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Abstract. Most of the research on optimal designs concentrates on linear and

non-linear models with fixed effects. In this paper we discuss optimal designs for

a Poisson regression model with random intercept.It is shown that the optimal

designs are identical across the individuals, but depend on the variance.

keywords: Poisson Regression Models; Optimal Designs; Quasi-likelihood ; Information Matrix
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1. Introduction

Design optimality has received growing attention by statisticians over the past few

decades.The main goal is to find the best experimental settings xi, which maximize

the information matrix of parameters as the inverse of variance-covariance matrix.

Both binary and count data have been extensively studied in the literature as cases

of Generalized Linear Models. Optimal designs for binary data models, especially for

logistic models have been investigated by Abdelbasit and Plackett (1983), Minkin

(1987) and many others in the fixed effects cases. Recently, Mairo et al.(2004) have

extended the work on optimal designs for logistic models with random intercept.

Also, Minkin (1993)and Yanping et al. (2006) have done some extensive work to

find optimal designs especially D-optimal designs in fixed effects Poisson regression

models.

Despite wide theoretical work on the analysis in Generalized Linear Mixed Models

(GLMM) (see e.g. McCulloch and Searle (2001)), few results exist on this topic in

optimal designs.

In this paper, we consider as a simple case of GLMM , a simple Poisson Regression

with Random Intercept. The aim is to derive the information matrix for design

optimal criteria and to obtain optimal designs.

Due to the random effect in this model, a closed form of the likelihood function to es-

timate the fixed parameters of this model is quite intractable. So a Quasi-Likelihood

approach is used to determine the information matrix for these parameters (McCul-

lagh and Nelder (1997), chapter 9). The only assumptions on the data are those

concerning the first two moments.

As we will see later, the information matrix depends on the unknown parameters.

So, it poses a two fold problem: to find the optimal designs we must know the pa-

rameters, and to know the parameters we need to design first. A simple approach

to this problem is to look for Locally optimal designs which are based on an ini-

tial guess of the parameters and then find optimal designs which are optimal with

respect to this initial guess.

The outline of the paper is as follows: In the next section, we introduce the model

and the variance-covariance structure. In section 3, we apply the quasi-likelihood
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method to obtain the information matrix. And finally , in section 4, we consider a

simple example and determine the D-optimal designs.

2. The Model

We consider a Poisson Regression Model with random intercept which can be

written as:

Yijk | bi
ind∼ P (µij(bi))





i = 1, . . . , s

j = 1, . . . , ti

k = 1, . . . ,mij

ti∑
j=1

mij = mi

n =
s∑

i=1

mi

where µij(bi) = exp(bi + fT (xij)β) is specified by the canonical linked function.

Here, Yijk stands for the kth replication for the individual i at the experimental

setting xij from the experimental region X. Also we suppose that mij denotes the

number of replications of individual i at the jth level of x. The vector of known

regression functions f = (1, f1, . . . , fp−1)
T is the same for all individuals. The p-

dimensional vector of parameters β = (β0, β1, . . . , βp−1)
T associated with the mean

response curve is unknown. The random variable bi is the individual deviation

from the overall population intercept β0, i.e. β0 + bi is the random intercept which

varies and depends on the different individuals. The deviation bi is assumed to be

normal distributed with mean 0 and known variance σ2. The random intercepts

are uncorrelated for different individuals, i.e., cov(bi, bi′ ) = 0 for all i 6= i′. Note

that V ar(Yijk | bi) = E(Yijk | bi) = µij(bi).For further simplification,without loss of

generality, we assume ti = t ∀i.

With regard to the properties of bi, observations from the same individuals have the

following variance-covariance structure:

V ar(Yijk) = V ar(E(Yijk | bi)) + E(V ar(Yijk | bi))

= e2fT (xij)β+σ2

(eσ2 − 1) + efT (xij)β+ 1
2
σ2

= µ2
ij(e

σ2 − 1) + µij ,

where µij = E(Yijk) = E(E(Yijk | bi)) = efT (xij)β+ 1
2
σ2

.

cov(Yijk, Yij′k′ ) = cov(E(Yijk | bi), E(Yij′k′ | bi)) + E(cov(Yijk, Yij′k′ | bi))

= µijµij′ (eσ2 − 1) for all (j, k) 6= (j′, k′)
4
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Also, cov(Yijk, Yi′j′k′ ) = 0 for all i 6= i′ and all j, j′, k, k′.

