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Abstract

In this paper we use coupling arguments to prove a discrete 1-dimensional ver-
sion of the Laugesen-Morpurgo conjecture. As an application, we derive a prob-
abilistic proof of the 1-dimensional Laugesen-Morpurgo conjecture (for the 1-
dimensional reflecting Brownian motion).

Key words: reflecting random walk, reflecting Brownian motion, transition
density
2000 MSC: 60J10, 60J65, 60J35.

1. Introduction

The Laugesen-Morpurgo conjecture appeared, as we learned from Rodrigo
Bañuelos, in connection with their work (see Laugesen and Morpurgo (1998))
on conformal extremals of the Riemann zeta function of eigenvalues . The con-
jecture states the diagonal element of the Neumann heat kernel of the Laplacian
in the unit ball U =

{
x ∈ R2 : |x| < 1

}
in R2 is a radially increasing function,

that is
p (t, x, x) < p (t, y, y) , t ≥ 0, (1)

for all x, y ∈ U with 0 ≤ |x| < |y| ≤ 1, where p (t, x, y) denotes the heat
kernel for the Laplacian with Neumann boundary conditions (or, equivalently,
the transition density for the Brownian motion with normal reflection on the
boundary) in the unit disk U . The conjecture extends naturally to the Neumann
heat kernel of the Laplacian in the unit ball B =

{
x ∈ Rd : ||x| | < 1

}
in Rd,

d ≥ 1.
The probabilistic interpretation of the conjecture is that a reflecting Brown-

ian motion starting closer to the boundary is more likely to return to its starting
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position (after t units of time), than a reflecting Brownian motion starting fur-
ther away from the boundary (after the same t units of time).

The physical interpretation is that introducing an atom of heat in a circular
room with thermally insulated boundary, the closer this point to the boundary,
the warmer we feel at this point, after any fixed number of units of time.

The intuition for this phenomenon is that starting closer to the boundary,
the reflecting Brownian motion has a better chance to returning to this point
since it will get more “push” directed towards this point, compared to a Brow-
nian motion starting further away from the boundary. However, this is just an
intuitive argument, and it is quite difficult to arrange it in a proof (despite the
fact that it is known for some time), the Laugesen-Morpurgo conjecture is still
open at the present moment in its full generality (see Pascu and Pascu (2007)
and Pascu and Pascu (2008) for some partial results towards the resolution of
the conjecture).

Recently, Bañuelos, Kulczycki and Siudeja (2008) proved the following re-
sult related to the Laugesen-Morpurgo conjecture:

Theorem 1. The diagonal element pB(t, x, x) of the transition probabilities for
the d-dimensional Bessel processes on (0; 1], reflected at 1, is an increasing
function of x ∈ (0, 1] for d > 2 and this is false for d = 2.

Remark 2. Since the norm of a d-dimensional Brownian motion is a Bessel
process of order d, the above result is equivalent to the monotonicity with respect
to x ∈ (0, 1) (for any t > 0 arbitrarily fixed) of the integral mean

∫ 2π

0

p
(
t, x, xeiθ

)
dθ

of the transition probabilities of the d-dimensional reflecting Brownian motion
in the unit ball in Rd.

In this paper we will prove a discrete 1-dimensional version of the Laugesen-
Morpurgo conjecture, as follows: if Xn is a simple random walk on { −s, . . . , s}
with reflecting barriers at ±s, then for any n ∈ N arbitrarily fixed, P i (Xn = i)
is a strictly increasing function of |i|, that is:

P i (Xn = i) ≤ P j (Xn = j) , (2)

for any i, j ∈ {−s + 1, . . . , s − 1} with |i| < |j| and any n ∈ N.
Trying to prove (2) by combinatorial methods (by explicit computation of

the probabilities P i (Xn = i) for various i, n and s) is rather difficult, requiring
the computation of the elements on the diagonal of a nth power of a certain
s × s matrix.

