Martingale representations of the Lynden-Bell estimator with applications

E. Strzalkowska-Kominiak, W. Stute

- To cite this version:

E. Strzalkowska-Kominiak, W. Stute. Martingale representations of the Lynden-Bell estimator with applications. Statistics and Probability Letters, 2009, 79 (6), pp.814. 10.1016/j.spl.2008.10.038. hal-00511176

HAL Id: hal-00511176

https://hal.science/hal-00511176

Submitted on 24 Aug 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Martingale representations of the Lynden-Bell estimator with applications
E. Strzalkowska-Kominiak, W. Stute

PII: \quad S0167-7152(08)00520-8
DOI: 10.1016/j.spl.2008.10.038
Reference: STAPRO 5272

To appear in: Statistics and Probability Letters

Received date: 14 July 2008
Accepted date: 31 October 2008

Please cite this article as: Strzalkowska-Kominiak, E., Stute, W., Martingale representations of the Lynden-Bell estimator with applications. Statistics and Probability Letters (2008), doi:10.1016/j.spl.2008.10.038

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Martingale Representations of the Lynden-Bell Estimator with Applications

E. Strzalkowska-Kominiak
W. Stute
Mathematical Institute, University of Giessen, Arndtstr. 2, D-35392 Giessen, Germany

Abstract

We derive a martingale representation for the Lynden-Bell estimator F_{n} and show that F_{n} fulfills linear upper and lower bounds.

Key words: Truncated data, Lynden-Bell, martingales, linear bounds

1. Introduction And Main Results

Let X and Z be two independent random variables with unknown distribution functions (d.f.'s) F and G, respectively. Under truncation from the right we observe (X, Z) only if $X \leq Z$. Truncation typically creates some dependence between the observed X and Z. Also the distribution function of X becomes

$$
F^{*}(x)=\mathbb{P}(X \leq x \mid X \leq Z)=\alpha^{-1} \int_{(-\infty, x]}(1-G(y-)) F(d y),
$$

where $\alpha=\mathbb{P}(X \leq Z)$ is unknown but assumed to be positive. Here and in the following, for any function h, we denote with

$$
h^{-}(y) \equiv h(y-)=\lim _{z \uparrow y} h(z) \quad h^{+}(y) \equiv h(y+)=\lim _{z \downarrow y} h(z)
$$

left and right hand limits and with

$$
h\{y\}=h\left(y^{+}\right)-h\left(y^{-}\right)
$$

the jump size at y. Also, for any distribution function H, we set

$$
a_{H}=\inf \{x: H(x)>0\} \text { and } b_{H}=\inf \{x: H(x)=1\} .
$$

Given a sample $\left(X_{i}, Z_{i}\right), 1 \leq i \leq n$, of truncated replicates of (X, Z), the goal then is to reconstruct F from the observed data. Write

$$
\Lambda(x)=\int_{[x, \infty)} \frac{d F}{F}
$$

for the cumulative hazard function associated with F, and set

$$
C(x)=\mathbb{P}(X \leq x \leq Z \mid X \leq Z)
$$

The function C is crucial when analyzing truncated data since, when $b_{F} \leq b_{G}$,

$$
\begin{equation*}
\Lambda(x)=\int_{[x, \infty)} \frac{d F^{*}}{C} \tag{1}
\end{equation*}
$$

and F^{*} and C are readily estimable through

$$
F_{n}^{*}(x)=n^{-1} \sum_{i=1}^{n} 1_{\left\{X_{i} \leq x\right\}} \text { and } C_{n}(x)=n^{-1} \sum_{i=1}^{n} 1_{\left\{X_{i} \leq x \leq Z_{i}\right\}} .
$$

Plugging these into (1) yields the estimator of Λ,

$$
\Lambda_{n}(x)=\int_{[x, \infty)} \frac{d F_{n}^{*}}{C_{n}}=\sum_{i=1}^{n} \frac{1_{\left\{X_{i} \geq x\right\}}}{n C_{n}\left(X_{i}\right)} .
$$