Let Yi = (Y T
i1 , . . . , Y T

iti
)T be the mi × 1 vector of measurements on the ith individual,

where Yij = (Yij1, . . . , Yijmij
)T (j = 1, . . . , ti) is the mij × 1 vector of replications of

individual i at the jth level of x. Then by applying some matrix algebra, we have

Vi = var(Yi) =




µi1Imi1
0 · · · 0

0 µi2Imi2
· · · 0

...
...

. . .
...

0 0 · · · µitImiti




+(eσ2 − 1)




µi11mi1

µi21mi2

...

µiti1miti




(
µi11

T
mi1

µi21
T
mi2

· · · µiti1
T
miti

)

= Ȧi + ȧiȧ
T
i

where, ȧT
i =

√
eσ2 − 1

(
µi11

T
mi1

· · · µiti1
T
miti

)
and Ȧi = diag(µi1Imi1

, · · · , µitiImiti
).

Here and through out Iv denotes the v × v identity matrix and 1v is an v × 1 vector

with all entries equal to 1.

We suppose that Y T = (Y T
1 , . . . , Y T

s ) is the vector of the whole observation.

Independence of different individuals leads to,

V = var(Y ) =




V1 0 · · · 0

0 V2 · · · 0
...

...
. . .

...

0 0 · · · Vs




3. Information Matrix

The role played by the information matrix is very clear in the Optimal Design

studies. This role seems apparent comes from the relation between information

matrix and variance-covariance matrix of the estimator of parameters based on the

likelihood principle.

In our case due to the complicated form of the likelihood function, it is not easy to

use this relation.
5
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As an alternative we first outline the quasi-likelihood estimator as an estimator

based on the quasi-score function.

3.1. Quasi-Likelihood Estimator. Suppose the n×1 random variable Y has mean

µ(β) and variance-covariance matrix φ2V (β) = φ2V (µ(β)) where V (µ) is called

the variance function and shows the relation between the mean and the variance of

Y (McCulloch and Searle 2001). Both are known functions of the p-dimensional

parameter vector β and V (β) is a positive definite matrix.

The quasi-likelihood for the regression parameters β is defined by the quasi-score

function

U(β,y) = φ2DT (V (β))−1(y − µ(β))

In this expression the entries of the matrix D, of order n × p, are Djr =
∂µj

∂βr
, the

partial derivatives of the components of µ(β), with respect to the parameters.

The asymptotic variance-covariance of the quasi-score function U(β,Y), which equals

the negative of the expectation of ∂U(β,Y)/∂β , is

M(β) = DT (V (β))−1D

This matrix plays the role of the Fisher information exactly in the same way as in

fully parametric inference, and under the usual regularity conditions, the asymptotic

variance-covariance matrix of the quasi-likelihood estimator of β equals M(β)−1

(McCullagh and Nelder 1998, Sec.9.3). For the sake of clarity we call M(β) the

(quasi-)information matrix.

3.2. Information Matrix of an Individual Design. With regard to the defi-

nition of Yi and the quasi-score function, we can write the individual information

matrix associated with the observations Yi of a single individual i for our model as,

Mi(β) = DT
i V −1

i Di

6
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where Di = ȦiḞi with Ḟi =




fT (xi1)
...

fT (xi1)





mi1×p
...

fT (xiti)
...

fT (xiti)





miti
×p




mi×p

is the individual design

matrix, and Vi(β) = Vi. Then,

Mi(β) = DT
i (Ȧi + ȧiȧ

T
i )−1Di(3.1)

Note that the information matrix depends on the number of measurement mi

taken from individual i in a non-linear relation. So we can not find a normalized

version depending only on the proportion of the observations at the different settings,

as one might obtain in fixed effect models. Also, from (3.1), the information matrix

is strongly dependent on the parameters.

Lemma 3.1. The individual information matrix (3.1) can be represented as

Mi(β) = Ḟ T
i (Ȧ−1

i + (eσ2 − 1)1mi
1T

mi
)−1Ḟi(3.2)

Proof.

Mi(β) = DT
i (Ȧi + ȧiȧ

T
i )−1Di = DT

i Ȧ−1
i (Ȧ−1

i + Ȧ−1
i ȧiȧ

T
i Ȧ−1

i )−1Ȧ−1
i Di

Since DT
i Ȧ−1

i = Ḟ T
i and Ȧ−1

i ȧi =
√

eσ2 − 11mi
, the result follows. �

Define Fi =




fT (xi1)
...

fT (xiti)


 the row individual design matrix neglecting the number

of replications. Then the information matrix simplifies.

