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Modélisation Mathématique et Analyse Numérique

CELL CENTERED GALERKIN METHODS FOR DIFFUSIVE PROBLEMS *

DANIELE A. DI PIETRO!

Abstract. In this work we introduce a new class of lowest order methods for diffusive problems on
general meshes with only one unknown per element. The underlying idea is to construct an incomplete
piecewise affine polynomial space with sufficient approximation properties starting from values at cell
centers. To do so we borrow ideas from multi-point finite volume methods, although we use them in
a rather different context. The incomplete polynomial space replaces classical complete polynomial
spaces in discrete formulations inspired by discontinuous Galerkin methods. Two problems are studied
in this work: a heterogeneous anisotropic diffusion problem, which is used to lay the pillars of the
method, and the incompressible Navier—Stokes equations, which provide a more realistic application.
An exhaustive theoretical study as well as a set of numerical examples featuring different difficulties
are provided.

1991 Mathematics Subject Classification. 65N08, 65N30, 76D05.

April 28, 2011.

INTRODUCTION

Lowest order methods for diffusive problems on general meshes have received an increasing attention over
the last few years. The interest of general meshes is multi-fold. On the one hand, allowing general polyhedral
elements may ease the discretization of complex domains, and is beneficial in the context of aggregative multigrid
strategies. On the other hand, it is a mandatory requirement whenever the user cannot adapt the mesh to the
needs of the numerical scheme. This is the case, e.g., in the context of computational geosciences, where the
discretization of the subsoil integrates the effects of erosion and sedimentation, and is usually developed in
a separate stage. In what follows we briefly recall some ideas that are instrumental to the class of methods
proposed in this paper. It is a well known fact that the classical two-point finite volume (FV) method is
inconsistent on non diffusion-orthogonal meshes. In the context of reservoir simulation, a successful attempt
to adapt FV methods to general meshes and full diffusion tensors has been independently proposed in the 90s
by Aavatsmark, Barkve, Bge, and Mannseth [1,]2] and by Edwards and Rogers [28,[29]. These methods are
usually referred to as multi-point since the main idea is to express consistent numerical fluxes using a larger
stencil than in the classical two-point FV method. In this paper we borrow some ideas from the recent multi-
point scheme of Aavatsmark, Eigestad, Mallison, and Nordbotten [3|, where the authors propose a compact
construction to derive a consistent multi-point flux approximation honoring the heterogeneity of the diffusion
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incompressible Navier—-Stokes equations
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tensor. A convergence analysis of the L-construction proposed therein has been recently performed by Agélas,
Di Pietro, and Droniou [4]. The main drawback of multi-point FV methods is related to the difficulty in finding
easily computable stability conditions. A possible remedy to the lack of stability in multi-point methods has
been proposed independently by Brezzi, Lipnikov, Shashkov, and Simoncini [11,/12] (Mimetic Finite Difference
methods, MFD) and by Droniou, Eymard, Gallouét, and Herbin [26,{33] (Mixed/Hybrid Finite Volume methods,
MHFV). Both classes of schemes are inspired from the variational form of the problem as in finite element (FE)
methods rather than from local balances as in FV methods. The unconditional stability of both MFD and
MHFYV methods results from stabilization terms incorporated in the discrete bilinear form. Also, in both cases
auxiliary face unknowns are added, which can be in some cases related to the enforcement of a flux conservation
constraint as in the mixed FE method. A way to eliminate face unknowns has been proposed in [33], where it
is suggested that a barycentric interpolator can be used to express face values in terms of a few neighboring
cell unknowns. The main drawback of this construction is that it does not respect the heterogeneity of the
diffusion tensor; moreover, the resulting method has a larger stencil compared to multi-point FV methods,
which results in denser matrices as well as in the increase of data exchange in parallel implementations. The
algebraic analogy between generalized versions of the MFD and MHFV methods has been recently pointed out
by Droniou, Eymard, Gallouét, and Herbin [27].

In this work we propose a different philosophical approach to variational lowest-order methods which is in-
spired by discontinuous Galerkin (dG) methods rather than mixed FEs. The motivation is twofold. A first
objective is to devise a suitable framework for a multi-physics platform based on lowest-order methods. In
this respect, the main requirement is to dispose of a method easily adapted to a variety of diffusive problems
including, e.g., pure diffusion, diffusion-advection-reaction, linear and nonlinear elasticity as well as incompress-
ible flows. A second important point is related to the robustness in the context of heterogeneous anisotropic
diffusion, which is crucial in the field of computational geosciences. Cell centered Galerkin (ccG) methods have
been introduced in [20l/21] with application to a homogeneous diffusion problem. The main idea of ccG methods
is to build an incomplete space of piecewise affine functions related to a given set of degrees of freedom (DOFs)
on the mesh 7j,. In this work we consider, in particular, ccG methods with cell unknowns only, i.e., the algebraic
space of DOFs given by

vy, := R,
The unknown in each mesh element 7' € 7T}, is interpreted as the value of the discrete function at a given point
x7 (the cell center). For k > 0 we define the space of broken polynomials on 7, of degree < k,

Ph(Th) = {ve L*(Q) | VT € Ty, vjp € PE(T)}, (1)

with [P’;(T) given by the restriction to T' of the functions in [P’j. A piecewise affine representation is then
obtained by reconstructing a constant gradient on Ty, say &), : V;, — [P%(73)]¢, and introducing the linear
operator R;® : V), — [P(lj(ﬁ) which maps every set of degrees of freedom vy, € V;, onto Ry (vy,) € H:’{li(ﬂl) such
that
VT € Tp, Vx €T, R (Vi) ir(x) = vr + B (vp)r-(x — x7).

In the present work, the elementary gradient is obtained in two steps: first, trace values are reconstructed from
values at cell centers by means of the L-construction, then Green’s formula is used to infer a local value for the
gradient. Formally, this procedure amounts to defining the discrete space

Vit i= MB(Vy,) < Py(Th).

The space V,°® is then used as a test/trial space in a suitable nonconforming FE setting. In particular,
since the functions in V;® are discontinuous across mesh interfaces, the discrete setting largely borrows from
dG methods. We consider two applications to problems naturally set in H!(Q): a homogeneous anisotropic
scalar diffusion problem and the incompressible Navier—Stokes equations. The scalar diffusion problem offers
a simplified context to outline the main ideas of the method. The convergence analysis is here discussed in
detail. In particular, we show that both classical dG arguments relying on error estimates |7] and compactness



TITLE WILL BE SET BY THE PUBLISHER 3

arguments inspired by [32}[33] apply. For the latter point, an key remark is that the functional analytic results
for broken polynomial spaces derived independently by Di Pietro and Ern [22] and Buffa and Ortner [14] hold
a fortiori since V;°® < PL(75). In the context of h-convergence analysis the main technical issue is related to
the approximation properties of the V,“® space. The application to the incompressible Navier-Stokes equations
provides a nonlinear case study to illustrate how a ccG method can be derived from an existing dG method.

The material is organized as follows: in §I] we discuss the discrete setting, provide a careful description of
admissible mesh sequences in arbitrary space dimension, introduce the L-construction, and define the ccG space
used throughout the rest of this work. Some functional analytical results are also recalled; in §2| we show an
application of the ccG method to a heterogeneous anisotropic diffusion problem, derive basic error estimates
and carefully study convergence rates. The main sources of inspiration are here the work of Arnold [6] on
the weak enforcement of boundary and interface conditions and that of Di Pietro, Ern, and Guermond [25|
on the robust handling of heterogeneous anisotropic diffusion tensors. To infer convergence rates we study
the approximation properties of the space V,“® with respect to the energy norm naturally associated to the
discrete problem. In particular, we distinguish between the heterogeneous case, where optimal energy estimates
are obtained for functions belonging to the space introduced and analyzed in [4], and the homogeneous case,
where weaker regularity assumptions are sufficient and L?-error estimates can also be derived; in §3| we discuss
the application of ccG methods to the incompressible Navier—Stokes equations inspired from the dG scheme
of [22]. In this case, a H!-stability result for ccG spaces is crucial to infer the stability of the velocity-pressure
coupling. The analysis closely follows the guidelines of [22]; finally, in §4] we present numerical results to assess
the theoretical study for both problems at hand.

1. THE ccG SPACE

1.1. Discrete setting

Closely following [23, Chapter 1], we introduce the concept of admissible mesh sequence of a bounded con-
nected polyhedral domain Q < R%,d > 1. Let { < R* denote a countable set having 0 as its unique accumulation
point. For all h € H we denote by 7}, a finite collection of nonempty, disjoint open polyhedra 7;, = {T'} forming
a partition of €2 such that h = maxge7;, hr, with hr denoting the diameter of the element 1" € T;,. Mesh nodes
are collected in the set Aj,. We say that a hyperplanar closed subset F' of Q is a mesh face if it has positive
(d—1)-dimensional measure and if either there exist 77, To € T}, such that F' < 0Ty n 01> (and F is called
an interface) or there exist T' € T, such that F' < 0T n 0Q (and F is called a boundary face). Interfaces are
collected in the set Fi, boundary faces in Fp and we let 7}, := Fi u FP. For a face F € F, we denote by hp
its diameter. Moreover, we set, for all T' € Tp,

Fr:i={FeF,|FcaT} 2)

Similarly, for all F' € F},, we define
Tr:={TeT,|Fcadl}.

The set Tr consists of exactly two mesh elements if F' € F. and of one if F' € F. For all mesh nodes P € Nj,,
Fp denotes the set of mesh faces sharing (at least) P, i.e.