It is interesting to note that the inequality (2) does not hold for j = s, as it

2
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Figure 1: The graph of the probabilities P i (Xn = i), i = −s, . . . , s for s = 25 and n = 500.

can be seen from the Figure 1 above. The reason for this is that

P s (Xn = s) = P s (X1 = s − 1)P s−1 (Xn−1 = s)
= P s−1 (Xn−1 = s)
= P s−1 (Xn−2 = s − 1)P s−1 (X1 = s)

=
1
2
P s−1 (Xn−2 = s − 1)

which is smaller than P s−1 (Xn = s − 1), since

P s−1 (Xn = s − 1) = P s−1 (X2 = s − 1)P s−1 (Xn−2 = s − 1) +
+P s−1 (X2 = s − 3)P s−3 (Xn−2 = s − 1)

=
3
4
P s−1 (Xn−2 = s − 1) +

1
4
P s−3 (Xn−2 = s − 1)

>
1
2
P s−1 (Xn−2 = s − 1) .

Also note that when n is odd, (2) is trivial, since in this case P i (Xn = i) = 0
for any i ∈ {−s, . . . , s}.

Coupling methods are powerful tools which can be used to prove certain
inequalities for the associated processes (see for example Pascu (2002) for a
partial resolution of the Hot Spots conjecture of J. Rauch using coupling argu-
ments). Our proof of the discrete version of Laugesen-Morpurgo conjecture for
the 1-dimensional random walk on {−s, . . . , s} with reflecting barriers at s and
−s uses synchronous and mirror couplings of (reflecting) simple random walks,
introduced in Section 3.

As an application of our main result (Theorem 15), we also derive a proof of
the Laugesen-Morpurgo conjecture for the 1-dimensional Brownian motion, that

3
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is, we show that the inequality (1) holds for the transition density p (t, x, y) of the
1-dimensional reflecting Brownian motion on the interval (−1, 1) (see Corollary
21 and Remark 22).

2. Preliminaries

Definition 3. (See, e.g. Iosifescu (1980)). Let (Xn)n∈N be a homogeneous
Markov chain with state space S, transition matrix P and initial distribution p.
Consider a decomposition S = S1 ∪ ... ∪ Sq of the state space in pairwise disjoint
sets. For simplicity, we denote the sets S1, ..., Sq by 1̂, ..., q̂, respectively. Define
a new sequence of random variable (Yn)n∈N by

Yn = k̂ if and only if Xn ∈ Sk,

for any k ∈ {1, . . . , q} and for any n ∈ N. If (Yn)n∈N is a homogeneous Markov
chain under Pp, for any choice of p, with transition probabilities independent
of p, then (Xn)n∈N is said to be groupable with respect to the partition S =
S1 ∪ ... ∪ Sq and (Yn)n∈N is called a grouped Markov chain.

Remark 4. In the context above, we will call (Yn)n∈N the corresponding grouped
Markov chain of the chain (Xn)n∈N with respect to the given partition of the
state space.

For A ⊆ S, A 6= ∅, and i ∈ S, set Pi,A =
∑

j∈A Pij . The following result
gives a necessary and sufficient condition for a Markov chain to be groupable:

Proposition 5. A necessary and sufficient condition for a Markov chain to be
groupable with respect to a partition S = S1 ∪ ... ∪ Sq is that the probabilities
Pi,Sl

have the same value P̂bk,bl for all states i ∈ Sk, for any pair of subsets Sk, Sl,
1 ≤ k, l ≤ q. Further, the transition matrix of the grouped Markov chain is given
by

P̂ = (P̂bk,bl)1≤k,l≤q .

Proof. For a proof, see for example Iosifescu (1980), pp. 166 – 167. �
Let S = {−s, −s + 1, ..., s − 1, s}, where s ∈ N − {0}. Define new states

s+ = s− = s, (−s)+ = (−s)− = −s and let i±, i ∈ { −s + 1, . . . , s − 1} be
distinct, such that

S+ ∩ S− :=
{
i+ | i ∈ S

}
∩

{
i− | i ∈ S

}
= {−s, s} .

Setting S± = S+ ∪ S− and Si = {i+, i− }, i ∈ S,

S± = S−s ∪ S−s+1 ∪ . . . ∪ Ss−1 ∪ Ss (3)

is a decomposition of S± in disjoint sets.

