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Martingale Representations of the Lynden-Bell

Estimator with Applications

E. Strzalkowska-Kominiak

W. Stute

Mathematical Institute, University of Giessen, Arndtstr. 2, D-35392 Giessen, Germany

Abstract

We derive a martingale representation for the Lynden-Bell estimator Fn and
show that Fn fulfills linear upper and lower bounds.
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1. Introduction And Main Results

Let X and Z be two independent random variables with unknown distri-
bution functions (d.f.’s) F and G, respectively. Under truncation from the
right we observe (X,Z) only if X ≤ Z. Truncation typically creates some
dependence between the observed X and Z. Also the distribution function
of X becomes

F ∗(x) = P(X ≤ x|X ≤ Z) = α−1

∫

(−∞,x]

(1 − G(y−))F (dy),

where α = P(X ≤ Z) is unknown but assumed to be positive. Here and in
the following, for any function h, we denote with

h−(y) ≡ h(y−) = lim
z↑y

h(z) h+(y) ≡ h(y+) = lim
z↓y

h(z)

left and right hand limits and with

h{y} = h(y+) − h(y−)
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the jump size at y. Also, for any distribution function H, we set

aH = inf{x : H(x) > 0} and bH = inf{x : H(x) = 1}.

Given a sample (Xi, Zi), 1 ≤ i ≤ n, of truncated replicates of (X, Z), the
goal then is to reconstruct F from the observed data. Write

Λ(x) =

∫

[x,∞)

dF

F

for the cumulative hazard function associated with F , and set

C(x) = P(X ≤ x ≤ Z|X ≤ Z).

The function C is crucial when analyzing truncated data since, when bF ≤ bG,

Λ(x) =

∫

[x,∞)

dF ∗

C
(1)

and F ∗ and C are readily estimable through

F ∗
n(x) = n−1

n∑

i=1

1{Xi≤x} and Cn(x) = n−1

n∑

i=1

1{Xi≤x≤Zi}.

Plugging these into (1) yields the estimator of Λ,

Λn(x) =

∫

[x,∞)

dF ∗
n

Cn

=
n∑

i=1

1{Xi ≥x}
nCn(Xi)

.

The product-limit formula finally leads to the time honoured Lynden-Bell
(1971) estimator of F which, if there are no ties among the X’s, equals

Fn(t) =
∏

y>t

[1 + Λn{y}] =
∏

Xi>t

[
1 − 1

nCn(Xi)

]
.

Stute and Wang (2008) showed how to break ties without destroying the
product limit structure. Therefore, in this paper, we shall assume w.l.o.g.
that there are no ties among the X’s. Note that Fn reduces to the classical
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empirical d.f. when there is no truncation. In such a situation F −
n /F − is a

martingale in reverse time for t > aF .

It is the purpose of this paper to prove an analog and discuss some con-
sequences, when the data are truncated.

A basic role in the analysis of Fn will be played by the process

H1
n(t) = n−1

n∑

i=1

1{t≤Xi≤Zi}.

H1
n and Cn are adapted to the filtration

Gn(t) = σ({Xi < s ≤ Zi}, {s ≤ Xi ≤ Zi} : t ≤ s, 1 ≤ i ≤ n),

which is nondecreasing in reverse time. The process Cn is neither left- nor
right-continuous. If we consider C+

n , the right-continuous version, we ob-
tain a function which is predictable in reverse time. The martingale in the
Doob-Meyer decomposition of H1

n becomes, when F and G have no jumps in
common,

Mn(t) = H1
n(t) −

∫

[t,∞)

Cn(u+)

F (u)
F (du).

See, e.g., Mandrekar and Thelen (1990) and Keiding and Gill (1990). The
“no-common jump” condition will be assumed throughout this paper without
further mentioning. Separate discontinuities will, however, be allowed.

Now, on the set {t : Cn(t+) > 0}, we obtain

dMn

C+
n

=
dH1

n

C+
n

+
dF

F
= dΛn − dΛ,

upon noting that the function H1
n has jumps of size − 1

n
at the Xi and the

function Cn satisfies Cn(Xi+) = Cn(Xi).