Fp:={FeF,|PeF}. (3)

For every interface F' € F) we introduce an arbitrary but fixed ordering of the elements in 77 and let np =
np, p = —np, g, where nr, g, i € {1,2}, denotes the unit normal to F' pointing out T; € Tp. For all T € Tj,, we
also introduce the symbol ny to denote the vector field such that nr|p =07 g for all F' € Fr. On a boundary
face F' € ]—'}f we let np denote the unit normal pointing out of 2. The barycenter of a face F' € F}, is denoted
by Xp = SF X/|F|d,1.
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Definition 1 (Jumps and weighted averages). Let v be a scalar-valued function defined on 2, and assume
that v is smooth enough to admit on all F € Fj, a possibly two-valued trace. To any interface F € Fi with
F c 0T n 0T we assign two non-negative real numbers wr, p and wr, r such that

wry,F +wp, = 1.

Then, if F € Fi with F = 0Ty n 0T the jump and weighted average of v at F are respectively defined for a.e.
x€eF as

[Vl F(x) == v, — v, {v}o,F(x) == wry U7, (X) + W1, F V)T, (X)),
while, if F € Fp with F = 0T n 0Q, we set {v}y, p(x) = [v]r(x) = v/ (x).

When v is vector-valued, the jump and average operators act component-wise. Whenever no confusion can
arise, the subscript F' and the variable x are omitted, and we simply write {v},, and [v]. Moreover, in the
classical case wp, p = wr, p = Y2 we also omit the subscript w and write {v} instead of {v},. The use of
weighted averages in dG methods has been pointed out and used in various contexts, e.g., by Stenberg [42] and
by Heinrich and Pietsch [36].

Definition 2 (Matching simplicial submesh). Let T, be a general mesh. We say that &y, is a matching simplicial
submesh of Ty, if (i) &, is a matching simplicial mesh, (ii) for all T' € &}, there is only one T € Ty, such that
T' c T, (iii) for all F' € §p, the set collecting the mesh faces of &y, there is at most F' € Fy, such that F' c F.

Definition 3 (Shape- and contact-regularity). We say that the mesh sequence

T = (Th)nen

is shape- and contact-regular if for all h € H, T;, admits a matching simplicial submesh &y, such that (i) the
mesh sequence (&p)pen is shape-reqular in the usual sense of Ciarlet [18], meaning that there is a parameter
01 > 0 independent of h such that for all T € &,

o1hr < o7,

where hp is the diameter of T' and 61+ the radius of the largest ball inscribed in T, (ii) there is a parameter
02 > 0 independent of h such that for all T € T, and for all T' € &,

o2ht < hpo.

The following result is proven as in |23, Chapter 1].

Lemma 4 (Bounds on geometric quantities). Let Ty be a shape- and contact-reqular mesh sequence. Then, for
all h e H and all T € Ty, (i) the number of mesh faces belonging to the boundary of an element is uniformly
bounded in h,

Np:= sup card(Fr) < +0o0;
heH, TeTy,

(i) for all F € Fr,
hr = o102hr. (4)
For all h € H and k > 0, we consider the broken polynomial spaces [Pf;(ﬁb) defined by . Broken polynomial
spaces are a special instance of broken Sobolev spaces: For all &k > 1,

HY(Ty) :={ve L*(Q) | VT € T, vjr € HY(T)}.

The shape- and contact-regularity of the mesh sequence Tz are essential to infer the following results; see,
e.g., [23, Chapter 1].
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Lemma 5 (Trace inequalities). Let Ty be a shape- and contact-regular mesh sequence. Then, for all h € H, all
T e T, and all F € Fr,

Yor € PE(TR),  [onllieey < Cuhin”” [onl 2y, (5)

_ /2
Ve H\(Th),  loleaqry < Cune (A7 0leer) + hrlofir)) (6)

with Cy, and Cy, o independent of the meshsize h but depending on the polynomial degree k.
The following property is necessary to obtain optimal estimates of the convergence rate.

Definition 6 (Optimal polynomial approximation). We say that the mesh sequence Ty has optimal polynomial
approximation properties if for all h € H, all T € Ty, and all polynomial degree k = 0, there is a polynomial
pk € PE(T) such that, for all s€{0,...,k+ 1} and all ve H*(T), there holds

|U_pk|Hm(T) < Capphy "0 ms (1) Ym e {0,...,s},

with Capp independent of both T and h.

The approximation property is a consequence of the Bramble-Hilbert lemma (see, e.g., [10, Lemma 4.3.8])
for mesh sequences featuring general elements whose chunkiness parameter is bounded from above uniformly
with respect to h. We recall that the chunkiness parameter is defined for an element 7' € Ty, h € H, as
the ratio hp/rmax,r, where rmaxr := sup{r € R™ | T is star-shaped with respect to r}. Using the optimality
of the L?-orthogonal projection in the L2-norm, one can easily infer that the L2-orthogonal projection has
optimal polynomial approximation properties on mesh sequences with optimal approximation properties; see [23|
Chapter 1]. In what follows, we mainly use the optimal polynomial approximation for polynomial degrees up
to 1. Higher polynomial degrees are only needed in view of k-adaptivity; ¢f- Remark

In order to obtain a piecewise affine representation, we associate the unique degree of freedom of each element,
to a point inside the cell.

Definition 7 (Cell centers). Let T3, be a shape- and contact-regular mesh sequence. We say that Ty admits a
set of cell centers if (i) for every T € Ty there exists a point xp such that T is star-shaped with respect to xr
(the cell-center) and (ii) there exists o3 > 0 such that for all h e H, all T € Ty, and oll F € Fr,

dT,F = diSt(XT, F) = Q3hT. (7)

Definition 8 (Admissible mesh sequence). We say that the mesh sequence Ty, is admissible if it is shape- and
contact-regular, it possesses optimal approzimation properties, and it admits a set of cell centers.

In what follows we always work with admissible mesh sequences. For the sake of brevity, this assumption
is understood in most of the cases. Admissible mesh sequences include general polyhedral discretizations with
possibly nonconforming interfaces; see Figure [I] for an example. For all h € H we can define a pyramidal
submesh of 7}, as follows:

Sn = A{Pr r}ret,, Ferr, (8)
where, for all T' € T, and all F' € Fr, Pr r denotes the open pyramid of apex x7 and base F, i.e.,

Prri={xeT|dye F\0F,30€(0,1) | x =0y + (1 — 0)xr}.

The pyramids {Pr r}reT,, Fer, are non-degenerated owing to assumption . Since faces are planar, for all
T € Ty, and all F € Fr there holds

Flg—1dr,F
Wlasdrr, Q

|Pr.Fpla =
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FIGURE 1. Mesh 7}, (left panel), submesh S;, (right panel, thin lines), and simplex Sy (right
panel, dashed) for the L-group g in bold line. The faces belonging to the group g are marked
with a dot; the patch Py is shaded.

and, for all T' € Tp,

Flg—1d
S Prela= Y Tl gy, (10)
FeFr FeFr

1.2. The L-construction

In this section we briefly recall the L-construction originally introduced in [3] and analyzed in [4]; see also
Cao, Helmig and Wohlmuth [17]. This construction is an important ingredient in the definition of the ccG
spaces presented in this work. Let Py denote a given partition of ) into bounded connected polyhedral domains
corresponding, e.g., to regions with different physical properties. When considering refined mesh sequences T,
throughout the rest of this work we understand the following assumption, which is stated once and for all for
the sake of conciseness.

Assumption 9 (Mesh compatibility). For all h € H, T;, is compatible with the partition Pq.

Let £ € [L*(2)]%¢ denote a symmetric, uniformly elliptic tensor field piecewise constant on Pq. Clearly,
owing to Assuption [0}  is such that

VheH,  ke[PYTn)]%. (11)
We assume that the spectrum of (x) is bounded from below by A for a.e. x € Q and we let X := |k [ (ot

We also denote by k? the piecewise symmetric, uniformly elliptic tensor field such that x7*(x)k"?(x) = K(x)
for a.e. x € Q. For all F € Fj, and all T € Tr we denote the diffusion coefficient in the normal direction by

Ar,p = K|7npnp.

The key idea of the L-construction is to use d cell and boundary face values (provided, in this case, by a
homogeneous boundary condition) to express a continuous piecewise affine function with continuous diffusive
fluxes. The values are selected using d neighboring faces belonging to a cell and sharing a common vertex. More
precisely, we define the set of L-groups as follows:

G:={gc FrnFp, T€Th PeN,| card(g) = d},

with Fr and Fp given by (2) and (3) respectively. For each g € G we select a primary element T, such that
g C JFr,; see Figure Such an element may not be unique as non-convex elements are allowed. We let, for
the sake of brevity,

gizzgm]—',il, gbszgmf,?.
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@ :
) L-groups containing the face F. The primary (b) L-construction

element Ty such that g < Fr is shaded

FIGURE 2. L-construction. Group faces are marked with a dot

It is also useful to introduce a symbol for the set of cells concurring in the L-construction as well as for the
union of the pyramids based on the group faces (see Figure : For all g € G,

To:={TeT,|TeTr, F e g}, Py = U Pr.p. (12)

Feg, TeTr

The patch Py is shaded in the right panel of Figure [I] and in Figure Let now g € G. In what follows,
for any set D < R? of codimension | we denote by {pyp the average (p)p := §,, ¢/|D]s—i. For all v}, € V,
we construct the piecewise function 3, affine inside every pyramid in the the family {Pr r}req, 7e7; and such
that:

(i) 3h(xT) = vy for all T' € Ty and (&8, )F = vh(XF) = 0 for all F € g";
(ii) &g, is affine inside the primary element Ty and it is continuous across every interface in the group: For all
F e g' such that F c 0Ty n 0T,

Vx e F, &e, 1 (%) = &3, 110 (%);
(iii) &9, has continuous diffusive flux across every interface in the group: For all F' € g' such that F' < 0Ty n 075,
(&V{Sh)|T1 ‘ng = (nvggh)|T2 ‘ng.

