditions of the lemma. We then exchange the root of this subtree with a leaf of

signature s at level L(s). The situation, after the transformation, is depicted in Figure 1(B). The resulting

change in cost is computed as follows.

∆ = Lq(T ′q)− Lq(Tq) ≤ −qs + 2`+1qs
′
.

As before, we must have ∆ ≥ 0, from which the upper bound follows.

We are now ready to prove Theorem 1.

Proof of Theorem 1: We assume, without loss of generality, that q1 > q, and we write q1 = q(1+ε),

0 < ε < q−1 − 1. In Tq, choose a sufficiently large signature s (the meaning of “sufficiently large” will

be specified in the sequel), and a node of signature s at level L(s). Let s′ > s be a signature such that

`
∆
= L(s′) − L(s) ≥ 2. We apply the transformation of Figure 1(A) to Tq, yielding a modified tree T ′q .

We claim that when weights are taken with respect to TDGD(q1), and with an appropriate choice of the

parameter `, T ′q will have strictly lower cost than Tq. Therefore, Tq is not optimal for TDGD(q1). To

prove the claim, we compare the costs of Tq and T ′q with respect to TDGD(q1). Reasoning as in the

proof of the lower bound in Lemma 3, we write

∆ = Lq1(T ′q)− Lq1(Tq) ≤ qs1 − 2`−2qs
′

1

= qs1

(
1− 2`−2qs

′−s
1

)
≤ qs1

(
1− 2`−2q

`+1

log q−1

1

)
, (7)

9

where the last inequality follows from the upper bound in Lemma 3. It follows from (7) that we can

make ∆ negative if

`− 2 +
`+ 1

log q−1
log q1 > 0.

Writing q1 in terms of q and ε, and after some algebraic manipulations, the above condition is equivalent

to

` > 3
log q−1

log(1 + ε)
− 1 . (8)

Hence, choosing a large enough value of `, we get ∆ < 0, and we conclude that the tree Tq is not optimal

for TDGD(q1), subject to an appropriate choice of s, which we discuss next.

The argument above relies strongly on Lemma 3. We recall that in order for this lemma to hold, `

and the signature s must satisfy the condition s ≥ 2`+2 − 1. Now, it could happen that, after choosing `

according to (8) and then s according to the condition of Lemma 3, the level L(s) + ` does not contain

2`−2 signatures s′ as required (e.g., when the level is part of a gap). This would force us to increase `,

which could then make s violate the condition of the lemma. We would then need to increase s, and

re-check `, in a potentially vicious circle. The bound on gap sizes of Lemma 2 allows us to avoid this

trap. The bound in the lemma depends only on q and thus, for a given TDGD, it is a constant, say gq.

Thus, first, we choose a value `0 satisfying the constraint on ` in (8). Then, we choose s ≥ 2`0+gq+4.

Now, we try ` = `0, `0 + 1, `0 + 2, . . . , in succession, and check whether level L(s) + ` contains enough

of the required signatures. By Lemmas 1 and 2, an appropriate level L(s′) will be found for some

` ≤ `0 + gq + 2. For such a value of `, we have 2`+2 − 1 ≤ 2`0+gq+4 − 1 < s, satisfying the condition

of Lemma 3. This condition, in turn, guarantees also that there are at least 2`−2 signatures s′ at L(s′),

as required.

IV. OPTIMAL CODES FOR TDGDS WITH PARAMETERS q = 2−1/k

It follows from the results of Section III that it is infeasible to provide a compact description of

optimal codes for TDGDs covering all values of the parameter q, as can be done with one-dimensional

geometric distributions [1], [2] or their two-sided variants [3]. Instead, we describe optimal prefix codes

for a discrete sequence of values of q, which provide good coverage of the parameter range. In this

section, we study optimal codes for TDGDs with parameters q = 2−1/k for integers k ≥ 1, i.e., q ≥ 1
2 ,

while in Section V we consider parameters of the form q = 2−k, k > 1, covering the range q < 1
2 (the

two parameter sequences coincide at k = 1, q = 1
2 , which we choose to assign to the case covered in

this section).

A. Initial characterization of optimal codes for q = 2−1/k

The following theorem characterizes optimal codes for TDGDs of parameter q = 2−1/k, k ≥ 1, in

terms of unary codes and Huffman codes for certain finite distributions. In Subsection IV-C we further

refine the characterization by providing explicit descriptions of these Huffman codes.

10

(A) r T

J
J

T1 T2

(B) r T 2
g

J
J

gT 2
g gT 1

g

Fig. 2. Graphical representations for trees with associated weights.

Theorem 2: An optimal prefix code Ck for TDGD(q), with q = 2−1/k, k ≥ 1, is given by

Ck(i, j) = Tk(i mod k, j mod k) ·G1(
⌊
i
k

⌋
) ·G1(

⌊
j
k

⌋
), (9)

where G1 is the unary code, and Tk, referred to as the top code, is an optimal code for the finite source

Âk = {(i, j) | 0 ≤ i, j < k} with weights w(i, j) = qi+j . (10)

Remarks.

1) Theorem 2 can readily be generalized to blocks of d > 2 symbols. For simplicity, we present the

proof for d = 2.

2) Notice that Ck(i, j) concatenates the “unary” parts of the codewords for i and j in a Golomb code

of order k (as if encoding i and j separately), but encodes the “binary” part jointly by means of

Tk, which, in general, does not yield the concatenation of the respective “binary” parts Qk(i) and

Qk(j). However, when k = 1 and k = 2, Ck is equivalent to the full concatenation Gk ·Gk. When

k = 1, the code Tk is void, and C1 = G1 ·G1. The parameter in this case is q = 1
2 , the geometric

distribution is dyadic, and the code redundancy is zero. When k = 2, we have q = 1/
√

2 and the

finite source Âk has four symbols with respective weights { 1, 1/
√

2, 1/
√

2, 1/2 }. This source is

quasi-uniform, and, therefore, it admits Q4 as an optimal tree. This is a balanced tree of depth two,

which can also be written as Q4 = Q2 ·Q2. Thus, we have C2 = G2 ·G2. Later on in the section,

in Corollary 1, we will prove that this situation will not repeat for larger values of k: the “symbol

by symbol” code Gk ·Gk is strictly suboptimal for TDGD(2−1/k) for k > 2.

In deriving the proof of Theorem 2 and in subsequent sections, we shall make use of the following

notations to describe and operate on some infinite trees with weights associated to their leaves. We denote

by v the trivial tree consisting of a single node (leaf) of weight v. Given a tree T and a scalar g, gT

denotes the tree T with all its weights multiplied by g. Given trees T1 and T2, the graphic notation

in Figure 2(A) represents a tree T consisting of a root node with T1 as its left subtree and T2 as its

right subtree, each contributing its respective multiset of leaf weights. As a multiset of weights, T is the

(multiset) union of T1 and T2. We will also use the notation [T1 T2] to represent the same multiset but

with a different graph structure, namely, the forest consisting of the separate trees T1 and T2. We denote

by T 1
g the tree of a unary code whose leaf at each depth i ≥ 1 has weight gi, and by T 2

g the structure

in Figure 2(B). It is readily verified that T 2
g corresponds to the concatenation of two unary codes, with

each of the i − 1 leaves at depth i ≥ 2 of T 2
g carrying weight gi. In particular, as shown in Figure 3,

11

q−2T 2
q

q−1T 2
q q−1T 1

q

q0T 2
q q0T 1

q

q1T 2
q q1T 1

q

q2T 2
q q2T 1

q

q3T 2
q

q3T 1
q

Fig. 3. The tree q−2T 2
q .

the tree q−2T 2
q corresponds to the optimal tree for the dyadic TDGD with q = 1

2 , where each leaf is

weighted according to the signature of the symbol it encodes.

The following lemma follows directly from the above definitions, applying elementary symbolic

manipulations on geometric sums.

Lemma 4: For any real number g, 0 < g < 1, we have w(T 2
g) = w(T 1

g)2 =

(
g

1− g

)2

. In particular,

if q = 2−1/k, we have w(T 2
qk) = w(T 1

qk) = 1.

We rely on this observation in the construction and proof of Theorem 2 below. In the proof, when

defining virtual symbols, we further overload notation and regard trees of the form qrT dqk also as multisets

of signatures, with a signature s for each leaf of the tree with weight qs.

Proof of Theorem 2: We use the Gallager-Van Voorhis construction [2]. For s ≥ 0, define the

reduced alphabet

Rs = Hs ∪ Fs,

where

Hs = {i ∈ Â | i < s}

and

Fs =

k−1⋃
i=0

{qs+iT 2
qk︸ ︷︷ ︸

k times

, qs+iT 1
qk︸ ︷︷ ︸

s+k+i+1
times

, s+ i︸︷︷︸
s+i+1
times

}.

The multisets qs+iT 1
qk and qs+iT 2

qk play the role of virtual symbols in the reduced alphabets (we omit

the qualifier ‘virtual’ in the sequel). It is readily verified that all the weights in Fs are smaller than the

weights in Hs. Since q = 2−1/k, by Lemma 4, we have w(qs+iT 2
qk) = w(qs+iT 1

qk) = w(s + i). Thus,

we can apply steps of the Huffman procedure to Fs in such way that the s+ i+ 1 signatures s+ i are

merged with s+ i+ 1 symbols qs+iT 1
qk , resulting in s+ i+ 1 trees qs+i−kT 1

qk . The remaining k symbols

qs+iT 1
qk can be merged with the k symbols qs+iT 2

qk , resulting in k trees qs+i−kT 2
qk when i ranges from

k − 1 down to 0. After this sequence of Huffman mergings, Rs is transformed into Rs−k, as long as

12

s ≥ 0. Starting from s = tk for some t > 0, the procedure eventually leads to

R−k = ∪k−1
i=0 {qi−kT 2

qk︸ ︷︷ ︸
k

times

, qi−kT 1
qk︸ ︷︷ ︸

i+1
times

} .

Formally, our reduced source Rtk, t ∈ Z, corresponds to St in our description of the Gallager-Van

Voorhis construction in Section II-C. Thus, the iteration leads to S−1, as called for in the construction.

Now, each symbol qi−kT 1
qk in S−1 can be merged with a symbol qi−kT 2

qk , leading, by the definition of

T 2
g (see Figure 2(B)), to a reduced source

ST = {q−2kT 2
qk︸ ︷︷ ︸

1
time

, q−2k+1T 2
qk︸ ︷︷ ︸

2
times

, q−2k+2T 2
qk︸ ︷︷ ︸

3
times

, . . . , q−k−1T 2
qk︸ ︷︷ ︸

k
times

, q−kT 2
qk︸ ︷︷ ︸

k−1
times

, . . . , q−3T 2
qk︸ ︷︷ ︸

2
times

, q−2T 2
qk︸ ︷︷ ︸

1
time

}.

We now take a common “factor” q−2kT 2
qk from each symbol of ST . By the discussion of Figures 2 and 3,

this factor corresponds to a copy of G1 ·G1, with weights that get multiplied by qk every time the depth

increases by 1. After the common factor is taken out, the source ST becomes the source Âk of (10), to

which the Huffman procedure needs to be applied to complete the code construction. Thus, the optimal

code has the claimed structure.

To make the result of Theorem 2 completely explicit, it remains to characterize an optimal prefix code

for the finite source Âk of (10). The following lemma presents some basic properties of Âk and its

optimal trees. Recall the definitions of α-uniformity and fringe thickness from Section II.