Lemma 3.2. The individuals information matrix can be represented as

Mi(β) = F T
i (A−1

i + (eσ2 − 1)1ti1
T
ti
)−1Fi = F T

i (Ai − (eσ2 − 1)Ai1ti1
T
ti
Ai

1 + (eσ2 − 1)1T
tiAi1ti

)Fi(3.3)

7



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

with Ai =




mi1µi1 0
. . .

0 mitiµiti




Proof. Because of (Schott 1997, Corollary 1.7.2)

Mi(β) = Ḟ T
i (Ȧ−1

i + (eσ2 − 1)1mi
1T

mi
)−1Ḟi = Ḟ T

i (Ȧi − (eσ2 − 1)Ȧi1mi
1T

mi
Ȧi

1 + (eσ2 − 1)1T
mi

Ȧi1mi

)Ḟi

Since Ḟ T
i ȦiḞi = F T

i AiFi, Ḟ T
i Ȧi1mi

= F T
i Ai1ti and 1T

mi
Ȧi1mi

=
ti∑

j=1

mijµij =

1T
ti
Ai1ti , we obtain

Mi(β) = F T
i AiFi − (eσ2 − 1)(F T

i Ai1ti)(1
T
ti
AiFi)

1 + (eσ2 − 1)1T
tiAi1ti

and the representation follows �

On the basis of the last representation an approximate individual design ξi for

individual i can be defined as

ξi =

{
xi1, . . . , xiti

pi1, . . . , piti

}
,

where xi1, . . . , xiti ∈ X are experimental settings and pij (j = 1, . . . , ti) is the

proportion of individual i that will be observed at the jth level of x,i.e., xij, so
ti∑

j=1

pij = 1(i = 1, . . . , s). In other words, pijmi = mij, where mi is the total number

of observations taken from individual i and mij is the number of observations taken

at xij. We allow that mij might be not an integer, but an exact design can be

obtained by rounding.

In view of (3.3) the corresponding information matrix can be defined as

m(ξi) = Fi(A
−1
i + (eσ2 − 1)1ti1

T
ti
)−1Fi ,(3.4)

where now Ai = A(ξi) = mi




pi1µi1 0
. . .

0 pitµiti




Next, we consider the vector Y of all observations. The population information

matrix is
8
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M(β) = DT V −1D where, D =




D1

...

Ds


.

Then M(β) =
s∑

i=1

DT
i V −1

i Di =
s∑

i=1

Fi(A
−1
i + (eσ2 − 1)1t1

T
t )−1Fi.

We define a population design as

ζ =

{
ξ1, . . . , ξr

q1, . . . , qs

}

where, qi(i = 1, . . . , s) stands for the proportion of the individuals that have been

observed under the individual design ξi.

According to the population design, a representation of M(β), based on the popu-

lation information matrix for ζ becomes m(ζ) =
s∑

i=1

qim(ξi).

Theorem 3.1. Under the assumptions

i) Φ : M → (−∞, ∞] is a convex function on M, where M is the set of symmetric

non-negative definite matrices of dimension p,

ii)Φ is monotone in the sense of the Loewner ordering on M, i.e., if M1 ≥ M2, then

Φ(M1) ≤ Φ(M2),

iii)
s∑

i=1

qimi = m,

an optimal design can be obtained among those which are uniform across the individ-

uals,i.e., if ξ∗ is Φ-optimal for individual design, then ζ∗ =

{
ξ∗

1

}
is a Φ-optimal

population design.

The proof is the same as the proof of Theorem 1 in Schmelter (2007), and has

hence been omitted here. This theorem applies, in particular, to D-optimality.

Using this theorem, we can ignore the index i in the experimental settings.

4. Application: Simple Poisson Regression with Random Intercept

In a recent manuscript Yanping et al. (2006) obtain the locally D-optimal design

in a Poisson regression model without random effects. In this section we consider

the generalization to a Poisson regression model with random intercept, where we
9
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have β = (β0, β1)
T and f(xj) = (1, xj)

T , to see the effect of block and, hence,

intra-individual correlation increases. So our model reduces to

Yijk | bi ∼ P (µj(bi)) where µj(bi) = ebi+β0+β1xj(4.1)

We want to find the locally D-optimal design to estimate β, which maximizes the

determinant of the information matrix.

