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Abstract

We propose a method to select the bandwidth for functional time series prediction. The idea

underlying this method is to calculate the empirical risk of prediction using past segments of

the observed series and to select as value of the bandwidth for prediction the bandwidth which

minimizes this risk. We prove an oracle bound for the proposed bandwidth estimator showing that

it mimics, asymptotically, the value of the bandwidth which minimizes the unknown theoretical

risk of prediction based on past segments. We illustrate the usefulness of the proposed estimator in

finite sample situations by means of a small simulation study and compare the resulting predictions

with those obtained by a leave-one-curve-out cross-validation estimator used in the literature.

Some key words: Bandwidth Selection; Cross-Validation; Functional Time Series

Prediction; Functional Kernel Regression; Oracle Estimation.

1 INTRODUCTION

Let X = (X(t); t ∈ R) be a (real-valued) continuous-time stochastic process defined on a probability

space (Ω, A, P). Motivated by applications to prediction it is supposed that the time domain of X is

divided into intervals of constant-width δ > 0. Therefore, from X, a sequence of (function-valued)

random variables (Zs; s ∈ N) is constructed according to the representation Zs(t) = X(t + (s − 1)δ),

s ∈ N, for all t ∈ [0, δ). Note that δ is not a parameter to be included in the modeling formulation.

For some specific examples at hand, where some periodicity is obvious in the observed phenomena,

the parameter δ is directly tied to the period. On the other hand, δ does not need to be a period.
∗Author for correspondence: Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, CY

1678 Nicosia, CYPRUS; Email: t.sapatinas@ucy.ac.cy
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For more details see, e.g., Chapter 9 of Bosq (2000), Besse & Cardot (1996), Antoniadis & Sapatinas

(2003), Antoniadis, Paparoditis & Sapatinas (2006) and Chapter 12 of Ferraty & Vieu (2006).

The above approach is attractive because of its ability to aid understanding of the whole evolution

of the continuous-time stochastic process X. In the recent literature, practically all investigations to

date for this prediction problem are for the case where one assumes that (an appropriately centered

version of) the discrete-time stochastic process Z = (Zs; s ∈ N) is a (zero-mean) Hilbert-valued

autoregressive (of order 1) processes (ARH(1)). The best prediction of ZN+1 given its past history,

that is given ZN , ZN −1, . . . , Z1, is then obtained by ρ(ZN ), where ρ is a bounded linear operator

associated with the ARH(1) process (see, e.g, Chapter 3 of Bosq (2000)).

In what follows, we assume that each curve Zs is observed at P equidistant time points ti,

i = 1, 2, . . . , P . Letting Zs(ti), i = 1, 2, . . . , P , be the corresponding observations, it is supposed

that Zs satisfies the following functional time series regression model

Zs+1(ti) = m(Zs)(ti) + εs(ti), i = 1, 2, . . . , P, (1)

where

m(z)(ti) = E(Zs+1(ti) | Zs = z), i = 1, 2, . . . , P, (2)

z is a fixed element of C([0, δ)) (the space of continuous functions defined on the interval [0, δ)) and

ε = (εs, s ∈ N) is a C([0, δ))-valued strong Gaussian white noise, i.e., a sequence of independent

and identically distributed (i.i.d) C([0, δ))-valued Gaussian random variables with E(ε) = 0 and

E(‖ε‖2) < ∞. (Note that, in this case, the errors εs(ti), i = 1, 2, . . . , P , is a sequence of i.i.d.

Gaussian random variables with mean 0 and finite variance, say σ2
ε .) It is also assumed that εs is

independent of Zj for all j ≤ s, s ∈ N.

Consider now the following functional kernel estimator of the conditional expectation m(z)(ti)

given in (2), based on the “sample” Z1, Z2, . . . , ZN (N ≥ 2),

m̂h(z)(ti) =
∑N −1

s=1 Kh(D(Zs, z))Zs+1(ti)
1
N +

∑N −1
s=1 Kh(D(Zs, z))

, i = 1, 2, . . . , P, (3)

where the (positive) scalar D(x, y) denotes a distance (a metric or a semi-metric) between x and y,

Kh(·) = h−1K(·/h), K(·) is the kernel function, and h is the bandwidth (a positive number) associated

with it. The predicted value of ZN+1(·) is then obtained by ẐN+1(·) = m̂h(ZN )(·). (The factor 1/N

in the denominator allows expression (3) to be properly defined.) The estimator (3) can be viewed as

a generalization in the functional framework of the classical Nadaraya-Watson regression estimator.