4
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By a finite cyclic random walk on S± (or simply a random walk on S±), we
understand a random walk (X ±

n )n∈N with state space S± and transition matrix
P ± = (P ±

ij )i,j∈S± given by

P ±
i+,(i+1)+ = P ±

i+,(i−1)+ = P ±
i− ,(i+1)− = P ±

i− ,(i−1)− =
1
2
, (4)

for i ∈ {−s + 1, . . . , s − 1}, and

P ±
−s,(−s+1)+ = P ±

−s,(−s+1)− = P ±
s,(s−1)+ = P ±

s,(s−1)− =
1
2
. (5)

Given the random walk (X ±
n )n∈N on S±, we define a new sequence of random

variable (Xn)n∈N with state space S by setting

Xn = i if and only if X ±
n ∈

{
i+, i−}

, (6)

where i ∈ S and n ∈ N.

Remark 6. Since the condition of Proposition 5 is fulfilled, it follows that
(X ±

n )n∈N is groupable with respect to the partition (3) and that (Xn)n∈N is the
corresponding grouped Markov chain with respect to the partition (3), having
the transition probability matrix P given by

Pi,i−1 = Pi,i+1 =
1
2
, (7)

for i ∈ {−s + 1, . . . , s − 1} , and

P−s,−s+1 = Ps,s−1 = 1. (8)

Remark 7. Defining the projection function pr : S± → S by

pr(i+) = pr
(
i−)

= i,

for i ∈ {−s + 1, . . . , s − 1} , and

pr(−s) = −s and pr (s) = s,

it can be seen that
Xn = pr(X ±

n ), n ∈ N.

Remark 8. From (7) and (8), it can be seen that (Xn)n∈N is a random walk
on S = { −s, . . . , s}, with reflecting barriers at −s and s. We shall refer to it as
the reflecting random walk on S corresponding to the random walk (X ±

n )n∈N.

For an arbitrary fixed starting point X ±
0 = x ∈ S±, we denote by Px the

probability measure associated with the random walk (X ±
n )n∈N and by Ppr(x)

the probability measure associated with the corresponding reflecting random
walk (Xn)n∈N.

The next result gives a relation between the transition probabilities of a
random walk on S± and those of the corresponding reflecting random walk on
S, as follows:

5
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0 s − 1−s + 1

0− s−(−s + 1)−

(−s + 1)+ −1+ s+

−1−

0+ 1+

1−

1−1

S

S±

pr

· · ·

· · ·· · ·

· · ·

s

(s − 1)+

(s − 1)−

· · ·(−s)+

(−s)−

· · ·−s

Figure 2: The projection of a random walk on S± onto a reflecting random walk on S.

Proposition 9. For any i ∈ S − { −s, s} and n ∈ N we have

Pi(Xn = i) = Pi+(X ±
n = i+) + Pi+(X ±

n = i−),

where (X ±
n )n∈N is a random walk on S± and (Xn)n∈N is the corresponding

reflecting random walk on S.

Proof. First note that for i ∈ S − { −s, s} we have i+ 6= i−. The equality
follows now from the fact that Xn = pr (X ±

n ), and therefore Xn = i if and only
if X ±

n = i+ or X ±
n = i−, for any i ∈ S − {−s, s} and n ∈ N. �

Remark 10. Alternately, letting U4s = {exp( ikπ
2s ) : k ∈ {0, 1, ..., 4s − 1} } de-

note the vertices of a regular polygon with 4s sides and defining the bijection
f : S± → U4s by

f(k+) = exp
(

(s − k)
iπ

2s

)
, k ∈ S,

and

f(k−) = exp
(

(3s + k)
iπ

2s

)
, k ∈ S,

we can view a random walk on S± = {−s, . . . , s} as a rotationally invariant
random walk on the vertices of the polygon U4s (see Figure 3).

3. Main results

In this section we will introduce two couplings of random walks on S±:
translation and mirror couplings, respectively.

