
HAL Id: hal-00511165
https://hal.science/hal-00511165

Preprint submitted on 24 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Stochastic Algorithm for Probabilistic Independent
Component Analysis

Stéphanie Allassonniere, Laurent Younes

To cite this version:
Stéphanie Allassonniere, Laurent Younes. A Stochastic Algorithm for Probabilistic Independent Com-
ponent Analysis. 2010. �hal-00511165�

https://hal.science/hal-00511165
https://hal.archives-ouvertes.fr


A Stochastic Algorithm for Probabilistic

Independent Component Analysis
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Abstract: The decomposition of a sample of images on a relevant subspace is a recur-
rent problem in many different fields from Computer Vision to medical image analysis. We
propose in this paper a new learning principle and implementation of the generative decom-
position model generally known as noisy ICA (for independent component analysis) based
on the SAEM algorithm, which is a versatile stochastic approximation of the standard EM
algorithm. We demonstrate the applicability of the method on a large range of decomposition
models and illustrate the developments with experimental results on various data sets.
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1. Introduction

Independent Component Analysis (ICA) is a statistical technique which aims at representing a
data set of random vectors as linear combinations of a fixed family of vectors with statistically
independent coefficients. It has found numerous applications, starting with source separation [1],
for which it has been designed initially, but also including image analysis and more generally any
situation in which a decomposition of a large set of variables into simple components is needed.
It has proved to provide representations that are qualitatively very different from, say, principal
component analysis (PCA) [2].

One of the drawbacks of ICA is that it does not come (like PCA does) with a natural selection
method for the most important components. In the original formulation, the number of indepen-
dent components is equal to the dimension of the variables, so that the decomposition is achieved
without dimensional reduction. When a limited amount of data is available, the validity of this
decomposition is generally subject to caution due to over-fitting. Probabilistic ICA, in which part
of the signal is modelled as noise, provides an interesting approach to this issue.

ICA and Probabilistic ICA admit formulations in terms of generative models approximating the
distribution of the data, allowing for the use of well-understood statistical methods for training
and validation. ICA, for example, represents an observed d-dimensional random variable, X, as

X =

d
∑

j=1

βjaj , (1.1)

where (a1, . . . ,ad) ∈ R
d×d are parameters (called decomposition vectors) and β1, . . . , βd are in-

dependent scalar random variables. This model can be specialised by specifying the distribution
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of the βj ’s and basic estimation procedures can be used, like maximum likelihood (or maximum
entropy) as in [3].

As we remarked, estimating a full d by d matrix of parameters (called decomposition matrix)
may be unrealistic when the number of observations is limited, and one may prefer using a Prob-
abilistic ICA model, given by

X =

p
∑

j=1

βjaj + σε , (1.2)

where (a1, . . . ,ap) ∈ R
d×p now represent d × p parameters, β1, . . . , βp are independent scalar

random variables and ε, the noise, follows a standard normal distribution (we here take the
standard deviation, σ to be a fixed scalar, also a parameter). Such models can also address the
fact that for many types of data, only a small number of components is required to describe an
input vector on average.

Training (Probabilistic) ICA requires to estimate the decomposition matrix A = (a1, . . . ,ap)
(and the noise variance in the probabilistic case) based on observations (X1, . . . ,Xn). With model
(1.1), the independent components β1, . . . , βd can be computed from X by inverting A and most
of the learning methods estimate W = A−1 by ensuring that WX has independent components.
With Probabilistic ICA, this is obviously not possible; the d-dimensional vector X is modelled as
a function of the (p + d)-dimensional variable (β, ε) and we have partial observations.

A possible approach is to first implement some dimension reduction (typically PCA) to the
data before applying standard ICA to the projected components [4, 5]. But training probabilistic
ICA according to the statistical model that it actually describes is certainly a more satisfactory
approach. In this setting, the adopted solution in the literature is most of the time to maximise
the likelihood for the joint distribution of X and β, simultaneously in the parameters and in the
unobserved variables [6]. This therefore attempts to solve the parametric estimation and recon-
struction problems at the same time. However, the estimation of both X and β may be a risky
procedure, often inducing biased estimators. As we will show in our experiments, these approaches
have good results when the noise level is small (as already noticed in [7]), but these results can
significantly degrade otherwise (see Section 5, or [8] for a similar observation made in a different
context).

In this paper, we estimate the parameters by maximum likelihood of the observed variables,
therefore averaging out the unobserved β. The reconstruction problem (estimating β from X),
which is important, for example to define efficient lossy compression methods, can then be solved
using the estimated parameters. These are two separate problems.

So our focus will be on maximum likelihood estimation of the parameters (A, σ and some
additional parameters describing the distribution of the β’s), based on partial observations. The
Expectation - Maximisation (EM) algorithm is the most commonly used method for this purpose.
However, it is intractable in our case because of the difficulty to compute conditional expectations
given the observations, which are needed in the E-step. We will rely on a stochastic approximation
to the EM (called SAEM [9, 10]) which only requires being able to sample from this conditional
distribution in order to provide converging results. This algorithm compensates the larger con-
vergence time generally associated to stochastic approximations by much simpler iteration steps,
since sampling hidden variables is most of the time far easier than computing conditional expecta-
tions. Moreover the construction applies to many different probabilistic distributions. This means
that there are almost no restriction to the range of statistical models that can be used for the
unobserved independent variables.

To illustrate this, the paper will describe a series of models and variants that lead to various
instances of probabilistic ICA, all leading to fairly similar learning algorithms. We introduce
these models in Section 2. The parametric estimation method, including the SAEM algorithm,
is described in Section 3 and the reconstruction of hidden variables is discussed in Section 4.
Experimental results with both synthetic and real data are presented in Section 5.
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2. Models

We start with some general assumptions on the data, that will be made specific in the experiments.
We assume the observation is a set of vectors which take values in R

d. Let X1, ...,Xn be the
training observations, which are assumed to be independent and identically distributed. We will
denote by X a generic variable having the same distribution as the Xk’s. The jth coordinate of
X (resp. Xk) will be denoted Xj (resp. Xj

k).
We assume that X can be generated in the form

X = µ0 +

p
∑

j=1

βjaj + σε , (2.1)

where µ0 ∈ R
d, aj ∈ R

d for all j ∈ {1, ..., p}, ε is a standard d dimensional Gaussian variable
and β1, . . . , βp are p independent scalar variables, the distribution of which being specified later.
Let β denote the p-dimensional variable β = (β1, . . . , βp). To each observation Xk is therefore
associated hidden realisations of β and ε, which will be denoted βk and εk.

Denote A = (a1, . . . ,ap). It is a d by p matrix and one of the parameters of the model. Another
parameter is σ, which will be a scalar in our case (a diagonal matrix being also possible). Additional
parameters will appear in specific models of β which are described in the following subsections.
In some of these models, it will be convenient to build β as a function of new hidden variables,
which will be denoted Z.

The models that we describe are all identifiable, as proved in [11], with the obvious restriction
that A is identifiable up to a permutation of its columns. When the distribution of β is symmetrical,
the columns A are also identifiable up to a sign change.