It can be seen as a weighted average of the past ‘blocks’, placing more weight on those ‘blocks’ the

preceding of which is similar to the present one. In other words, the weights associated with the

Zs+1(ti) values increase with the closeness between z and the corresponding Zs, in the distance sense.

For a similar approach see, e.g., Ferraty, Goia & Vieu (2002), Antoniadis, Paparoditis & Sapatinas

(2006) and Chapter 11 of Ferraty & Vieu (2006).
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However, as in any nonparametric smoothing approach, the estimator (3) depends on the choice

of the smoothing parameter h (the bandwidth associated with the kernel part of the method), and

this choice is of great importance. Intuitively, a large value of h will lead to an estimator that incurs

large bias, while a small value might reduce the bias but the variability of the predicted curve could

be large since only few segments are used in the estimation. A good choice of h should balance

the bias-variance trade off. In the standard nonparametric regression setting, where the data are

assumed independent and identically distributed, a popular means of choosing h is by leave-one-out

cross-validation obtained by minimizing a mean-squared prediction error, where each observation is

predicted by the value of an appropriate nonparametric estimator constructed from all the data except

the one to be predicted. In the functional nonparametric regression setting, a leave-one-curve-out cross

validation has been proposed by Rachdi & Vieu (2007) for selecting h for the prediction of a scalar

response given a functional variable. Although such a proposal has not been theoretically justified in

the functional time series context, it has been recently applied to continuous-time stochastic processes

prediction (see, e.g., Ferraty, Goia & Vieu (2002) and Chapter 12 of Ferraty & Vieu (2006)).

In this paper, we propose a method to select the bandwidth h for functional time series prediction.

This could be seen as an answer to the open question 10 posed in Section 11.7.3 of Ferraty & Vieu

(2006) regarding the development of an automatical bandwidth selection procedure for functional

dependent data. The idea underlying our method is to use past segments of the series in order

to calculate the empirical risk of prediction for different values of the bandwidth. In particular,

consider the last vN segments ZN −vN+1, ZN −vN+2, . . . , ZN , 1 < vN � N . For each one of

these segments, say ZN −vN+j , j = 1, 2, . . . , vN , use its previous n = N − vN segments, that is

ZN −vN+j−1, ZN −vN+j−2, . . . , ZN −vN+j−n, to predict segment ZN −vn+j for a range of bandwidths

within a given grid of values. The value of the bandwidth which minimizes the empirical risk of

prediction over the vN segments predicted is then selected as the bandwidth used for the prediction

of segment ZN+1. We prove an oracle bound for the proposed bandwidth estimator showing that it

mimics, asymptotically, the value of the bandwidth which minimizes the unknown theoretical risk of

prediction based on N segments. The suggested method is appropriately designed for functional time

series prediction since, unlike leave-one-curve-out cross-validation, every predicted segment used in

the empirical risk calculation is obtained using its n preceding segments. A related method has been

applied to ozone forecasting by Damon & Guillas (2002) without any theoretical justification.

The paper is organized as follows. In Section 2, we describe the suggested method to select

the bandwidth for functional time series prediction and state an oracle bound for the proposed

bandwidth estimator. In Section 3, we provide a numerical study in order to illustrate the performance

of the proposed bandwidth estimator in finite sample situations. We also compare the resulting

predictions with those obtained by a leave-one-curve-out cross-validation estimator used in the

literature. Auxiliary results and proofs are compiled in the Appendix.
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2 Bandwidth Selection

As mentioned in the introduction, the choice of the bandwidth h is important for the construction

of the functional kernel estimator (3). Under some regularity and mixing conditions, in order this

estimator to achieve an almost surely uniform convergence over a suitable increasing sequences of

compact sets in RP , the bandwidth h has to be of order
(
log2(N)/N

)1/(P+4) (see the discussion after

Assumption (A1)-(A3) in the Appendix). A practical way in selecting h is then to choose it within a

grid HN given by

HN =
{

1
L

KcN ,
2
L

KcN , . . . ,
L − 1

L
KcN ,KcN

}
, L ∈ N,

where cN =
(
log2(N)/N

)1/(P+4). Here, K is a positive constant, large enough so that the grid HN

covers the optimal bandwidth, while the reciprocal value of L controls the relative difference between

two consecutive values within the grid HN and depends on the smallest bandwidth one wants to try

and the precision one wishes in order to find the optimal bandwidth within the interval (0,KcN ]. Of

course, in practice, the constant K is unknown but fixing it to some large value hardly matters from

a practical point of view (see Section 3).