To construct the translation coupling with starting points (x,y) ∈ S± × S±

(without loss of generality we may assume that pr(x) < pr(y)), we consider a
random walk (X ±

n )n∈N on S± with starting point x ∈ S±, and we define a new

6
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0− s−(−s)−

(−s)+ −1+ s+

−1−

0+ 1+

1−

1

e
2iπ
2s

eiπ

e
(4s−2)iπ

2s

e
iπ
2s

e
(4s−1)iπ

2s

S±

U4s

ff −1

· · ·

· · · · · ·

· · ·

Figure 3: The bijective correspondence between random walks on S± and U4s.

sequence of random variables (Y ±
n )n∈N as follows. The idea is that by Remark

10, we can view (X ±
n ) and (Y ±

n ) as random walks on U4s, and thus we will
define the random variable Y ±

n as a translation of X ±
n on the unit circle by

(pr(y) − pr(x)) π
2s units (or equivalently, a rotation of X ±

n with respect to the
origin in the clockwise direction of angle (pr(y) − pr(x)) π

2s ).

s+ = s−

(s − 1)−(s − 1)+

x−

y−

0−0+

(−s)+ = (−s)−

(−s + 1)−(−s + 1)+

Y ±
n

X±
n

Figure 4: Sample paths of random walks on S± coupled by translation.

7
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In order to define Y ±
n formally, for a ∈ Z we introduce the translation

function tra : S± → S± on S± by

tra(t) = f −1
(
f (t) exp

(
−i

aπ

2s

))
, t ∈ S±, (9)

where f is the bijection defined in Remark 10, and we set

Y ±
n = trpr(y)−pr(x)(X ±

n ), n ∈ N.

We call the pair (X ±
n , Y ±

n )n∈N constructed above a translation coupling of ran-
dom walks on S± with starting points (x, y).

Remark 11. The fact that the sequence (Y ±
n )n∈N constructed above is a ran-

dom walk on S± with starting point Y ±
0 = y and transition probabilities given

by (4) and (5), follows from

Py(Y ±
n+1 = (j + 1)+|Y ±

n = j+)

= Px(X ±
n+1 = tr−(pr(y)−pr(x))((j + 1)+)|X ±

n = tr−(pr(y)−pr(x))(j+))

=
1
2
,

for any j ∈ S − {s} and n ∈ N,

Py(Y ±
n+1 = (s − 1)+|Y ±

n = s+)

= Px(X ±
n+1 = tr−(pr(y)−pr(x))((s − 1)+)|X ±

n = tr−(pr(y)−pr(x))(s+))

=
1
2
,

for any n ∈ N, and similarly for the other transition probabilities.

To construct the mirror coupling with starting points (x, y) ∈ S− × S−

chosen such that pr(x)+ pr(y) is an even number (without loss of generality we
may assume that pr(x) < pr(y)), we consider a random walk (X ±

n )n∈N on S±

with starting point x ∈ S−, and we define a new sequence of random variables
(Y ±

n )n∈N as follows. The idea is that by Remark 10, we can view (X ±
n ) as a

random walk on U4s, and we define the random variable Y ±
n as the symmetric

point of X ±
n with respect to the line passing through the origin and the point

f
(
(pr(x)+pr(y)

2 )−
)

= exp
(
(3s + pr(x)+pr(y)

2 ) iπ
2s

)
, for n ≤ τ , where

τ = inf

{
n ≥ 0 : X ±

n =
(

pr(x) + pr(y)
2

)−
or X ±

n =
(

− pr(x) + pr(y)
2

)+
}

is the coupling time, and we let Y ±
n = X ±

n for n ≥ τ (see Figure 5).
In order to define Y ±

n formally, for a ∈ S± we introduce the symmetry
function syma : S± → S± on S± (symmetry with respect to the line passing
through the origin and the point f (a)), by

syma(t) = f −1
(
f (t)f2 (a)

)
, t ∈ S±, (10)

8



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

s+ = s−

(s − 1)−
(s − 1)+

y−

x−

(−s)+ = (−s)−

0−0+

(−s + 1)−(−s + 1)+

Y ±
n

X±
n

Figure 5: Sample paths of random walks on S± coupled by mirror coupling.

and we set

Y ±
n =

{
sym

( pr(x)+pr(y)
2 )− (X ±

n ) , n ≤ τ

X ±
n , n > τ

We call the pair (X ±
n , Y ±

n )n∈N constructed above a mirror coupling of random
walks on S± with starting points (x, y).