Lemma 5: The source Âk is 4-uniform, and it has an optimal tree T of fringe thickness fT ≤ 2.

Proof: It follows from (10) and the relation qk = 1
2 that the maximal ratio between weights of

symbols in Âk is q−2k+2 = 4q2 < 4. Hence, Âk is 4-uniform. The claim on the optimal tree holds

trivially for k ≤ 2, in which case the optimal tree for Âk is uniform. To prove the claim for k > 2,

consider the multiset Â∗k ⊆ Âk consisting of the lightest 2dk(k−1)
4 e signatures in Âk, i.e.,

Â∗k = K ∪ { k, k, . . . , k︸ ︷︷ ︸
k−1 times

, k+1, . . . , k+1︸ ︷︷ ︸
k−2 times

, . . . , 2k−3, 2k−3, 2k−2 } ,

where K = {k−1} if k mod 4 ∈ {2, 3}, or K is empty otherwise. The sum of the two smallest weights

of signatures in Â∗k satisfies

w(2k−2) + w(2k−3) = q2k−2 + q2k−3 = q2k−2(1 + q−1) =
1

2
(1 + q−1)qk−2 > w(k − 2) .

The sum of the two largest weights in Â∗k, on the other hand, is either q0 if k mod 4 ∈ {0, 1}, or
1
2(1 + q−1) otherwise. Therefore, if the Huffman procedure is applied to Âk, every pair of consecutive

elements of Â∗k will be merged, without involving a previously merged pair. The ratio of the largest

to the smallest weight remaining after these mergings is at most 1
2(1+q−1)/qk−1 = q+1 < 2. Hence,

the resulting source is quasi-uniform and has a quasi-uniform optimal tree. Therefore, completing the

Huffman procedure for Âk results in an optimal tree of fringe thickness at most two.

13

To complete the explicit description of an optimal tree for Âk, we will rely on a characterization of

trees T with fT ≤ 2 that are optimal for 4-uniform sources.5 This characterization is presented next.

B. Optimal trees with fT ≤ 2 for 4-uniform sources

To proceed as directly as possible to the construction of an optimal tree for Âk, we defer the proofs

of results in this subsection to Appendix A. We start by characterizing all the possible profiles for a tree

T with N leaves, and fT ≤ 2. Let T be such a tree, let m = dlogNe, and denote by n` the number of

leaves at depth ` in T .

Lemma 6: The profile of T satisfies n` = 0 for ` < m−2 and ` > m+1, and either nm−2 = 0 or

nm+1 = 0 (or both, when fT ≤ 1).

It follows from Lemma 6 that T is fully characterized by the quadruple (nm−2, nm−1, nm, nm+1), with

either nm−2 = 0 or nm+1 = 0. We say T is long if nm−2 = 0, and that T is short if nm+1 = 0. Defining

M = m− σ, where σ = 1 if T is short, or 0 if it is long, a tree with fT ≤ 2 can be characterized more

compactly by a triple of nonnegative integers NT = (nM−1, nM , nM+1). We will also refer to this triple

as the (compact) profile of T , with the associated parameters N,m, and σ understood from the context.

Notice that when nm−2 = nm+1 = 0, T is the quasi-uniform tree QN , and (abusing the metaphor), it is

considered both long and short (i.e., it has representations with both σ = 0 and σ = 1).

Lemma 7: Let T be a tree with fT ≤ 2. For σ ∈ {0, 1} and M = m− σ, define

cσ = (N − 2M)σ and cσ =

⌊
2N − 2M

3

⌋
. (11)

Then, T is equivalent to one of the trees Tσ,c defined by the profiles

NTσ,c = (nM−1, nM , nM+1) =
(

2M −N + c, 2N − 2M − 3c, 2c
)
, σ ∈ {0, 1}, cσ ≤ c ≤ cσ . (12)

Remarks.

1) Equation (12) characterizes all trees with N leaves and fT ≤ 2 in terms of the parameters σ and c.

The parameter c has different ranges depending on σ: we have N − 2m−1 ≤ c ≤ b2N−2m−1

3 c when

σ = 1, and 0 ≤ c ≤ b2N−2m

3 c when σ = 0. The use of the parametrized quantities M, cσ, and cσ
will allow us to treat the two ranges in a unified way in most cases. Also, notice that T1, c 1

and

T0, c 0
represent the same tree, corresponding, respectively, to interpretations of the quasi-uniform

tree QN as short or long.

2) The parameter c represents the number of internal (non-leaf) nodes at level M of T . An increase

of c by one corresponds to moving a pair of sibling leaves previously rooted in level M − 1 to a

new parent in level M (thereby increasing the number of internal nodes at that level by one). The

number of leaves at level M decreases by three, and the numbers of leaves at levels M − 1 and

M + 1 increase by one and two, respectively.

5Notice that not every 4-uniform source admits an optimal tree with fT ≤ 2 (although the ones of interest in this section do).
For example, an optimal tree for the 4-uniform source with probabilities 1

10
(4, 3, 1, 1, 1) must have fT > 2.

14

Consider now a distribution on N symbols, with associated vector of probabilities (or weights) p =

(p1, p2, . . . , pN), p1 ≥ p2 ≥ · · · ≥ pN . Let Lσ,c denote the average code length of Tσ,c under p (with

shorter codewords naturally assigned to larger weights), and let

Dσ,c = Lσ,c − Lσ,c−1, σ ∈ {0, 1}, cσ < c ≤ cσ . (13)

It follows from these definitions, and the structure of the profile (12) (see also Remark 2 above), that

Dσ,c = pN−2c+1 + pN−2c+2 − p2M−N+c , σ ∈ {0, 1}, cσ < c ≤ cσ, (14)

A useful interpretation of (14) follows directly from the profile (12): for Tσ,c, Dσ,c is the difference

between the sum of the two heaviest weights on level M + 1 and the lightest weight on level M − 1.

Let sg(x) be defined as −1, 0, or 1, respectively, for negative, zero, or positive values of x, and consider

the following sequence (recalling that c 0 = 0):

s = −sg(D1,c1),−sg(D1,c1−1), . . . ,−sg(D1,c 1+1), sg(D0,1), sg(D0,2), . . . , sg(D0,c0) . (15)

Lemma 8: The sequence s is non-decreasing.

The definition of the sequence s induces a total ordering of the pairs (σ, c) (and, hence, also of the

trees Tσ,c), with pairs with σ = 1 ordered by decreasing value of c, followed by pairs with σ = 0 in

increasing order of c. The two subsequences “meet” at cσ, which defines the same tree regardless of the

value of σ (in the pairs ordering, we take (1, c 1) as identical to (0, c 0) = (0, 0)). We denote this total

order by �. Recalling that the quantities Dσ,c are differences in average code length between consecutive

codes in this ordering, Lemma 8 tells us that, as we scan the codes in order, we will generally see the

average code length decrease monotonically, reach a minimum, and then (possibly after staying at the

minimum for some number of trees) increase monotonically. In the following theorem, we formalize this

observation, and identify the trees Tσ,c that are optimal for p.

Theorem 3: Let p be a 4-uniform distribution such that p has an optimal tree T with fT ≤ 2. Define

pairs (σ∗, c∗) and (σ∗, c∗) as follows:

(σ∗, c∗) = (1, c1) if D1,c1 ≥ 0 ,

(σ∗, c∗) = (0, c0) if D0,c0 ≤ 0 ;

otherwise, if D1,c1 < 0, let (σ−, c−) be such that (−1)(σ−)sg(Dσ−,c−) is the last negative entry in s, and

define

(σ∗, c∗) = (σ−, c− − σ−) ;

if D0,c0 > 0, let (σ+, c+) be such that (−1)(σ+)sg(Dσ+,c+) is the first positive entry in s, and define

(σ∗, c∗) = (σ+, c+ − 1 + σ+) .

Then, all trees Tσ,c with (σ∗, c∗) � (σ, c) � (σ∗, c∗) are optimal for p.

15

TABLE I
EXAMPLE: FINDING OPTIMAL TREES Tσ,c FOR N = 19, p = 1

49
(4,4,3,3,3,3,3,3,3,3,3,2,2,2,2,2,2,1,1).

OPTIMAL TREES ARE EMPHASIZED IN BOLDFACE.

(1,3) =
(σ, c) (1, 7) (1, 6) (1, 5) (1,4) (0,0) (0,1) (0, 2)

(nM−1, nM , nM+1) (4, 1, 14) (3, 4, 12) (2, 7, 10) (1,10,8) (13,6,0) (14,3,2) (15, 0, 4)

49 · Lσ,c 214 211 208 206 206 206 208

49 ·Dσ,c 3 3 2 0 0 2

s -1 -1 -1 0 0 1
(σ−, c−) (σ∗, c∗) (σ∗, c∗) (σ+, c+)

Notice that, by Lemma 8, the range (σ∗, c∗) � (σ, c) � (σ∗, c∗) is well defined and never empty,

consistently with the assumptions of the theorem and with Lemma 7. The example in Table I lists all the

trees Tσ,c with fT ≤ 2 for N = 19, as characterized in Lemma 7, and shows how Theorem 3 is used to

find optimal trees for a given 4-uniform distribution on 19 symbols.

C. The top code

By Lemma 5, Theorem 3 applies to the source Âk defined in (10). We will apply the theorem to

identify parameters (σk, ck) that yield an optimal tree Tσk,ck for Âk.
For the remainder of the section, we take N = k2, and let p = (p1, p2, . . . , pk2) denote the vector

of symbol weights in Âk, in non-increasing order. For simplicity, we assume that p is unnormalized,

i.e., p = (q0, q1, q1, . . . , qj , qj , . . . , qj , . . . , q2k−3, q2k−3, q2k−2). Here, qj is repeated j + 1 times for

0 ≤ j ≤ k−1, and 2k−1−j times for k ≤ j ≤ 2k−2. The following lemma, which follows immediately

from this structure, establishes the relation between indices and weights in p.
Lemma 9: For 0 ≤ i < k(k + 1)/2, we have pi+1 = qj , where j is the unique integer in the range

0 ≤ j ≤ k − 1 satisfying

i =
j(j + 1)

2
+ r for some r, 0 ≤ r ≤ j . (16)

For 0 ≤ i′ < k(k + 1)/2, we have pk2−i′ = q2k−2−j′ = 1
2q
k−2−j′ , where j′ is the unique integer in the

range 0 ≤ j′ ≤ k − 1 satisfying

i′ =
j′(j′ + 1)

2
+ r′ for some r′, 0 ≤ r′ ≤ j′ . (17)

We define some auxiliary quantities that will be useful in the sequel. Let m = dlog k2e, Q = k2 −
dk(k − 1)/4e, and M ′ = dlog2Qe, with dependence on k understood from the context. We assume that

k > 2, since the optimal codes for k = 1 and k = 2 have already been described in Subsection IV-A. It

is readily verified that we must have either M ′ = m or M ′ = m − 1. The next lemma shows that the

relation between M ′ and m determines the parameter σ of the optimal trees Tσ,c for Âk.
Lemma 10: If M ′ = m, then trees Tσ,c that are optimal for Âk are long (σ = 0); otherwise, they are

short (σ = 1).