Since on the support of H1
n the function C+

n is positive we therefore obtain

1{C+
n >0}

C+
n

dMn = dΛn − 1{C+
n >0}dΛ ≡ dΛn − dΛ̂0.
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The hazard measure
Λ̂0(dt) = 1{Cn(t+)>0}Λ(dt)

is random and has distribution function

F̂0(t) =
∏

s>t

[1 + Λ̂0{s}]e−Λ̂c
0(t).

Here Λ̂c
0 is the continuous part of Λ̂0. The function F̂0 will be required for a

first martingale representation of Fn.

For this, since

Λ̂0(ds) = 1{Cn(s+)>0}Λ(ds) = −1{Cn(s+)>0}
F (ds)

F (s)

≥ − F (ds)

F (s)
= Λ(ds)

we have

F̂0(t−) =
∏

s≥t

[1 + Λ̂0{s}]e−Λ̂c
0(t)

=
∏

s≥t

[1 + 1{Cn(s+)>0}Λ{s}]e−Λ̂c
0(t) (2)

=
∏

s≥t,Cn(s+)>0

[1 + Λ{s}]e−Λ̂c
0(t) ≥

∏

s≥t

[1 + Λ{s}]e−Λc(t) = F (t−),

where the second but last inequality follows from 0 ≤ 1 + Λ{s} ≤ 1. Hence
aF̂0

≤ aF and, consequently, F̂0(t−) > 0 for every t > aF . Hence the process

t → Fn(t−)

F̂0(t−)
(3)

is well-defined on t > aF .

From Gill’s lemma, see Lemma 3, we obtain

Fn(t−)

F̂0(t−)
= 1 +

∫

[t,∞)

Fn(s)

[1 + Λ̂0{s}]

1{Cn(s+)>0}

F̂0(s)Cn(s+)
Mn(ds).

4
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Since Mn is a martingale and the integrand is continuous from the right and
hence predictable in reverse time, the process in (3) is a martingale.

When the X-data are not at risk of being truncated, F̂ −
0 coincides with

F − on the set t ≥ min Xi so that the ratio becomes F −
n /F −. It is interesting

to note that for censored data, i.e., for the Kaplan-Meier estimator, the
indicator defining the corresponding Λ̂0 is also non-vanishing there so that
F̂0 and F coincide. As a conclusion we obtain the martingale property for
the Kaplan-Meier estimator with the true F in the denominator. See Gill
(1980) and Shorack and Wellner (1986). For truncated data, due to the non-
monotonicity of Cn, a simple replacement of F̂0 by F is not possible. Rather,
we need to introduce

T = Tn = max {Xi : nCn(Xi) = 1} .

Note that nCn(X) = 1 when X is the smallest among the Xi’s and Fn(t)
equals zero for t < T . For further analysis, the following property of T turns
out to be useful.

Lemma 1. T is a stopping time w.r.t. the filtration Gn.

We shall also need the following representation of T which connects T
with Cn(t+) but with t not necessarily belonging to the X-sample.

Lemma 2. We have

T = sup{t < max
1≤i≤n

Zi : Cn(t+) = 0}. (4)

The proofs of Lemma 1 and 2 will be postponed to the Appendix.

If we stop the reverse martingale at T , Lemma 1 may be applied to show
that the process

Z(t) =
Fn(t ∨ T −)

F̂0(t ∨ T −)

is also a reverse martingale. The process Z is part of the following represen-
tation of F −

n /F −

Theorem 1. We have, for t > aF ,

Fn(t−)

F (t−)
= Z(t)

1

F (T̃ ∨ t−)
,

where T̃ = max1≤i≤n Zi.