Recall that n = N − vN , assume that vN/N → 0 as N → ∞, and let

hl,N =
l

L
KcN ∈ HN , l = 1, 2, . . . , L,

and define the empirical risk calculated over the last vN segments predicted based on the previous n

segments, i.e.,

Rl =
1

PvN

P∑

i=1

vN∑

s=1

(
Zn+s(ti) − m̃l(Zn+s−1)(ti)

)2
, (4)

where, for each s = 1, 2, . . . , vN ,

m̃l(Zn+s−1)(ti) =

∑n
r=2 Khl,N

(D(Zr+s−2, Zn+s−1))Zr+s−1(ti)
1
n +

∑n
r=2 Khl,N

(D(Zr+s−2, Zn+s−1))
, i = 1, 2, . . . , P. (5)

Let also

l̂ = argminhl,N ∈HN
{Rl},

and define Rl to be the theoretical counterpart of Rl based on N segments, i.e.,

Rl =
1
P

P∑

i=1

E
(
m(Z1)(ti) − m̂l(Z1)(ti)

)2

and R̃l to be the theoretical counterpart of Rl based on n segments, i.e.,

R̃l =
1
P

P∑

i=1

E
(
m(Z1)(ti) − m̃l(Z1)(ti)

)2
.
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The following theorem provides an oracle bound for the proposed bandwidth estimator. The

bound relies upon a sequence of real numbers {δN }N ∈N such that δN → 0 as N → ∞ which is related

to the rate at which the tail probabilities of the conditional densities of Zs given Zs+k for all k ∈ Z\ {0}
approach zero outside a sequence of compact sets CN (see assumption (A3) in the Appendix).

Theorem 2.1 Suppose that the assumptions (A1)-(A3), given in Appendix, are true and that the

sequence vN satisfies vN → ∞ such that vN/N → 0 as N → ∞. Then, there exist a non-negative

sequence of real numbers {δN }N ∈N, δN → 0 as N → ∞, and a constant α < 1 such that the following

oracle bound is true

E
{

R̃l̂

}
≤ (1 + δN )

{
min

hl,N ∈HN

{Rl} +
log (vN )

v1−α
N

log
(
L

)}
, (6)

where l̂ = argminhl,N ∈HN
{Rl}.

Theorem 2.1 shows that, as long as the initial interval is chosen so that it contains the

optimal bandwidth, the bandwidth obtained by minimizing the empirical risk of prediction based

on n = N − vN segments within this interval mimics, asymptotically, the value of the bandwidth that

minimizes the unknown theoretical risk of prediction based on N segments within the same interval.

3 Numerical Results

In this section, we illustrate the performance of the proposed bandwidth estimator discussed in

Section 2 by means of a small simulation study. We compare the resulting predictions when choosing

the bandwidth with the proposed method based on an empirical risk criterion (RM) and those

obtained by selecting the bandwidth by a leave-one-curve-out cross-validation criterion (CV). This

latter bandwidth is obtained as

l̂ = argminhl,N ∈HN
{CVl},

where

CVl =
1

(N − 1)P

P∑

i=1

N∑

s=2

(
Zs(ti) − m̂

(−s)
l (Zs−1)(ti)

)2
,

and

m̂
(−s)
l (z)(ti) =

∑N −1
j=1,j 6=s Khl,N

(D(Zj , z))Zj+1(ti)
1
N +

∑N −1
j=1,j 6=s Khl,N

(D(Zj , z))
, i = 1, 2, . . . , P.