The product-limit formula finally leads to the time honoured Lynden-Bell (1971) estimator of F which, if there are no ties among the X 's, equals

$$
F_{n}(t)=\prod_{y>t}\left[1+\Lambda_{n}\{y\}\right]=\prod_{X_{i}>t}\left[1-\frac{1}{n C_{n}\left(X_{i}\right)}\right] .
$$

Stute and Wang (2008) showed how to break ties without destroying the product limit structure. Therefore, in this paper, we shall assume w.l.o.g. that there are no ties among the X 's. Note that F_{n} reduces to the classical
empirical d.f. when there is no truncation. In such a situation F_{n}^{-} / F^{-}is a martingale in reverse time for $t>a_{F}$.

It is the purpose of this paper to prove an analog and discuss some consequences, when the data are truncated.

A basic role in the analysis of F_{n} will be played by the process

$$
H_{n}^{1}(t)=n^{-1} \sum_{i=1}^{n} 1_{\left\{t \leq X_{i} \leq Z_{i}\right\}} .
$$

H_{n}^{1} and C_{n} are adapted to the filtration

$$
\mathcal{G}_{n}(t)=\sigma\left(\left\{X_{i}<s \leq Z_{i}\right\},\left\{s \leq X_{i} \leq Z_{i}\right\}: t \leq s, 1 \leq i \leq n\right),
$$

which is nondecreasing in reverse time. The process C_{n} is neither left- nor right-continuous. If we consider C_{n}^{+}, the right-continuous version, we obtain a function which is predictable in reverse time. The martingale in the Doob-Meyer decomposition of H_{n}^{1} becomes, when F and G have no jumps in common,

$$
M_{n}(t)=H_{n}^{1}(t)-\int_{[t, \infty)} \frac{C_{n}(u+)}{F(u)} F(d u) .
$$

See, e.g., Mandrekar and Thelen (1990) and Keiding and Gill (1990). The "no-common jump" condition will be assumed throughout this paper without further mentioning. Separate discontinuities will, however, be allowed.

Now, on the set $\left\{t: C_{n}(t+)>0\right\}$, we obtain

$$
\frac{d M_{n}}{C_{n}^{+}}=\frac{d H_{n}^{1}}{C_{n}^{+}}+\frac{d F}{F}=d \Lambda_{n}-d \Lambda,
$$

upon noting that the function H_{n}^{1} has jumps of size $-\frac{1}{n}$ at the X_{i} and the function C_{n} satisfies $C_{n}\left(X_{i}+\right)=C_{n}\left(X_{i}\right)$.

Since on the support of H_{n}^{1} the function C_{n}^{+}is positive we therefore obtain

$$
\frac{1_{\left\{C_{n}^{+}>0\right\}}}{C_{n}^{+}} d M_{n}=d \Lambda_{n}-1_{\left\{C_{n}^{+}>0\right\}} d \Lambda \equiv d \Lambda_{n}-d \hat{\Lambda}_{0} .
$$

The hazard measure

$$
\hat{\Lambda}_{0}(d t)=1_{\left\{C_{n}(t+)>0\right\}} \Lambda(d t)
$$

is random and has distribution function

$$
\hat{F}_{0}(t)=\prod_{s>t}\left[1+\hat{\Lambda}_{0}\{s\}\right] e^{-\hat{\Lambda}_{0}^{c}(t)}
$$

Here $\hat{\Lambda}_{0}^{c}$ is the continuous part of $\hat{\Lambda}_{0}$. The function \hat{F}_{0} will be required for a first martingale representation of F_{n}.