2.1. Logistic distribution (Log-ICA)

We start with one of the most popular models, in which each βj follows a logistic distribution
with fixed parameter 1/2. The associated cumulative distribution function is P (βj ≤ t) = 1/(1 +
exp(−2t)).

For this model, the parameters to estimate are θ = (A, σ2, µ0). Hidden variables are Z = β

and ε. This is the model introduced in the original paper of Bell and Sejnowsky [3], and probably
one of the most commonly used parametric model for ICA.

2.2. Laplacian distribution (Lap-ICA)

A simple variant is to take βj to be Laplacian with density e−|t|/2. The parameter still is θ =
(A, σ2,µ0). Hidden variables are Z = β and ε.

2.3. Independent Factor Analysis (IFA)

The IFA [12, 13] model is a special case of probabilistic ICA in which the distribution of each
coordinate βj is assumed to be a mixture of Gaussians. To allow for comparison with the state
of the art, we will test this model as well. We will here use a restricted definition of the IFA
model which will be consistent with the other distributions that we are considering in this paper,
ensuring that the βj ’s are independent with identical distribution, and that this distribution is
symmetrical.

More precisely, we will introduce two new hidden variables, the first one (representing the class
in the mixture model), being denoted (t1, . . . , tp) and the second one is a random sign change,
(b1, . . . , bp) for each component. Each tj takes values in the finite set {0, 1, . . . ,K}, with respective
probabilities w0, . . . , wK , and bj takes values ±1 with probability 1

2
. Then let

βj = bj

p
∑

k=1

mkδk(tj) + Y j
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where Y j is standard Gaussian. In other terms, βj is a mixture of 2K + 1 Gaussians with unit
variance, the first one being centred, and the following ones having means m1,−m1, m2,−m2, . . ..

The parameters of this model are therefore θ = (A, σ2, (wk, mk)1≤k≤K). Hidden variables are
Z = (β, b, t). Note that, even if we use a simplified and symmetrized version of the model originally
presented in [12], the stochastic approximation learning algorithm that will be designed in Section
3.2 immediately extends to the general case where the means depend on the index j.

2.4. Exponentially scaled Gaussian ICA (EG-ICA)

In this model, we let βj = sjY j where Y is a standard Gaussian vector, s1, . . . , sp are independent
exponential random variables with parameter 1, also independent from Y and ε. In this case, we
can write

X = µ0 +

p
∑

j=1

sjY jaj + σǫ. (2.2)

Hidden variables are Z = (s,Y ) and ε, and the parameter is θ = (A, σ2,µ0).
It’s not too hard to prove (see the Appendix) that this model is such that log[P (βi > t)] is

asymptotically proportional to (−t2/3), providing sub-exponential tails.

2.5. Bernoulli-censored Gaussian (BG-ICA)

With some types of data, only a sub-group of all the decomposition vectors is required to describe
one input vector. In contrast with the logistic or Laplacian models for which coefficients vanish
with probability zero, we now introduce a discrete switch which “turns them off” with positive
probability. Here, we model the hidden variables as a Gaussian-distributed scale factor multiplied
by a Bernoulli random variable. We therefore define βj = bjY j , using the same definition for Y

as in section 2.4 and letting bj have a Bernoulli distribution with parameter α = P (bj = 1). We
assume that all variables b1, . . . , bp, Y 1, . . . , Y p, ε are independent. The complete model for X has
the same structure as before, namely

X = µ0 +

p
∑

j=1

bjY jaj + σε. (2.3)

Parameters in this case are θ = (A, σ2, α,µ0) and hidden variables are Z = (b,Y ) and ε.
Using a censoring distribution in the decomposition is a very simple way to enforce sparsity in the
resulting model.

2.6. Exponentially scaled Bernoulli-censored Gaussian (EBG-ICA)

We can combine the two previous models, using both the censoring variable and the exponential
scale to benefit from both model advantages. The complete model for X is

X = µ0 +

p
∑

j=1

sjbjY jaj + σε. (2.4)

Since the exponential law has fixed variance, the parameters of interest are the same as in the
BG-ICA model, i.e. θ = (A, σ2, α,µ0). The hidden variables are Z = (s, b,Y ) and ε.

2.7. Exponentially-scaled ternary distribution (ET-ICA)

The previous models include an switch which controls whether the component is active in the
observation or not. One may want to have either an activation or an inhibition of the corresponding
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decomposition vector. To this purpose, we introduce a discrete model for Y , each component taking
only values −1, 0 or 1. We define βj = sjY j , where s1, . . . , sp are i.i.d. exponential variables with
parameter 1. We let γ = P (Y j = −1) = P (Y j = 1), providing a symmetric distribution for the
components of Y . As before, all hidden variables are assumed to be independent. The model is

X = µ0 +

p
∑

j=1

sjY jaj + σε. (2.5)

Hidden variables here are Z = (s,Y ) and ε, the parameter being θ = (A, σ2, γ,µ0).
The interpretation of the decomposition is that each component has a fixed effect, up to scale,

which can be positive, negative or null. The model can therefore be seen as a variation of the
Bernoulli-Gaussian where the effect can be a weighted inhibitor as well as a weighted activator.
This allows selective appearance of decomposition vectors and therefore refine the characterisation
of the population.

2.8. Single-scale ternary distribution (TE-ICA)

The previous model can be simplified by assuming that the exponential scale is shared by all the
components, i.e., we let βj = sY j where s is exponential with parameter 1, and Y j has the same
ternary distribution as in the ET-ICA model. The decomposition now is

X = µ0 + s

p
∑

j=1

Y jaj + σǫ. (2.6)

Hidden variables here are (s,Y ), the parameter being θ = (A, σ2, γ,µ0). Notice that this model
is not explicitly an ICA decomposition, since the components are only independent given the scale.
Notice also that we assume that the scaling effect acts on the components, not on the observation
noise which remains unchanged.

Probabilistic-ICA in general is obviously a very efficient representation for lossy compression
of random variables, since, if the noise is neglected, and as soon as the parameters µ0 and A are
known, one only needs to know the realisation of β (hopefully with p << d), to reconstruct an
approximation to the signal. In the present model, the transmission of β only requires sending
the scalar scale, s, and p ternary variables. If many components vanish (i.e., if γ is significantly
smaller than 1/2), compression is obviously even more efficient.

In this model (and for the previous two also), the sparsity of the representation will obviously
depend on the number of selected components, p, that we suppose given here. When p is too small,
it is likely that the model will find that censoring does not help and find γ = 1/2 (or α = 1 in the
Bernoulli-Gaussian model). Adding more components in the model generally results in α and γ
decreasing, enabling some components to be switched off. This effect is illustrated in Section 5.

Finally, let’s remark that, although the results in [11] do not directly apply to this model (the
components are not independent, since they share the same scale factor), they can be applied to
the conditional distribution given the scale to prove identifiability (since the scale distribution is
fixed).