5
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Proof. For t ≤ T , both sides vanish. For T < t < T̃ , we may proceed as for
(2) to get

Fn(t−)

F (t−)
= Z(t)

F̂0(t−)

F (t−)
=

Z(t)

F (t−)

∏

s≥t,Cn(s+)>0

[1 + Λ{s}]e−Λ̂c
0(t)

=
Z(t)

F (t−)

∏

T̃>s≥t

[1 + Λ{s}]e

∫
[t,T̃ )

dΛc

=
Z(t)

F (t−)

F (t−)

F (T̃ )
=

Z(t)

F (T̃ )
,

where the third equality follows from Lemma 2. Finally, for t ≥ T̃ , Fn(t−) =
F̂0(t−) = 1 so that the conclusion follows.

The case of the simple empirical d.f. may be recovered from Theorem 1 if
we formally set Zi = ∞. Hence F (T̃ ∨t−) = 1 for all t and T = min Xi. Since
F̂0 = F on t ≥ T we obtain the aforementioned fact that for the empirical d.f.
the process F −

n /F − is a reverse martingale. Under truncation the additional
term F (T̃ ∨t−) may be less than one which destroys the martingale structure.
Interestingly enough the next Corollary shows that some weaker martingale
structure is still obtained.

Corollary 1. F −
n /F − is a nonnegative reverse sub-martingale.

Proof. Fix t < s. Since the process t → F (T̃ ∨ t−) is adapted we have, by
monotonicity of the denominator,

E
[
Fn(t−)

F (t−)
|Gn(s)

]
= E

[
Z(t)

F (T̃ ∨ t−)
|Gn(s)

]

≥ E[Z(t)|Gn(s)]

F (T̃ ∨ s−)
=

Z(s)

F (T̃ ∨ s−)
.

2. Linear Bounds For The Lynden-Bell Estimator

In this section we derive so-called linear bounds for Fn. Such bounds have
found a lot of interest, for the classical empirical d.f. and the Kaplan-Meier
estimator, see Shorack and Wellner (1986).

Theorem 2. We have, for any λ > 0,

P
(

sup
t>aF

Fn(t−)

F (t−)
≥ λ

)
≤

(
1

λα

) n
n+1 [

n
1

n+1 + n− n
n+1

]
≤ 2

(
1

λα

) n
n+1

.

6
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For the classical empirical d.f., under continuity of F and for λ ≥ 1, the
left-hand side equals λ−1. See Daniels (1945). For truncated data the factor
α needs to be included to take care of truncation effects. Finally, we may
write (

1

λα

) n
n+1

=
1

λα
(λα)

1
n+1

so that the right side is also O(λ−1) uniformly in λ for λ varying in a bounded

set or tending to infinity such that λ
1

n+1 remains bounded, as n → ∞. In
particular, we obtain that the ratio is uniformly bounded in probability:

sup
t>aF

Fn(t−)

F (t−)
= OP(1). (5)

Proof. For any a > aF and positive c we have from Theorem 1

P
(

sup
t>a

Fn(t−)

F (t−)
≥ λ

)

≤ P
(

sup
t>a

Z(t) ≥ cλ

)
+ P(F (T̃ ) ≤ c) ≤ 1

cλ
+ Pn(F (Z1) ≤ c), (6)

where the first part of the last inequality follows from the Doob-maximal
inequality for Z(t) and the second is a consequence of the monotonicity of F
and the independence of the Zi’s.

To proceed, let G∗ be the d.f. of the actually observed Z’s. Then

G∗(x) = P(Z ≤ x|X ≤ Z) = α−1P(Z ≤ x,X ≤ Z) ≤ α−1F (x).

Hence we obtain

Pn(F (Z1) ≤ c) ≤ Pn
(
G∗(Z1) ≤ c

α

)
≤

( c

α

)n

.

In summary, the right side of (6) is bounded from above by

1

cλ
+ α−ncn ≡ f(c).

Finally, the function f(c) attains its minimum at

c∗ =

(
αn

λn

) 1
n+1

7
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with

f(c∗) =

(
1

λα

) n
n+1 [

n
1

n+1 + n− n
n+1

]
.

Since the bound in (6) does not depend on a, we may let a go to aF to
complete the proof. The second bound follows from the fact that [. . .] equals
2 for n = 1 and is nonincreasing in n.