(The quantities in both sides are constant since £J, is piecewise affine and the face F is planar).
The following result is instrumental to derive approximation properties for the ccG space.

Proposition 10 (L-construction). For all v, € V), and all g € G, there holds

Ag(vfgh)m = bg(vh)v (13)
where the matriz Ay € R% and the linear application by : V, — R? are defined row-wise by
(AT’F (x7 —x7,) + Ky 07, F + K7 P07 F)t (/\T’F (vr —vr ))
A dr.r g a1y ) ) gisFer, AT b (V ) _ dr.Fr 87) gisFCTyAT
g = )\TQ’F - t 3 g\Vh) — (_)‘Tst,U )
(dTnvF (XF — XT, ))Fegb dry.F Feg
(14)

Proof. See |4, Lemma 3.1]. O
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In order to express £J terms of the values {vr}rer,, the matrix Ay must be invertible. Simple sufficient
inversibility conditions are discussed in what follows. In practice, however, the inversibility can be checked
directly, and backup strategies can be devised; see Remark

1.3. The ccG space

In this section we introduce a ccG space based on the L-construction and on a local gradient inspired by
Green’s formula. For a face F' € F;, let G denote the set of L-groups containing F,

Gr:={geG|Feg}

Assumption 11 (Existence of an L-group leading to an invertible matrix for each interface). We assume that,
for all F € F}, Gr is non-empty and there exists g € G such that the matriz Ay defined by is invertible.

For the sake of simplicity, Assumption [11] holds tacitly from this point on. Should this not be true, backup
strategies can be envisaged, as discussed in Remark [T2] The discrete gradient is obtained as follows:

(i) For every F € F, we select a unique L-group gr yielding an invertible matrix and, for all v, € V,,, we
denote by £J7 the piecewise affine function obtained from the L-construction and supported in the patch
Pgr- Whenever more than one such group is present, we select g € Gp for which ||A; |2 is minimal
(this ensures the best approximation properties; see Lemma [22| and Assumption . For convenience of
notation, for all boundary faces F' < 0T n 0€) we introduce the affine function £§7 on Pr r such that

37 p=0on F and £F (x7) = vr. Such a function is well-defined since faces are planar.

(ii) We then define the trace reconstruction operator Ty, : Vy — R7* which realizes the mapping Vy 3 vj —

Th(vh) = (UF)FE}';I with (’UF)Fg]:h € [R]:h and, for all F € ]:h;

vr = &ur = &) (Xr)- (15)

(iii) The gradient reconstruction operator &, : Vi, — [PY(T)]? is defined following Droniou and Eymard [26]
as the application Vj, 3 vj, — & (vy,) € [P(T5)]¢ with

1
VI eTn,  ®u(vi)r= |

— Z |F'la—1(vF — vr)nT F. (16)
T4

FeFr

where we have set (vp)per, = Tn(vh)-

The expression is inspired by Green’s formula. As such, vr has to be related to the average on the face F.
For affine functions, the average coincides with the barycentric value, thereby justifying the choice in . The
linear reconstruction operator R;® : V, — P}(75,) leading to the ccG space is finally defined as the mapping

Vy, avy —> vy € [Pé(ﬁ) with
VT € 77“ VxeT, ’Uh|T(X) =our + Qﬁh(vh)‘T-(x — XT). (17)

In the above formula, vr is interpreted as the point value in x7. The incomplete polynomial space V,“® upon
which the ccG method relies is the image of the algebraic space of degrees of freedom V), through R,

Vit 1= MB(Vy,) < Py(Th).
Proceeding by contradiction, it is a simple matter to prove that RR;® is injective from V, to P}(75) and, hence,
bijective from V}, to V,;“®. It is also useful to observe that the discrete space V,'°® is contained in the larger
broken Sobolev space H'(Ty,).
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Remark 12 (Backup strategies). Numerical evidence [3}|4] shows that Assumption [L1|is true in most circum-
stances. In the presence of highly heterogeneous diffusion tensors or for extremely deformed meshes, it may
occur, however, that no L-group yielding an invertible matrix can be found for some interfaces. In this case,
several backup strategies are possible, and the choice can be mostly guided by the implementation at hand. We
mention two possibilities, although others are possible. A first strategy relying on the tight link of ccG methods
to dG methods consists in using a full P} basis on the mesh elements which have at least one face for which no
invertible L-group exists. This results in a local increase of the number of unknowns but yields a completely
robust method. Whenever exactly one unknown per cell is allowed, the L-construction can be replaced by the
barycentric interpolator of [33, §2.2]. The method can then be constructed provided the d points involved in the
barycentric interpolation form a non-degenerate simplex (an extremely mild mesh regularity assumption). In
this case, however, a local loss of precision may be observed as the barycentric interpolator does not honor the
heterogeneity of k. We emphasize that no backup strategy whatsoever was required in the numerical examples

of §

Remark 13 (k-adaptivity). In the spirit of the previous remark, the polynomial degree can be adapted in ccG
methods by using full polynomial spaces inside selected elements. This is naturally handled whenever the
discrete formulation relying on the ccG space is inspired by a dG method, as is the case for all the examples
provided in this work.

1.4. Discrete functional analysis

This section collects some discrete functional analysis results that are used in the rest of the paper. The
material is mainly adapted from [22, §6], to which we refer for further details. We state, in particular, the
Sobolev embeddings for broken polynomial spaces in the Hilbertian case and the discrete counterpart of the
Rellich-Kondrachov theorem. To this end, we introduce the following norm on H(7p,):

1
ol = IVtlnae + B W= 3 B, (18)
FeFy

where V;, denotes the broken gradient on Ty, i.e., for all ve H'(Ty,), Vv = V(vp) for all T € Tp,.

Theorem 14 (Discrete Sobolev embeddings, Hilbertian case). For all g such that (i) 1 < ¢ < +o0 if d < 2,

(ii) 1 < g < % if d > 2, there is o4 independent of h such that

Yon € Pa(Th),  lonllzaqe) < ogllvnll- (19)

The constant o, additionally depends on k, |Q]q and on the mesh regularity parameters.

The discrete Poincaré inequality is obtained as a special case for ¢ = 2. For a proof in the more general
non-Hilbertian case we refer to [22]. Sequences in

Vi 8= (V) hen
uniformly bounded in the ||-||-norm possess an important compactness property which we discuss in what
follows. Following the idea of Brezzi, Manzini, Marini, Pietra, and Russo [13] modified according to [5, §3.1],

we introduce for all F' € Fj, the local lifting operator ry, g : L?(F) — [P%(75)]¢ which maps every ¢ € L*(F)
onto ry, () € [PY(75)]¢ solution to:

Jmﬂ@ﬂ=1¢mhma v € [PY(Th)] (20)
Q F
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An important remark is that, for a given face F' € Fj,, the lifting operator r,, r is supported in UTeTF T. For
further use we also introduce the global lifting

Run(@) = D) rur(p).

FeFy

If wr,p=wp,p="21foral Fe ]—"}l with F' < 0T n 0T» we simply write rp and Ry,. The lifting operators can
be used to define a corrected discrete gradient accounting for the jumps across mesh interfaces and on 2. More
precisely, we introduce the linear operator G, », : H'(T) — [L?(2)]? defined as follows: For all v e H'(Ty),

Gy n(v) := Vv — Ry, 1 ([v]). (21)

As before, if wpy 5 =wp, p=12forall Fe ]-',iL with F' ¢ 0T n 01> we omit the subscript w and simply write
Gy,.

Theorem 15 (Discrete Rellich-Kondrachov). Let (vp)ne be a sequence in (PE(Th))newn, k = 0, uniformly

bounded in the ||-||-norm. Then, there exists a function v € HE(Q) such that as h — 0, up to a subsequence
v, — v strongly in L?(Q).
Proof. See |22, §6]. O

Lemma 16 (Weak asymptotic consistency of G, j for sequences of discrete functions). Let (vp)nen be a
sequence in ([P’;(E))hey, k = 0, uniformly bounded in the ||-||-norm. Then, as h — 0, G, n(vy) — Vv weakly
in [L2()]¢, where v e Hi is the limit provided by Theorem

Proof. Denote by w} the L2-orthogonal projection onto [P}(73)]¢. To prove the weak convergence of Gy, ,(vs)
to Vo, let ® € [CF(Q)]?, set @), := 7 ®, and observe that

L Gon(0p)-® = _L 0ot Y f

TeTh g

®ngo- 3 L v ([on])-®n = —JQ o+ 3 [ [onlie—eut,np,

FeF, FeFr, VF

where we have used the definition of the L2-orthogonal projection, the fact that {®}, = ® on every F € Fp,
and . Denote by T; and T, the addends in the right-hand side. Clearly, ¥; — SQ vV-®. For the second

term, the Cauchy—Schwarz inequality yields To < |vp|s x (ZFE& hp § [{®— (I)h}w|2)1/2, which tends to zero

owing to the approximation properties of the L?-orthogonal projection for the smooth function ® together with
the trace inequality @ and the fact that |vg|; is uniformly bounded by assumption. O

It is important to observe that, since V;'® < [Pé('ﬁl), both Theorems [14]{ and [15| and Lemmahold a fortiori
for sequences of functions in the ccG spaces V™.