2.9. Playing with the average

Clearly, all the previous models admit a centred submodel in which µ0 = 0, which can be preferred
in some cases. In this case (µ0 = 0), it may be interesting to allow for some shift in the distribution
of the components, replacing βj by µ+βj where µ is a one-dimensional parameter. This is therefore
equivalent to to modelling µ0 = Aµ where µ is a p-dimensional vector with all coordinates equal to
µ. When dealing with scaled, or censored models, one can decide to apply the shift before or after
censoring or scaling. For example, one can define a shifted Bernoulli-Gaussian model by replacing
Y i by µ + Y j in Section 2.5, which results in shifting βj only when it is not censored.
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Another choice that can also be interesting is to model the signal with a random, scalar, offset
(or AC component). One way to achieve this is to impose that one of the columns of the matrix
A is the d-dimensional vector (1, . . . , 1)T . In this case, it is natural to separate the distribution of
the offset coefficient from the ones of other components, as customary in compression (the offset
coefficient should not be censored, for example). A simple choice is to provide it with a logistic or
Laplacian distribution. This is illustrated in the next model.

2.10. Single-scale ternary distribution with offset (TEoff-ICA)

In this model, the mean µ0 is not a parameter and is not the same for all the observed vectors,
so that this random effect (in opposition to the fixed effect it had in the previous models) now is
a hidden variable. We furthermore assume that this random variable, denoted µ takes the form
µ = (µ, ..., µ) ∈ R

d where µ is Laplacian. So µ can be interpreted as an offset acting simultaneously
on all coordinates of X. This yields the following model:

X = µ + s

p
∑

j=1

Y jaj + σε , (2.7)

where s follows an exponential distribution with parameter 1 and Y j are ternary variables with
γ = P (Y j = −1) = P (Y j = 1). The hidden variables are (s,Y , µ) and the parameters (A, σ2, γ).

3. Maximum likelihood estimation

3.1. Notation

The previous models are all built using simple generative relations Z → β and (β, ε) → X.
Our goal here is to estimate the parameters that maximise the likelihood of the observation of n
independent samples of X that we will denote x∗n = (x1, . . . ,xn).

Let qm(z; θ) denote the prior likelihood of the hidden (or missing) variable Z that generates
β. Denote qc(x|z; θ) the conditional distribution of X given Z = z which is, in all our models, a
Gaussian distribution centred at the ICA decomposition. The joint density is

q(x,z; θ) = qc(x|z; θ)qm(z; θ)

and the marginal distribution of X has density

qobs(x; θ) =

∫

qc(x|z; θ)qm(z; θ)dz.

Our goal is to maximise the likelihood of the observations, namely to find

θ̂n = argmax
θ

q∗n
obs

(x∗n; θ) with q∗n
obs

(x∗n; θ) =

n
∏

k=1

qobs(xk; θ). (3.1)

3.2. SAEM Algorithm

This problem can, in principle, be solved using the Expectation Maximisation (EM) algorithm.
With the EM, a local maximum of the likelihood is computed recursively while replacing the
missing variables with a conditional expectation. For each observation xk and parameter θ, we
define the conditional density of Z by

νk,θ(z) = q(z|X = xk; θ) . (3.2)

The EM algorithm iterates the following two steps, where t indexes the current iteration;
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E: Expectation Compute ℓt+1(θ) : θ 7→
∑n

k=1
Eνk,θt

[log q(xk,Z; θ)].
M: Maximisation Set θt+1 = argmax

θ∈Θ

ℓt+1(θ).

The models we have discussed for ICA are exponential, in the sense that the joint distribution
of the hidden variables for a given parameter can be put in form

log q(x,z; θ) = φ(θ) · S(x,z) − log C(θ)

where S is a multidimensional sufficient statistic, φ is a fixed, vector-valued function of the pa-
rameters, C is a normalising constant and the dot refers to the usual Euclidean dot product. This
implies that

ℓt+1(θ) = φ(θ) ·
(

n
∑

k=1

Eνk,θt
S
)

− n log C(θ).

Thus, the E-step only requires to compute the conditional expectations of the sufficient statistic,
and the M-step is equivalent to maximum likelihood for a fully observed model, with the empirical
expectation of the sufficient statistic equal to

S̄t+1 =
1

n

n
∑

k=1

Eνk,θt
S.

This is an important property (satisfied by our models) for the numerical feasibility of the EM.
However, this is not enough, since one also must be able to explicitly compute the conditional

expectations. For several of our models, there is no close form expression for the densities νk,θ.
For others, like IFA, for which such an expression can be derived, its computational complexity is
exponential in the number of components which rapidly becomes intractable (details are given in
the appendix).

A common way to overcome this difficulty is to approximate this conditional distributions by a
Dirac measure at their mode. The resulting algorithm is sometimes called EM-MAP or FAM-EM
(for “Fast Approximation with Mode”) [8, 14]. At each iteration of the algorithm, one computes
the most likely hidden variables ẑk ∀1 ≤ k ≤ n with respect to the current parameters :

ẑt,k = argmax
z

[log(q(z|X = xk, θt))] . (3.3)

The M-step then maximises the likelihood for the “completed observations” x∗n and ẑt,1, . . . , ẑt,n.
The statistical quality of this approximation is unclear, since it estimates a number of param-

eters that scales like the number of observations. Consistency of the obtained estimator when n
goes to infinity cannot be proved in general. Some experimental evidence of asymptotic bias is
demonstrated in Section 5 below.

In spite of these remarks, this approach (or approaches similar to it) is the most common choice
for training probabilistic ICA models [6, 15–17]. In the under-determined problem (p >> d), this
algorithm has also been implemented in [1].

Although the conditional distribution is not explicit, it is still possible (as we shall see later)
to sample from it. The conditional expectation of the sufficient statistics (S̄t+1) can therefore
be approximated by Monte-Carlo simulation, as proposed in [18, 19] with the MCEM (Monte
Carlo EM) algorithm. The resulting method, however, is heavily computational. Also, there is no
guarantee that the errors resulting from the approximation to the E-step will cancel out to provide
an estimator converging to a local maximum of the likelihood.

In this regard, a more interesting procedure, which has been proposed in [9], is a stochastic
approximation of the EM algorithm, called SAEM. It replaces the E-step by a stochastic approx-
imation step for the conditional likelihood (or, in practice, for the conditional expectation of the
sufficient statistics), on which the M-step is based. More precisely, based on a sequence ∆t of
positive numbers decreasing to 0, the algorithm iterates the following two steps (assuming the tth
iteration) :



S. Allassonnière and L. Younes./SAEM for Probabilistic ICA 8

SAE step For k = 1, . . . , n, sample a new hidden variable zt+1,k according to the conditional
distribution νk,θt

and define

ℓt+1(θ) = ℓt(θ) + ∆t (
∑n

k=1
log q(xk,zt+1,k; θ) − ℓt(θ)) .

M step Set

θt+1 = argmax
θ∈Θ

ℓt+1(θ).