Next we study the ratio F/Fn. It is only defined for t ≥ T since the
denominator vanishes for t < T . As it will turn out F/Fn is closely related
to (1 − Gn)/(1 − G) where

1 − Gn(t) =
∏

Zj ≤t

[
1 − 1

nCn(Zj)

]

is the Lynden-Bell estimator for the survival function 1 − G of the left-
truncated Z’s. Theorem 1 appropriately modified yields a representation of
(1 − Gn)/(1 − G) as a forward martingale, where

T 1
n = inf{Zj : nCn(Zj) = 1}

plays the same role for the Z’s as Tn played for the X’s. Another important
quantity in this context is the unknown probability α. Note that

F (t)(1 − G(t−))

C(t)
=: α(t) (7)

equals α for all aF < t < bF . This observation led He and Yang (1998) to
propose

α̂n(t) =
Fn(t)(1 − Gn(t−))

Cn(t)
(8)

as an estimator for α. Unfortunately, the numerator of α̂n vanishes every-
where if T 1

n < Tn. This again holds if Tn > min1≤i≤n Xi, i.e., if there exists
a so-called hole or inner risk set among the X’s. In order to justify α̂n one
therefore needs a careful study of the possibility of holes. In Strzalkowska-
Kominiak and Stute (2008) it was shown that Tn = min1≤i≤n Xi with prob-
ability tending to one, as n → ∞. Similarly, T 1

n = max1≤i≤n Zi with proba-
bility tending to one, as n → ∞.

Hence, setting

Ω
(n)
1 =

{
Tn = min

1≤i≤n
Xi and T 1

n = max
1≤i≤n

Zi

}

8
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we get P(Ω
(n)
1 ) → 1 as n → ∞. Moreover, on Ω

(n)
1 , α̂n(t) = α̂ is a (random)

constant for Tn < t < T 1
n . See He and Yang (1998).

We are now in a position to formulate our next main result.

Theorem 3. Assume aF ≤ aG and bF ≤ bG. Then we have

sup
Tn≤t

F (t)

Fn(t)
= OP(1) as n → ∞.

Moreover, Tn → aF in probability.

Proof. In view of P(Ω
(n)
1 ) → 1 it suffices to study the ratio on Ω

(n)
1 . We then

have
F (t)

Fn(t)
=

α(t)

α̂(t)

C(t)

Cn(t)

1 − Gn(t−)

1 − G(t−)
.

Denote with X1:n < X2:n < . . . < Xn:n the ordered X-data. Since Fn(t) = 1
for t ≥ Xn:n so that F (t)/Fn(t) ≤ 1 there, it suffices to consider t’s such that
Xi:n ≤ t < Xi+1:n for some i = 1, . . . , n − 1. In such a situation, we have, in
view of (7) and (8),

F (t)

Fn(t)
≤ F (Xi+1:n)

Fn(Xi:n)
=

α(Xi+1:n)

α̂(Xi+1:n)

C(Xi+1:n)

Cn(Xi+1:n)

1 − Gn(Xi+1:n−)

1 − G(Xi+1:n−)

Fn(Xi+1:n)

Fn(Xi:n)
.

The first ratio is the same for each i and converges to 1, see He and Yang
(1998). The ratio C/Cn is also bounded in probability, see Stute and Wang
(2008). The ratio (1 − G−

n )/(1 − G−) is bounded according to Theorem 2,
applied to the left-truncated Z’s. Finally,

Fn(Xi+1:n)

Fn(Xi:n)
=

1

1 − 1
nCn(Xi+1:n)

=
nCn(Xi+1:n)

nCn(Xi+1:n) − 1
. (9)

Since on Ω
(n)
1 we have nCn(Xi+1:n) ≥ 2, the term in (9) is bounded from

above by 2. That Tn → aF in probability, is an immediate consequence of
Strzalkowska-Kominiak and Stute (2008). The proof is complete.