2. PURE DIFFUSION

2.1. The discrete problem

The space V,,® is used in this section to discretize the heterogeneous diffusion problem

—V:(kVu)=f inQ,
u=0 on 09,

with source term f € L%(f2). The weak form of this problem is the following:

Find ue V s.t. a(u,v) = | foforallveV, (23)
o
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with V = H}(Q) and a(u,v) := {, kVu-Vu. The functions in V,;°® are possibly discontinuous across interfaces,
and V; ® is therefore not V-conforming. In order to devise a suitable discretization, we take inspiration from the
work of Arnold [6] on the weak enforcement of potential continuity across interfaces. In particular, we consider
the modification proposed by Di Pietro, Ern, and Guermond [25] in the context of degenerate diffusion-advection-
reaction problems to attain robustness with respect to the diffusion tensor x. This requires, in particular, to
relate the weights introduced in Definition [I]to the diffusion coefficient on both sides of an interface. The idea of
diffusion-dependent weights can be traced back to the work of Burman and Zunino [16] on mortaring techniques
for a singularly perturbed diffusion-advection equation. For all F € F} such that F < 0T} n 0T, we let

ATy, F " ) ATy F
T, F

wr  F : (24)

M FHALE] M FFALR

The analysis in the spirit of Céa’s Lemma requires to extend the discrete bilinear form to a continuous space
containing the exact solution. In order to guarantee that boundary terms remain well-defined when doing so,
it is useful to introduce a space V; featuring additional local regularity with respect to V.

Definition 17 (Space Vi). We let Vi denote the subspace of V' such that
Vi =V n H*(Py),

with H%(Pq) spanned by the functions whose restriction to every S € Pq (with Pq defined in is in H*(S).

Remark 18 (L*-regularity of traces). Using classical trace inequalities (see, e.g., Brenner and Scott [10, Chap-
ter 1]) it is inferred that there exists C' such that, for all v € V; and all T € Tj,

HVU”[L?(PT)]d < Cllva[/fQ(T)]dvall[ﬁlm]d,m (25)

that is to say, since v € H?(T), the gradient of v has square-integrable trace on ¢T for all T € Tj. This implies,
in particular, that both Vor-ny and, using , (n1/2VU)‘T-nT have square-integrable traces on 07

The space which is assumed to contain both the discrete and the continuous solution is defined as
Vi-h = V}fcg + Vj—

The additional regularity assumption v € V; is made in what follows to simplify the exposition and write
integrals instead of duality pairings. For some details on how to relax this assumption we refer to Di Pietro
and Ern [24] and references therein. Regularity results for the solution of problem can be found, e.g.,
in the work of Kellogg [38]; see also Nicaise and Sindig [40]. We are now ready to define the bilinear form
ap € ‘C(‘/’rh X V’rh7 [R),

ap(v,w) = JQK,V}L’U'V}LIU— Z JF{thv}w-nF[[wﬂ— Z J’F[[Uﬂ{mvhw}w-np—k Z 772—1; JF[[U]][[wﬂ, (26)

FeFy FeFy FeFy

where 1 > 0 denotes a user-dependent penalty parameter while v is such that

ATy FHATy F

 (epnrdar fpe FLF 0T A 0Ty, (27)
VF - Ar.p if FeFP, FcoT non.

The penalty parameter g, molded after [25], contains the harmonic averaging of the normal diffusion coefficient
on both sides of an interface. This, together with the definition of the weights , ensures that the correct
amount of penalization is added to control the second and third term in the right hand side of when proving



12 TITLE WILL BE SET BY THE PUBLISHER

the coercivity of ap, with respect to the natural energy norm defined by . As a result, the coercivity constant
does not depend on k; c¢f. Lemma The discrete problem reads

Find uy, € V;*® s.t. ap(up,vp) = J fup, for all vy, € V. (28)
Q

2.2. Basic error estimate
We introduce the following data dependent norms on Viy:

I0ll% = 1672V holfra@pe + 1l W0l s = 0lZ + D hrls¥*Vonr|Zar), (29)
=0

where the jump seminorm is given by

.,
W . i= )] ﬁnuvﬂnim

FeFy

Observe that the seminorm |-|; only depends on the diffusion coefficient k via the stabilization parameter yp
defined by . The following lemma contains some important properties of the bilinear form ap, namely
consistency, coercivity and boundedness. We emphasize, in particular, the role of the choices ) and (| in
delivering coercivity and boundedness constant that are independent of the diffusion coefﬁc1ent K. ThlS is a key
property to obtain a robust error estimate in the energy norm.

Lemma 19 (Properties of the bilinear form ay,). The bilinear form ap enjoys the following properties:

(i) Consistency. Assume u € Vi. Then, for all vy, € V%,

an(u,vp) = J fon;
Q
(ii) Coercivity. For all n >n = CZN, there holds

Yoy, € V8, an(vn,vn) = CsallvnllZ,

with Cya := (1 — CZNp){max(1/2,n + C2Np)} ! independent of both Kk and h;
(iii) Boundedness. There is Cyhna independent of the meshsize h and of the diffusion coefficient k such that

V(v, wp) € Vip x V%, an(v,wp) < Conal|vlltllwnlle-

Proof. We preliminarily note the following bound resulting from the Cauchy—Schwarz inequality:

Y(v,wp) € Vip, x V8, Z f {kVpv}enpwg]| <

FeFn

1/
<Z » hF||(”1/2vv)T'nF|%2(F)) |wi s (30)

TeT, FeFr

Consistency. Plugging the exact solution w into the first argument of a;, and integrating by parts we obtain,
for all v, € V'8,

an(u, vy) f V- (kVu)on + ) f [kVhulnp{vele — ), fﬂuﬂ{nvhvh}w np+ Y n f [ul[vn],

Fe]-';L FeFy, FeFy,
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where {vp}z 1= wr, FORT, + WTy FURT,- The conclusion follows using the fact that —V-(kVu) = f for a.e.
z€eQ, [u] =0 for all F e F, and [kVu]-np =0 for all F € F,.
Coercivity. It is inferred from the bound together with the discrete trace inequality (b)) that

Yoy, € thcg7 < Cy ;/QHKI/ZV}L’U]—LH[LQ(Q)P|”Uh|.]7,4.

Z fF{l-@thh}w-nF H’Uh]]

FeFy

Using the inequality 2ab < ea? + 1/eb? valid for any € > 0 together with the above bound, we obtain

an(vn,vn) = |6V aonFra e —2 Y, f {kVhon}onp[oa] +nlonl3 .
FeFr, 7 F

> (1= CLNao) |6V onlfraaye + (0 = Ye)lonl3 x-

The desired result follows by properly selecting e.

Boundedness. Let (v,wy) € Vi, x V,® and let T1,..., T, denote the addends in the expression of aj (v, wy) ob-
tained from (26). Using the Cauchy-Schwarz inequality it is readily inferred that |T1 +T4| < (14n)||v]|xllwn || «-
Moreover, owing to the bound , [To| < |0l
and the conclusion follows.

wotlwnlse < Jvlls.s

The following result classically follows from Lemma

Theorem 20 (||-||x-error estimate). Let u € H (L) solve and assume u € Vi. Let, moreover, (up)nen
denote the sequence of discrete solution to problem on the admissible mesh sequence T1,. Then,

Chnd .
= un e < <1 4+ ) inf |u—vn |3
’IjhEVh &

Cvsta

An important remark is that the error estimate in Theorem [20]is robust in that the multiplicative constant
in the right-hand side does not depend on . To infer a convergence rate from Theorem [20| we have to study
the approximation properties of the discrete space V" and further bound inf,, cyees [Ju — vp i 3-

2.3. Convergence rate

2.3.1. The heterogeneous case

We first consider the heterogeneous case and focus on exact solutions exhibiting further local regularity. For
k = 0 define the spaces of piecewise regular functions

C*(Th) = {ve L*(Q) | v € CH(T), VT e Ty}, (31)
classically equipped with the norm

o I _
llex ) = Ter 0<ish ii<d 0l co ),

and |w]|qo ) = max, 7 |w(z)| for all w e CO(T). A proof of the following result is given in [4, Appendix A].

Theorem 21 (Space Qp, ). Let Qp, x be the space of functions p : Q — R enjoying the following properties:

(i) Global and local regularity. The function ¢ belongs to Co(Q) n C?(Pq) with C?(Pq) spanned by the
functions that are C?(S) for all S € Pq;

|wp .. Finally, | 5] < CoN2 0]y, 67V nwn 2204,
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(ii) Continuity of the tangential derivatives at interfaces. For all Sy, Sa € Po with intersection ¢ := 051 N 05
such that |s|q—1 > 0 and all vector t parallel to s,

Vis,t = Vyig,t on g;

(i4i) Continuity of the diffusive flux at interfaces. For all S1, So € Po with intersection ¢ := 051 n 052 such
that [s|q—1 > 0,
(kV@)js, ne = (KVQ) s, ng,  ong,
where n¢ is the outer normal to S:.
Then, Qp, , is dense in H}().

An important remark is that Qp, . is a subspace of V4, and so the assumptions required to prove the error
estimate in Theorem @ are met by solutions that are in Qp, . Moreover, it is clear from Assumption |§| that
Qpy.x € C*(Ty). In what follows we denote by Z;°® : C°(Tj,) — Vj, the interpolator at cell centers which maps
every function v € CY(7}) onto the vector

7, %(v) = (v(x7))TeT;, € Vi
The following result is an immediate consequence of [4, Lemma 3.3] together with the shape- and contact-

regularity of the mesh family 7.
Lemma 22 (Consistency of group gradients). For all h € H, all v e Qp, x, and all F € Fy,

IVESr — Vu(xr,, )| < O (1+|Ag ]2) hr, .,

where vj, = T;°(v) and C' depends on K, on the mesh regularity parameters, and on |[v|c2(r,) but not on h.