16

Proof: Assume M ′ = m. Then, we can write

2m = 2M
′
< 21+logQ = 2Q = 2k2 − 2dk(k − 1)/4e ≤ 2k2 − k(k − 1)/2 , (18)

so 2m − k2 < k2 − k(k − 1)/2. If c 1 + 1 > c1, then all trees Tσ,c in (12) are long. Otherwise, D1,c 1+1

is well defined, and we have

−D1,c 1+1 = −D1,k2−2m−1+1 = p1 − (p2m−k2−1 + p2m−2k)

≤ p1 − 2pk2−k(k−1)/2 = p1 − 2qk−1 = 1− q−1 < 0 , (19)

where the first and second equalities follow from the definition of c 1 and from (14), the first inequality

from the ordering of the weights and from (18), the third equality from Lemma 9, and the last equality

from the relation qk=1
2 . By Lemma 8, we conclude that optimal trees for Âk are long in this case.

Similarly, when M ′ = m− 1, we have

2m ≥ 2Q ≥ 2k2 − k(k − 1)/2− 2 , (20)

so 2m − k2 + 1 ≥ k2 − k(k− 1)/2− 1, and p2m−k2+1 ≤ pk2−k(k−1)/2−1 = qk = 1
2 . If c0 = c 0 = 0, then

all trees Tσ,c in (12) are short. Otherwise, similarly to (19), we have

D0,1 = pk2−1 + pk2 − p2m−k2+1 > 2q2k−2 − 1

2
=
q−2

2
− 1

2
> 0,

which implies that optimal trees are short in this case.

It follows from Lemma 10 that we can take m−M ′ as the parameter σ for all trees Tσ,c that are optimal

for p. Notice that M ′ is analogous to the parameter M defined in Lemma 7, but slightly stricter, in that,

in cases where a quasi-uniform tree is optimal, m −M ′ will assume a definite value in {0, 1} (which

will vary with k), while, in principle, a representation with either value of σ is available. This very slight

loss of generality is of no consequence to our derivations, and, in the sequel, we will identify M with

M ′, i.e., we will take M = dlogQe. It also follows from Lemma 10 that when applying Theorem 3 to

find optimal trees for p, we only need to focus on one of the two segments (corresponding to σ=0 or

σ=1) that comprise the sequence s in (15), the choice being determined by the value of k. This will

simplify the application of the theorem.

Lemmas 9 and 10, together with Theorem 3, suggest a clear way, at least in principle, for finding an

optimal tree Tσ,c for Âk. The parameter σ is determined immediately as σ = m −M (recalling that

m and M are determined by k). Now, recalling the expression for Dσ,c in (14), we observe that as

c increases, the weights pk2−2c+1 and pk2−2c+2 also increase, while p2M−k2+c, which gets subtracted,

decreases. Thus, since, by Theorem 3, an optimal value of c occurs when Dσ,c changes sign, we need to

search for the value of c for which the increasing sum of the first two terms “crosses” the value of the

decreasing third term. This can be done, at least roughly, by using explicit weight values from Lemma 9

with i′ ∈ {2c− 1, 2c− 2} and i = 2m− k2 + c, and solving a quadratic equation, say, for the parameter

j (the parameter j′ will be tied to j by the constraint Dσ,c ≈ 0). A finer adjustment of the solution

17

TABLE II
EXAMPLES OF OPTIMAL CODE PARAMETERS AND PROFILES FOR Âk, 3 ≤ k ≤ 10.

k M j r σk ck (nM−1, nM , nM+1)

2 2 0 0 0 0 (0, 4, 0)
3 3 0 0 1 1 (0, 7, 2)
4 4 1 0 0 1 (1, 13, 2)
5 5 3 1 0 0 (7, 18, 0)
6 5 1 0 1 5 (1, 25, 10)
7 6 5 0 0 0 (15, 34, 0)
8 6 2 2 0 5 (5, 49, 10)
9 6 0 0 1 17 (0, 47, 34)

10 7 7 1 0 1 (29, 69, 2)

is achieved with the parameters r and r′, observing that a change of sign of Dσ,c can only occur near

locations where the weights in p change (i.e., “jumps” in either j or j′), which occur at intervals of

length up to k. At the “jump” locations, either r or r′ must be close to zero. While there is no conceptual

difficulty in these steps, the actual computations are somewhat involved, due to various integer constraints

and border cases. Theorem 4 below takes these complexities into account and characterizes, explicitly in

terms of k, the parameter pair (σk, ck) of an optimal code Tσk, ck for Âk.

Theorem 4: Let q = 2−1/k, Q = k2 − dk(k − 1)/4e, m = dlog k2e, and M = dlogQe. Define the

function
∆(x) = 2k2 − 2M+1 + x(x+ 1)− (k − x− 2)(k − x− 1)

2
. (21)

Let x0 denote the largest real root of ∆(x), and let ξ = bx0c. Set

j = ξ, r =

⌊−∆(j) + 1

2

⌋
when −∆(ξ) ≤ 2ξ, (22)

j = ξ + 1, r = 0 otherwise. (23)

Then, the tree Tσk,ck , as defined by the profile (12) with σ = σk = m−M and

c = ck = k2 − 2M +
j(j + 1)

2
+ r , (24)

is optimal for Âk. Furthermore, ck is the smallest value of c for any optimal tree Tσk,c for Âk.

The proof of Theorem 4 is presented in Appendix B. In the theorem (and its proof), we have chosen

to identify the optimal tree Tσk,c with the smallest possible value of c. It can readily be verified that

this choice minimizes the variance of the code length among all optimal trees Tσk,c. With only minor

changes in the construction and proof, one could also identify the largest value of c for an optimal tree,

and, thus, the full range of values of c yielding optimal trees Tσk,c. For conciseness, we have omitted

this extension of the proof.

Examples of the application of Theorem 4 are presented in Table II, which lists the parameters M , j,

r, σk, ck, and the profile of the optimal tree Tσk, ck defined by the theorem, for 3 ≤ k ≤ 10.

The tools derived in the proof of Theorem 4 also yield the following result, a proof of which is also

18

presented in Appendix B.

Corollary 1: Let k > 2 and q = 2−1/k. Then, Gk ·Gk is not optimal for TDGD(q).

D. Average code length

Corollary 2: Let M , ∆(x), j, and r be as defined in Theorem 4. Then, the average code length Lq(Ck)
for the code Ck under TDGD(q), for arbitrary q, is given by

Lq(Ck) = M + 1+

+

qj

(
1− qk+1 + (1− q)

(
qk+1 (k − j − 1) + j

)
+ (1− q)2

(
qk
(

2 r + ∆(j)
)
− r
))

(1− qk)2
. (25)

When q = 2−1/k, we have

Lq(Ck) = M + 1 + 2 qj
(

1 + (1− q) (q k + (2− q) j) + (1− q)2 (1 + ∆ (j))
)

(26)

Proof: By Theorem 2, the code length for (a, b) under Ck is |Tk(a mod k, b mod k)|+2+bakc+b bkc .

Writing a = mk + i and b = nk + j with 0 ≤ i, j < k, m,n ≥ 0, the average code length under Ck is

Lq(Ck) =
∑

0≤i,j<k

∑
m,n≥0

qi+j+(m+n)k (|Tk(a, b)|+m+ n+ 2)

=
2

1− qk +
(1− q)2

(1− qk)2

∑
0≤i,j≤k−1

|Tk(i, j)| qi+j =
2

1− qk + Lq(Tk) , (27)

where the second equality follows from elementary series computations, and the third identifies the

(normalized) average code length of the code Tk defined in Theorem 4. Denote by WM−1,WM , and

WM+1 the total normalized weight of symbols in Âk assigned length M−1, M , and M+1, respectively,

by Tk. Then, the average code length of Tk is given by

Lq(Tk) = (M − 1)WM−1 +MWM + (M + 1)WM+1 = M +WM+1 −WM−1 . (28)

From the profile (12), with N = k2 and c = ck as defined in (24), recalling (16), letting γ = (1 −
q)2/(1− qk)2, and carrying out the computations, we obtain

WM−1 = γ

j(j+1)/2+r∑
i=1

pi = γ

j−1∑
`=0

(`+ 1)q` + γ r qj =
1− qj

(
1 + (1− q)j − (1− q)2r

)
(1− qk)2

.

Similarly, from the proof of Theorem 4, setting j′ = k − j − 2 and r′ = 2r + ∆(j), we obtain

WM+1 = γ

j′(j′+1)/2+r′−1∑
i=0

pk2−i = γ

j′−1∑
`=0

(`+ 1)q2k−2−` + γ r′ q2k−2−j′

=
q2 k + qk+j+1 ((k − j − 1)(1− q)− 1) + qk+j(1− q)2 (2 r + ∆(j))

(1− qk)2 .

19

Vk
�

�
�

@
@
@

r
Ukr r r r r r︸ ︷︷ ︸
2k−1

?

6
k

�
�
�

@
@
@

r
Ukr r r r r r︸ ︷︷ ︸
2k−1

?

6
k

�
�
�

@
@
@

r
Ukr r r r r r︸ ︷︷ ︸
2k−1

?

6
k

q0

q1

q2

V−k
�
�
@
@

r
Uk−1r r r r︸ ︷︷ ︸

2k−1−1

?
6k−1

�
�
�

@
@
@

r
Ukr r r r r r︸ ︷︷ ︸
2k−1

?

6
k

�
�
�

@
@
@

r
Ukr r r r r r︸ ︷︷ ︸
2k−1

?

6
k

q0

q1

q2

Fig. 4. Trees Vk and V−k .

The result (25) now follows by substituting the above expressions for WM−1 and WM+1 in (28),

substituting for Lq(Tk) in (27), and using appropriate algebraic simplifications. The result (26), in turn,

follows by applying the relation qk = 1/2.

V. OPTIMAL CODES FOR TDGDS OF PARAMETER q = 2−k

A. The codes

Assume q = 2−k for some integer k > 1. We reuse the notation Um = Q2m for a uniform tree of

depth m, assuming, additionally, that its 2m leaves have weight one. The infinite tree (and associated

multiset of leaf weights) Vk is recursively defined as follows. Start from Uk, and attach to its leftmost

leaf a copy of qVk. Thus, Vk has 2k−1 leaves of weight qs at depth (s+ 1)k for all s≥0, and no other

leaves. The related tree V−k is defined by starting from Uk−1, and attaching to its leftmost leaf a copy of

qVk. Thus, V−k has 2k−1− 1 leaves of weight q0 at depth k− 1, and 2k − 1 leaves of weight qs at depth

(s+ 1)k − 1 for all s > 0. The trees Vk and V−k are illustrated in Figure 4.

We describe a sequence of binary trees (and codes) C−k, which, later in the section, will be shown to

be optimal for TDGDs with q = 2−k, k > 1. We describe the trees by layers. A layer Ls is a collection

of consecutive levels of the tree, containing all the leaves with signature s. The structure of the layers,

and how Ls unfolds into Ls+1 for all s, are presented next, providing a full description of the trees C−k.

Assume k > 1 is fixed. We distinguish two main cases for the structure of Ls, which depend on the

value of s, as specified below. In the description of the layers, each tree structure is a virtual symbol.

We will refer to both original and virtual symbols simply as symbols.

Case 1) 0 ≤ s ≤ 2k−1 − 2:

Write s = 2i + j − 1 with 0 ≤ i ≤ k − 2, 0 ≤ j ≤ 2i − 1. Layer Ls consists of nodes in two levels,

arranged as follows:

qs ·
[

1 . . . 1︸ ︷︷ ︸
2i−j−1 times

r

J
J

Rs 1

r

J
J

1 1
. . .

r

J
J

1 1︸ ︷︷ ︸
j times

]
(29)

The symbol Rs represents a tree containing all the signatures strictly greater than s, scaled by q−s.