Appendix

Proof of Lemma 1. We shall proof the assertion by showing that T may be
approximated by a sequence T (m), as m → ∞, where for each m ≥ 1 the
variable T (m) is a stopping time. For this, set

X
(m)
i =

∞∑

k=0

k2−m1{k2−m≤Xi<(k+1)2−m}

9
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and
T (m) = max

1≤i≤n

{
X

(m)
i : 1{Xj<X

(m)
i ≤Zj } = 0 for 1 ≤ j ≤ n

}
.

Then we obtain

{
T (m) ≥ t

}
=

n⋃

i=1

{
X

(m)
i ≥ t : 1{Xj<X

(m)
i ≤Zj } = 0 for 1 ≤ j ≤ n

}
.

If t satisfies k2−m < t ≤ (k + 1)2−m, we have

{
X

(m)
i ≥ t

}
=

{
X

(m)
i ≥ (k + 1)2−m

}
=

∞⋃

l=k+1

{X
(m)
i = l2−m}

whence

{
Xj < X

(m)
i ≤ Zj

}
∩

{
X

(m)
i ≥ t

}
=

∞⋃

l=k+1

{
Xj < l2−m ≤ Zj, X

(m)
i = l2−m

}
.

Since by definition of Gn

{
Xj < l2−m ≤ Zj

}
∈ Gn(l2−m)

and {
X

(m)
i = l2−m

}
=

{
l2−m ≤ Xi < (l + 1)2−m

}
∈ Gn(l2−m),

monotonicity of Gn(t) in reverse time yields

{
Xj < X

(m)
i ≤ Zj, X

(m)
i ≥ t

}
∈ Gn((k + 1)2−m) ∈ Gn(t).

This implies that T (m) is a stopping time. To prove the lemma it suffices
to show that T (m) → T as n → ∞. For this, consider any X

(m)
i such that

for each j = 1, . . . , n either Xj ≥ X
(m)
i or X

(m)
i > Zj. Since X

(m)
i ≤ Xi <

X
(m)
i + 2−m, the inequality X

(m)
i > Zj yields Xi > Zj. Furthermore, since

there are no ties among the Xi’s, there exists M0 = M0(n,w) such that for
i 6= j = 1, . . . , n and m ≥ M we have |Xi(w) − Xj(w)| > 2−m. Hence from

Xj ≥ X
(m)
i we also get Xj ≥ Xi. Since X

(m)
i ≤ Xi, we finally obtain

T (m)(w) ≤ T (w) for m ≥ M0.

10
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With similar arguments one can show that for m ≥ M1(n,w)

T (m)(w) ≥ T (w) − 2−m.

This shows T (m) → T pointwise and completes the proof. ¤

Proof of Lemma 2. Let t < max Zi be such that Cn(t+) = 0. Then
1{Xj ≤t<Zj } = 0 for all j = 1, . . . , n. Since t < max Zi, there exists at least one
Xj > t. For the smallest among such Xj’s we have nCn(Xj) = 1. Conclude
that the right-hand side of (4) is less than or equal to T . Conversely, let Xi0

be the maximum of the Xi’s for which nCn(Xi) = 1. This set is nonempty
since the smallest of the X’s always satisfies this equation. Let Zj0 be the
largest among the Zj’s which is strictly smaller than Xi0 , if there is any. For
any Zj0 ≤ t < Xi0 , we have Cn(t+) = 0. If not such Z exists, any t < Xi0

will do the job. This shows that T is less than or equal to the right-hand
side of (4). The proof is complete. ¤

The following lemma is an adaptation of a result due to Gill (1980) for
the survival function to the left tails of a d.f.

Lemma 3. Let A and B be two nonincreasing, left-continuous functions
satisfying

A{x} ≥ −1 and B{x} > −1 for all x ∈ R.

The function

Z(t) = 1 −
∏

s≥t(1 + A{s}) exp(−Ac(t))∏
s≥t(1 + B{s}) exp(−Bc(t))

satisfies the integral equation

∫

[t,∞)

1 − Z(s+)

1 + B{s} (B(ds) − A(ds)) = Z(t).

In this paper A(t) and B(t) are the left-continuous cumulative hazard
functions of Fn and F̂0, respectively.
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