In view of Lemma we need to ensure first-order convergence of the group gradients, which requires the
following assumption.

Assumption 23 (Uniform bound on A} ||2). We assume that there exists A < 400 independent of the meshsize
h uniformly bounding the set {| A} |2} ner, per; from above.

For further use we introduce the following augmented version of the ||-||-norm on V;:
Il == loll® + 3. hrlVornr|izer- (32)
TeTh

The proof of the following result, which is instrumental in estimating the convergence rate, is given in

Theorem 24 (Approximation of functions in Qp, ). Let v € Qp, . and set v, 1= (R, 0 I;®)(v) € V5.
Then, under Assumption [23 there holds

—1/
o =vnlles < A7 lv —onlls < Cuh, (33)
with C, depending on k, on the mesh regularity parameters, on A, and on |v|c2(7,) but independent of the

meshsize h.

Corollary 25 (Convergence rate, heterogeneous case). Assume u € Qp, . Then, under Assumption |23, there
holds

v = unlllw < Ch
with C' = CuXI/Q (1 + %"*2“) and C, results from Theorem % C additionally depends on the mesh regularity

parameters but is independent of the meshsize h.
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2.3.2. The homogeneous isotropic case

Whenever the diffusion coefficient is homogeneous and isotropic, the above results can be further refined. We
assume throughout this section that
k=14, d e {2,3}. (34)
The more general case k = v1ly, v > 0, can be handled with minor modifications. When holds, convergence
rates can be estimated with milder regularity assumptions on the exact solution, and L?-error estimates for the
method can be obtained by the Aubin—Nietsche trick [8,41]. The key point is here to show how optimal
convergence rates can be obtained avoiding pointwise estimations, thereby removing the need for the strong
local regularity assumption u € C2(7;,) used all along the previous section. To this end, we need to introduce
further mild assumptions on the mesh family. For all faces we define a patch of pyramids on which the piecewise
affine functions {£J¥ } per, are required to exhibit approximation properties. More precisely, for all F' € F}, let

Py ifFeFh,
Pr = .
Prr if FcoT noQ,

with Py, defined by (12); see Figure

Assumption 26 (Approximation property for L-constructions). We assume that the L-constructions are such
that there exists C' independent of the meshsize h such that, for all F € Fj, and all ve H*(Q) n H}(Q),

lv = &35 L2ppy < Chp|ol 2Py, lv =& m(pry < Chpplvla2(pr),

with vy, = ;" (v). Moreover, for all F' € Fy, and allT € Tg, hp, is bounded by hr uniformly with respect to h.

Some comments are of order. We start by observing that Assumption [[1]has a straightforward interpretation
in the homogeneous case, as it amounts to requiring that, for all F' € F}L, there exists at least a group g €
Gr such that the cell centers of the elements in 7y and the barycenters of the faces F' € gb form a non-
degenerate simplex Sy; see Figure [l Assumption is then essentially a shape-regularity requirement on the
family of simplices {Sg }en, FeFi- A second important remark is that, for any function v regular enough,
the function &8 with v, = Z,°*(v) coincides with the Lagrange interpolator on Sy (a sufficient regularity is
ve H%(Q) for d € {2,3}; see, e.g., |30, Example 1.106]). In this respect, Assumption [26/ can be regarded as a
strengthening of Assumption Indeed, Assumption can be proven using classical FE techniques in some
cases provided sufficient (geometric) regularity holds. A simple example is provided by Cartesian orthogonal
grids with nonconforming local refinement and bounded difference in refinement level between neighbouring
elements. As a matter of fact, in this case we have a finite number of reference configurations onto which
the patches used in the L-construction can be mapped via an affine bijective mapping, and one can classically
proceed using the Deny—Lions Lemma. We also emphasize that Assumption [26] does not necessarily follow from
the approximation properties of the mesh sequence 73, since the reconstruction is grounded on the patches P,
F € F}, and not on the elements of 7,. The proof of the following technical result is postponed to

Theorem 27 (Approximation of functions in V n H%(Q)). Under Assumption there holds
eV aHAQ, v -l < Chlvlux),

with vy, 1= (R}, 0 Z,®)(v) € V,® and C depending on the mesh regularity parameters but not on h.

Definition 28 (Elliptic regularity). We say that elliptic regularity holds true if there is Cen, depending only
on the domain 2, such that, for all 1 € L*(), the solution to the following problem:
Find y € H}(Q) s.t. a(x,v) = ,[ Yo for all v e HI(Q), (35)
Q

with a(w,v) := §,, wv satisfies |x|r2(q) < Cenl|¥]L2(0)-
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Elliptic regularity can be asserted if, for instance, the polygonal domain §) is convex; see Grisvard [35].

Lemma 29 (Convergence rate, homogeneous case). Let u € V' be the unique solution to and assume elliptic
regqularity. Then, under Assumption[26], there exists C independent of the meshsize h such that

e = unll < Chllul g2, (36)
<

lw = un| 20 Ch?ul 12 (@) (37)
Proof. (i) Energy-norm estimate . Use the error estimate of Theorem [20| together with Theorem [27|and the
fact that the ||-|| - and ||| ,+-norms coincide with the ||-||- and ||-||+-norms respectively under assumption
to conclude that [Ju — up|| < C (1 + g—) [0 2 (-

(ii) L2-error estimate . We only give a sketch of the proof and refer, e.g., to [7] or [23, Chapter 4] for further
details. A preliminary step consists in estimating the error in the augmented norm ||-|||+. To this end, remark
that the bilinear form ay, is coercive in V;'® x V,”® with respect to the augmented norm ||-||+, i.e., there exists
Cl;a such that, for all ) > n and all v, € V;®, ap(vn, vs) = Cl,||vnllF (indeed, the ||-[|-norm and the ||-[[l;-norm
are uniformly equivalent on V,’®). Also, there exists C} , independent of the meshsize h such that, for all
w, v € Vin, ap(w,v) < Cfgllwll+][v]|+. Hence, proceeding as in Theorem [20] and using Theorem [27) we conclude
that [[u — us||+ < Chlul|g2(oy with C independent of the meshsize h. Consider now the auxiliary problem
with ¢ = u —wuy,. By the elliptic regularity assumption, there exists Ceyy such that | x| g2(q) < Cenlu —un|r2(q)-
Moreover, owing to the symmetry and the consistency of an, an(u — up,x) = —§o, Ax(u — up) and, for x, =
(R B oL, ®)(x) € V8, an(u — up, xn) = 0. As a result,

lu = unlZa) = an(u—un, x = xn) < llu=unllslix = xulls < llu=wnllthlxlzzcm) < M= unllthlu = unl Lz,

with < indicating inequalities up to a multiplicative constant independent of the meshsize h. To conclude the
proof, use the fact that ||u — un||+ < Ch|v||g2(q). O

2.4. Convergence to minimal regularity solutions

We investigate the convergence of the method to minimal regularity solutions, i.e., solutions that barely
sit in Hg (). Throughout this section we restore the original assumptions on the diffusion coefficient &, and we
consider an arbitrary space dimension, i.e.

ke [PYTIM,  d>2.

The one-dimensional case can also be covered provided we adjust the definition of face diameters. The analysis
follows the ideas of Eymard, Gallouét, and Herbin [32,33| originally developed in the context of FV methods
and recently transposed to dG methods by Di Pietro and Ern [22]. An important remark is that the bilinear
form a;, admits the following equivalent form on V;® x V,"®:

ah(uh, Uh) = JQ K/Gw,h(uh)‘Gw,h(Uh) +jh(uh,vh), (38)

with jp, (un, v) := = §o KRw n([un]) R n([vn]) + Xper, nyrhi' §p[un][vn] and discrete gradients defined by (21).
When extended to Vi, x V%, this alternative form is no longer consistent in the sense of point (i) in Lemma [19
see [22, Remark 3.3]. However, a;, retains a different form of consistency which suffices to infer the convergence
of the method when w only exhibits the minimal regularity.

Definition 30 (Asymptotic consistency). We say that the bilinear form aj is asymptotically consistent with
the ezact bilinear form a on Vy® if, for any sequence (vp)nen in Vi ® uniformly bounded in the ||-||-norm, and
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for all € Qp, , with ¢ = (R, 2 0L, ®)(p) € V,'5,

lim ap(vn, on) = (v, ) = j KV0-Voo,
h—)O Q

and v € H} () results from Theorem .

To prove the convergence of the method, we then proceed as follows: (i) using the coercivity of a; we prove
a uniform bound for the ||-||-norm of the discrete solutions (up)nep; (ii) by virtue of Theorem we infer the
existence of w € V = H(Q) limit of (up)nes; (iii) using the asymptotic consistency of aj, together with the
fact that Qp, x is dense in V, we conclude that @ = w with u solution to (22) (and, by the uniqueness of u,
that the convergence property extends to the whole sequence); (iv) using the above result, we prove the strong
convergence of the sequence (G, n(un))hen to Vu in [L3(Q)]¢ as h — 0. An important intermediate result to
prove the asymptotic consistency of ay, is the consistency of the discrete gradient G, ; defined by for the
interpolates of functions in Qp, . We first prove the following.