For both the RM and CV methods, the bandwidth h is selected within an interval [hmin, hmax],

where hmin = (K/L)cN and hmax = KcN are selected according to the theoretical findings of Section

2, allowing us to control the permissible values of h. By default, the constant K is set equal to 4σ̂,

where σ̂ is the estimated standard deviation of the series, while L is set equal to 70. Finally, the kernel

K(·) is chosen to be the standard Laplace probability density function, and the distance D(x, y) is

5
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chosen to be the Mahalanobis distance, i.e., D(x, y) = ((x − y)′Σ̂−1(x − y))1/2, where x, y ∈ RP and

Σ̂ is the sample estimator of the covariance matrix Σ = Cov
(
(Zs(t1), Zs(t2), . . . , Zs(tP ))′), although

other kernels K(·) and/or distances D(x, y) could be used (see, e.g., Chapter 3 of Ferraty & Vieu

(2006)).

The quality of prediction is measured by the mean-squared error (MSE) criterion, defined by

MSE =
1
P

P∑

i=1

(ZN0(ti) − ẐN0(ti))
2, (7)

where ZN0 is the N0-th element of the time series Z and ẐN0 is the corresponding prediction of ZN0

given the past ZN0−1, ZN0−2, . . . , Z1 (see (3)), with the bandwidth h selected either by the RM method

or the CV method. (The overall numerical study was carried out in the Matlab 7.0.4 programming

environment.)

3.1 A Simulated Example

We carried out a small simulation study to compare the RM and CV bandwidth selection criteria in

terms of forecasting. We generated a series of observations as the superposition of two deterministic

signals with different periods and a first order moving-average noise. More specifically, as in

Antoniadis, Paparoditis & Sapatinas (2006), we considered the following structure for X,

X(t) = β1m1(t) + β2m2(t) + ε(t),

where m1(t) = cos(2πt/64) + sin(2πt/64), m2(t) = cos(2πt/6) + sin(2πt/6) and ε(t) = u(t) + θu(t −
1), u(t) i.i.d∼ N(0, σ2). The parameters were chosen as follows: β1 = 0.8, β2 = 0.18, θ = 0.8 and

σ2 = 0.005. The motivation beyond this choice is to generate realizations containing a dominant

component with a period of 64 observations, a less pronounced and more irregular component with a

period of 6 observations, contaminated with an additive and correlated random component. The time

period that we have analyzed runs 30 segments (i.e., N = 30), each one containing 64 observations

(i.e., P = 64).

We simulated 100 realizations of the above stochastic process. For each realization, we have

predicted its last segment given its past, using bandwidths h selected according to both the CV

method and the RM method, the latter one based on various values of vN , and the corresponding

prediction errors have been evaluated. Our limited simulation study suggests vN = [log(N)] + 1, and

we have taken this choice as a rule of thumb in our analysis. Hence, in this example, vN = 4.

The boxplots of the MSE of each prediction (i.e., we have taken N0 = 30 in (7)) made with the

corresponding selected bandwidth over the 100 simulations are displayed in Figure 3.1. As observed

in the figure, the predictions by the RM method are better than those obtained by the CV method,

in terms of MSE.

6
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Figure 3.1: Boxplots of the MSE for the prediction of the last segment for the CV and RM methods

over 100 simulation runs.

4 Appendix: Proofs

The results obtained below are based on the following set of assumptions, which we detail

below before proceeding to the proofs. In what follows, Zr refers to the P -dimensional vector

(Zr(t1), Zr(t2), . . . , Zr(tP )) for a generic index r ∈ N.

Assumption (A1): The conditional expectation m is bounded, i.e., there exists a positive

constant A such that supz∈RP |m(z)| ≤ A.

Assumption (A2): There exists a sequence of compact sets {CN ; N ∈ N}, CN ⊂ RP , such that,

for all n → ∞ satisfying n/N → 1 as N → ∞,

Nϑ sup
z∈CN

|m̃l(z) − m(z)| → 0 almost surely,

for some 0 < ϑ < 1/2.

Assumption (A3): There exists a sequence of compact sets {CN ; N ∈ N}, CN ⊂ RP , such that

ρN = O
(
N −ν

)
for some finite constant ν > 0, where

ρN = sup
k∈Z\{0}

sup
z∈RP

∫

RP \CN

gZs |Zs+k
(x | z)dx,

with gZs |Zs+k
denoting the conditional densities of Zs given Zs+k for all k ∈ Z \ {0}.