Remark 12. The fact that the sequence (Y ±
n )n∈N constructed above is a ran-

dom walk on S± with starting point Y ±
0 = y and transition probabilities given

by (4) and (5), follows from

Py(Y ±
n+1 = (j + 1)− |Y ±

n = j−)

= Px(X ±
n+1 = sym( pr(x)+pr(y)

2 )− (j + 1)− |X ±
n = sym( pr(x)+pr(y)

2 )− (j−))

=
1
2
,

for any j ∈ S − {s} and n < τ , and

Py(Y ±
n+1 = (s − 1)− |Y ±

n = s−)

= Px(X ±
n+1 = sym( pr(x)+pr(y)

2 )− (s − 1)− |X ±
n = sym( pr(x)+pr(y)

2 )− (s−))

=
1
2
,

for any n < τ , and similarly for the other transition probabilities.

9
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Proposition 13. For any i, j ∈ S with 0 ≤ i ≤ j and any n ∈ N we have

Pi+(X ±
n = i+)+Pi+(X ±

n = i−) = Pj+
(X ±

n = j+)+Pj+
(X ±

n = (2i−j)−), (11)

where X ±
n is a random walk on S±.

Proof. For arbitrarily fixed i, j ∈ S with 0 ≤ i ≤ j let (X ±
n , Y ±

n ) be a transla-
tion coupling of random walks on S± with starting points (i+, j+), that is

Y ±
n = trj−i(X ±

n ), n ∈ N.

Since 0 ≤ j − i ≤ s, from (9) it can be seen that trj−i (t) = j+ if and only
if t = i+, and similarly, trj−i (t) = (2i − j)− if and only if t = i−, and therefore
we obtain

Pi+(X ±
n = i+) = Pj+

(Y ±
n = j+)

and
Pi+(X ±

n = i−) = Pj+
(Y ±

n = (2i − j)−),

for any n ∈ N, which shows that

Pi+(X ±
n = i+) + Pi+(X ±

n = i−) = Pj+
(Y ±

n = j+) + Pj+
(Y ±

n = (2i − j)−),

and since Y ±
n is a random walk with starting point j+, we obtain equivalently

(11), as needed. �

Proposition 14. For any i, j ∈ S with 0 ≤ i < j such that i + j is an even
number and any n ∈ N, we have

Pi−
(X ±

n = j+) < Pj−
(X ±

n = j+),

where X ±
n is a random walk on S±.

Proof. For arbitrarily fixed i, j ∈ S with 0 ≤ i < j such that i + j is an even
number let (X ±

n , Y ±
n ) be a mirror coupling of random walks on S± with starting

points (i−, j− ), that is

Y ±
n =

{
sym

( i+j
2 )− X ±

n , n ≤ τ

X ±
n , n > τ

.

Under the hypothesis of the theorem it can be seen that we cannot have X ±
n =

j+ unless n ≥ τ, that is, unless X ±
n = Y ±

n . We obtain therefore

Pi−
(X ±

n = j+) = Pi−
(X ±

n = j+, n ≥ τ)

= Pj−
(Y ±

n = j+, n ≥ τ)

< Pj−
(Y ±

n = j+).

Since Y ±
n is a random walk with starting point j−, we have

Pj−
(Y ±

n = j+) = P j− (
X ±

n = j+
)
,

concluding the proof. �
We are now ready to prove the main result of this section, as follows:

10
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Theorem 15. For any s ∈ N − {0} and n ∈ N, P i (Xn = i) is a strictly in-
creasing function of i ∈ {0, . . . , s − 1} , that is, for any i, j ∈ {0, . . . , s − 1} ,
with i < j and any n ∈ N, we have

Pi(Xn = i) < Pj(Xn = j),

where Xn is a reflecting random walk on S with reflecting barriers at ±s.

Proof. Let X ±
n be a random walk on S± and let Xn = pr (X ±

n ). By Proposition
9, for i ∈ S − { −s, s} and n ∈ N we have

Pi(Xn = i) = Pi+(X ±
n = i+) + Pi+(X ±

n = i−).

