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, who studies the conditions for asymptotic normality of L 1 -and (constrained) L 2 -norm regression estimators in the nonlinear regression model. Unfortunately, Wang fails to state necessary global conditions.

Nonlinear regression

We consider the nonlinear regression model

y i = f (x i , ϑ) + e i , i = 1, . . . , N, (1) 
where ϑ ∈ R m is a vector of unknown parameters and {e i } is an error process. An extensive literature investigates the asymptotic properties of M-estimators θN of ϑ, minimizing the loss function

M N (ϑ) = 1 N N i=1 ρ(y i -f (x i , ϑ)), (2) 
for different choices of ρ-functions ρ p = |z| p , p ≥ 1, (e.g., [START_REF] Berlinet | Necessary and sufficient conditions for consistency of M-estimates in regression models with general errors[END_REF]. Leading examples are L 1 (p = 1; e.g. [START_REF] Wang | Asymptotic normality of L 1 -estimators in nonlinear regression[END_REF] and L 2 (p = 2; e.g. [START_REF] Wang | Asymptotics of least-squares estimators for constrained nonlinear regression[END_REF] estimators.

For independent and identically distributed (iid) processes, consistency and asymptotic normality conditions of model (1) have been studied for L 2 regression by [START_REF] Wu | Characterizing the consistent directions of least squares estimates[END_REF]. For the same model [START_REF] Oberhofer | The consistency of nonlinear regression minimizing the L 1 norm[END_REF] establishes consistency for L 1 regression and Jureckova and Prochazka (1994) derive conditions for consistency and asymptotic normality for the asymetrically weighted L 1 (quantile) regression. The results of Wu and Oberhofer have been extended to dependent and/or heterogeneous processes in subsequent research (e.g., Prakasa [START_REF] Rao | The rate of convergence of the least squares estimator in a nonlinear regression model with dependent errors[END_REF]. A comprehensive treatment and annotated bibliography for M-estimation of model ( 1) is given by Liese andVajda (2003, 2004).

In his main result stated in Theorem 2, [START_REF] Wang | Asymptotic normality of L 1 -estimators in nonlinear regression[END_REF] studies the asymptotic normality of the L 1 estimator of model [START_REF] Berlinet | Necessary and sufficient conditions for consistency of M-estimates in regression models with general errors[END_REF]. His main theorem is based on three assumptions: A1 concerns the errors e i , in particular that e 1 , . . . , e N are iid, A2 and A3 concern the smoothness and boundedness of ∇f (x i , ϑ). The requirements of the latter two assumptions, however, are postulated in A2 only for ϑ in a neighborhood of the true value ϑ 0 , and in A3 for ϑ = ϑ 0 .

The solely local nature of these assumptions is rather astounding, as even identifiability requires an assertion global in ϑ. An example for a suitable identification assumption would be: for every > 0 there exists a positive δ such that lim inf

N inf ||ϑ-ϑ 0 ||≥ 1 N N i=1 |f (x i , ϑ) -f (x i , ϑ 0 )| > δ . (3) 
Usually such an assertion is made when discussing consistency, e.g., [START_REF] Oberhofer | The consistency of nonlinear regression minimizing the L 1 norm[END_REF] for L 1 estimators and [START_REF] Wu | Characterizing the consistent directions of least squares estimates[END_REF], who discusses the consistent directions of L 2 estimators. Then asymptotic normality is proved given consistency and rate of convergence of the estimator θN minimizing M N (ϑ) (e.g., Liese and Vajda, 2003, p. 458).

As a consequence, asymptotic normality cannot be established globally without consistency, where the latter is based on an assertion global in ϑ. It lies near at hand to ask, whether and where these considerations are reflected in the argumentation of Wang?

Asymptotic normality

Wang (1995) refers to Prakasa [START_REF] Rao | Asymptotic theory of statistical inference[END_REF] and argues that the latter uses an analogous argumentation for the least squares (L 2 ) estimation of ϑ in (1). Unfortunately, Wang's adaption is incorrect, though this may be difficult to see at first sight. Indeed, Theorem 6.2.1 (p. 373) in Prakasa [START_REF] Rao | Asymptotic theory of statistical inference[END_REF] holds only locally, i.e. for ϑ such that ϑ = ϑ 0 + N -1/2 φ, (4) where φ is contained in a neighborhood V of ϑ 0 and the local parameter φN = N 1/2 ( θNϑ) minimizes the loss function M N (φ) = M N (ϑ 0 + N -1/2 φ) -M N (ϑ 0 ).

(5)
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But this is derestricted by Prakasa [START_REF] Rao | Asymptotic theory of statistical inference[END_REF] in the remark after Theorem 6.2.5 (p. 377), and requires a (global) identifiability assumption such as [START_REF] Jureckova | Regression quantiles and trimmed least squares estimators in nonlinear regression models[END_REF] or assumption (C 1 ) in Prakasa Rao (1987, p. 372). The latter step, which is based on the work of [START_REF] Ivanov | An asymptotic expansion for the distribution of the least squares estimator of the non-linear regression parameter[END_REF], establishes a rate of convergence result and is missing in Wang's argumentation. In the last paragraph of p. 237, [START_REF] Wang | Asymptotic normality of L 1 -estimators in nonlinear regression[END_REF] merely mentions that V can be arbitrarily large. As V depends on N , however, this argument is illfounded. V can be arbitrarily large, but independently from N . Hence, a correct proof requires the consistency of the estimator of ϑ and in addition its sufficiently fast convergence to ϑ 0 (e.g., Prakasa Rao, 1987, equations (6.2.28) and (6.2.29)).

Note that the same reasoning applies analogously to a more recent paper of [START_REF] Wang | Asymptotics of least-squares estimators for constrained nonlinear regression[END_REF], which considers the asymptotic normality of the L 2 estimator of the parameter vector in (1), subject to a set of nonlinear equality and inequality constraints. In Theorem 6, [START_REF] Wang | Asymptotics of least-squares estimators for constrained nonlinear regression[END_REF] shows that N 1/2 ( θ-ϑ 0 ) converges to a normal distribution if N 1/2 (ϑϑ 0 ) is contained in a bounded set. Again, however, all assumptions employed are only local.