Let us now comment on the nature of the above assumptions. Assumption (A1) is rather

restrictive, especially for the case of stochastic processes in discrete-time (e.g., classical discrete-

time stationary autoregressive process); it has been used in order to simplify the technical arguments.

We believe that the assumption on the boundness of m(z), z ∈ RP , can be relaxed by appropriately

7
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controlling the rate at which |m(z)| increases outside the compact sets CN ⊂ RP , at the cost of

more involved technical arguments. Assumption (A2) is satisfied under some general conditions on

the underlying stochastic process Z = (Zs, s ∈ N), the kernel function K(·) and the bandwidth

h. Theorem 3.3 of Bosq (1998) provides regularity and mixing conditions under which a kernel

regression estimator on RP achieves the above almost surely uniform convergence over a suitable

increasing sequences of compact sets, requiring also that the bandwidth h is chosen to be of order
(
log2(N)/N

)1/(P+4). On the other hand, Assumption (A3) controls the behavior, outside the compact

sets CN ⊂ RP , of the tail probabilities of the conditional densities gZs |Zs+k
for all k ∈ Z \ {0}. Note

that, under the assumptions of the stochastic process ε = (εs, s ∈ N), model (1) implies that the

underlying stochastic process Z = (Zs, s ∈ N) is Gaussian, meaning that all conditional densities

gZs |Zs+k
, k ∈ Z \ {0}, exist and are Gaussian. It is well-known that the tail probabilities of Gaussian

densities approach zero power exponentially fast. Assumption (A3) requires a weaker condition to

hold, uniformly over k ∈ Z \ {0}.

The proof of Theorem 2.1 is based on the following two lemmas. For l ∈ L = {1, 2, . . . , L} and

i ∈ I = {1, 2, . . . , P }, consider the following quantities

Q̃l =
1

PvN

P∑

i=1

vN∑

s=1

[(
Zn+s(ti) − m̃l(Zn+s−1)(ti)

)2 − ε2n+s(ti)
]

and

ξs,l(ti) = m(Zs)(ti) − m̃l(Zs)(ti).

Lemma 4.1 Suppose that the assumptions (A1)-(A3) are true. Let c > 0 and assume that

vN > [(2cσ2
ε )/P ] + 1. Then, for each l ∈ L, the following bound is true

E
{

e−c eQl

}
≤ e−τvN {1−2τA2(1+Mvα

N )} eRl , (8)

where α < 1, A and M are some positive constants, independent of N and l, and

τ =
c

vN
− 2c2σ2

ε

Pv2
N

> 0. (9)

Proof. After some simple algebra, we get

E
{

e−c eQl

}
= E

{
e

− c
PvN

PP
i=1

PvN
s=1

(
ξ2
n+s−1,l(ti)+2ξn+s−1,l(ti)εn+s(ti)

)}
.

Using conditional expectations arguments, and the expression

E
(

exp
{

−
m∑

i=1

aiYi

})
= exp

{
1
2

m∑

i=1

aiσ
2
ε

}

if Y1, Y2, . . . , Ym are i.i.d. N(0, σ2
ε ) random variables, we get

E
{

e−c eQl

}
= E

{
e− τ

P

PP
i=1

PvN
s=1 ξ2

n+s−1,l(ti)

}
,

8
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where τ is given by (9). Noting that εn+s(ti), i = 1, 2, . . . , P , is a sequence of i.i.d. Gaussian random

variables with mean 0 and finite variance σ2
ε , and using the inequalities e−x ≤ 1 − x + 1

2x2 and

ex ≥ 1 + x for all x ∈ R, we see that

E
{

e− τ
P

PP
i=1

PvN
s=1 ξ2

n+s−1,l(ti)

}
≤ exp

{
− τ

P

P∑

i=1

vN∑

s=1

E
(
ξ2
n+s−1,l(ti)

)

+
1
2

τ2

P 2

P∑

i1=1

P∑

i2=1

vN∑

s1=1

vN∑

s2=1

E
(
ξ2
n+s1−1,l(ti1)ξ

2
n+s2−1,l(ti2)

)}
.