Consider first the case i ∈ {1, ..., s − 2}. Using Proposition 13 with j replaced
by i + 1, we have

Pi(Xn = i) = Pi+(X ±
n = i+) + Pi+(X ±

n = i−)

= P(i+1)+(X ±
n = (i + 1)+) + P(i+1)+(X ±

n = (i − 1)−)

< P(i+1)+(X ±
n = (i + 1)+) + P(i+1)+(X ±

n = (i + 1)−),

for any n ∈ N, where the last inequality follows from the symmetry of the
transition matrix of a random walk on S± and Proposition 14 with j replaced
by i + 1 and i replaced by i − 1. Using again Proposition 9 we obtain

Pi(Xn = i) < Pi+1(Xn = i + 1),

for any n ∈ N and i ∈ {1, ..., s − 2}.
To conclude the proof, we need to show that the previous inequality also

holds for i = 0. In this case, using an argument similar to the one in the proofs
of Proposition 13 and Proposition 14 it can be shown that we have

P0+
(X ±

n = 0+) + P0+
(X ±

n = 0−) = P1+
(X ±

n = 1+) + P1+
(X ±

n = (−1)−)

< P1+
(X ±

n = 1+) + P1+
(X ±

n = 1−),

which by Proposition 9 shows that

P0(Xn = 0) < P1(Xn = 1),

for any n ∈ N, concluding the proof. �

4. Extensions and applications

In this section we will extend the main result obtained in Theorem 15. First,
we need the following:

Proposition 16. For any i, k ∈ S with |i + k| < s and n ∈ N we have

Pi(Xn = i + k) = Pi+(X ±
n = (i + k)+) + Pi+(X ±

n = (i + k)−),

where (X ±
n )n∈N is a random walk on S± and (Xn)n∈N is the corresponding

reflecting random walk on S.

11
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Proof. The equality follows from the fact that Xn = pr (X ±
n ), and therefore

Xn = i+ k if and only if X ±
n = (i+ k)+ or X ±

n = (i+ k)−, for any i, k ∈ S with
|i + k| < s and n ∈ N. �

Using a proof similar to the one in Proposition 13, we can establish the
following:

Proposition 17. For any s, n ∈ N − {0} and i, j, k ∈ S with |i + k| < s,
|j + k| < s and 0 ≤ i ≤ j ≤ 2i + k + s we have

Pi+(X ±
n = (i + k)+) + Pi+(X ±

n = (i + k)−)

= Pj+
(X ±

n = (j + k)+) + Pj+
(X ±

n = (2i − j + k)−)

where X ±
n is a random walk on S±.

We can generalize the result in Theorem 15 as follows:

Theorem 18. For any s, n ∈ N − {0}, i, j ∈ {0, . . . , s − 1} with i < j and any
k ∈ S with |i + k| < s, |j + k| < s and k > − min{i + j, 2i − j + s}, we have

Pi(Xn = i + k) < Pj(Xn = j + k),

where Xn is a reflecting random walk on S = {−s, . . . , s} with reflecting barriers
at ±s.

Proof. Let i, j ∈ {0, ..., s − 1} with i < j be arbitrarily fixed. Consider X ±
n a

random walk on S± and let Xn = pr (X ±
n ). By Proposition 16 we have

Pi(Xn = i + k) = Pi+(X ±
n = (i + k)+) + Pi+(X ±

n = (i + k)−),

for all n ∈ N and k ∈ S with |i + k| < s. By Proposition 17, for all n ∈ N − {0}
and k ∈ S with |i + k| < s, |j + k| < s and j < 2i + k + s we have

Pi+(X ±
n = (i + k)+) + Pi+(X ±

n = (i + k)−)

= Pj+
(X ±

n = (j + k)+) + Pj+
(X ±

n = (2i − j + k)−).

Using the fact that the transition matrix of a random walk on S± is (by def-
inition) symmetric and an argument similar to the one used in the proof of
Proposition 14, for all k ∈ S with k > −i − j, we get

Pj+
(X ±

n = (2i − j + k)−) < Pj+
(X ±

n = (j + k)−),

and combining with the above equality, we obtain

Pi(Xn = (i + k)) < Pj+
(X ±

n = (j + k)+) + Pj+
(X ±

n = (j + k)−)
= Pj(Xn = (j + k)),

by Proposition 16, and the claim follows. �
From the previous theorem we obtain the following:

12
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Corollary 19. For any s, n ∈ N − {0}, i, j ∈ {0, . . . , s − 1} with i < j and any
k ∈ {1, . . . , s} with k ≤ min {s − j, i + j}, we have

Pi(|Xn − i| < k) < Pj(|Xn − j| < k),

where Xn is a reflecting random walk on S = {−s, . . . , s} with reflecting barriers
at ±s.