For exponential families, the SAE step is more conveniently (and equivalently) replaced by an
update of the estimation of the conditional expectation of the sufficient statistics, namely

S̄t+1 = S̄t + ∆t

(

1

n

n
∑

k=1

S(xk,zt+1,k) − S̄t

)

,

with
ℓt+1(θ) = φ(θ) · S̄t+1 − log C(θ)

being maximised in the M-step. Note that this algorithm is fundamentally distinct from the SEM
method [20] in which the E step directly defines ℓt+1(θ) =

∑n
k=1

log q(xk,zt+1,k; θ).
A final refinement may be required in the SAEM algorithm when directly sampling from the

posterior distribution is unfeasible, or inefficient, but can be done using Markov Chain Monte
Carlo (MCMC) methods. In this situation, there exists, for each θ and x, a transition probability
z 7→ Πx,θ(z, ·) such that the associated Markov chain is ergodic and has the posterior probability
q(·|X = x; θ) as stationary distribution. The corresponding variant of the SAEM (which we shall
still call SAEM) replaces the direct sampling operation

zt+1,k ∼ νk,θt
= q(·|X = xk, θt)

by a single Markov chain step
zt+1,k ∼ Πxk,θt

(zt,k, ·) .

This procedure has been introduced and proved convergent for bounded missing data in [21]. This
result has been generalised to unbounded hidden random variables in [10].

To ensure the convergence of this algorithm in the non-compact case (which is our case in the
models above), one needs, in principle, to introduce a truncation on random boundaries as in [10].
This would yield add a step between the stochastic approximation and the maximisation steps,
with the following truncation step. Let S be the range of the sufficient statistic, S. Let (Kq)q≥0 be
an increasing sequence of compact subsets of S such as ∪q≥0Kq = S and Kq ⊂ int(Kq+1),∀q ≥ 0.
Let (δt)t a decreasing sequence of positive numbers. If S̄t+1 wanders out of Kt+1 or if |S̄t+1−S̄t| ≥ δt

then the algorithm is reinitialised in a fixed compact set.
More details can be found in [22, 10]. In practice, however, our algorithms work properly without

this technical hedge.

3.3. Application to our models

To complete the description of the SAEM algorithm for a given model, it remains to make explicit
(i) the specific form of the sufficient statistic S; (ii) the corresponding maximum likelihood estimate
for complete observations; and (iii) the transition kernel for the MCMC simulation. Formulae for
(i) and (ii) are provided in the Appendix for the ICA models we have considered here. For (iii), we
have used a Metropolis-Hastings procedure, looping over the components, that we now describe
(sometime called Metropolis-Hastings within Gibbs Sampling). This is for a fixed observation xk

and parameter θ, although we do not let them appear in the notation. So we let ν(.) = νk,θ be the
probability that needs to be sampled from.

In the Metropolis-Hastings procedure, one must first specify a candidate transition probability
ρ(z, z̃). A Markov chain (Zt, t = 0, 1, . . .) can then be defined by the two iteration steps, given
Zt:
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1. Sample z from ρ(Zt, ·).
2. Compute the ratio

r(Zt,z) =
ν(z)ρ(z,Zt)

ν(Zt)ρ(Zt,z)

and set Zt+1 = z with probability min(1, r) and Zt+1 = Zt otherwise.

An interesting special case is when ρ corresponds to a Gibbs sampling procedure for the prior
distribution, qm(z; θ). Given the current simulation z, one randomly selects one component zj

and generate z̃ by only changing zj , replacing it by z̃j sampled from the conditional distribution
qm(z̃j |zi, i 6= j; θ). In this case, it is easy to see that the ratio r is then given by

r(z̃,z) =
q(xk|z̃)

q(xk|z)
.

The Markov kernel is then built by successively applying the previous kernel to each component.
Our implementation follows this procedure whenever the current set of parameters leads to an

irreducible transition probability ρ. This is always true, excepted for the censored models, in which
parameters α ∈ {0, 1} or γ ∈ {0, 1

2
} are degenerate and must be replaced by some fixed values α0

and γ0 in the definition of ρ.

4. Reconstruction

Assuming that the parameters in the model are known or have been estimated, the reconstruction
problem consists in estimating the hidden coefficients of the independent components, β̂ ∈ R

p,
based on the observation of x ∈ R

d. (We briefly present the way to get these coefficients with the
presented models, however, this is not our main concern in this paper.)

With probabilistic ICA, this is not as straightforward as with complete ICA, for which the
operation only requires solving a linear system. A natural approach is maximum likelihood, i.e.,
(with our notation) find ẑ = argmaxz φ(θ) · S(x,z) and deduce β̂ from it.

This maximisation is not explicit, although simpler for our two first models. Indeed, for Log-
ICA, this requires to minimise

1

2σ2
|x − Aβ|2 + 2

p
∑

j=1

log(eβj

+ e−βj

).

(We take µ0 = 0 in this section, replacing, if needed x by x − µ0.)
The Laplacian case, Lap-ICA, gives

1

2σ2
|x − Aβ|2 +

p
∑

j=1

|βj |.

Both cases can be solved efficiently by convex programming. The Laplacian case is similar (up
to the absence of normalisation of the columns of A) to the Lasso regression algorithm [23], and
can be minimised using an incremental procedure on the set of vanishing βj ’s [24].

The EG-ICA problem requires to minimise

1

2σ2
|x −

p
∑

j=1

sjyjaj |
2 +

p
∑

j=1

sj +
1

2

p
∑

j=1

(yj − µ)2 ,

with s1, . . . , sp ≥ 0. This is not convex, but one can use in this context an alternate minimisation
procedure, minimising in y with fixed s and in s with fixed y. The first problem is a straightforward
least squares and the second requires quadratic programming.

The other models are more complex, because solving them all involve some form of quadratic
integer programming, the general solution of which being NP-complete. When dealing with large
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numbers of components, one must use generally sub-optimal optimisation strategies (including
local searches) that have been developed for this context (see [25], for example).

The symmetrized IFA model leads to minimise

1

2σ2
|x − Aβ|2 −

p
∑

j=1

(

1

2
(βj − bjmtj )2

)

+

p
∑

j=1

logwtj .

with respect to β, the unobserved configuration of labels t, and the sign change b. When labels
and signs are given, the problem is quadratic in β. For small dimensions, it is possible to make an
exhaustive search of all (2K + 1)p possible configurations of labels and signs.

For the BG-ICA, we must minimise

1

2σ2
|x −

p
∑

j=1

bjyjaj |
2 + ρ

p
∑

j=1

bj +
1

2

p
∑

j=1

(yj − µ)2 ,

with ρ = log((1− α)/α) and bj ∈ {0, 1}. The minimisation in b is a (0, 1)-quadratic programming
problem, an exhaustive search being feasible for small p. Given b, the optimal y is provided by
least squares.

Concerning the EBG-ICA, we must minimise

1

2σ2
|x −

p
∑

j=1

sjbjyjaj |
2 +

p
∑

j=1

sj + ρ

p
∑

j=1

bj +
1

2

p
∑

j=1

(yj − µ)2.

with ρ = log((1 − α)/α), s1, . . . , sp > 0 and bj ∈ {0, 1}. This is again a (0, 1)-quadratic pro-
gramming problem in b and, given b, the optimal y and s are computed similarly to the EG-ICA
model.