(10)

Consider first the second term in the exponent of the right hand side of (10). We have

vN∑

s1=1

vN∑

s2=1

E
(
ξ2
n+s1−1,l(ti1)ξ

2
n+s2−1,l(ti2)

)
=

vN∑

s=1

E
(
ξ2
n+s−1,l(ti1)ξ

2
n+s−1,l(ti2)

)

+
∑ ∑

1≤s1,s2≤vN
s1 6=s2

E
(
ξ2
n+s1−1,l(ti1)ξ

2
n+s2−1,l(ti2)

)

:= T1,N + T2,N .

We now study each of the terms T1,N and T2,N separately. For the first term, we have

T1,N =
vN∑

s=1

E
[(

m̃l(Zn+s−1)(ti1) − m(Zn+s−1)(ti1)
)2(

m̃l(Zn+s−1)(ti2) − m(Zn+s−1)(ti2)
)2

]

≤
vN∑

s=1

(
sup

z∈RP

|m̃l(z)(ti1) − m(z)(ti1)|
)2E

(
m̃l(Zn+s−1)(ti2) − m(Zn+s−1)(ti2)

)2

≤ 4vNA2 E
(
m̃l(Z1)(ti2) − m(Z1)(ti2)

)2
,

since, under assumption (A1), supz∈RP |m̃l(z)(ti) − m(z)(ti)| ≤ 2A for all ti, i ∈ I. For the second

term, we have

T2,N =
∑ ∑

1≤s1,s2≤vN
s1 6=s2

∫

RP

∫

RP

(
m̃l(z1)(ti1) − m(z1)(ti1)

)2

×
(
m̃l(z2)(ti2) − m(z2)(ti2)

)2
gZn+s1−1,Zn+s2−1(z1, z2) dz1z2

≤
∑ ∑

1≤s1,s2≤vN
s1 6=s2

∫

RP

(
m̃l(z1)(ti1) − m(z1)(ti1)

)2
[ ∫

Cn

(
m̃l(z2)(ti2) − m(z2)(ti2)

)2

+
∫

RP \Cn

(
m̃l(z2)(ti2) − m(z2)(ti2)

)2
]
gZn+s1−1,Zn+s2−1(z1, z2) dz1z2

:= T
(1)
2,N + T

(2)
2,N .

9
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We again study each of the terms above separately. For the first term, we have

T
(1)
2,N ≤

∑ ∑

1≤s1,s2≤vN
s1 6=s2

(
sup
z∈Cn

|m̃l(z)(ti2) − m(z)(ti2)|
)2

×
∫

RP

∫

Cn

(
m̃l(z1)(ti1) − m(z1)(ti1)

)2
gZn+s1−1,Zn+s2−1(z1, z2) dz1z2

=
∑ ∑

1≤s1,s2≤vN
s1 6=s2

(
sup
z∈Cn

|m̃l(z)(ti2) − m(z)(ti2)|
)2

×
∫

RP

∫

Cn

gZn+s2−1|Zn+s1−1
(z2 | z1)

(
m̃l(z1)(ti1) − m(z1)(ti1)

)2
gZn+s1−1(z1) dz1dz2

≤ v2
N

(
sup
z∈Cn

|m̃l(z)(ti2) − m(z)(ti2)|
)2 E

(
m̃l(Z1)(ti1) − m(Z1)(ti1)

)2
.

For the second term, we have

T
(2)
2,N ≤

∑ ∑

1≤s1,s2≤vN
s1 6=s2

∫

RP

(
m̃l(z1)(ti1) − m(z1)(ti1)

)2
gZn+s2−1(z2)

×
∫

RP \Cn

(
m̃l(z2)(ti2) − m(z2)(ti2)

)2
gZn+s1−1|Zn+s2−1

(z1 | z2)dz1dz2

≤
(

sup
z∈RP

|m̃l(z)(ti1) − m(z)(ti1)|
)2

∑ ∑

1≤s1,s2≤vN
s1 6=s2

∫

RP

(
m̃l(z2)(ti2) − m(z2)(ti2)

)2
gZn+s2 −1(z2)

×
∫

RP \Cn

gZn+s1−1|Zn+s2−1
(z1 | z2)dz1dz2

≤ 4A2 E
(
m̃l(Z1)(ti2) − m(Z1)(ti2)

)2
∑ ∑

1≤s1,s2≤vN
s1 6=s2

(
sup

z∈RP

P
(
Zn+s1−1 ∈ RP \ Cn | Zn+s2−1 = z

))

≤ 4A2v2
Nρn E

(
m̃l(Z1)(ti2) − m(Z1)(ti2)

)2
,

using assumption (A3).