For this, since

$$
\begin{aligned}
\hat{\Lambda}_{0}(d s) & =1_{\left\{C_{n}(s+)>0\right\}} \Lambda(d s)=-1_{\left\{C_{n}(s+)>0\right\}} \frac{F(d s)}{F(s)} \\
& \geq-\frac{F(d s)}{F(s)}=\Lambda(d s)
\end{aligned}
$$

we have

$$
\begin{align*}
\hat{F}_{0}(t-) & =\prod_{s \geq t}\left[1+\hat{\Lambda}_{0}\{s\}\right] e^{-\hat{\Lambda}_{0}^{c}(t)} \\
& =\prod_{s \geq t}\left[1+1_{\left\{C_{n}(s+)>0\right\}} \Lambda\{s\}\right] e^{-\hat{\Lambda}_{0}^{c}(t)} \tag{2}\\
& =\prod_{s \geq t, C_{n}(s+)>0}[1+\Lambda\{s\}] e^{-\hat{\Lambda}_{0}^{c}(t)} \geq \prod_{s \geq t}[1+\Lambda\{s\}] e^{-\Lambda^{c}(t)}=F(t-),
\end{align*}
$$

where the second but last inequality follows from $0 \leq 1+\Lambda\{s\} \leq 1$. Hence $a_{\hat{F}_{0}} \leq a_{F}$ and, consequently, $\hat{F}_{0}(t-)>0$ for every $t>a_{F}$. Hence the process

$$
\begin{equation*}
t \rightarrow \frac{F_{n}(t-)}{\hat{F}_{0}(t-)} \tag{3}
\end{equation*}
$$

is well-defined on $t>a_{F}$.
From Gill's lemma, see Lemma 3, we obtain

$$
\frac{F_{n}(t-)}{\hat{F}_{0}(t-)}=1+\int_{[t, \infty)} \frac{F_{n}(s)}{\left[1+\hat{\Lambda}_{0}\{s\}\right]} \frac{1_{\left\{C_{n}(s+)>0\right\}}}{\hat{F}_{0}(s) C_{n}(s+)} M_{n}(d s)
$$

Since M_{n} is a martingale and the integrand is continuous from the right and hence predictable in reverse time, the process in (3) is a martingale.

When the X-data are not at risk of being truncated, \hat{F}_{0}^{-}coincides with F^{-}on the set $t \geq \min X_{i}$ so that the ratio becomes F_{n}^{-} / F^{-}. It is interesting to note that for censored data, i.e., for the Kaplan-Meier estimator, the indicator defining the corresponding $\hat{\Lambda}_{0}$ is also non-vanishing there so that \hat{F}_{0} and F coincide. As a conclusion we obtain the martingale property for the Kaplan-Meier estimator with the true F in the denominator. See Gill (1980) and Shorack and Wellner (1986). For truncated data, due to the nonmonotonicity of C_{n}, a simple replacement of \hat{F}_{0} by F is not possible. Rather, we need to introduce

$$
T=T_{n}=\max \left\{X_{i}: n C_{n}\left(X_{i}\right)=1\right\} .
$$

Note that $n C_{n}(X)=1$ when X is the smallest among the X_{i} 's and $F_{n}(t)$ equals zero for $t<T$. For further analysis, the following property of T turns out to be useful.

Lemma 1. T is a stopping time w.r.t. the filtration \mathcal{G}_{n}.
We shall also need the following representation of T which connects T with $C_{n}(t+)$ but with t not necessarily belonging to the X-sample.

Lemma 2. We have

$$
\begin{equation*}
T=\sup \left\{t<\max _{1 \leq i \leq n} Z_{i}: C_{n}(t+)=0\right\} . \tag{4}
\end{equation*}
$$

The proofs of Lemma 1 and 2 will be postponed to the Appendix.
If we stop the reverse martingale at T, Lemma 1 may be applied to show that the process

$$
Z(t)=\frac{F_{n}(t \vee T-)}{\hat{F}_{0}(t \vee T-)}
$$

is also a reverse martingale. The process Z is part of the following representation of F_{n}^{-} / F^{-}

Theorem 1. We have, for $t>a_{F}$,

$$
\frac{F_{n}(t-)}{F(t-)}=Z(t) \frac{1}{F(\tilde{T} \vee t-)},
$$

where $\tilde{T}=\max _{1 \leq i \leq n} Z_{i}$.