With ET-ICA, the objective function is

1

2σ2
|x −

p
∑

j=1

sjyjaj |
2 +

p
∑

j=1

sj + ρ

p
∑

j=1

|yj |

with ρ = log((1 − 2γ)/2γ), y1, . . . , yp ∈ {−1, 0, 1} and s1, . . . , sp > 0. This is a quadratic integer
programming in y, with a complexity of 3p for an exhaustive search. Given b, computing s is a
standard quadratic programming problem.

The TE-ICA problem, requiring to minimise

1

2σ2
|x − s

p
∑

j=1

yjaj |
2 + s + ρ

p
∑

j=1

|yj | ,

is slightly simpler since, in this case, the computation of s ≥ 0 given y is straightforward.
The TEoff-ICA model involves a third hidden variable µ. This leads to the following objective

function to minimise both in s, y and µ:

1

2σ2
|x − µ − s

p
∑

j=1

yjaj |
2 + s + ρ

p
∑

j=1

|yj |,

with µ = (µ, . . . , µ) ∈ R
d, and s > 0. Given µ the minimisation with respect to s and y is done

as in the previous TE-ICA model. The minimisation over µ has a closed form:

µ =
1

d

d
∑

i=1



xj − s

p
∑

j=1

yjai,j



 .
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5. Experiments

5.1. Synthetic image data

We first provide an experimental analysis using synthetic data, which allows us to work in a
controlled environment with a known ground truth. In this setting, we assume that the true
distribution is the Bernoulli-Gaussian (BG) model, with two components (p = 2). The probability
α of each component to be “on” is set to 0.8. We run experiments based on 30, 50 or 100
observations, and vary the standard deviation of the noise using σ = 0.1, 0.5, 0.8, 1.5.

The components are represented as two-dimensional binary images (grey levels being either 0
or 1). The first one is a black image (grey level equals 0) with a white cross (grey level equals 1)
in the top left corner. The second one has a white square (same grey level) in the bottom right
corner instead. These two images are shown in Figure 1. Figure 2 presents 30 images sampled
from the model with different noise levels. The training sets were sampled once, and used in all
the comparative experiments. We used a fixed colour map for all figures to allow for comparisons
across experiments (this explains why the patterns in Figure 1 appear as grey instead of white).

Fig 1. Two decomposition images used for synthetic data.

Fig 2. Samples of the training sets used for synthetic data with different level of noise. From left to right and top
to bottom: σ = 0.1, 0.5, 0.8, 1.5

We have compared the following estimations strategies: (1) FAM-EM algorithm [15–17] (which
maximises the likelihood with respect to parameters and hidden variables together), with the Log-
ICA model (Logistic distribution); (2) SAEM with the same Log-ICA model; (3) SAEM for the
same model, and (4) EM with the IFA model [12, 26]; (5) SAEM for the true BG-ICA model;
(6) finally, we also ran a standard ICA decomposition (using fast-ICA [27] ) with a requirement
of computing only two components (with a preliminary dimension reduction based on PCA). (3)
and (4) are theoretically equivalent in this framework, and our experiments simply check that it
remains so experimentally. We strengthen the fact that the EM algorithm for the IFA model is
only feasible for a reasonably small number of components, p, and number of mixtures, K (with a
complexity in Kp), whereas this limitation does not apply to the SAEM algorithm (see Appendix
for more details). For other alternative approaches to the EM for the IFA model (including the use
of the FAM-EM strategy), see [28, 7, 29, 4, 5]. The fast-ICA algorithm used in (6) is non-parametric
(and maximises an approximation of the so-called negentropy of the model).

Our first remark is that the SAEM algorithm has demonstrated excellent stability and conver-
gence properties in these experiments. The estimated components are fairly consistent with the
ground truth, even when the model used for the estimation differs from the true one (note that
the decomposition matrix is estimated up to a permutation of its columns). This does not apply to



S. Allassonnière and L. Younes./SAEM for Probabilistic ICA 12

the “FAM-EM” algorithm (which maximises the likelihood with respect to parameters and hidden
variables together), which significantly degenerates in the presence of high noise. Figures 3 and 4
present the results of these experiments. The coupling of models and algorithm are presented in
rows and the columns correspond to increasing noise level.

The estimation of the components is quite accurate for all models and algorithms with low
noise levels. FAM-EM clearly breaks down when this level increases, and adding more sample in
the training set does not seem to help. On the other hand, the SAEM algorithm (and the EM
applied to the IFA model) reaches decomposition vectors that are consistent with the ground
truth. Increasing the number of images in the training set improves the estimation, as could be
expected with maximum likelihood estimators. The EM and SAEM algorithms for the IFA model
provide similar results. Fast-ICA also breaks down in the presence of high noise. This can be
due to the inaccuracy of PCA dimension reduction. We also experienced numerical failures when
running the publicly available software in such extreme situations (we had, in fact, to resample a
new 100-image training set to be able to present results from this method).

We also evaluated the accuracy of the estimation of σ2. The results are presented in Table
1. A surprising result is that σ2 is always well estimated even when the decomposition vectors
are not. This is an important observation which indicates that one should not evaluate the final
convergence of any algorithm based on the convergence of σ2 only.

Fig 3. Estimated decomposition images with different models and algorithm: 1st row: Fast Approximation with Mode
(FAM-) EM algorithm with the Logistic distribution. 2nd row: SAEM algorithm with the Logistic distribution. 3rd
row: SAEM algorithm with the IFA model. 4th row: EM algorithm with the IFA model. 5th row: SAEM algorithm
with the BG-ICA model. 6th row: FastICA two most important decomposition vectors. The experiments are done
with different noise levels: σ = 0.1, 0.5, 0.8, 1.5 (column 1 to 4 respectively) and 30 images in the training set
(left) and (column 5 to 8 respectively) and 50 images in the training set (right).

Model + algorithm True σ
2 Log + FAM-EM Log + SAEM IFA + EM IFA + SAEM BG + SAEM

30 images 0.001 0.0088 0.0086 0.0097 0.0089 0.0087
in the 0.2500 0.2253 0.2224 0.2240 0.2410 0.2226

training set 0.6400 0.5685 0.5577 0.5534 0.6092 0.5569
2.2500 2.0375 1.9978 2.1199 2.0735 2.0009

Model + algorithm True σ
2 Log + FAM-EM Log + SAEM IFA + EM IFA + SAEM BG + SAEM

50 images 0.001 0.0095 0.0092 0.0095 0.0094 0.0092
in the 0.2500 0.2400 0.2399 0.2363 0.2524 0.2399

training set 0.6400 0.5831 0.5798 0.6381 0.6429 0.5795
2.2500 2.1544 2.1377 2.2061 2.2112 2.1366

Model + algorithm True σ
2 Log + FAM-EM Log + SAEM IFA + EM IFA + SAEM BG + SAEM

100 images 0.001 0.0176 0.0097 0.0095 0.0098 0.0097
in the 0.2500 0.2432 0.2459 0.2455 0.2564 0.2456

training set 0.6400 0.6225 0.6282 0.6336 0.6388 0.6280
2.2500 2.1268 2.1479 2.1767 2.1970 2.1490

Table 1

Estimated noise variance with the different models and the two different algorithms for 30, 50 and 100 images in
the training set. These variances correspond to the estimated decomposition vectors presented in Figures 3, and 4
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Fig 4. Estimated decomposition images with different models and al-
gorithm: 1st row: FAM-EM algorithm with the Logistic distribution.
2nd row: SAEM algorithm with the Logistic distribution. 3rd row:
SAEM algorithm with the IFA model. 4th row: EM algorithm with
the IFA model. 5th row: SAEM algorithm with the BG-ICA model.
6th row: FastICA two most important decomposition vectors. The ex-
periments are done with different noise levels: σ = 0.1, 0.5, 0.8, 1.5
(column 1 to 4 respectively) and 100 images in the training set.