Lemma 31 (Bound on global lifting). For all v € V;, there holds

[ R ([0 221 < CorN 0l

Proof. By definition,

IR @Dy = % | RealliDror @) = 3 | (sRon([Dlonr ol

FeF, FeFy
For brevity of notation, for all F' € ]-'}L with F' = 0Ty n 0Ty, let w; = wr, p, Ar,r = Ni, ki = K7, and
a; = nz/ ‘Ro,n([v])7, i € {1,2}. The Cauchy-Schwarz inequality yields

J {kRy 1 ([v])}wnr[v] = J (wik) 07, a1 + waky nr, az)[v]
P F

12 1/2
1
< { e (1ol + Poalfingeps) | {200t +dra) ol agry |

and since 2(w?\; + wiXa) = yp, it is inferred that

1/2 1/2
1 F
J (e @Dimrted < {ghe (Jaslfiscon + Iooliiene) | % {22 IBMEcr

Moreover, for all F € FP with F = 0T n 09,

1/2
R s T WY1 ) T PR S| 6 A

Summing over mesh faces, and using the Cauchy—Schwarz and discrete trace inequality we obtain

1z
IR n (LoD iz oppe < 2 {hp )3 ||<n1/2Rw,h(uvﬂ>>T||%2<F>} [0l < CorN " R (D) Iz el v

FeFy, TeTr

This concludes the proof. O
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Lemma 32 (Strong convergence of G, j, for smooth functions). Let ¢ € Qp, . and set p;, := (R; 5 0 Z,°%)(p) € V, 5.
Under Assumption[23, there holds

G n(en) = Vo  strongly in [L2(Q)]¢
Proof. The triangular inequality yields

1Gw.n(on) = Volizz@e < [Veen — Voliz@e + IRw.r([en]) 22 @) = F1 + Ta.

Using Theorem [24] it is readily inferred that T; — 0 as h — 0. For the second term, use Lemma [31] together
with the fact that [¢]p(x) = 0 for all F' € F, and all x € F' to infer

R n (TonD 21 < CaNZ2[onlsm < CaNZlon — 0l
and the right-hand side tends to zero as h — 0 again by virtue of Theorem This concludes the proof. [J

We are now ready to prove the following.

Lemma 33 (Asymptotic consistency of the bilinear form ap). Under Assumption the bilinear form ay, is
i . . 7. ccg
asymptotically consistent with the exact bilinear form a on V,°.

Proof. Let (vp)hen be a sequence in V,® bounded in the ||-||-norm and let ¢ € Qp, .. For all h € H, we set
on = (R, oI, ®)(p) € V8. By Theorem [24] it is clear that [|¢ — ¢p |l — 0 as h — 0. Observe that

an(vn, on) = J KG n(0n)- G n(on) + Jn(vn, on) = Ty + Ta.
Q

Clearly, as h — 0, T; — [, KVv-V owing to the weak convergence of G, »(vs) to Vo stated in Lemma and
to the strong convergence of G, ,(¢n) to V¢ proven in Lemma Furthermore, using the Cauchy—Schwarz

inequality together with Lemma [31| and the fact that, for all w e H'(Ty), |w|; . < X1/2|’LU|J, it is inferred that

—1
1Ta| = |jn(vn, on)| < (CoNz + 1) [vnlslenlse < (CoNa +n) )\/2|'Uh|J|SOh|J,n

Since |vp|y is bounded by assumption, and since |¢n |56 = |n — |, tends to zero as h — 0, it is inferred that
Ty — 0. The proof is complete. O

Remark 34 (Weakening Assumption [23]). To prove the asymptotic consistency of aj, and hence the convergence
to minimal regularity solutions, we only need that

VoeQron,  llo—wnll = 0ash—0, (39)

with ¢, = (R}, ® 0 Z,°%)(p) € V, °®. Property holds, e.g., if maxper, [A 2 < Ch™ with 0 < e < 1 and
C independent of the meshsize h. Whenever the solution exhibits sufficient regularity, however, one may wish
to have € = 0 to attain optimal convergence rates. For the sake of simplicity, Assumption [23]is required in the
statements of Lemma [33 and Theorem [35] although could have been used instead.

Theorem 35 (Convergence to minimal regularity solutions). Let (up)ney be the sequence of approzimate
solutions generated by solving the discrete problems on the mesh sequence Ty. Then, under Assumption
for n > n with n defined in Lemma as h — 0, (i) up, — u strongly in L*(Q), (ii) Viu, — Vu strongly in
[L2(Q)]%, (ifi) [up|y — 0, with u € V unique solution to (23).
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Proof. We follow the four steps outlined above.
(i) A priori estimate. Owing to Lemma and to the discrete Poincaré inequality obtained from with
q=2,

Cstallunll* < CstallunllZ < alun, un) = f fun <\ flez@lunllzz@) < o2 flez@llunll,
Q

hence [Jun[| < o2(CyA) = fl22(0)

(ii) Compactness. Owing to Theorem [15| together with Lemma there exists uw € V = HZ () such that, as
h — 0, up to a subsequence, u, — % strongly in L2(Q) and G, ,(up) — Vu weakly in [L2(Q)]¢.

(iii) Identification of the limit. Owing to the asymptotic consistency of a;, proven in Lemma forall p € Qp, 1
with ¢y := (R, 5 0 Z,°%)(p) € V5,

J fo < J fon = an(un, on) — f PAVTA VN
Q Q Q

i.€., u solves problem by the density of Op, . in V stated in Theorem and, hence, u = u. Moreover,
since the solution u to problem is unique, the whole sequence converges (which is proven by contradiction).
(iv) Strong convergence of the gradient and of the jumps. Lemmaand yield

Yon € VI, an(vn,vn) = [67Gun(0n) 2 ye + (1 — CENo) |un]3 (40)

Moreover, from the weak convergence of Gy, »(up) to Vu, we readily infer the weak convergence of K2 G .n(un)
to k2Vu. Owing to and to weak convergence,

ligniglfah(uh,uh) hmlnf |2 G (un) |? [L2(0)) > |2 Vu|? [L2(0

Furthermore, still owing to ,

hr}?sup |72 G () |? [L2(0)] hr}?sup ap(up,up) = llI}l;lelpJ fup = JQ fu= ||i<;1/2VuH%L2(Q)]d,.

This classically proves the strong convergence of k7>G, 5 (us) to £72Vu in [L?(2)]? and, hence, the strong
convergence of G, ,(up) to Vu in [L2(Q)]¢. Note that ap,(up,up) — ||n/ VuH 2 ()] also. Owing to
(n = CEN)unl3 o < an(un, un) = |67 G n(un) |20y

and, since 7 > CZ N, and the right-hand side tends to zero, |uy |y, — 0. To infer that |up|; — 0, simply observe
that |up|; < A_l/r“|uh|J7,_i and that the right-hand side tends to zero. O

Remark 36 (Rough forcing terms). A possible way to handle forcing terms f in H () consists in replacing
the test function by an interpolate in H{(£2) in the second member. For the sake of simplicity, assume that
Tr, is conforming (if this is not the case, &, can be used instead) and let Zps denote the Oswald interpolator
discussed, e.g., by Burman and Ern [15]. It can be proven that there exists C' independent of the meshsize h such
that, for all vy, € V%, | Zosvn| i () < Csta,0sl|vn]|l. We consider the following modification of the method :

Find up € thcg s.t. ah(uh, Uh) = <f, Iosvh>_171.
The a priori estimate for the discrete solutions on the admissible mesh family 73 is obtained as follows:
Cotadllunll® < an(un, un) = {f, Zosuny-1,1 < | f| -0y Zosunll @) < Csta,o0s| fllzr—1 (o lunll,

hence ||up| < Csta,08/Cstall f -1 (). The argument of Theorem 35/ then applies verbatim.
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3. STEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

3.1. The continuous setting

In the second part of this work we corroborate the claim that ccG methods are easily extended to problems
for which a dG scheme can be devised. Our focus is on the steady incompressible Navier—Stokes (INS) equations
for d € {2, 3},

—vAu; + 05(uwu;) +0ip=fi inQ,ie{l,..., d},
aﬂl,z‘ =0 in Q,
u=0 on 0,
o =0,
where the positive real v denotes the kinematic viscosity and f € [L2(Q)]%. In and throughout this section
Einstein’s convention on repeated indices is adopted. The natural spaces for the weak formulation of are

(41)

U:=[H}(Q))Y, P:=L}Q), X:=UxP

where we have set LZ(Q) := {v € L*(Q) | (v)o = 0}. We define the bilinear forms a € L(U x U,R) and
be L(U x P,R), and the trilinear form ¢t € L(U x U x U, R) such that

a(u,v) 1= JQ vVu;-Vu,, b(v,q) == — J;z qV-v, t(w, u,v) := J(qul)vl - %jﬂ(Vw)(uv)

The trilinear form ¢ includes Temam’s device [43] to control the kinetic energy balance as this is needed in what
follows for the asymptotic consistency of its discrete counterpart. The weak formulation of system is:

Find (u,p) € X s.t. ¢((u,p), (v,q)) + t(u, u,v) = JQ fv for all (v,q) € X, (42)

with bilinear form ¢ € £(X x X,R) such that ¢((u,p), (v,q)) = a(u,v) + b(v, p) — b(u, q).

3.2. The discrete setting
We seek a discretization of based on the following discrete spaces:

Up := [V;cg]d, Py = Pg(ﬁl)/lR’ Xp 1= Up X Pp.

The main difficulties in the approximation of the INS equations lie in the discretization of the velocity-pressure
coupling and of the convective term. In our case, the velocity-pressure coupling is stabilized by penalizing the
pressure jumps across interfaces with a weight proportional to the meshsize; see, e.g., |[19]. As regards the
convective term, we use the non-dissipative trilinear form recently proposed by Di Pietro and Ern [22], which
has proven suitable to convection-dominated regimes; see also Botti and Di Pietro [9] for the application to a
dG discretization of the advection step in the context of a pressure-correction time-integration scheme. Since
the convergence analysis is similar as for the dG method of [22], the proofs of the results that hold a fortior:
are sometimes omitted to leave room to specific issues related to the ccG method.