Layer Ls emerges from constructing a quasi-uniform tree for s+ 2 symbols (s+ 1 signatures s, and the

20

symbol Rs), attached to Rs−1 of the previous layer if s > 0, or to the root of the tree if s = 0. We have

s+ 2 = 2i + 1 + j, 0 ≤ j ≤ 2i− 1, so the quasi-uniform tree has 2i− j− 1 leaves at depth i, and 2j+ 2

leaves at level i+ 1, as shown in (29).

Case 2) s ≥ 2k−1 − 1:

Write

s = 2k−1 − 1 + (2k − 1)`+ j, with ` ≥ 0, 0 ≤ j < 2k − 1 . (30)

There are five types of layers in this case, as described below. The symbol Rs in each case represents

a tree containing all the signatures strictly greater than s that are not contained in other virtual symbols

in Ls, suitably scaled by q−s. Also, it will be convenient to use the notation M as shorthand for the

sequence

M : qVk , 1 . . . 1︸ ︷︷ ︸
2k−1 times

(31)

(nevertheless, M counts as 2k symbols in Ls).

(i) 0 ≤ j ≤ 2k−1−3 (for k > 2):

qs ·
[

M . . . M︸ ︷︷ ︸
` times

1 . . . 1︸ ︷︷ ︸
2k−1−j−1 times

r

J
J

Rs 1

r

J
J

1 1
. . .

r

J
J

1 1︸ ︷︷ ︸
j times

]
(32)

(ii) j = 2k−1−2 :

qs ·
[

M . . . M︸ ︷︷ ︸
` times

r

J
J

q Uk−1 Rs

r

J
J

1 1
. . .

r

J
J

1 1︸ ︷︷ ︸
2k−1−1 times

]
(33)

(iii) 2k−1 − 1 ≤ j ≤ 2k−4:

qs ·
[

M . . . M︸ ︷︷ ︸
` times

1 . . . 1︸ ︷︷ ︸
3·2k−1−2−j times

r

J
J

q Uk−1 Rs

r

J
J

1 1
. . .

r

J
J

1 1︸ ︷︷ ︸
j−2k−1+1 times

]
(34)

(iv) j = 2k−3:

qs ·
[

M . . . M︸ ︷︷ ︸
` times

1 . . . 1︸ ︷︷ ︸
2k−1+1 times

r

J
J

qV−k Rs

r

J
J

1 1
. . .

r

J
J

1 1︸ ︷︷ ︸
2k−1−2 times

]
(35)

21

23

Case 1 i=0, j=0

i=1, j=0

i=1, j=1

Case 2 (i) `=0, j=0

(i) `=0, j=1

(ii) `=0, j=2

(iii) `=0, j=3

(iii) `=0, j=4

(iv) `=0, j=5

(v) `=0, j=6

(i) `=1, j=0

(i) `=1, j=1

Fig. 4. Top layers of the optimal tree C−3 (q = 1
8

), with leaf signatures noted for s ≤ 11. Dotted lines separate layers Ls,

and circled nodes represent roots of trees Rs.

The following theorem enumerates the code lengths assigned to signatures by the codes C−k. It follows

immediately from the description of the codes in (25) and (28)–(32).

Theorem 5: Let s be a non-negative integer, and let λk(s) = (s+ 2)k − 2k. The code C−k, k > 1,

assigns code lengths to symbols with signature s according to the tables below:

May 13, 2009 DRAFT

Fig. 5. Top layers of the optimal tree C−3 (q = 1
8

), with leaf signatures noted for s ≤ 11. Dotted lines separate layers Ls,
and circled nodes represent roots of trees Rs.

(v) j = 2k−2:

qs ·
[

M . . . M︸ ︷︷ ︸
` times

qVk 1 . . . 1︸ ︷︷ ︸
2k−1−1 times

r

J
J

Rs 1

r

J
J

1 1
. . .

r

J
J

1 1︸ ︷︷ ︸
2k−1−1 times

]
(36)

The last layer from Case 1 contains all the signatures s′ = 2k−1−2. All signatures s > s′ are contained

in Rs′ . In particular, there are 2k−1 signatures s′ + 1 = 2k−1 − 1. Assume k > 2. A quasi-uniform tree

with 2k−1 + 1 leaves is constructed, rooted at Rs′ . This tree has 2k−1 − 1 leaves labeled s′ + 1 at depth

k − 1 from its root, and two leaves at depth k, one of which is labeled s′ + 1, and one that serves as

the root for Rs′+1. This is consistent with the structure of the first layer in Case 2 shown in (32), with

s = s′ + 1, ` = 0 and j = 0. From that layer on, layers of types (i)–(v) above unfold in a cyclic way,

22

TABLE III
CODE LENGTHS AND CODEWORD COUNTS FOR CODES C−k ON SIGNATURES s, 0 ≤ s ≤ 2k−1 − 2.

Case 1: 0 ≤ s ≤ 2k−1 − 2, s = 2i + j − 1, 0 ≤ i ≤ k−2
Λs = (s+ 2)(i+ 1)− 2i+1

Number of codewords (signatures)
Range of j length Λs length Λs+1

0 ≤ j ≤ 2i − 1 (2i − j − 1) 2j + 1

TABLE IV
CODE LENGTHS AND CODEWORD COUNTS FOR CODES C−k ON SIGNATURES s ≥ 2k−1 − 1.

Case 2: s ≥ 2k−1 − 1, s = 2k−1 − 1 + (2k − 1)`+ j, ` ≥ 0
Λs = (s+ 2)k − 2k

Number of codewords (signatures)
Range of j length Λs length Λs+1

0 ≤ j ≤ 2k−1−3 (2k − 1)`+ (2k−1 − j − 1) 2j + 1

j = 2k−1 − 2 (2k − 1)` 2k − 2

2k−1 − 1 ≤ j ≤ 2k − 4 (2k − 1)`+ 3·2k−1 − 2− j 2j + 2− 2k

j = 2k − 3 (2k − 1)`+ 2k−1 + 1 2k − 4

j = 2k − 2 (2k − 1)`+ 2k−1 − 1 2k − 1

each cycle corresponding to an increment in the value of `.
When k = 2, layers of type (i) or (iii) are not used. In this case, the only layer in Case 1 contains

the signature 0. A uniform tree U2 is constructed, rooted at R0. One pair of sibling leaves is assigned

to signature 1, while the other pair is assigned to R1 and U1, attaining a configuration of type (ii) in

Case 2. From that point on, the cyclic layer sequence is (ii)→(iv)→(v)→(ii).
The fine details of the various layer transitions are given in Appendix C, and are illustrated in Figure 5,

which shows the upper part of the tree for k = 3.
The cyclic nature of the construction is reflected in the structure of the tree. Thus, the subtree Rs,

s ≥ 2k−1 − 2 is identical to all subtrees Rs+(2k−1)`′ , `′ ≥ 0, up to appropriate scaling by q(2k−1)`′ . In

the example of Figure 5, the tree R9 is identical to the tree R2, indicated in the figure as R2+7`. An

additional source of self-similarity is provided by the trees Vk and V−k ; in Figure 5, the sub-tree labeled

q10V−3 is identical to that labeled q9V−3 , etc. Overall, although the width of the tree is unbounded (driven

by the ` copies of M in each layer of Case 2), the total number of distinct sub-trees in C−k is finite.
The following theorem enumerates the code lengths assigned to signatures by the codes C−k. It follows

immediately from the description of the codes in (29) and (32)–(36).
Theorem 5: Code C−k, k>1, assigns code lengths Λs or Λs + 1 to signatures s according to the

expressions for Λs and the codeword counts in Tables III and IV, corresponding, respectively, to the

cases 0 ≤ s ≤ 2k−1 − 2 (Case 1) and s ≥ 2k−1 − 1 (Case 2).
We now present some auxiliary results that will be useful in proving the optimality of the codes C−k.

23

We rely on the following relations, which are readily derived from the definitions of the respective trees,

under the assumption q = 2−k.

w(Uk) = 2w(Uk−1) = w(Vk) = 2w(V−k) = q−1 . (37)

The next lemma bounds the weight of the symbol Rs in (29) and (32)–(36).

Lemma 11: When s ≤ 2k−1 − 2 (Case 1), we have 0 ≤ w(Rs) ≤ 7
9 . When s > 2k−1 − 2 (Case 2),

we have 1
2 ≤ w(Rs) ≤ 1.

Proof: For s ≤ 2k−1 − 2, we have

w(Rs) =

∞∑
s′=s+1

(s′ + 1)q−sw(s′) =

∞∑
r=0

(s+ r + 2)qr+1 =
(s+ 1)(1− q) + 1

(1− q)2
q . (38)

The right-hand side of (38) increases with s. Setting s = 2k−1 − 2 = 1
2q − 2, we obtain w(Rs) =

1
2

(
1 + q(1+q)

(1−q)2

)
, which satisfies the claimed upper bound for q ≤ 1

4 . When s ≥ 2k−1− 1, Rs contains all

the signatures s′ > s (with their weights scaled by q−s) that are not contained in the components qVk of

the groups M, or in a possible sibling q Uk−1 or qV−k of Rs. Write s as in (30). The scaled total weight

of signatures s′ > s is

Ws = q−s
∞∑
r=0

(s+ 2 + r)qs+1+r =
(s+ 2)q

1− q +
q2

(1− q)2
=

2q(1 + j) + 1

2(1− q) +
q2

(1− q)2
+ ` , (39)

where the last equality follows by applying (30) and substituting q−1 for 2k. Let W ′s denote the part of

Ws that is contained in the symbols qVk, q Uk−1, or qV−k mentioned above. Observing the layer structures

in (32)–(36), and applying (37), we obtain W ′s = `+ δ, where:

δ =


0, 0 ≤ j ≤ 2k−1 − 3,
1
2 , 2k−1 − 2 ≤ j ≤ 2k − 3,

1, j = 2k − 2 .

(40)

The claim of the lemma for s > 2k−1 − 2 follows by writing w(Rs) = Ws −W ′s, observing that w(Rs)
increases monotonically with j, and bounding w(Rs), as an elementary function of q , in the interval

0 < q ≤ 1
4 for each of the cases in (40). Notice that due to the mentioned monotonicity, w(Rs) is

evaluated only at the ends of the ranges of j in (40), and we substitute q−1 for 2k.

The following is an immediate consequence of Lemma 11.

Corollary 3: Let R′s denote the virtual symbol containing Rs in each layer Ls listed in (29) and (32)–

(36). Then, after scaling by q−s, all the symbols to the left of R′s in Ls are of weight 1, all the symbols

to its right are of weight 2, and we have 1 ≤ w(R′s) ≤ 2.

Proof: The claims on the symbols to the left and to the right of R′s follow from (37) and the

definition of the notation M in (31). As for R′s, we have w(R′s) = 1 + w(Rs), and the claim of the

corollary follows by applying Lemma 11.

Theorem 6: The prefix code C−k is optimal for TDGD(q) with q = 2−k, k > 1.

24

0

4 4 4

3 3 3

2 2 2

1
1

3

5 5 5 5 5
5

Q
Q

Q

Q

Q

Q

Q

4 4

Fig. 6. Top of the limit tree C−∞.