In most applications of this model, like e.g., bioscience, pharmacokinetics, etc. the

design region is the non-negative real line or a subset of that. In other word

X = [h, ∞) is considered as an unbounded subset and X = [h, g] is considered as a

bounded subset, where h ≥ 0 and g > 0 determine the bounds for the design region,

which has to be defined by experimenter. The expectation µ(xj) = e
1
2
σ2+β0+β1xjof

Yijk, is a monotone function of xj. We consider the special case, where µ(xj) is

considered as a decreasing function of xj, i.e., β1 < 0. Therefore the maximum and

the minimum of the mean response are attained at the lower and upper bound of

the design region respectively. Let µh = eβ0+β1h+ 1
2
σ2

be the expectation of Yijk at

h, the canonical standardized mean µ̃j = µ̃(xj) =
µj

µh
= eβ1(xj −h), will always lie in

(0, 1] and [µ̃g, 1] respectively corresponding to the design regions [h, ∞) and [h, g] .

We outline the following lemma which allows us to restrict ourselves to designs with

only two different settings x1 and x2.

Lemma 4.1. For the model (4.1), the D-optimal design ζ∗ =

{
ξ∗

1

}
has exactly

two different support points x∗
1 and x∗

2, i.e., ξ∗ =

{
x∗

1 x∗
2

p∗
1 p∗

2

}
where p∗

1, p
∗
2 > 0.

The proof can be found in appendix A.

Using lemma (4.1), we can restrict ourselves to the case t = 2.

Theorem 4.1. Consider the model (4.1). In terms of the canonical standard-

ized mean, the D-criterion to estimate β depends on the parameters only through

γ(m, β0(h), σ2) = meβ0(h)+ 1
2
σ2

(eσ2 − 1) as follows.

det(m(ξ)) ∝ p1(1 − p1)µ̃1µ̃2(ln(µ̃1) − ln(µ̃2))
2

1 + γ(m, β0(h), σ2)(p1µ̃1 + p2µ̃2)
(4.2)

10
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where β0(h) = β0 + β1h is the ”intercept” at the lower bound x = h of the design

region.

The proof of this theorem is given in appendix B.

Corollary 4.1. Let X = [h, ∞), D-optimal design is given by ξ∗ =

{
x∗

1 x∗
2

p∗
1 p∗

2

}
,

where x∗
j = 1

β1
log µ̃∗

j + h, and µ̃∗
1, µ̃∗

2 p∗
1, p∗

2 = 1 − p∗
1 maximize (4.2).

According to Theorem (4.1), numerical methods can be used to maximize this

criterion in order to find D-optimal designs. The D-optimal design for some repre-

sentative values of γ(m,β0(h), σ2) are listed in Table 1 .

Table 1: D-optimal designs for model (4.1)

γ(m,β0(h), σ2) p∗
1 µ̃∗

1 µ̃∗
2 γ(m, β0(h), σ2) p∗

1 µ̃∗
1 µ̃∗

2

0 0.500 0.1353 1 30 0.746 0.0864 1

0.5 0.543 0.1279 1 60 0.762 0.0825 1

2 0.609 0.1155 1 100 0.769 0.0807 1

5 0.665 0.1044 1 1000 0.781 0.0779 1

10 0.703 0.0962 1 10000 0.782 0.0776 1

Note that µ̃∗
2 = 1 corresponds to x∗

2 = h which means that one point in the

optimal setting will be at the lower bound of design region. For the Fixed Effect

Simple Poisson Regression models, i.e. σ2 = 0, the constant γ(m, β0(h), σ2) will be

zero for all m and β0(h). In this case we found that the D-optimal design is the

design with 50% experimental run at x∗
1 = 1

β1
ln(0.1353) + h for all β1 < 0 and the

remaining at x∗
2 = h, in accordance with the results in Yanping et al. (2006).

It can be easily seen that the intra-individual correlation , corrσ2(Yijk, Yij′k′ ), is

an increasing function of σ2. From Table 1 it can be seen that a larger value

of σ2 and, hence, of the intra-individual correlation decreases the proportion of

observations at x∗
2 = h. When σ2 tends to infinity, 78% of experiments should be

run at x∗
1 = 1

β1
ln(0.0776) + h and 22% at x∗

2 = h. These results coincide with the
11
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results to find the D-optimal design for estimation of slope slope in the corresponding

model with fixed block effects (Minkin (1993)).