3.2.1. Velocity-pressure coupling
The velocity-pressure coupling is based on the bilinear form b, € L(Uj, x Py, R) such that

bn(vn, qn) = — J;) AR L[[’Uhﬂ‘nF{Qh} =- L{Uh}'nF[[Qhﬂ- (43)

FeFy FeF}
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A useful equivalent form for by, can be inferred introducing the discrete divergence operator Dy, : [H(T3)]* — PY(T5)
defined as follows: For all v e [H'(73)]? and all w e H'(Ty),

Dy (v) := Gp(v;)-e;.

The subscript w has been omitted from discrete gradient since k = v14 (as the kinematic viscosity is homoge-
neous and isotropic) implies wr, p = wr, g = Y2 for all F' € F; with F' < 0Ty n dT>. The discrete divergence
Dj, is defined as the trace of Gj, applied to a vector function. It follows from that

Y(vn,qn) € Xn, brn(vh, qn) = — L qn Dn(vn). (44)

We let, for all vector functions vy, € Uy,

d

d
lonll? == 7 Mlonall®s Jonl3 = D7 lonal-
i=1

i=1

As the discrete operator associated to the discrete bilinear form by, is not surjective, pressure stabilization must
be introduced. To this end, we define the bilinear form s;, € £L(P, x Py, R) and the associated seminorm ||,
such that

sn(pnsan) = ), hFJ [pr]lgn], lanly = sn(qn, qn)-
FeFi
We are now ready to state the main result of this section.

Lemma 37 (Stability of the velocity-pressure coupling). Under Assumption there exists 5 > 0 independent
of the meshsize h such that

br(wn, qn
Van € Pn,  Blanlrz@) < sup bn(wn, gn)

+ |qh| .
wnetp\(0)  lwall ?

Proof. In the proof we abbreviate a < b the inequality a < Cb where C' can depend on the mesh regularity
parameters and on 2 but not on the meshsize h. Owing to the surjectivity of the divergence operator from
U to P, there exists Cq > 0 uniquely depending on the domain Q such that, for all ¢ € L3(Q), there exists
v e [HE(Q)]? such that

Vo=gq,  Calv|igrje < lalrz@)- (45)
Let now ¢ = qp,, denote by v the element of [H}(2)]¢ satisfying and set v, = ((v)1)re7;, € Vi and
vy, =R} B (vy) € V8. Then,

Calollgr g lanlz2) < lan s =j o=y f [an]{v}ne = —ba(onan) + 3 f [an]{v — vn}np

FeF} FeF}
1/2
br(wn, qn
<{ sup P gl x4 3 o= ond?

wheUh\{O} FE]'-]

It follows from Lemmathat llvall < [vllfrr(@ye- Moreover, using the continuous trace inequality @ together
with the approximation properties of Ty, it is readily proven that ZFE? = i o=} < ||11HHl(Q O

The following lemma establishes the H'-stability property used in the proof of Lemma, m Observe that,
unlike elsewhere, the degrees of freedom are here interpreted as average values over the cells, since the regularity
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of the function v is in general insufficient for point values to be defined inside elements. The proof is given
in §A.3
Lemma 38 (H!-stability). Under Assumption for all v e HL(Q) there holds

llonlll < Cllvl @),

where vy, = ((V)1r)reT;, € Vi, vn = R;E(vy) € V,°® and C is independent of the meshsize h.
3.2.2. A non-dissipative convective trilinear form

The discrete convective trilinear form ¢, € L(Uy x Uy, x Uy, R) is given by

th(wh,uh,vh) = J‘Q(thVhUh7i)vh7i_ Z J‘F{wh}.nF[[Uh]].{Uh}—F%J‘Q(thU}h)(uhlvh)_% Z [['wh]]-np{uh-vh}.

FeF} FeF, °F

The following lemma collects some important results. The proof essentially follows |22, Proposition 5.2]. In
particular, the Sobolev embedding for ¢ = 4 is required, which limits the space dimension to d € {2,3}.

Lemma 39 (Properties of the trilinear form t). For all h € H, let Uy, := [PX(T,)]¢ for some k > 0. The
trilinear form ty defined by enjoys the following properties:
(i) Non-dissipativity. For all wy, vy, € Uy, tn(wh,vp,vn) = 0.
(i) Boundedness. There is Chng,s independent of the meshsize h such that, for all wy, up, vy € Un, th(wh, un,vp) <
Cond,t[|wn [ [[er il on -
(i1i) Asymptotic consistency for smooth functions. Let (vp)nen be a sequence in (Up)pey bounded in the ||-||-
norm. Then, for all ® € [CF(Q)]¢, as h — 0, up to a subsequence, t,(vy,vn, ®1) — t(v,v, ®), where
D, = (R} 0 L,)(®) € Uy and v € U is the limit provided by Theorem [15,
(iv) Asymptotic consistency for test functions. In the setting of point , further suppose that Gp(v,) — Vv
strongly in [L?(Q)]? and that |v,|; — 0. Let (wp)new be another sequence in (Uy)nen bounded in the
lI-Il-rorm. Then, as h — 0, up to a subsequence, ty (v, vp, wy) — t(v,v,w), with both v, w € U resulting

from Theorem[15].

The discrete problem reads

Find (upn,pn) € Xn s.t. cn((un, pr), (Vn, qn)) + th(un, un,vp) = | foop for all (vp, qn) € Xp, (46)
Q

with bilinear form ¢, € £L(X}, x Xp,R) such that ¢, := Z?:l an(Un,i, Vi) + bn(vn, pp) — br(un, qn) + sn(on, qn)
and we have set k = v1, in the expression of ay,.

3.3. Convergence

We study the convergence of the method in the spirit of As the ccG space V,;® is a subspace of
PL(7), some of the results presented in [22, §5] in the context of dG methods hold a fortiori. In such cases, the
details of the proofs are omitted in order to restrict the focus to the peculiarities of the proposed ccG method.
Also, since the diffusion coefficient is homogeneous, the standard test space Cj’(€2) can replace Qp, . in the
convergence proof. The following lemmata contain results that are instrumental to the analysis.

Lemma 40 (Properties of Dy,). The discrete divergence Dy, enjoys the following properties:

(i) Consistency for smooth functions. Let ® € [CiP(2)]? and set @), := (R;® 0 I,°®)(®) € Uy. Then, under
Assumption as h — 0, D (®),) — V-® strongly in L*(Q).

(ii) Weak asymptotic consistency for test functions. Let (v,)nen be a sequence in Up, uniformly bounded in
the ||-|| —norm. The, as h — 0, up to a subsequence, Dy, (vy) — V-v weakly in L?(Y), where v € [Hg(Q)]¢
is the limit resulting from Theorem [15]
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Proof. Point (i) is a direct consequence of Theorem [24] together with the fact that Kk = v14 implies C°(Q2) <
Qp, ., and that [®]r(x) = 0 for all F € F, and all x € F. Point (ii) immediately follows from Lemma O

Lemma 41 (Existence of a solution to (46)). There ezists (upn,pp) € Xp, solution to (46).

Proof. The proof is based on a topological degree argument and it follows [22, Proposition 5.1]. The use of a
topological degree argument to assert the existence of a discrete solution can be traced back to Eymard, Herbin,
and Latché [34]. O

The first step in the convergence proof is to derive a uniform a priori estimate on a suitable norm of the
discrete solution. This estimate is used to infer a compactness property for the sequence of discrete solutions.
To this end, we introduce the following norm on Xp:

Cons @)l == llvall* + lanlZ> () + lanlp-

Lemma 42 (A priori estimate). There exists v > 0 independent of the meshsize h such that

2

Y wn pr)lllns < o2 flz2@)e + Conat(VCsta) ™ (o2l flz2(01e)” - (47)

where Cyna,s results from Lemma [3%i, Cya is the coercivity constant of an, and oy results from Theorem [14)
Proof. The proof proceeds along the lines of |22, Lemma 5.1]. The details are omitted for the sake of brevity. O

Theorem 43 (Convergence). Let ((un,prn))nen be a sequence of approzimate solutions generated by solving
the discrete problems on the admissible mesh sequence T. Then, under Assumption as h — 0, up
to a subsequence, (i) up, — wu strongly in [L2(Q)]¢, (i) Viun — Vu strongly in [L?(Q)]%4, (i) |unl; — 0,
(iv) pr, — p strongly in L2(Q), (v) |pnl, — 0, with (u,p) € X solution to . If the continuous solution (u,p)
18 unique, the convergence property extends to the whole sequence.

Proof. (i) Compactness. Owing to the a priori estimate (7)), by Theorem [15] together with Lemma [16] there
exists (u,p) € X such that, up to a subsequence, u; — u strongly in [L2(Q)]%, Gp(un:) — Vau; weakly in
[L2(Q)]? for i € {1,...,d}, and p, — p weakly in L2(Q) (as the sequence (pj)nes is bounded in the L?-norm
uniformly with respect to h). For the sake of conciseness, subsequences are not renumbered in what follows.