Proof: As before, we rely on the method from [2]. The reduced sources are defined by the layers

Ls defined in (29) and (32)-(36). The steps taking a reduced source to one of lower order follow the

“unfolding” steps listed in the description of the codes C−k, in reverse order (bottom-up). It remains to

show that these steps correspond to a valid sequence of mergers in the Huffman procedure. Consider a

layer Ls, and let ψ1, ψ2, . . . , ψN denote its symbols, listed from left to right. It is readily verified, by

observing (29) and (32)-(36), that N = 2i for a layer (29), with i as defined in Case 1, and that N is

divisible by 2k−1 in layers of type (i)–(ii), and by 2k in layers of type (iii)–(v). By Corollary 3, the ψj
are ordered by increasing weight order, and the merger of any two of them results in a combined weight

that is at least as large as any weight in the layer. Thus, merging ψ2j−1 with ψ2j , 1 ≤ j ≤ N/2, is a

valid sequence of steps in the Huffman procedure on Ls. Moreover, since there is at most one symbol of

weight different from 1 or 2 (after scaling), and strictly between them, the resulting sequence of merged

weights includes weights 2, ω, and 4, with 2 ≤ ω ≤ 4, with at most one symbol of weight ω. We iterate

the argument, until we reach layer Ls−1.

B. A limit code

The sequence of optimal codes C−k stabilizes in the limit of k →∞ (q → 0), as stated in the following

corollary.
Corollary 4: When k→∞, the sequence of optimal trees C−k converges to a limit tree C−∞ that can

be constructed as follows: start with Qn for n=2, recursively replace the leftmost leaf of the deepest

level of the current tree by Qn+1, and increase n.
Proof: The corollary is proved by observing that the part of the tree corresponding to 0 ≤ s ≤ 2k−1

in Theorem 6 remains invariant for all k′ ≥ k. This corresponds to the layers Ls of Case 1.
The limiting property of C−∞ in connection with the TDGD is mentioned also in [10, Ch. 5]. Figure 6

shows the first fourteen levels of C−∞. Notice that the first eleven levels coincide with those of C−3 in

Figure 5, up to reordering of nodes at each level. Explicit encoding with C−∞ can be done as follows.

Given a pair (i, j), with signature s = i+j, we write s = 2t− 1 + r, with 0 ≤ r ≤ 2t− 1 and t ≥ 0. We

25

encode (i, j) with a binary codeword xy, where x = 1(t−1)(s+1)+2r+1 identifies the path to the root of

the quasi-uniform tree that contains all the leaves of signature s, and y = Qs+2(i+1). The resulting code

length distribution for signature s is: 2t − 1− r signatures encoded with length (t− 1)(s+ 2) + 2r+ 2,

2r + 1 signatures encoded with length (t− 1)(s+ 2) + 2r + 3.

The following corollary shows the average code length attained by C−∞ on an arbitrary TDGD.

Corollary 5: The average code length of the limit code C−∞ under TDGD(q) is given by

Lq(C−∞, q) = 1 +
1

1− q
∑
t≥0

q2t(2t(1− q) + 2) .

Proof: For s ≥ 0, let r and t, t ≥ 0, 0 ≤ r ≤ 2t − 1, be the (uniquely determined) integers such

that s = 2t − 1 + r. By Corollary 4 and the ensuing discussion, we can write

Lq(C−∞, q) = (1− q)2
∑
t≥0

2t+1−2∑
s=2t−1

((
(t− 1)(s+ 2) + 2r + 2

)
(s+ 1) + 2r + 1

)
qs (41)

= (1− q)2
∑
t≥0

(
q2t+1−1A(t) + q2t−1B(t)

)
, (42)

for functions A(t) and B(t) resulting from substituting r = s − 2t + 1 and carrying out the inner

summation in (41). It can be verified, by symbolic manipulation, that

B(0) =
1− q2 + 2q

(1− q)3
, and A(t− 1) +B(t) = q

2t − 2tq + 2

(1− q)3
.

Substituting in (42), after rearranging terms, we obtain

Lq(C−∞, q) = (1− q)2

B(0) +
∑
t≥1

q2t−1
(
A(t− 1) +B(t)

)
= (1− q)2

1− q2 + 2q

(1− q)3
+
∑
t≥1

q2t 2t − 2tq + 2

(1− q)3


= 1 +

1

1− q
∑
t≥0

q2t(2t(1− q) + 2) .

VI. PRACTICAL CONSIDERATIONS AND REDUNDANCY

In a practical situation, one could use the codes Ck for q ≥ 1
2 , and the codes C−k for q < 1

2 . However,

a lower complexity alternative, which incurs a modest code length penalty (as shown in Figure 7), is to

use C−∞ in lieu of the codes C−k, up to the value of q where switching to C1 gives better average code

length. The crossover point is at q ≈ 0.33715.

Encoding a symbol pair (x, y) with a code Ck is of about the same complexity as two encodings

of individual symbols with a Golomb code of order k. As described in Theorem 2, the encoding with

26

Code C−k
Code C−∞
Golomb code
Optimal code

q

(A)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Code Ck
Optimal code
Golomb code

q

(B)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Fig. 7. Redundancy (in bits/integer symbol) for the optimal prefix code (estimated numerically), the best Golomb code, the
limit code C−∞, and the best code C−k or Ck for each value of q, (A) 0 < q < 1

2
, (B) 1

2
≤ q < 1. The limit code C−∞ is

plotted up to q = 0.33715 . . ., where its curve intersects that of C1.

Ck entails unary encodings of bx/kc and by/kc, which would also be needed with the Golomb code.

Given the profile of the top code Tk = Tσk, ck , determined in Theorem 4, encoding with Tk requires

comparing the index of the pair (x mod k, y mod k) with at most two fixed thresholds, to determine the

corresponding code length (which can assume up to three consecutive integer values). The codeword is

then computed directly from the index. Each encoding with the Golomb code, on the other hand, requires

one comparison with a fixed threshold to determine the code length of each Qk component, or a total of

two for the pair (x, y).

As in the one-dimensional case (see, e.g., [3], [13]), when encoding a sequence x1, x2, . . . , x2t, . . .,

the best code for the next pair (x2t−1, x2t) can be determined adaptively, driven by the sufficient statistic

St = t−1
∑2t−2

j=1 xj . The crossover points for the estimates of the code parameter k can be precomputed

and stored in terms of the statistic St. The one-dimensional code has a slight advantage in the adaptation,

in that it can adapt its statistic with every symbol, whereas the two-dimensional code can only do it every

two symbols. Depending on the application, this advantage is likely to be superseded by the redundancy

advantage of the two-dimensional code. Also as in the one-dimensional case, there are certain complexity

advantages, in both encoding and adaptation when using the subset of parameters of the form k = 2r. In

this case, an adaptation strategy that estimates the best parameter r directly from the statistic St, without

the need to compare it with precomputed crossover points, can be derived for the codes Ck, as was done

in [3] and [13] for two-sided geometric distributions. We omit the details, since both the technique and

the resulting parameter estimation method are similar to those in the references.

Figure 7 presents plots of redundancy for various code families as a function of q, measured in bits

per integer symbol relative to the entropy of the geometric distribution (recall that the latter is given by

H(q) = h(q)
1−q , where h(q) is the binary entropy function [2]). Plots are shown for the optimal prefix code

for each value of q (estimated numerically over a dense grid of values of q, and in sufficient precision to

make the estimation error smaller than the plot resolution), the best Golomb code, the best code C−k or

27

Ck for each q, and the limit code C−∞. In the figure, we can observe the advantage in redundancy for

the codes C−k (or C−∞) and Ck over Golomb codes, except in the region where the best codes of both

types are equivalent (i.e., the optimality regions of C1 and C2). The redundancy advantage is near 2 : 1

(as expected) at the limit of q → 0 and it peaks near q = 0.28 (at more than 13.6 : 1). A redundancy

advantage close to 2 : 1 is observed also as q → 1. The advantage of Ck over symbol-by-symbol Golomb

codes is consistent with Corollary 1, and, in fact, the plot in Figure 7 can be regarded as “visual evidence”

for the corollary.

The asymptotic behavior of the redundancy of Ck in the regime q → 1, shown in more detail in Figure 8,

is oscillatory, as is also the case for Golomb codes [2]. The limiting behavior of the redundancy can be

characterized precisely, as we show next.

Corollary 6: Let λk = 2M/k2, where M is as defined in Theorem 4. As k →∞, the redundancy of

the code Ck at q = 2−1/k is

R(k) =
1

2
(1 + log λk) + 21−2

√
λk− 1

2

(
1 +

2

log e

√
λk −

1

2

)
− log(e log e) + o(1) . (43)

Remark. We have 3
4 / λk / 3

2 , where / denotes inequality up to asymptotically negligible terms. For

large k, as k increases, λk sweeps its range decreasing from 3
2 to 3

4 , at which point Mk increases by one,

and λk resets to 3
2 , starting a new cycle.

Proof of Corollary 6: We derive, from (26), an asymptotic expression for the code length Lq(Ck).

To estimate the parameter j in (26), we need to solve the quadratic equation ∆(x) = 0, with ∆(x) as

defined in Theorem 4. Writing 2M = λkk
2, it is readily verified that the largest solution to the equation

is ξ =
(

2
√
λk − 1

2 − 1
)
k + O(1)

∆
= αk + O(1). Thus, j = αk + O(1), and qj = 2−α + O(k−1).

Writing also q = 2−1/k = 1− ln 2
k +O(k−2), and noting that ∆(j) = O(k), we obtain, from (26),

Lq(Ck) = M + 1 + 21−α(1 + (1 + α) ln 2
)

+ o(1) .

As for the entropy, we have

H(q) =
−q log q

1− q − log(1− q) = log(e log e) + log k + o(1) = log(e log e) +
1

2
(M − log λk) + o(1) .

The claimed result (43) follows by substituting the asymptotic expressions for Lq(Ck) and H(q) in the

formula for the redundancy per symbol, namely, R(k) = 1
2Lq(Ck)−H(q).

The limits of oscillation of the function Rk can be obtained by numerical computation, yielding

R1
∆
= lim infk→∞R(k) = 0.014159. . . and R2

∆
= lim supk→∞R(k) = 0.014583. . . . These limits are

shown in Figure 8. The corresponding limits for the redundancy of the Golomb codes are, respectively,

R′1 = 0.025101. . . and R′2 = 0.032734. . . [2].

Corollary 6 applies to the discrete sequence of redundancy values at the points q = 2−1/k. It is

not difficult to prove that the same behavior, and in particular the limits R1 and R2, apply also to the

continuous redundancy curve obtained when using the best code Ck at each arbitrary value of q. This

follows from the readily verifiable fact that as q varies in the interval 2−1/k ≤ q ≤ 2−1/(k+1), the maximal

28

R
(
−1

log q

)
�

� Ck
Code Ck
Optimal code

q

R1

R2

0.0140

0.0142

0.0144

0.0146

0.0148

0.0150

0.0152

0.0154

0.950 0.955 0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000

Fig. 8. Redundancy as q→1 (k→∞). Dashed lines show the asymptotic limits R1 and R2. The inset closes up further on a
narrow segment, showing the redundancy of the codes Ck vs. the asymptotic estimate (43).

variation in both the code length under Ck and the distribution entropy is bounded by O(k−1). Figure 8

suggests that the same oscillatory behavior might apply also to the redundancy curve of the optimal prefix

code for each value of q. It follows from the foregoing discussion that this is true for the limit superior

R2. The question remains open, however, for the limit inferior R1, which is an upper bound for the limit

inferior of the optimal redundancy.