Proof. For $t \leq T$, both sides vanish. For $T<t<\tilde{T}$, we may proceed as for (2) to get

$$
\begin{aligned}
\frac{F_{n}(t-)}{F(t-)} & =Z(t) \frac{\hat{F}_{0}(t-)}{F(t-)}=\frac{Z(t)}{F(t-)} \prod_{s \geq t, C_{n}(s+)>0}[1+\Lambda\{s\}] e^{-\hat{\Lambda}_{0}^{c}(t)} \\
& =\frac{Z(t)}{F(t-)} \prod_{\tilde{T}>s \geq t}[1+\Lambda\{s\}] e^{\int_{[t, \tilde{T})} d \Lambda^{c}}=\frac{Z(t)}{F(t-)} \frac{F(t-)}{F(\tilde{T})}=\frac{Z(t)}{F(\tilde{T})}
\end{aligned}
$$

where the third equality follows from Lemma 2. Finally, for $t \geq \tilde{T}, F_{n}(t-)=$ $\hat{F}_{0}(t-)=1$ so that the conclusion follows.

The case of the simple empirical d.f. may be recovered from Theorem 1 if we formally set $Z_{i}=\infty$. Hence $F(\tilde{T} \vee t-)=1$ for all t and $T=\min X_{i}$. Since $\hat{F}_{0}=F$ on $t \geq T$ we obtain the aforementioned fact that for the empirical d.f. the process F_{n}^{-} / F^{-}is a reverse martingale. Under truncation the additional term $F(\tilde{T} \vee t-)$ may be less than one which destroys the martingale structure. Interestingly enough the next Corollary shows that some weaker martingale structure is still obtained.

Corollary 1. F_{n}^{-} / F^{-}is a nonnegative reverse sub-martingale.
Proof. Fix $t<s$. Since the process $t \rightarrow F(\tilde{T} \vee t-)$ is adapted we have, by monotonicity of the denominator,

$$
\begin{aligned}
\mathbb{E}\left[\left.\frac{F_{n}(t-)}{F(t-)} \right\rvert\, \mathcal{G}_{n}(s)\right] & =\mathbb{E}\left[\left.\frac{Z(t)}{F(\tilde{T} \vee t-)} \right\rvert\, \mathcal{G}_{n}(s)\right] \\
& \geq \frac{\mathbb{E}\left[Z(t) \mid \mathcal{G}_{n}(s)\right]}{F(\tilde{T} \vee s-)}=\frac{Z(s)}{F(\tilde{T} \vee s-)}
\end{aligned}
$$

2. Linear Bounds For The Lynden-Bell Estimator

In this section we derive so-called linear bounds for F_{n}. Such bounds have found a lot of interest, for the classical empirical d.f. and the Kaplan-Meier estimator, see Shorack and Wellner (1986).
Theorem 2. We have, for any $\lambda>0$,

$$
\mathbb{P}\left(\sup _{t>a_{F}} \frac{F_{n}(t-)}{F(t-)} \geq \lambda\right) \leq\left(\frac{1}{\lambda \alpha}\right)^{\frac{n}{n+1}}\left[n^{\frac{1}{n+1}}+n^{-\frac{n}{n+1}}\right] \leq 2\left(\frac{1}{\lambda \alpha}\right)^{\frac{n}{n+1}}
$$