Fig 5. Estimated component activation
probability (α) as a function of the
model size for a Bernoulli Gaussian
model. Ground truth is p = 8 and α =
0.5.

Fig 6. Estimated components with probabilistic ICA. The ground-truth model has eight components. From left to
right: components estimated with p = 6, 8 and 15.

5.2. Effect of the number of estimated components

We also illustrate how the estimation of the censoring coefficient evolves with the number of
components. In this experiment, we have generated 1000 sample of a shifted Bernoulli-Gaussian
model (see section 2.9), with 8 components (the components being represented as indicators of 8
non-overlapping intervals). The true value of α is 0.5, and we took µ = 2. In figure 5, we plot the
value of the estimated α as a function of the number of components in the model, p. We can see
that this value seems to decrease to zero, at a rate which is however not linear in 1/p. The expected
number of non-zero components grows from 2 for p = 2, to 4 when p = 8 (correct value), to about
10 when p = 50. The estimated components for p = 6, 8 and 15 are plotted in Figure 6. This
illustrates the effect of under-dimensioning the model, in which some of the estimated components
must share some of the features of several true components, and of over-dimensioning, in which
some of the estimates components are essentially noise (clearly indicating over-fitting of the data),
while some other estimated components, which correspond to true ones, are essentially repeated.
Components are correctly estimated when the estimated model coincides with the true model
(p = 8).

Although we are not addressing the estimation of the number of components in this paper,
these results clearly indicate that this issue is important. From a computational point of view, it
would not be difficult to complete the model with a prior distribution on the parameters and on
the model size, and adapt the SAEM algorithm accordingly.
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5.3. Handwritten digits

We now test our algorithms on some 2D images. The first training set we use is the USPS database,
which contains 7291 grey-level images of size 16× 16. We used the whole database as training set
and computed 20 decomposition vectors. Some images from this data set are presented in Figure
7 (left).

The different decomposition vectors and the estimated means (when it is a parameter) are
presented in Figure 8. Each set of 20 images (10 times 2 lines) on the right column shows one run
of one algorithm corresponding to selected models from the previous ones. We have selected the
most representative results, the other ones were similar to one of the one shown.

The results are interesting. They demonstrate, in particular, the advantage of modelling compo-
nent coefficients that can vanish with positive probability (BG and ET-ICA). With these models,
many decomposition vectors represent well-formed digits, whereas the decomposition vectors for
other models mix several digits more often. The fact that the model can cancel some independent
component allows these very typical decomposition vectors to appear. When considering a data
set such as USPS where one image in one class is not easily expressed as a mixture of images from
other classes, these binary or ternary models seem to be adequate.

Note that the USPS data set does not have the same amount of images of each digit. There
are about twice as many 0s or 1s as other digits. This fact explains the ”bias” one can see on
the mean, on which the shape of the zero is noticeable. In all experiments the trace of each digit
can be (more or less easily) detected in at least one of the components, at the exception of digit
2. This is probably due to the large geometrical variability of the 2s, which is much higher than
other digits (changes of topology -loop or not, changes in global shape) and therefore difficult to
capture.

Fig 7. 100 images randomly extracted from the USPS database (left) and from the face category in the Caltech101
data set (right).

5.4. Face images

We have run a similar experiment on a data set of face images (taken from the Caltech101 dataset).
Each of these images has been decomposed into patches of size 13×13 some of them are presented
in Figure 7 (right). The resulting database contains 499,697 small images and we estimated 20
decomposition vectors. Results are presented in Figure 9. The patterns which emerge from the es-
timations are quite similar from one model to another: vertical, horizontal and diagonal separation
of the image into black and white, blobs, regular texture like a regular mesh, etc.

We also ran the same estimation with two of the previous models looking for 100 decomposition
vectors. The results are presented in Figure 10. We selected the Log and BG-ICA since one has a
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Fig 8. Results of the independent component estimation on the USPS database using four selected models. The
training set is composed of 7291 images containing the 10 digits randomly spread. Left column: mean image µ0.
Right column: 20 estimated decomposition vectors.

Fig 9. Decomposition vectors from six selected models. From left to right and top to bottom: Log-ICA, Lap-ICA,
EG-ICA, BG-ICA, EBG-ICA, ET-ICA, TE-ICA, TEoff-ICA. For each model the top row is the mean image and
the bottom rows are the 20 corresponding decomposition vectors.

continuous density and the second has a discrete one. The results are rather different. While the
Log-ICA model tends to catch some textures, the BG-ICA captures some shapes. In this example,
as well as with the digit case, the sparsity of the decomposition makes sense and plays an important
role. This database is composed of discrete features which can hardly be approximated by a linear
combination of continuous patterns. The models generating sparse representations again seems to
be better adapted to this kind of data.

5.5. Anatomical surfaces

We finally consider a data set containing to a family of 101 hippocampus surfaces that have been
registered to a fixed template using Large Deformation Diffeomorphic Metric Mapping [30–33]. We
here analyse the logarithm of the Jacobian determinant of the estimated deformations, represented
(for each image) as a scalar field over the surface of the template, described by a triangulated mesh.
These vectors have fixed length (d = 3223), equal to the number of vertices in the triangulation.

The 101 subjects in the dataset are separated in 3 groups with 57, 32 and 12 patients, containing
healthy patients in the first group and patients with Alzheimer’s disease and semantic dementia
(denoted the AD group later) at different stages in the last two groups.

Using our algorithm, we have computed p = 5 decomposition vectors based on the complete data
set. Figures 12 to 14 present these decomposition vectors mapped on the meshed hippocampus
for six selected models. The estimated mean is shown on the left side and the five corresponding
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Fig 10. 100 decomposition vectors from 2 models. Left: Log-ICA. Right: BG-ICA.

decomposition vectors are on the right side. Images are presented with different colour maps, to
facilitate the visualisation of the patterns. In particular, even if the means seem to contain a lot
of information, they vary on a very small scale compared to all the decomposition vectors (they
are actually close to 0).

Although results vary with the chosen model, we can see common features emerging. First of
all, the means are very close to each other. The patterns which we can notice on each of them
is the same. For example, there is a noticeable contraction on the top part and an extension on
the bottom left side of the shape. These deformations however have a small amplitude and can
be interpreted as the ”bias” of the training set. Concerning the decomposition vector themselves,
the pattern of the first vector of the Logistic model is present in all other models (for example in
position 1 for the Laplacian, EG, TE and TEoff models (not shown here), 4 for the BG model, 5 for
the EBG (not shown here) and 2 for the ET model). Other patterns occurs also like a contraction
or a growth of the tail part (in vector 3 of Log, Lap, EG, BG, EBG, TEoff (not shown here) and
5 of TE) or on the bottom of the left part of the image (in vectors 4 and 5 of Log, 5 of Lap, EG,
BG and TEoff (not shown here) and in vector 1 otherwise). These common features seem to be
characteristic of this population.