APPENDIX A

PROOFS FOR SUBSECTION IV-B

We recall that we consider a 4-uniform probability distribution p = (p1, p2, . . . , pN), where

probabilities are listed in non-increasing order, and an optimal tree T for p, with fT ≤ 2. We define

m = dlogNe, and we denote by n` the number of leaves at depth ` in T .

Proof of Lemma 6: Say T has t > 0 leaves at depths ` < m−2. Then, T has no leaves at depths

`′ ≥ m, and it can have a total of at most 2m−1 − 3t leaves altogether. But N > 2m−1, a contradiction.

Say now that T has nodes at depth m+2. Then all of its leaves must be at depths `′ ≥ m, and some

must be at depths strictly greater than m. Thus, T , being full, must have more than 2m ≥ N leaves,

again a contradiction. The second claim of the lemma is a straightforward consequence of fT ≤ 2.

Proof of Lemma 7: Let NT = (nM−1, nM , nM+1) be the compact profile of a tree T with N leaves

and fT ≤ 2. Clearly, nM+1 must be even, and we write nM+1 = 2c for some nonnegative integer c. The

components of NT must satisfy

nM−1 + nM + 2c = N . (44)

By Kraft’s equality, which must hold for the full tree T , we have

4nM−1 + 2nM + 2c = 2M+1 , (45)

29

which holds also in the case c = 0. From (44) and (45), we obtain

nM−1 = 2M −N + c . (46)

Now, from (46) and (44), we obtain

nM = 2N − 2M − 3c . (47)

Equations (46) and (47), together with the definition of c yield the profile (12). The valid range of variation

of c is determined by the non-negativity constraints on the entries of the profile. When M = m − 1

(σ = 1), the lower limit cσ = N−2m−1 is determined by the nonnegativity of nM−1. Since 2M ≥ N when

M = m, the lower limit is the trivial c 0 = 0 in this case. In both cases, the upper limit cσ = d2N−2M

3 e
is determined by the nonnegativity of nM .

Proof of Lemma 8: For a given value of σ ∈ {0, 1}, assume c and c′ are indices such that

cσ < c′ ≤ c ≤ cσ, and let sσ be the segment of s corresponding to σ. By (14) and the monotonicity of

the weights, we have

Dσ,c′ = pN−2c′+1 + pN−2c′+2 − p2M−N+c′ ≤ pN−2c+1 + pN−2c+2 − p2M−N+c = Dσ,c .

Thus, if Dσ,c < 0 then Dσ,c′ < 0, and if Dσ,c = 0 then Dσ,c′ ≤ 0. It follows that sσ is non-decreasing.

It remains to prove that −sg(D1, c 1+1) ≤ sg(D0,1). Assume that D0,1 ≤ 0. Then, we have

D1, c 1+1 = p2m−N−1 + p2m−N − p1 ≥ 2p2m−N+1 − p1

≥ 2 (pN−1 + pN)− p1 ≥ 4pN − p1 ≥ 0 ,

where the equality follows from (14) and the definition of c 1, the first and third inequalities from the

monotonicity of p, the second inequality from our assumption on D0,1, and the last inequality from

the 4-uniformity of p. Hence, we must have D1,c 1+1 ≥ 0. Similarly, if D0,1 < 0, then we must have

D1,c 1+1 > 0. Therefore, −sg
(
D1, c 1+1

)
≤ sg(D0,1), as claimed.

Proof of Theorem 3: The theorem follows directly from Lemma 8, observing also that by the

assumptions of the theorem, and by Lemma 7, at least one of the trees Tσ,c , (1, c1) � (σ, c) � (0, c0)

must be optimal for p.

APPENDIX B

PROOFS FOR SUBSECTION IV-C

We derive the proof of Theorem 4 through a series of lemmas. We recall that we seek an optimal tree

for the source Âk of (10), with vector of (unnormalized) weights

p = (q0, q1, q1, . . . , qj , qj , . . . , qj , . . . , q2k−3, q2k−3, q2k−2),

with q = 2−1/k, and where qj is repeated j + 1 times for 0 ≤ j ≤ k−1, and 2k − 1 − j times for

k ≤ j ≤ 2k−2. For succinctness, in this appendix, when we say “optimal” we mean “optimal for

Âk.” Notice that, in p, three consecutive weights are never distinct; we refer to this fact as the “three

30

consecutive weights” property. Throughout the appendix, we assume that k > 2, as we recall that optimal

trees for k = 1, 2 are fully characterized in Remark 2 following Theorem 2.

Lemma 12: Trees Tσ,c with c = cσ are not optimal. Consequently, the profile (nM−1, nM , nM+1) of

an optimal tree has nM ≥ 3.

Proof: Recalling the profile NTσ,c in (12), with c = cσ and k > 2, we have nM ∈ {0, 1, 2},
nM−1 ≥ 1 and nM+1 ≥ 2. Let q` be the lightest weight on level M − 1. By the “three consecutive

weights” property, the two heaviest weights on level M + 1 are greater than or equal to q`+2. Recalling

the expression for Dσ,c in (14), and the interpretation that follows it, we obtain Dσ,cσ ≥ q`(1−2q2) > 0.

Thus, by Theorem 3, Tcσ is not optimal. An optimal tree Tσ,c would, therefore, have c < cσ, and, thus,

nM ≥ 3.

The following lemma gives a first, rough approximation of the distribution of weights by levels in an

optimal tree Tσ,c, which will allow us to identify the appropriate range (i.e., (16) or (17)) for the heaviest

and the lightest weights on level M of the tree.

Lemma 13: Let Tσ,c be an optimal tree, and let qj and q2k−2−j′ denote, respectively, the heaviest and

the lightest weights on level M of the tree. Then, we have j ≤ k − 1, j′ ≤ k − 1, and j + j′ ≤ k.

Proof: Consider first the case where c > cσ, i.e., all the components of the profile NTσ,c are positive.

The lightest weight on level M − 1 of the tree immediately precedes qj in p. Hence, it is of the form

qj−ε, with ε ∈ {0, 1}. On the other hand, reasoning similarly, the heaviest two weights on level M + 1

are of the form q2k−2−j′+ε′ and q2k−2−j′+ε′+ε′′ , where ε′, ε′′ ∈ {0, 1} and ε′+ ε′′ ≤ 1 (due to the “three

consecutive weights” property). Since Tσ,c is optimal, by the definition of Dσ,c in (13), we must have

Dσ,c ≤ 0. Applying (14), the above constraints on ε, ε′, ε′′, and the fact that qk = 1
2 , we get

0 ≥ Dσ,c = −qj−ε + q2k−2−j′+ε′ + q2k−2−j′+ε′+ε′′ ≥ −qj−1 + 2q2k−1−j′ = −qj−1 + qk−1−j′ .

Thus, j + j′ ≤ k. Since both j and j′ are positive when c > cσ, the claim of the lemma follows in this

case.

Consider now the case where c = cσ, i.e., Tσ,c is a quasi-uniform tree. If σ = 0, we have nM+1 = 0,

and, thus, the lightest weight on level M is pk2 = q2k−2, and j′ = 0. For the heaviest weight on level M ,

we have p2m−k2+1 = qj . By (18), we have 2m − k2 + 1 ≤ k(k+ 1)/2. Recalling the order and structure

of p, we obtain qj = p2m−k2+1 ≥ pk(k+1)/2 = qk−1 . Thus, j ≤ k − 1. The case of c = cσ and σ = 1 is

argued similarly, using (20) in lieu of (18), and leading to j = 0 and j′ ≤ k − 1.

It follows from Lemma 13 that in an optimal tree, the heaviest weight on level M is covered by (16)

in Lemma 9 (and, thus, so is any weight on level M−1), while the lightest weight on level M is covered

by (17) in that lemma (and, thus, so is any weight on level M + 1). Consequently, an optimal tree is

completely determined by a tuple j = (j, r, j′, r′), with 0 ≤ j, j′ ≤ k − 1, 0 ≤ r ≤ j, and 0 ≤ r′ ≤ j′.

31

The profile of the tree is then given by

nM−1 =
j(j + 1)

2
+ r , (48)

nM+1 =
j′(j′ + 1)

2
+ r′ , (49)

nM = k2 − nM−1 − nM+1 . (50)

The following lemma presents a characterization of the least value of c for which Tσ,c is optimal. The

lemma follows immediately from Theorem 3 and Lemma 10.

Lemma 14: Let ck be the least value of c such that Tσ,c is optimal. Then, either Dσ,c σ+1 ≥ 0 (with

ck = cσ), or Dσ,ck < 0 and Dσ,ck+1 ≥ 0 (with ck > cσ).

Define the function

F (j, r, j′, r′) = 2k2 − 2M+1 + j(j + 1) + 2r − j′(j′ + 1)

2
− r′ , (51)

acting on tuples j = (j, r, j′, r′) for a given value of k. Next, we derive a set of conditions on the tuple

j corresponding to the tree Tσ,ck characterized in Lemma 14.

Lemma 15: Let j = (j, r, j′, r′) be the tuple defining the profile of Tσ,ck in (48)–(50). Then,

F (j, r, j′, r′) = 0, (52)

and exactly one of the following conditions holds:

(i) j, j′ > 0, j + j′ = k − 2. Either r = 0 and 0 ≤ r′ ≤ j′, or 1 ≤ r ≤ j and r′ ∈ {0, 1}.
(ii) j, j′ > 0, j + j′ = k − 1, r = 0 and r′ ∈ {0, 1}.

(iii) j′ = 0, r′ = 0, j ∈ {k − 2, k − 1}, 0 ≤ r ≤ j.
(iv) j = 0, r = 0, j′ ∈ {k − 2, k − 1}, 0 ≤ r′ ≤ j′.
Conversely, if j = (j, r, j′, r′) satisfies (52) and one of the conditions (i)–(iv), then j defines Tσ,ck .

Proof: The necessity of (52) follows from the definition of F (j, r, j′, r′) and from (46), setting

c = 1
2nM+1, substituting the expressions from (48) and (49) for nM−1 and nM+1, respectively, and

rearranging terms. In fact, (52) must hold for any optimal tree, not just for c = ck. Conditions (i)–(iv)

will follow from an exhaustive case study of configurations that yield the inequalities on the quantities

Dσ,c that characterize the point c = ck, as stated in Lemma 14.

Consider, first, the case where ck > cσ. Then, for c = ck, by Lemma 14, we have Dσ,c < 0 and

Dσ,c+1 ≥ 0. Writing down the expressions for Dσ,c and Dσ,c+1 explicitly according to (14), we observe

that six weights are involved, as illustrated in Figure 9. In order to switch from a negative Dσ,c to

a nonnegative Dσ,c+1, we must have a decrease from p2M−k2+c to p2M−k2+c+1, or an increase from

pk2−2c+1 +pk2−2c+2 to pk2−2c−1 +pk2−2c, or both. By the definitions of j and j′, we have p2M−k2+c+1 =

qj , and pk2−2c = q2k−2−j′ . Taking into account that consecutive weights can vary at most by a factor of

32

· · ·
f−

p2M−k2+c

qj−ε

v−
-

decrease

p2M−k2+c+1

qj

· · ·
v

pk2−2c−1

q2k−2−j′−ε′

+ v
pk2−2c

q2k−2−j′

f
pk2−2c+1

q2k−2−j′+ε′′

f+

�
increase

pk2−2c+2

q2k−2−j′+ε′′+ε′′′

· · ·

Fig. 9. Weights involved in the conditions for c = ck: ◦ weights in Dσ,c , • weights in Dσ,c+1 .