For the classical empirical d.f., under continuity of F and for $\lambda \geq 1$, the left-hand side equals λ^{-1}. See Daniels (1945). For truncated data the factor α needs to be included to take care of truncation effects. Finally, we may write

$$
\left(\frac{1}{\lambda \alpha}\right)^{\frac{n}{n+1}}=\frac{1}{\lambda \alpha}(\lambda \alpha)^{\frac{1}{n+1}}
$$

so that the right side is also $O\left(\lambda^{-1}\right)$ uniformly in λ for λ varying in a bounded set or tending to infinity such that $\lambda^{\frac{1}{n+1}}$ remains bounded, as $n \rightarrow \infty$. In particular, we obtain that the ratio is uniformly bounded in probability:

$$
\begin{equation*}
\sup _{t>a_{F}} \frac{F_{n}(t-)}{F(t-)}=O_{\mathbb{P}}(1) \tag{5}
\end{equation*}
$$

Proof. For any $a>a_{F}$ and positive c we have from Theorem 1

$$
\begin{align*}
& \mathbb{P}\left(\sup _{t>a} \frac{F_{n}(t-)}{F(t-)} \geq \lambda\right) \\
& \leq \mathbb{P}\left(\sup _{t>a} Z(t) \geq c \lambda\right)+\mathbb{P}(F(\tilde{T}) \leq c) \leq \frac{1}{c \lambda}+\mathbb{P}^{n}\left(F\left(Z_{1}\right) \leq c\right), \tag{6}
\end{align*}
$$

where the first part of the last inequality follows from the Doob-maximal inequality for $Z(t)$ and the second is a consequence of the monotonicity of F and the independence of the Z_{i} 's.

To proceed, let G^{*} be the d.f. of the actually observed Z 's. Then

$$
G^{*}(x)=\mathbb{P}(Z \leq x \mid X \leq Z)=\alpha^{-1} \mathbb{P}(Z \leq x, X \leq Z) \leq \alpha^{-1} F(x)
$$

Hence we obtain

$$
\mathbb{P}^{n}\left(F\left(Z_{1}\right) \leq c\right) \leq \mathbb{P}^{n}\left(G^{*}\left(Z_{1}\right) \leq \frac{c}{\alpha}\right) \leq\left(\frac{c}{\alpha}\right)^{n}
$$

In summary, the right side of (6) is bounded from above by

$$
\frac{1}{c \lambda}+\alpha^{-n} c^{n} \equiv f(c)
$$

Finally, the function $f(c)$ attains its minimum at

$$
c^{*}=\left(\frac{\alpha^{n}}{\lambda n}\right)^{\frac{1}{n+1}}
$$

with

$$
f\left(c^{*}\right)=\left(\frac{1}{\lambda \alpha}\right)^{\frac{n}{n+1}}\left[n^{\frac{1}{n+1}}+n^{-\frac{n}{n+1}}\right] .
$$

Since the bound in (6) does not depend on a, we may let a go to a_{F} to complete the proof. The second bound follows from the fact that [...] equals 2 for $n=1$ and is nonincreasing in n.

Next we study the ratio F / F_{n}. It is only defined for $t \geq T$ since the denominator vanishes for $t<T$. As it will turn out F / F_{n} is closely related to $\left(1-G_{n}\right) /(1-G)$ where

$$
1-G_{n}(t)=\prod_{Z_{j} \leq t}\left[1-\frac{1}{n C_{n}\left(Z_{j}\right)}\right]
$$

is the Lynden-Bell estimator for the survival function $1-G$ of the lefttruncated Z 's. Theorem 1 appropriately modified yields a representation of $\left(1-G_{n}\right) /(1-G)$ as a forward martingale, where

$$
T_{n}^{1}=\inf \left\{Z_{j}: n C_{n}\left(Z_{j}\right)=1\right\}
$$

plays the same role for the Z 's as T_{n} played for the X 's. Another important quantity in this context is the unknown probability α. Note that

$$
\begin{equation*}
\frac{F(t)(1-G(t-))}{C(t)}=: \alpha(t) \tag{7}
\end{equation*}
$$

equals α for all $a_{F}<t<b_{F}$. This observation led He and Yang (1998) to propose

$$
\begin{equation*}
\hat{\alpha}_{n}(t)=\frac{F_{n}(t)\left(1-G_{n}(t-)\right)}{C_{n}(t)} \tag{8}
\end{equation*}
$$