Combining the above bounds for T
(1)
2,N and T

(2)
2,N , we arrive at

T2,N ≤ v2
N

[(
sup
z∈Cn

|m̃l(z)(ti1) − m(z)(ti1)|
)2 + 4A2ρn

]
E

(
m̃l(Z1)(ti2) − m(Z1)(ti2)

)2
.

Using assumptions (A1)-(A2), it is easily seen that

T2,N ≤ 4A2Mv1+α
N E

(
m̃l(Z1)(ti2) − m(Z1)(ti2)

)2
,

where α = 1 − min{2ϑ, ν} < 1 for some positive constant M .

Consider now the first term in the exponent of the right hand side of (10). It is immediate that

T0,N :=
vN∑

s=1

E
{

ξ2
n+s−1,l(ti)

}
= vNE

(
m̃l(Z1)(ti) − m(Z1)(ti)

)2
.

10
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By combining the above bounds T0,N , T1,N and T2,N , summing over i ∈ I in T0,N and over i1, i2 ∈ I
in T1,N and T2,N , and using (10), we arrive at (8), thus completing the proof. �

Lemma 4.2 Assume that constant b, c > 0 and 0 < λ < 1 exist such that, for each l ∈ L, the

following bound is true

λ E
{

e−c eQl

}
≤ b e−cλ eRl . (11)

Then, the following oracle bound is true

λ E
{

R̃l̂

}
≤ min

l
{R̃l} +

1
c

log
(

bL

λ

)
, (12)

where l̂ = argminl∈L {Q̃l}.

Proof. Let m = argminl∈L {R̃l}. Since Q̃m − Q̃l̂ ≥ 0, and using the fact that E
{
Q̃m

}
= R̃m, it is

easily seen that

λ E
{

R̃l̂

}
≤ R̃m + E

{
max
l∈L

{λR̃l − Q̃l}
}
.

Using the inequalities c(x − a) ≤ ec(x−a) − 1, for each c > 0 and for all a, x ∈ R, and E(maxl∈L {Xl}) ≤
L maxl∈L E{Xl}, with {Xl}l∈L a sequence of non-negative random variables with |L| = L, we get

λ E
{

R̃l̂

}
≤ R̃m + a +

1
c

[
L max

l∈L
E

{
ec(λ eRl− eQl−a)

}
− 1

]
,

and by (11), we get

λ E
{

R̃l̂

}
≤ R̃m + a +

1
c

[
L

b

λ
e−c a − 1

]
.

Taking a = (1/c) log(bL/λ), we arrive at (12), thus completing the proof. �

We are now in the position to prove the main result.

Proof of Theorem 2.1 Standard calculations, the Cauchy-Schwarz inequality and the consistency

property of both m̂l(·) and m̃l(·) estimators, yield that

|Rl − R̃l| = O
(vN

N

)
, uniformly in hl,N ∈ HN . (13)

To bound E
{

R̃l̂

}
, let c = v1−α

N q/ log (vN ) for some positive constant q and some constant α < 1.

Applying now Lemmas 4.1 and 4.2 with this c, b = λ and λ = τvN {1 − 2τA2(1 + vα
NM)}/c, and

substituting the values of c and τ , we get λ := λN = 1 − 2Mq/ log (vN ) + o(1/ log (vN )). For large

enough N , as long as 1 ≤ q < vα
N log (vN )P/(4σ2

ε ), it follows by simple algebra that 0 < λ < 1 and,

noting that argminl∈L {Q̃l} = argminhl,N ∈HN
{R̃l}, we arrive at

(1 − aN )E
{

R̃l̂

}
≤

{
min

hl,N ∈HN

{R̃l} +
log (vN )

v1−α
N

log
(
L

)}
, (14)

where aN = 2Mq/ log (vN )+o(1/ log (vN )). Hence, (6) follows by combining (13) and (14), on noting

that vN → ∞ such that vN/N → 0 as N → ∞, thus completing the proof. �
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