TABLE V
THE POSSIBLE CASES FOR (ε, ε′, ε′′, ε′′′) FROM (53)–(54), AND THE CONDITIONS IMPOSED ON (j, r, j′, r′) AT c = ck .

εε = (ε, ε′, ε′′, ε′′′) Conditions on (j, r, j′, r′)

(1,0,0,0) j + j′ = k − 2, r = 0, 2 ≤ r′ ≤ j′ − 1

(1,0,0,1) j + j′ ∈ {k − 2, k − 1}, r = 0, r′ = 1

(1,0,1,0) j + j′ ∈ {k − 2, k − 1}, r = 0, r′ = 0

(0,0,0,1) j + j′ = k − 2, 1 ≤ r ≤ j, r′ = 1

(0,0,1,0) j + j′ = k − 2, 1 ≤ r ≤ j, r′ = 0

(1,1,0,0) j + j′ = k − 2, r = 0, r′ = j′

(1,1,0,1) j + j′ ∈ {k − 1, k − 2}, r = 0, r′ = j′ = 1

(0,1,0,0) no solutions j, j′; case cannot occur at c = ck

(0,1,0,1) j + j′ = k − 2, 1 ≤ r ≤ j, r′ = j′ = 1

q, we can write, for the other weights involved,

p2M−k2+c = qj−ε, (53)

pk2−2c−1 = q2k−2−j′−ε′ , pk2−2c+1 = q2k−2−j′+ε′′ , pk2−2c+2 = q2k−2−j′+ε′′+ε′′′ , (54)

where ε, ε′, ε′′, ε′′′ ∈ {0, 1}, and, due to the “three consecutive weights” property, we must have ε′+ε′′ ≤ 1

and ε′′ + ε′′′ ≤ 1. Table V summarizes the patterns of values of εε = (ε, ε′, ε′′, ε′′′) that satisfy these

constraints and also produce the combination of weight increases or decreases necessary to satisfy the

conditions for c = ck. On the right column of the table, we list the conditions imposed on j by the

constraints of each case. To illustrate the proof approach, we derive these conditions, below, for the

representative case εε = (1, 0, 0, 1). The other cases follow using similar arguments, which are also

similar to those used in the proof of Lemma 13 (here, more parameters are assumed known, which

allows us to obtain tighter bounds).

Assume εε = (1, 0, 0, 1). Then, writing the conditions on Dσ,c and Dσ,c+1 at c = ck explicitly,

substituting for the weights using the known values in εε, and recalling that qk = 1
2 , we obtain

0 > Dσ,c = pk2−2c+1 + pk2−2c+2 − p2M−k2+c = q2k−2−j′ + q2k−1−j′ − qj−1

> 2q2k−1−j′ − qj−1 = qk−1−j′ − qj−1 , (55)

33

and

0 ≤ Dσ,c+1 = pk2−2c−1 + pk2−2c − p2M−k2+c+1 = q2k−2−j′ + q2k−2−j′ − qj

= 2q2k−2−j′ − qj = qk−2−j′ − qj . (56)

It follows that k − 2 ≤ j + j′ ≤ k − 1, as claimed in the second row of Table V. The conditions on r

and r′ follow from Lemma 9, observing that r resets to zero at points where j increases, and similarly

with r′ relative to j′. In this case, p2M−k2+c is the last weight of the form qj−1, and, thus, we have

nM−1 = 2M − k2 + c = j(j+ 1)/2 and r = 0; scanning p from right to left, pk2−2c+2 is the last weight

of the form q2k−1−j′ , and, thus, we have nM+1 = 2c = j′(j′ + 1)/2 + 1, and r′ = 1.

It is readily verified that all the cases on the right column of Table V satisfy either Condition (i) or

Condition (ii) of the lemma.

Consider now the case where ck = cσ. In this case, the tree is quasi-uniform. When σk = 0, since

nM+1 = 0, we have j′ = r′ = 0. The condition j ≤ k − 1 was established in Lemma 13, while the

condition j ≥ k − 2 follows directly from Dσ,c σ+1 = Dσ,1 ≥ 0. Thus, Condition (iii) of the lemma

is satisfied in this case. Similarly, when ck = cσ and σk = 1, we have j = r = 0, j′ ≤ k − 1 was

established in Lemma 13, and j′ ≥ k− 2 follows from Dσ,c σ ≥ 0. Thus, Condition (iv) of the lemma is

satisfied in this case.

To prove the sufficiency of the conditions of the lemma, we first claim that, with j satisfying the

conditions, the profile N = (nM−1, nM , nM+1) defined in (48)–(50) defines a valid tree. Clearly, nM−1

and nM+1 are non-negative. To verify that nM is also non-negative, we write

nM−1 + nM+1 =
j(j + 1)

2
+
j′(j′ + 1)

2
+ r + r′ <

(j + j′ + 1)2

2
+ j + j′,

where the inequality follows from the fact that (a+b+1)2 > a(a+1)+b(b+1) for a, b ≥ 0, and from the

inequalities r ≤ j and r′ ≤ j′. With j+j′ ≤ k−1, it follows that nM−1 + nM+1 < k − 1 + k2/2 < k2.

Hence, nM , as defined in (50), is positive. On the other hand, (52), together with the fact that the

components of N add up to k2, is equivalent to the Kraft equality for N. Therefore, N defines a valid

tree Tσ,c. It is readily verified that if either Condition (i) or (ii) is satisfied, then the parameters (σ, c) of

Tσ,c satisfy c > cσ, Dσ,c < 0, and Dσ,c+1 ≤ 0. Thus, by Lemma 8, we have c = ck. Similarly, if either

Condition (iii) or (iv) is satisfied, we have c = cσ, Dσ,c σ+1 ≥ 0, and, again, c = ck.

The following lemma explores some properties of the function ∆(x) defined in (21).

Lemma 16: (i) For any x, we have ∆(x+ 1) = ∆(x) + x+ k .

(ii) We have ∆(−1) ≤ 0 and ∆(k) > 0. Thus, x0, the largest real root of ∆, satisfies −1 ≤ x0 < k.

(iii) The values ∆(k − 1) and ∆(k − 2) are even integers.

Proof: (i) The claim is readily verified by direct application of (21).

(ii) Setting x = −1 in (21), and recalling that Q = k2 − dk(k − 1)/4e and M = dlogQe, we obtain

∆(−1) = 2(k2 − k(k−1)

4
− 2M) = 2

(
Q− 2M +

1

2
1(k mod 4)∈{2,3}

)
= 1(k mod 4)∈{2,3} + 2(Q−2M),

34

where 1P = 1 if the predicate P is true, or 1P = 0 otherwise. It follows that ∆(−1) can be positive

only if (k mod 4) ∈ {2, 3} and Q = 2M . Writing Q = Q(k), and computing explicitly Q(4` + 2) =

(4` + 3)(3` + 1) and Q(4` + 3) = (` + 1)(12` + 7), we conclude that Q has at least one odd divisor

when (k mod 4) ∈ {2, 3}. Therefore, we must have ∆(−1) ≤ 0.

Furthermore, since Q ≤ 2M ≤ 2Q− 1, we have

∆(k) = 2k2 − 2M+1 + k(k + 1)− 1 ≥ 2k2 − 4Q+ k(k + 1) + 1

= −2k2 + 4

⌈
k(k − 1)

4

⌉
+ k(k + 1) + 1 ≥ −2k2 + k(k − 1) + k(k + 1) + 1 = 1.

Thus, ∆(k) > 0, and, since the coefficient of x2 in ∆(x) is 1
2 , x0 must be in the claimed range.

(iii) By direct computation, we have ∆(k − 1) = 2 k2 − 2M+1 + (k − 1)k and ∆(k − 2) = 2 k2 −
2M+1 + (k − 2)(k − 1). Since k > 2 and M > 0, both values are even.

To complete the proof of Theorem 4, we will construct a tuple j = (j, r, j′, r′) that satisfies the

conditions of Lemma 15, and, thus, defines the sought parameter pair (σk, ck).

Proof of Theorem 4: It follows immediately from the definition of ∆(x) in (21) and of F (j, r, j′, r′)

in (51) that for j, r, j′, r′ we have

F (j, r, j′, r′) = ∆(j) +
(k − j − 2)(k − j − 1)

2
− j′(j′ + 1)

2
+ 2r − r′ . (57)

When j′ = k − j − 2, this reduces to

F (j, r, j′, r′) = ∆(j) + 2r − r′ , (58)

while with j′ = k − 1− j we get

F (j, r, j′, r′) = ∆(j) + 2r − r′ − (k − j − 1) . (59)

We will use these relations to verify that the solutions constructed below satisfy (52). Let x0 be the

largest real root of ∆(x), and let ξ = bx0c. By Lemma 16(ii), we have −1 ≤ ξ < k, ∆(ξ) ≤ 0, and

∆(ξ + 1) > 0. We consider three main cases for ∆(ξ), and for each case (and possible sub-cases) we

define a tuple j = (j, r, j′, r′) and verify that it satisfies the conditions of Lemma 15.

1) 0 ≤ −∆(ξ) ≤ 2ξ : Let j = ξ , r = b−∆(j)+1
2 c and r′ = −∆(j) mod 2. By the assumptions of

the case on ∆(ξ), we have j ≥ 0. As for j′, we have the sub-cases below. At the end of each

sub-case, we note which of Conditions (i)–(iv) of Lemma 15 is satisfied.

a) j = 0 : We must have ∆(0) = 0, so we get r = r′ = 0, and we set j′ = k−2 (Condition (iv)).

b) j ∈ {k − 2, k − 1} : By Lemma 16(iii), ∆(j) is even, and r′ = 0. We get r = −∆(j)
2 and

0 ≤ r ≤ j by the assumptions on ∆(ξ), and we set j′ = 0 (Condition (iii)).

c) 0 < j < k − 2 : Set j′ = k − 2 − j. From the choices for r and r′, we get 0 ≤ r ≤ j and

0 ≤ r′ ≤ 1 ≤ j′ (Condition (i)).

To verify that (52) is satisfied, we apply (58) for sub-cases a) and c), and for sub-case b) with

35

j = k − 2. We apply (59) for sub-case b) with j = k − 1. For example, for sub-case c), by (58)

and the definitions of r and r′, we have,

F (j, r, j′, r′) = ∆(j) + 2r − r′ = ∆(j) + 2

⌊
1−∆(j)

2

⌋
− r′ = ∆(j) + 2

r′ −∆(j)

2
− r′ = 0 .

Verification of F = 0 for the other sub-cases follows along similar lines.