as an estimator for α. Unfortunately, the numerator of $\hat{\alpha}_{n}$ vanishes everywhere if $T_{n}^{1}<T_{n}$. This again holds if $T_{n}>\min _{1 \leq i \leq n} X_{i}$, i.e., if there exists a so-called hole or inner risk set among the X 's. In order to justify $\hat{\alpha}_{n}$ one therefore needs a careful study of the possibility of holes. In StrzalkowskaKominiak and Stute (2008) it was shown that $T_{n}=\min _{1 \leq i \leq n} X_{i}$ with probability tending to one, as $n \rightarrow \infty$. Similarly, $T_{n}^{1}=\max _{1 \leq i \leq n} Z_{i}$ with probability tending to one, as $n \rightarrow \infty$.

Hence, setting

$$
\Omega_{1}^{(n)}=\left\{T_{n}=\min _{1 \leq i \leq n} X_{i} \text { and } T_{n}^{1}=\max _{1 \leq i \leq n} Z_{i}\right\}
$$

we get $\mathbb{P}\left(\Omega_{1}^{(n)}\right) \rightarrow 1$ as $n \rightarrow \infty$. Moreover, on $\Omega_{1}^{(n)}, \hat{\alpha}_{n}(t)=\hat{\alpha}$ is a (random) constant for $T_{n}<t<T_{n}^{1}$. See He and Yang (1998).

We are now in a position to formulate our next main result.
Theorem 3. Assume $a_{F} \leq a_{G}$ and $b_{F} \leq b_{G}$. Then we have

$$
\sup _{T_{n} \leq t} \frac{F(t)}{F_{n}(t)}=O_{\mathbb{P}}(1) \text { as } n \rightarrow \infty
$$

Moreover, $T_{n} \rightarrow a_{F}$ in probability.
Proof. In view of $\mathbb{P}\left(\Omega_{1}^{(n)}\right) \rightarrow 1$ it suffices to study the ratio on $\Omega_{1}^{(n)}$. We then have

$$
\frac{F(t)}{F_{n}(t)}=\frac{\alpha(t)}{\hat{\alpha}(t)} \frac{C(t)}{C_{n}(t)} \frac{1-G_{n}(t-)}{1-G(t-)} .
$$

Denote with $X_{1: n}<X_{2: n}<\ldots<X_{n: n}$ the ordered X-data. Since $F_{n}(t)=1$ for $t \geq X_{n: n}$ so that $F(t) / F_{n}(t) \leq 1$ there, it suffices to consider t 's such that $X_{i: n} \leq t<X_{i+1: n}$ for some $i=1, \ldots, n-1$. In such a situation, we have, in view of (7) and (8),

$$
\frac{F(t)}{F_{n}(t)} \leq \frac{F\left(X_{i+1: n}\right)}{F_{n}\left(X_{i: n}\right)}=\frac{\alpha\left(X_{i+1: n}\right)}{\hat{\alpha}\left(X_{i+1: n}\right)} \frac{C\left(X_{i+1: n}\right)}{C_{n}\left(X_{i+1: n}\right)} \frac{1-G_{n}\left(X_{i+1: n}-\right)}{1-G\left(X_{i+1: n}-\right)} \frac{F_{n}\left(X_{i+1: n}\right)}{F_{n}\left(X_{i: n}\right)} .
$$

The first ratio is the same for each i and converges to 1 , see He and Yang (1998). The ratio C / C_{n} is also bounded in probability, see Stute and Wang (2008). The ratio $\left(1-G_{n}^{-}\right) /\left(1-G^{-}\right)$is bounded according to Theorem 2, applied to the left-truncated Z 's. Finally,

$$
\begin{equation*}
\frac{F_{n}\left(X_{i+1: n}\right)}{F_{n}\left(X_{i: n}\right)}=\frac{1}{1-\frac{1}{n C_{n}\left(X_{i+1: n}\right)}}=\frac{n C_{n}\left(X_{i+1: n}\right)}{n C_{n}\left(X_{i+1: n}\right)-1} . \tag{9}
\end{equation*}
$$

Since on $\Omega_{1}^{(n)}$ we have $n C_{n}\left(X_{i+1: n}\right) \geq 2$, the term in (9) is bounded from above by 2. That $T_{n} \rightarrow a_{F}$ in probability, is an immediate consequence of Strzalkowska-Kominiak and Stute (2008). The proof is complete.