In the case of a restricted region X = [h, g], the D-optimal design is the same as the

D-optimal in the unrestricted case, if µ̃g ≤ µ̃∗
1. Otherwise, µ̃g and µ∗

2, i.e., x∗
1 = g

and x∗
2 = h will be optimal values but with different weights p∗

1 and p∗
2.
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Appendix A

Proof of Lemma (4.1). For simplicity we ignore the index i in m(ξ) in (3.4). Since

(
√

eσ2 − 1)1t = Fc, we have

m(ξ) = F T (A−1 + (Fc)(Fc)T )−1F = F T (A−1 + e− 1
2
σ2

FKF T )−1F

Where K = e
1
2
σ2

ccT with cT =
√

eσ2 − 1
(
1 0 · · · 0

)

With regard to the Lemma 1 in Schmelter(2007), we can represent m(ξ) as follow

m(ξ) = e
1
2
σ2

(m−1
0 (ξ) + K)−1

where m0(ξ) = e− 1
2
σ2

(F T AF ) is the information matrix for the model without ran-

dom intercept. Thus

ξ∗ = arg min
ξ

Φ[(m−1
0 (ξ) + K)−1] = arg min

ξ
ln(det(m−1

0 (ξ) + K))

and a necessary and sufficient condition for ξ∗ to be D-optimal for the estimation of

(β0, β1) is that

µ(x)fT (x)m−1
0 (ξ∗)(m−1

0 (ξ∗) + K)−1m−1
0 (ξ∗)f(x) ≤ tr(m−1

0 (ξ∗) + K)−1m−1
0 (ξ∗)) (A.1)

( see, e.g. page 76-79 in Fedorov and Hackl(1997)). We represent the inequality

(A.1) in the following form

µ(x)
(

1 x
)( a b

b c

)(
1

x

)
≤ d (A.2)

12
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with appropriate constant a, b, c, d. Therefore the inequality (A.2) is equivalent to

µ(x)(cx2 + 2bx + a) ≤ d ⇐⇒ ax2 + bx + c ≤ d

µ(x)

Let k(x) = 1
µ(x)

= e−β0−β1x− 1
2
σ2

. Suppose that the D-optimal design has at least three

support points z1 < z2 < z3, i.e. h(zi) = k(zi)(i = 1, 2, 3) where h(x) = 1
d
(cx2 +

2bx+a). Applying Rolle’s theorem, there are z′
1, z

′
2 such that z1 < z′

1 < z2 < z′
2 < z3

and h′(z′
i) = k′(z′

i) (i = 1, 2).

Because h(z) ≤ k(z) for all z, the points zi(i = 1, 2, 3) are local extrema, then

h′(z2) = k′(z2). By Rolle’s theorem again for the function h′(z) − k′(z), we receive

points z′′
1 , z

′′
2 , such that z′

1 < z′′
1 < z2 < z′′

2 < z′
2 and h′′(z′′

i ) = k′′(z′′
i )(i = 1, 2).

Because h′′(z) = 2 c
d

for all z, we have k′′(z′′
i ) = 2 c

d
(i = 1, 2), which contradicts that

k′′(x) = r has at most one root. Similar results can be found in Biedermann et al.

(2006).

Appendix B

Proof of Theorem (4.1). From (3.3) the information matrix for model (4.1) is

m(ξ) =

(
1 1

x1 x2

)

(

m1µ1 0

0 m2µ2

)−1

+ (eσ2 − 1)

(
1

1

)(
1 1

)



−1(
1 x1

1 x2

)

=




2∑
j=1

mjµj

2∑
j=1

mjµjxj

2∑
j=1

mjµjxj

2∑
j=1

mjµjx
2
j




− (eσ2 − 1)

1 + (eσ2 − 1)
2∑

j=1

mjµj




2∑
j=1

mjµj

2∑
j=1

mjµjxj



(

2∑
j=1

mjµj

2∑
j=1

mjµjxj

)

=
1

1 + (eσ2 − 1)(m1µ1 + m2µ2)

×
(

m1µ1 + m2µ2 m1µ1x1 + m2µ2x2

m1µ1x1 + m2µ2x2 m1µ1x
2
1 + m2µ2x

2
2 + (eσ2 − 1)m1µ1m2µ2(x1 − x2)

2

)

13



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

A straightforward calculation leads to

det(m(ξ)) =
m1µ1m2µ2(x1 − x2)

2

1 + (eσ2 − 1)
2∑

j=1

mjµj

=
m2µ2

hp1p2µ̃1µ̃2(x1 − x2)
2

1 + (eσ2 − 1)mµh

2∑
j=1

pjµ̃j

As, (x1 − x2) = ln µ̃1−ln µ̃2

β1
, the representation follows
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