2) −∆(ξ) ∈ {2ξ + 1, 2ξ + 2} : Let j = ξ + 1. By Lemma 16(ii), we have 0 ≤ j ≤ k. We claim that

j ≤ k − 1. Assume, contrary to the claim, that j = k. Then, −∆(k − 1) = −∆(ξ) = 2k − ε with

ε ∈ {0, 1}, and, by Lemma 16(i), we have ∆(ξ + 1) = ∆(k) = ∆(k − 1) + 2k − 1 = ε− 1 ≤ 0,

contradicting Lemma 16(ii), which establishes ∆(ξ + 1) > 0. Thus, we have 0 ≤ j ≤ k − 1, and,

defining j′ = k−1−j, we also have 0 ≤ j′ ≤ k−1. By Lemma 16(i), we have ∆(j) = ∆(ξ+1) =

∆(ξ)+ ξ+k, and, by the conditions of the case on ∆(ξ), we get ∆(j) ∈ {k− j, k− j−1}. Define

r = 0, and r′ = ∆(j) − (k − j − 1), which implies r′ ∈ {0, 1}. Thus, whenever 0 < j < k − 1,

j = (j, r, j′, r′) satisfies Condition (ii) of Lemma 15. When j = 0, j satisfies Condition (iv), and

when j = k − 1, it satisfies Condition (iii) as long as r′ = 0. We claim that when r′ = 1, we

must have j < k − 1. Otherwise, if r′ = 1 and j = k − 1, then, by the definition of r′, we have

∆(k− 1) = ∆(j) = r′+ (k− j − 1) = 1, contradicting Lemma 16(iii). Thus, j satisfies one of the

conditions (ii)–(iv) of Lemma 15. By (59) and the definitions of r and r′, j also satisfies (52).

3) −∆(ξ) ≥ 2ξ + 3 : Let j = ξ + 1. By Lemma 16(ii), we have 0 ≤ j ≤ k. We claim that

j ≤ k−2. Assume, contrary to the claim, that j = k−1. Then, ξ = k−2, and, by the assumptions

of the case, we have −∆(k − 2) ≥ 2(k − 2) + 3 = 2k − 1. Applying Lemma 16(i), we get

∆(ξ + 1) = ∆(k − 1) = ∆(k − 2) + (k − 2) + k = ∆(k − 2) + 2k − 2 ≤ −1, contradicting

Lemma 16(ii), since we must have ∆(ξ+1) > 0. Similarly, if j = k, then −∆(k−1) ≥ 2k+1 and

∆(k) = ∆(k−1)+2k−1 ≤ −2, again contradicting Lemma 16(ii). Thus, we have 0 ≤ j ≤ k−2,

and we can define j′ = k − 2− j, which also satisfies 0 ≤ j′ ≤ k − 2. By Lemma 16(i), and the

conditions of the case on ∆(ξ), we have ∆(j) = ∆(ξ+1) = ∆(ξ)+ξ+k ≤ k−ξ−3 = k−2−j = j′.

Define r = 0, and r′ = ∆(j), satisfying 0 ≤ r′ ≤ j′. Thus, j = (j, r, j′, r′) satisfies Condition (i)

of Lemma 15. By (58) and the definitions of r and r′, j also satisfies (52).

Cases 1–3 above cover all possible values of ∆(ξ), and in all cases, we have exhibited an explicit tuple

j = (j, r, j′, r′) satisfying the conditions of Lemma 15, and, therefore, defining the optimal tree Tσk, ck . It

can readily be verified that the definitions of j and r in (22)–(23) summarize the corresponding definitions

in the cases of the proof, with (22) corresponding to Case 1, and (22) to Cases 2 and 3. Furthermore,

the definition of ck in (24) reflects the parameter c = nM−1 − 2M + k2 in the profile (48)–(50) defined

by j for c = ck.

Proof of Corollary 1: By the structure of Ck in Theorem 2, it suffices to prove that Qk ·Qk is not

optimal for the finite source Ak. Let h = dlog ke and a = 2h − k, with 0 ≤ a < 2h−1. From the profile

of Qk given in in Section II-B, one derives the profile of Qk ·Qk, obtaining

NQk·Qk =
(
n2h−2, n2h−1, n2h

)
=
(
a2, 2a(k − a), (k − a)2

)
.

36

Since Qk · Qk has fringe thickness fT ≤ 2, it has a representation Tσg, cg , for some parameters σg, cg,

as defined in Lemma 7, with N = k2. The case a = 0 (i.e., k = 2h) is readily discarded as sub-optimal

for k > 2, as it corresponds to a uniform tree with 22h leaves, which cannot be optimal for Âk since

pk2 + pk2−1 < p1 for that source. Also, we can assume that σg is such that Lemma 10 is satisfied,

and that n2h−2 and n2h are such that they can be written, respectively, as nM−1 and nM+1 in (48)–

(49), with j and j′ satisfying Lemma 13. Otherwise, Tσg, cg is not optimal, and the corollary is proved.

By Lemma 9, we can write a2 < 1
2(j + 1)(j + 2) < 1

2(j + 2)2, or j >
√

2 a − 2. Similarly, we have

(k−a)2 < 1
2(j′+1)(j′+2) < 1

2(j′+2)2, or j′ >
√

2(k−a)−2. Adding up, we obtain j+j′ >
√

2 k−4,

and, hence, for k ≥ 10, j + j′ > k, contradicting Lemma 13. For the remaining cases, if k ∈ {7, 9} one

verifies that σg violates Lemma 10, and for k ∈ {3, 5, 6}, one can easily verify, by direct inspection, that

Tσg, cg is sub-optimal for Âk.

APPENDIX C

LAYER TRANSITIONS IN THE CODES C−k

In each layer transition described below, we assume that we start from a layer Ls of type (x), and

show how it unfolds into a layer Ls+1 of type (y), the transition being denoted (x)→(y). We denote by

ds the depth of the shallowest node in Ls.

(i)→(i): The tree qs+1Vk in each of the ` groups M in Ls unfolds, by the definition of Vk (see also

Figure 4), into a tree qs+2Vk and 2k − 1 leaves of weight qs+1, which provides a group M
for Ls+1. Hence, there are ` groups M in Ls+1, which include (2k − 1)` signatures s + 1.

This propagation of groups M will occur in the same way in all the other transitions below;

its discussion will be omitted for those cases. There remain s+ 2− (2k − 1)` = 2k−1 + 1 + j

signatures s + 1, with 0 ≤ j ≤ 2k−1 − 4 (recall that layers of type (i) exist only if k > 2). A

quasi-uniform tree with 2k−1 +2+j leaves is built, rooted at Rs. This tree has 2k−1−(j+1)−1

leaves at depth k − 1, which are labeled s + 1, and 2(j + 1) + 2 leaves at depth k, of which

2(j + 1) + 1 are assigned label s + 1, and one serves as the root of Rs+1, consistent with a

structure of type (i) for s+ 1 (and, correspondingly, j + 1).

(i)→(ii): We have j = 2k−1 − 3. We let Rs be the root of a balanced tree of height k. Of its 2k leaves,

2k−2 are assigned the remaining 2k−2 signatures s+1, one leaf serves as the root for q Uk−1,

and the remaining leaf as the root for Rs+1.

(ii)→(iii) (k>2): The tree q Uk−1 in Ls contributes 2k−1 leaves of signature s+ 1 to Ls+1, in addition to

those contributed by the groups M. There remain 2k−1−1 signatures s+1, which are assigned

to leaves of a balanced tree Uk−1 rooted at Rs. The remaining leaf splits into two nodes, one

is the root of a tree q Uk−1, and the other anchors Rs+1.

(ii)→(iv) (k=2): The tree q U1 in Ls contributes 21 leaves of signature s+1 to Ls+1, in addition to those

contributed by the groups M. The remaining signature s+ 1 is assigned to one leaf of a tree

U1 rooted at Rs. The second leaf splits into two nodes, one is the root of a tree qV−k , and the

other anchors Rs+1.

37

(iii)→(iii): The construction from the previous transition is kept, except that one of the leaves of the tree

Uk−1 rooted at Rs is split, making room for the additional signature s + 1 resulting from the

increase in s. Hence, there is a decrease by one in the number of leaves at depth ds and an

increase by two in the number of leaves at depth ds+1. This process continues until j = 2k−4.

(iii)→(iv): This transition is identical to the previous one, except that instead of a tree q Uk−1, a tree qV−k
is attached as sibling to Rs+1.

(iv)→(v): The tree qV−k from the previous transition provides the 2k−1 − 1 leaves of signature s + 1,

plus a tree qVk. What started as a balanced tree of depth k − 1 in the transition (ii)→(iii) has

evolved into a balanced tree of depth k, with all leaves assigned signatures s + 1, except for

one, which serves as the root of Rs+1.

(v)→(i) (k>2): The tree qVk added in the previous transition generates a new group M, consistent with

the increment in `. All signatures s+ 1 now originate from the groups M, or from Rs, which

brings the construction back to a layer of type (i), completing the cycle.

(v)→(ii) (k=2): When k = 2 the transition occurs to a layer of type (ii), as described above for the initial

transition from Case 1 to Case 2.

REFERENCES

[1] S. W. Golomb, “Run length encodings,” IEEE Trans. Inf. Theory, vol. IT-12, pp. 399–401, 1966. 2, 3, 5, 10
[2] R. G. Gallager and D. C. Van Voorhis, “Optimal source codes for geometrically distributed integer alphabets,” IEEE Trans.

Inf. Theory, vol. IT-21, pp. 228–230, 1975. 2, 3, 4, 5, 6, 10, 12, 25, 27, 28
[3] N. Merhav, G. Seroussi, and M. J. Weinberger, “Optimal prefix codes for sources with two-sided geometric distributions,”

IEEE Trans. Inf. Theory, vol. 46, pp. 229–236, 2000. 2, 3, 6, 10, 27
[4] R. F. Rice, “Some practical universal noiseless coding techniques,” Tech. Rep. JPL-79-22, JPL, Pasadena, CA, 1979. 2
[5] M. J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless image compression algorithm: Principles and

standardization into JPEG-LS,” IEEE Trans. Image Proc., vol. 9, pp. 1309–1324, 2000. 2
[6] T. Linder, V. Tarokh, and K. Zeger, “Existence of optimal prefix codes for infinite source alphabets,” IEEE Trans. Inf.

Theory, vol. 43, pp. 2026–2028, 1997. 2
[7] A. Kato, T. S. Han, and H. Nagaoka, “Huffman coding with an infinite alphabet,” IEEE Trans. Inf. Theory, vol. 42,

pp. 977–984, 1996. 2
[8] J. Abrahams, “Code and parse trees for lossless source encoding,” Commun. Inf. Syst., vol. 1, pp. 113–146, 2001. 2
[9] M. J. Golin and K. K. Ma, “Algorithms for constructing infinite Huffman codes,” Technical Report HKUST-TCSC-2004-07,

HKUST, Hong Kong, China, July 2004. 2
[10] M. B. Baer, Coding for General Penalties. PhD thesis, Stanford University, 2003. 2, 3, 25
[11] S. W. Golomb, “Sources which maximize the choice of a Huffman coding tree,” Information and Control, vol. 45, pp. 263–

272, jun 1980. 3
[12] F. Bassino, M.-P. Béal, and D. Perrin, “A finite state version of the Kraft-McMillan theorem,” SIAM Journal on Computing,

vol. 30, no. 4, pp. 1211–1230, 2000. 3
[13] G. Seroussi and M. J. Weinberger, “On adaptive strategies for an extended family of Golomb-type codes,” in Proc. DCC’97,

(Snowbird, UT), pp. 131–140, 1997. 27

38

	Introduction
	Preliminaries
	Definitions
	Some basic objects and operations
	The Gallager-Van Voorhis method

	Singularity of optimal codes for TDGDs
	Optimal codes for TDGDs with parameters q=
	Initial characterization of optimal codes for q=
	Optimal trees with 2 for 4-uniform sources
	The top code
	Average code length

	Optimal codes for TDGDs of parameter q=
	The codes
	A limit code

	Practical considerations and redundancy
	Appendix A: Proofs for Subsection IV-B
	Appendix B: Proofs for Subsection IV-C
	Appendix C: Layer transitions in the codes
	References