Proof. The proof follows form the previous theorem by summing over k. �
Using the fact that the reflecting Brownian motion can be approximated

by random walks (see for example Burdzy and Chen (2008)), we obtain the
following

Corollary 20. For any x, y, ε ∈ (0, 1) with x < y and ε < min{1 − y, x + y},
we have

Px (Bt ∈ (x − ε, x + ε)) ≤ Py (Bt ∈ (y − ε, y + ε)) , t > 0,

where Bt is a 1-dimensional reflecting Brownian motion on [−1, 1].

Proof. In the case when both x and y are dyadic rationals in [0, 1], the proof
follows from the previous corollary by using the fact that a reflecting Brownian
motion Bt on [−1, 1] starting at B0 = k

2l (k, l ∈ Z, l > 0) can be approximated
by a reflecting random walk (Xn

m)m≥0, more precisely it can be shown (see for
example Burdzy and Chen (2008)) that we have

Xn
[22nt] →

n→∞
Bt, t ≥ 0,

where (Xn
m)m≥0 is a (simple) reflecting random walk on

{
−1, − 2n − 1

2n
, − 2n − 2

2n
, . . . ,

2n − 2
2n

,
2n − 1

2n
, 1

}

with reflecting barriers at ±1 and starting at Xn
0 = k

2l .
The general case follows by approximating x and y by dyadic rationals and

using the previous part of the proof. �
As a corollary, we obtain the proof of the Laugesen-Morpurgo conjecture in

the 1-dimensional case, as follows:

Corollary 21. For any x, y ∈ (0, 1) with x < y , we have

p (t, x, x) < p (t, y, y) , t > 0,

where p(t, x, y) denotes the transition probabilities of the 1-dimensional reflec-
ting Brownian motion on [−1, 1].

13
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Proof. The fact that p (t, x, x) is increasing in x ∈ (0, 1) follows from the
previous corollary, using the fact that by the continuity of p (t, x, y) in the second
variable we have

p (t, x, x) = lim
εց0

1
2ε

∫ x+ε

x−ε

p (t, x, y) dy = lim
εց0

1
2ε

P x (|Bt − x| < ε) .

To show that p (t, x, x) is in fact strictly increasing, note that since p (t, x, x)
is a real analytic function of x ∈ (−1, 1) for any t > 0 arbitrarily fixed (it is
the diagonal of the heat kernel of an operator with real analytic coefficients), it
cannot be constant on a nonempty open subset of [−1, 1] unless it is identically
constant on the entire interval [−1, 1].

It can be shown (see for example Bañuelos, Kulczycki and Siudeja (2008))
that for any t > 0 arbitrarily fixed we have

p (t, x, x) + p̃ (t, x, x) = c, x ∈ (−1, 1) ,

where c is a constant depending on t > 0 and p̃ (t, x, y) denotes the transition
density of Brownian motion on (−1, 1) killed on hitting the boundary of the
interval.

If p (t, x, x) were constant in x ∈ (−1, 1) for an arbitrarily fixed t > 0,
then p̃ (t, x, x) would also be constant in x ∈ (−1, 1). However, this leads to a
contradiction, since

lim
xր1

p̃ (t, x, x) = 0 < p̃ (t, 0, 0) .

This, together with the fact that p (t, x, x) is increasing in x ∈ (0, 1) for
any t > 0 arbitrarily fixed, shows that p (t, x, x) is in fact strictly increasing in
x ∈ (0, 1), concluding the proof. �

Remark 22. The fact that the Laugesen-Morpurgo conjecture holds in the 1-
dimensional case can also be proved by other methods (see for example the
Remark 5.4 in Bañuelos, Kulczycki and Siudeja (2008) for an analytic proof, or
Pascu and Pascu (2008) for a probabilistic proof). We presented it here in order
to show that the same result can be obtained by probabilistic techniques, as a
corollary of the results presented above.

It is possible that the ideea used in proving the 1-dimensional version of
the Laugesen-Morpurgo conjecture in the present paper (viewing the reflecting
random walk as an un-reflected random walk on a different state space and
proving the desired monotonicity in this new setting) can also be extended to
higher-dimensional cases, but aside from particular cases (parallelipipeds in Rd,
d ≥ 1) we were unable to implement it.
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