Appendix

Proof of Lemma 1. We shall proof the assertion by showing that T may be approximated by a sequence $T^{(m)}$, as $m \rightarrow \infty$, where for each $m \geq 1$ the variable $T^{(m)}$ is a stopping time. For this, set

$$
X_{i}^{(m)}=\sum_{k=0}^{\infty} k 2^{-m} 1_{\left\{k 2^{-m} \leq X_{i}<(k+1) 2^{-m}\right\}}
$$

and

$$
T^{(m)}=\max _{1 \leq i \leq n}\left\{X_{i}^{(m)}: 1_{\left\{X_{j}<X_{i}^{(m)} \leq Z_{j}\right\}}=0 \text { for } 1 \leq j \leq n\right\} .
$$

Then we obtain

$$
\left\{T^{(m)} \geq t\right\}=\bigcup_{i=1}^{n}\left\{X_{i}^{(m)} \geq t: 1_{\left\{X_{j}<X_{i}^{(m)} \leq Z_{j}\right\}}=0 \text { for } 1 \leq j \leq n\right\}
$$

If t satisfies $k 2^{-m}<t \leq(k+1) 2^{-m}$, we have

$$
\left\{X_{i}^{(m)} \geq t\right\}=\left\{X_{i}^{(m)} \geq(k+1) 2^{-m}\right\}=\bigcup_{l=k+1}^{\infty}\left\{X_{i}^{(m)}=l 2^{-m}\right\}
$$

whence

$$
\left\{X_{j}<X_{i}^{(m)} \leq Z_{j}\right\} \cap\left\{X_{i}^{(m)} \geq t\right\}=\bigcup_{l=k+1}^{\infty}\left\{X_{j}<l 2^{-m} \leq Z_{j}, X_{i}^{(m)}=l 2^{-m}\right\}
$$

Since by definition of \mathcal{G}_{n}

$$
\left\{X_{j}<l 2^{-m} \leq Z_{j}\right\} \in \mathcal{G}_{n}\left(l 2^{-m}\right)
$$

and

$$
\left\{X_{i}^{(m)}=l 2^{-m}\right\}=\left\{l 2^{-m} \leq X_{i}<(l+1) 2^{-m}\right\} \in \mathcal{G}_{n}\left(l 2^{-m}\right)
$$

monotonicity of $\mathcal{G}_{n}(t)$ in reverse time yields

$$
\left\{X_{j}<X_{i}^{(m)} \leq Z_{j}, X_{i}^{(m)} \geq t\right\} \in \mathcal{G}_{n}\left((k+1) 2^{-m}\right) \in \mathcal{G}_{n}(t)
$$

This implies that $T^{(m)}$ is a stopping time. To prove the lemma it suffices to show that $T^{(m)} \rightarrow T$ as $n \rightarrow \infty$. For this, consider any $X_{i}^{(m)}$ such that for each $j=1, \ldots, n$ either $X_{j} \geq X_{i}^{(m)}$ or $X_{i}^{(m)}>Z_{j}$. Since $X_{i}^{(m)} \leq X_{i}<$ $X_{i}^{(m)}+2^{-m}$, the inequality $X_{i}^{(m)}>Z_{j}$ yields $X_{i}>Z_{j}$. Furthermore, since there are no ties among the X_{i} 's, there exists $M_{0}=M_{0}(n, w)$ such that for $i \neq j=1, \ldots, n$ and $m \geq M$ we have $\left|X_{i}(w)-X_{j}(w)\right|>2^{-m}$. Hence from $X_{j} \geq X_{i}^{(m)}$ we also get $X_{j} \geq X_{i}$. Since $X_{i}^{(m)} \leq X_{i}$, we finally obtain