In tables 2 and 3, we provide the p-value obtained from the comparison of the five ICA coeffi-
cients (β) among the three subgroups. The test is based on a Hoteling T-statistic evaluated on the
coefficients, the p-value being derived using permutation sampling. The algorithm we propose in
this paper is stochastic and is supposed to converge toward a critical point of the likelihood of the
observations. However, we do not control which critical point we reach and in addition, because of
the stochastic character of the procedure, different runs of the algorithm starting from the same
initial point can lead to different limits. To control the effect of this variability, we ran the algorithm
for each model 50 times, with the same initial conditions, and compute an average and a standard
deviation of the p-values.

Fig 11. Evolution of the proba-
bility of one component to acti-
vate or inhibit the corresponding
decomposition vector in the ET-
model with respect to the number
of decomposition vectors. The
training set is the set of 101 hip-
pocampi.

The test is performed for two different comparisons: first we com-
pare the healthy group with respect to the two pathological groups.
This is what is shown in Table 2. The second test compares the
healthy group with the group of 32 mild AD patients. The results
are presented in Table 3.

The results are mostly significant. Indeed, most of all methods
yield p-values under 1% when we compare the control population to
the AD groups and less than 3% for the comparison of the control
versus mild AD.

The only model which does not yield significant p-values is the
offset case. Both the mean and standard deviation are high (even
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higher when we focus on the mild AD population). This suggests
that this model on this database is unstable. One run can lead to
significant decomposition vectors and a second one can lead to very
different results. This particular model does not seem to be adapted
to this particular type of data contrary to the USPS database for example. The mean is very close
to zero and is therefore not a relevant variable for this application. The additional variability in
the model may have an adverse effect on the estimation.

Figure 11, provides some insight in the way components are turned on/off by the ET-ICA
model, by plotting the estimated probability, γ = P (Y j

k = −1) = P (Y j
k = 1), against the number

of decomposition vectors, p. As already noticed in section 5.2, for small p, all components are
needed, yielding γ ≃ 1/2. When more components are added, they do not need to appear all the
time, yielding a decreasing value of γ.

Fig 12. Left: Mean (left) and 5 decomposition vectors estimated with the Log-ICA model. Right: Mean (left) and
5 decomposition vectors estimated with the Lap-ICA model. Each image has its own colour map to highlight the
major patterns.

Fig 13. Left: Mean (left) and 5 decomposition vectors estimated with the EG-ICA model. Right: Mean (left) and
5 decomposition vectors estimated with the BG-ICA model. Each image has its own colour map to highlight the
major patterns.

6. Conclusion and discussion

This paper presents a new solution for probabilistic independent component analysis. Probabilistic
ICA enables to estimate a small number of features (compared to the dimension of the data) which
characterise a data set. Compared to plain ICA, this reduction of dimension avoids the instability
of the computation of the decomposition matrix when the number of observations is much smaller
than their dimension (typical case in medical imaging). We have demonstrated that the Stochastic
Approximation EM algorithm is an efficient and powerful tool which provides a convergent method
that estimates the decomposition matrix. We have shown that this procedure does not restrict the
large choice of distributions for the independent components, as illustrated by eight models with
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Fig 14. Left: Mean (left) and 5 decomposition vectors estimated with the ET-ICA model. Right: Mean (left) and
5 decomposition vectors estimated with the TE-ICA model. Each image has its own colour map to highlight the
major patterns.

Model Log-ICA Lap-ICA EG-ICA BG-ICA EBG-ICA

Mean on log 0.31 ×10−3 0.29 ×10−3 0.27 ×10−3 0.33 ×10−3 0.9 ×10−3

Std deviation on log 0.16 ×10−3 0.19 ×10−3 0.12 ×10−3 0.25 ×10−3 1.2 ×10−3

Model ET-ICA TE-ICA TEoff-ICA

Mean on log 0.27 ×10−3 2.4 ×10−3 7.57 ×10−2

Std deviation on log 0.14 ×10−3 2.9 ×10−3 12.62 ×10−2

Table 2

Mean and standard deviation of the p-values for the eight (plus IFA for comparison) models with the five
decomposition vectors shown in Figures (12) to (14). The mean and the standard deviation are computed over 50
samples of the posterior distributions of the hidden variables to separate the first group (Control) with respect to

the two others (AZ).

different properties, mixing continuous and discrete probability measures, that we have introduced
and studied.

Future works will be devoted to the analysis of non-linear generative models that allow for the
analysis of data on Riemannian manifolds, including the important case of shape spaces in which
the models generate nonlinear deformation of given templates. Generalisations of the methods
proposed in [8, 34] will be developed, in order to estimate both the templates and the generative
parameters.

Appendix A: Proof of the sub-exponential tail of the EG-distribution

Let (Y, S) be a couple of independent random variable where Y and S have a standard normal
distribution and an exponential distribution respectively. Let β = Y S and assume t > 0 so that
β > t implies Y > 0. We have (letting C = (2π)−1/2)

P(β > t) = P(s > t/y, y > 0) = C

∫ ∞

0

P

(

s >
t

y

)

exp
(

−
1

2
y2
)

dy

= C

∫ ∞

0

exp

(

−
1

2
y2 −

t

y

)

dy .

Let ht(y) = − 1

2
y2 − t

y . We will use the Laplace method to compute an equivalent of the previous

integral. The function ht is maximum for y∗ = t1/3 and its value is ht(y
∗) = − 3

2
t2/3. Therefore,

P(β > t) ∼ C exp

(

−
3

2
t2/3

)∫ ∞

0

exp

(

−
3

2
(y − t1/3)2

)

dy .

Thanks to a change of variable, it is easy to show that :
∫ ∞

0

exp

(

−
3

2
(y − t1/3)2

)

dy ∼ −
1

3t1/3
exp

(

−
3

2
t2/3

)

.
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Model Log-ICA Lap-ICA EG-ICA BG-ICA EBG-ICA

Mean on log 9.0 ×10−3 9.6 ×10−3 8.3 ×10−3 1.09 ×10−2 1.87 ×10−2

Std deviation on log 3.8 ×10−3 4.8 ×10−3 2.7 ×10−3 7.6 ×10−3 1.77 ×10−2

Model ET-ICA TE-ICA TEoff-ICA

Mean on log 8.9 ×10−3 3.08 ×10−2 14.87 ×10−2

Std deviation on log 4.6 ×10−3 2.88 ×10−2 16.04 ×10−2

Table 3

Mean and standard deviation of the p-values for the eight models with the five decomposition vectors shown in
Figures (12) to (14). The mean and the standard deviation are computed over 50 samples of the posterior

distributions of the hidden variables to separate the first group (Control) with respect to the second one (mild AZ).

This yields

P(β > t) = O

(

t−1/3 exp

(

−
3

2
t2/3

))

.

Note that the density of β, which is g(β) =
∫∞

0
exp

(

− 1

2
y2 − β

y

)

dy
y has a singularity at β = 0.

Appendix B: Maximum Likelihood for the complete models

The M-step in our models requires solving the equation Eθ(S) = [S] where [S] is a prescribed value
of the sufficient statistic (an empirical average for complete observations, or what we have denoted
S̄t in the M-step of the learning algorithm). In the next sections, we provide the expressions
of S for the family of models we consider and give the corresponding solution of the maximum
likelihood equations. Notice that these are closed form expressions, ensuring the simplicity of each
iteration of the SAEM algorithm.

B.1. Log-ICA and Lap-ICA models

For these models, the log-likelihood is

−

p
∑

j=1

ξ(βj) −
1

2σ2
|X − µ0 −

p
∑

j=1

βjaj |
2 − log C(σ2,A)

where ξ(β) = 2 log(eβ + e−β) in the logistic case, and ξ(β) = |β| in the Laplacian case. As
customary, and to lighten the formulae, we let β0 = 1 and a0 = µ0, so that β and A have size
d+1, and remove µ0 from the expressions for this model and the following ones. We will also leave
to the reader the easy modifications of the algorithms in the case of shifted models described in
section 2.9.

The likelihood can be put in exponential form using the sufficient statistic S = (ββT ,XβT ),
from which the maximum likelihood estimator can be deduced using:

{

A = [XβT ]([ββT ])−1 ,

σ2 = 1

d

(

[|X|2] − 2〈A, [XβT ]〉F + 〈AT A, [ββT ]〉F = [|X − Aβ|2]/d
)

.

where 〈·, ·〉F refers to the Frobenius dot product between matrices (the sum of products of coeffi-
cients).

B.2. IFA model

The complete log−likelihood of the Independent Factor Analysis model for a single observation
X is:

−
1

2σ2
|X −

p
∑

j=1

βjaj |
2 −

1

2

p
∑

j=1

(βj − bjmtj )2 +

p
∑

j=1

log wtj − log C(A, σ, m,w) .
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This formulation leads to the following sufficient statistics:

S =



S0 =

p
∑

j=1

1tj=k, S1 =

p
∑

j=1

1tj=kbjβj ,ββT ,XβT



 .

The estimator associated to averaged values of these statistics (denoted as above with brackets)
is:















A = [XβT ]([ββT ])−1 ,
σ2 = [|X − Aβ|2]/d
mk = [S1]/[S0] ,
wk = [S0]/p .

For this model, it is also possible to compute the conditional distribution of the hidden variables,
β, t and b given observed values of X [12]. Indeed, for given b and t, let µb,t = (b1mt1 , . . . , b

pmtp).

Let Λ = (IdRp+AT A
σ2 ) and, for a given X µb,t,X = Λ(AT X+µb,t). Then, a rewriting of the likelihood

above shows that the conditional distribution of β given X, T and b is Gaussian with mean µb,t,X

and covariance Λ, and that the conditional distribution of (t, b) is the discrete distribution with

π(t, b|X) ∝ exp
(

−
1

2
(|µb,t|

2 − (AT X + µb,t)
T Λ(AT X + µb,t))

)

p
∏

j=1

wtj .

Using these expressions, the E-step of the EM-algorithm can be computed exactly, but it re-
quires computing all (2K + 1)p conditional probabilities π(t, b|X), which becomes intractable for
large dimensions. In contrast, each step of the SAEM algorithm only requires sampling from the
conditional distributions, and has complexity of order p(2K + 1).

The same remark on the feasibility of the EM algorithm holds for for all our models with
discrete variables (BG-ICA, ET-ICA, etc.), for which the E-step of the algorithm can be made
explicit by conditioning on the discrete variables, with a cost that grows exponentially in the
number of components, whereas the sampling part of SAEM only grows linearly.

B.3. EG-ICA model

The likelihood is

−
1

2

p
∑

j=1

(Y j)2 −
1

2

p
∑

j=1

sj −
1

2σ2
|X −

p
∑

j=1

sjY jaj |
2 − log C(σ2,A)

with sufficient statistic S = (ββT ,XβT ) with βj = sjY j . The maximum likelihood then is
{

A = [XβT ]([ββT ])−1

σ2 = [|X − Aβ|2]/d.

B.4. BG-ICA and EBG-ICA models

These two models have the same parameters and therefore the same function to maximise. The
likelihood is

−
1

2

p
∑

j=1

(Y j)2 + log

(

α

1 − α

) p
∑

j=1

bj −
1

2σ2
|X −

p
∑

j=1

bjY jaj |
2 − log C(σ2,A, µ, α)

with sufficient statistic S = (ββT ,XβT , ν) with βj = bjY j and ν = b1 + · + bp. The optimal
parameters are







A = [XβT ]([ββT ])−1 ,
σ2 = [|X − Aβ|2]/d ,
α = [ν]/p .
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B.5. ET-ICA, TE-ICA and TEoff-ICA models

We turn to the ternary models which share the same parameters (up to µ0 for the offset model).
The likelihood to maximise is

log

(

γ

1 − γ

) d
∑

j=1

|Y j | −
1

2σ2
|X −

p
∑

j=1

sjY jaj |
2 − log C(σ2,A, γ)

with sufficient statistic S = (ββT ,XβT , ζ), βj = sjY j , ζ = |Y 1| + · · · + |Y p|. The optimal
parameters are







A = [XβT ]([ββT ])−1

σ2 = [|X − Aβ|2]/d .
γ = [ζ]/p

The maximum likelihood estimator for the single scale model is given by the same formulae, using
βj = sY j .
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[14] S. Allassonnière, E. Kuhn, A. Trouvé, Map estimation of statistical deformable templates
via nonlinear mixed effects models : Deterministic and stochastic approaches, in: X. Pennec,
S. Joshi (Eds.), Proc. of the International Workshop on the Mathematical Foundations of
Computational Anatomy (MFCA), 2008.

[15] D. B. Grimes, R. P. Rao, Bilinear sparse coding for invariant vision, Neural Computation 17
(2005) 47–73.

[16] B. A. Olshausen, D. J. Field.
[17] Separating style and content with bilinear models, Neural Computation 12 Issue 6.



S. Allassonnière and L. Younes./SAEM for Probabilistic ICA 22

[18] M. A. Tanner, Tools for statistical inference, Springer-Verlag New York.
[19] G. C. Wei, M. A. Tanner, A monte carlo implementation of the em algorithm and the poor

man’s data augmentation algorithms, Journal of the American Statistical Association 85, No.
411 (1990) 699–704.

[20] G. Celeux, J. Diebolt, The sem algorithm : a probabilistic teacher algorithm derived from the
em algorithm for the mixture problem, Comp. Statis. Quaterly 2 (1985) 73–82.

[21] E. Kuhn, M. Lavielle, Coupling a stochastic approximation version of EM with an MCMC
procedure, ESAIM Probab. Stat. 8 (2004) 115–131 (electronic).
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