$$
T^{(m)}(w) \leq T(w) \text { for } m \geq M_{0}
$$

With similar arguments one can show that for $m \geq M_{1}(n, w)$

$$
T^{(m)}(w) \geq T(w)-2^{-m} .
$$

This shows $T^{(m)} \rightarrow T$ pointwise and completes the proof.
Proof of Lemma 2. Let $t<\max Z_{i}$ be such that $C_{n}(t+)=0$. Then $1_{\left\{X_{j} \leq t<Z_{j}\right\}}=0$ for all $j=1, \ldots, n$. Since $t<\max Z_{i}$, there exists at least one $X_{j}>t$. For the smallest among such X_{j} 's we have $n C_{n}\left(X_{j}\right)=1$. Conclude that the right-hand side of (4) is less than or equal to T. Conversely, let $X_{i_{0}}$ be the maximum of the X_{i} 's for which $n C_{n}\left(X_{i}\right)=1$. This set is nonempty since the smallest of the X 's always satisfies this equation. Let $Z_{j_{0}}$ be the largest among the Z_{j} 's which is strictly smaller than $X_{i_{0}}$, if there is any. For any $Z_{j_{0}} \leq t<X_{i_{0}}$, we have $C_{n}(t+)=0$. If not such Z exists, any $t<X_{i_{0}}$ will do the job. This shows that T is less than or equal to the right-hand side of (4). The proof is complete.

The following lemma is an adaptation of a result due to Gill (1980) for the survival function to the left tails of a d.f.

Lemma 3. Let A and B be two nonincreasing, left-continuous functions satisfying

$$
A\{x\} \geq-1 \text { and } B\{x\}>-1 \text { for all } x \in \mathbb{R} .
$$

The function

$$
Z(t)=1-\frac{\prod_{s \geq t}(1+A\{s\}) \exp \left(-A^{c}(t)\right)}{\prod_{s \geq t}(1+B\{s\}) \exp \left(-B^{c}(t)\right)}
$$

satisfies the integral equation

$$
\int_{[t, \infty)} \frac{1-Z\left(s^{+}\right)}{1+B\{s\}}(B(d s)-A(d s))=Z(t)
$$

In this paper $A(t)$ and $B(t)$ are the left-continuous cumulative hazard functions of F_{n} and \hat{F}_{0}, respectively.

References

[1] Daniels, H. E. (1945). The statistical theory of the strength of bundles of thread. Proc. Roy. Soc., London Ser. A 183, 405-435.
[2] Gill, R. D. (1980). Censoring and Stochastic Integrals. MC Tracts 124. Amsterdam, Centre for Mathematics and Computer Science.
[3] He, S. and Yang, G. L. (1998). Estimation of the truncation probability in the random truncation model. Ann. Statist. 26, 1011-1027.
[4] Keiding, N. and Gill, R.D. (1990). Random truncation models and Markov processes. Ann. Statist. 18, 582-602.
[5] Lynden-Bell, D. (1971). A method of allowing for known observational selection in small samples applied to 3CR quasars. Mon. Not. R. Astr. Soc. 155, 95-118.
[6] Mandrekar, V. and Thelen, B. (1990). Joint weak convergence on the whole line in the truncation model. R. C. Bose Symposium on Probability, Statistics and Design of Experiments. Wiley Eastern, New Dehli, 495-515.
[7] Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. Wiley, New York.
[8] Strzalkowska-Kominiak, E. and Stute, W. (2008). On the effect of holes in truncated samples. Submitted.
[9] Stute, W. and Wang, J.-L. (2008). The central limit theorem under random truncation. To appear in J. Bernoulli.