(ii) Identification of the limit and convergence of a subsequence. Let @ € [C3(Q2)]¢ and set @y, := (R;® 0 I,°®)(®) € Uy,
Using (®,0) as a test function yields

ap(un, ®n) + bn(®n,pn) + th(un, un, @) = J f-®p.
Q

Clearly, as h — 0, the right-hand side tends to SQ f+®. Furthermore, by virtue of Lemma the first term
in the left-hand side converges to a(u,®) = §,vVu;-V®;. Using , the second term can be written as
bp(Pp,pr) = fSQph Dy (®). Owing to the weak convergence of (pp)nex to P in L?(Q) and to the strong
convergence of (D (®p))ner to V-® in L?(Q) stated in Lemma this term converges to b(®,p) = — |, pV-®.
Finally tp,(up, un, ®r) tends to t(u,u, ) owing to Lemma As a result,

a(w,®) +b(2,p) + t(u,w, ®) = L f-o.

Let now ¢ € C5°(2)/R and set ¢, := )¢, where 7\ denotes the L?-orthogonal projection onto PY(73). Using
(0, on) as a test function yields

—by(un, ¢n) + sn(pn, en) = 0.
Clearly, —bp,(up, pn) = S on Dp(up) tends to SQ eV-u as h — 0 since (D, (up,))nen weakly converges to V-u in
L?(Q) owing to Lemma and (¢n)nen strongly converges to ¢ in L?(2). Furthermore, using the a priori
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estimate ([47), |sh(pr, ¢n)| < |Prlplenlp < Clenlp with C independent of the meshsize h and this upper bound
tends to zero. Hence,
J eV =0.
Q

By density of [Cg(2)]? x (C(R2)/R) in X, this shows that (%, p) = (u,p) solution to .
(iil) Strong convergence of the velocity gradient and of the velocity and pressure jumps. Owing to the non-
dissipativity of ¢, and recalling

d

f Foun = cn((un, pn), (n,pn)) = an(un,un) + sn(pn,pn) = an(un,up) = v Y] IGn () 12 2y
Q =1

Thus, v limsup,,_,, >©, HGh(Uh,i)”%Lz(Q)]d,d < limsupy, o §¢, frun = §o fru= 1/||VquL2(Q)]d7d. Proceeding as in
point (iv) of Theorem it is then inferred that Gy (up ;) — Vu,; in [L2(Q)]? for all i € {1,...,d} and that
|unly — 0. Finally, since |pn|2 = bp(un,pr) = o f-un — an(un, un), we conclude that |py |, — 0.

(v) Strong convergence of the pressure. Let v € [Hg(€2)]% be such that V-v = p,, with [v]z1 (00 < Calpa] L2,
and set vy, := R} 5 (vy,) € V,® with v, = ((W)r)7rer, € Vi. In the rest of the proof we abbreviate a < b the
inequality a < Cb with C' independent of the meshsize h. Proceeding as in the proof of Lemma [37] yields

IpnlZ2iq) < IPalplpsliz@) — 0n(vns pr) < 1pwlplpnllLz) + an(un, vn) + th(un, wn,ve) = | f-va.
@) .

Let T;, i € {1,...,4} denote the terms in the right-hand side. Since |ps|, tends to zero and ||ps|2(q) is
bounded, ¥; converges to zero. Furthermore, since the sequence (vp)pey is bounded in the ||-||-norm because
loall < Ivl@ye < Ipalrz) there is 7 e [Hi(€2)]¢ such that, up to a subsequence, v, — ¥ strongly in
[L2(2)]? and G, (vp ;) — VO; weakly in [L2(Q)]? for i € {1,...,d}. Owing to the uniqueness of the limit in the
distribution sense, it is inferred that V-v = p. There holds

Ty = ap(up,vp) = J VG (un,i)-Gr(vn,:) + sn(un,vn) = Ta1 + FTa 0.
Q

Owing to the strong convergence of (G (un.;))nen in [L3(Q)]¢ proven in the previous point together with the
weak convergence of (G, (va,i))nen in [L*(Q)]7 yields To 1 — §, Vu;-Vo;. Moreover, |T22| < |uals|vals, which
converges to zero. Owing to Lemma %3 — t(u,u,v). Finally, since T4 — SQ f-v, the strong convergence of
the pressure in L? classically follows from

tinsup [l 0 < [ Vuevo +iwun) - [ f7= [ 590 = bl O
h—0 Q Q Q

4. NUMERICAL EXAMPLES

4.1. Pure diffusion

Anisotropy. To investigate the behaviour of the method for anisotropic diffusion tensors we consider the
following exact solution to problem ind=2:

u = sin(7x) sin(7y), K= [(1) S] , f = (1 + e)r?sin(mz) sin(ry), (48)

with anisotropy ratio e = 1073. The discrete problem is solved on the Kershaw mesh sequence 4.2 of the
FVCAS5 benchmark [37] (¢f. Figure, and the results are listed in Table Besides the errors in the L?-and
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TABLE 1. Anisotropic test case

card(Tn) |u —wunlr2q) order |lu—wusl| order max e i [Agtle cg+AMG it.
9801 1.2396e-02 - 5.1296e-02 - 1.0028e+03 41
17424 6.8589%¢-03 2.06 3.3572e-02 1.47 1.0018e+03 49
27225 3.9340e-03 2.49  2.3897e-02 1.52 1.0013e+-03 55
39204 2.5485e-03 2.38 1.8058e-02 1.54 1.0009e+03 62
H And T . S
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(a) Example of mesh for the test (b) Partition Pq for the test (¢) Example of mesh for the test

case cases * cases *

FiGUure 3. Configurations for pure diffusion test cases

) Test case j ue H229( ) Test case j ue HV79(

) Test case (5 ) ueH1 29(9

FIGURE 4. Numerical solutions of problem (22)) (128 x 128 mesh)

energy-norms, Table [1] lists the maximum |-||s--norm of the matrices defined by as well as the number of
conjugate gradient iterations with AMG preconditioner required to solve the linear system. An inspection of
column 6 shows that Assumption [23] is satisfied since the largest norm of the matrices involved in the local
construction remains almost constant when refining the mesh. Here and in what follows, we estimate the order
of convergence as
order = dIn (el/ez) /ln (Card(ThQ)/card(Thl)) s

where e; and ey denote, respectively, the discretization errors on 7, and Tp,, hi, ho € H.

Heterogeneity. To assess the behaviour of the method with respect to the heterogeneity of the diffusion
tensor we consider the solutions proposed in §III]. The domain 2 = (0,1)? is partitioned into four areas
corresponding to different values of the diffusion coefficient x as depicted in Figure and we consider a
sequence of meshes matching Assumption [ see Figure The permeability coefficient is such that kg, =
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TABLE 2. Heterogeneous solution , ue H??°(Q)

card(7n) |[lu —un|L2@q) order |[Ju—wug|| order max pe i [Agille cg+AMG it.

8§ x 8 6.5808e-3 - 1.9547e-2 - 1.1656e-+1 5
16 x 16 1.9161e-3 1.78 7.8171e-3 1.33 1.2094e+1 6
32 x 32 4.3365e-3 2.14  3.2200e-3 1.28 1.2301e+1 7
64 x 64 9.6024e-5 2.18 1.3410e-3 1.26 1.2401e+1 8

128 x 128 2.1670e-5 2.15 5.5576e-4 1.27 1.2451e+1 9

TABLE 3. Heterogeneous solution , ue H-™(Q)

card(7n) |lu —wun|p2@q) order |[lu—wug|| order Max pe i |[AG e cg+AMG it.

8§ x 8 1.6679e-2 - 3.2200e-2 - 1.1656e+1 6
16 x 16 5.0746e-3 1.72  1.8484e-2 0.80 1.2094e+1 7
32 x 32 1.5348e-3 1.72  1.0777e-2  0.78 1.2301e+1 8
64 x 64 4.6235e-4 1.73  6.2691e-3  0.78 1.2401e+1 9
128 x 128 1.4042e-4 1.72  3.6333e-3 0.79 1.2451e+1 10
k1lq and K|\, = k214. Using polar coordinates (r,0) with 6 = cos™'(z/r) and origin at the center of

Figure the first solution is given by

UZYWmmw—m»iwemwm, (49)

r*Bcos(4v/3 —0) if 0 € [27/3,27),

where a = 3/ztan~!(1/1 + 2/e), 8 = cos(a7/3)/ cos(2a7/3) and € = ki/ks is the heterogeneity ratio taken equal
to 0.1. Tt can be proven that u € H?2?(Q). The convergence results for this case are collected in Table 2 A
second solution with less regularity is the following:

B {ro‘ sin(a (0 — 7/3)) if 6 € [0, 27/3), (50)

| reBsin(a(dns — 0)) if 0 € [27/3, 27),

where now a = 3/rtan~!(\/1 + 2¢), 8 = (2cos(a7/3)) ! and, as before, € = ki/ks = 0.1. In this case, u €
HY™(Q). The convergence results collected in Table [3| show, in particular, that the order of convergence
remains optimal even for solution that do not sit in H2(2). To conclude, we consider a solution with an even
stronger singularity at the origin. In this case k|5, and kg, are constant and equal to k114 whereas kg, and
K|s, are constant and equal to k21,4. This solution satisfies u(r,6) = —u(r, 0 — ) for 6 € [0,7) and reads

(51)

oy r cos(a( — 7/3)) if 0 € [0, 27/3),
o Bsin(a(orfo —6)) if 6 € [2o/s, ),

where a = 6/rtan™1(1/4/1 + 2/), B = 1/(2cos(a7/3)) and this time € = ko/k; = 1/30. This solution belongs to
H'2%(Q). The convergence results are collected in Table[d Similar considerations as for the test case hold.
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TABLE 4. Heterogeneous solution , ue H?(Q)

card(7n) |[lu —un|L2@q) order |[Ju—wug|| order max pe i [Agille cg+AMG it.

8§ x 8 3.5383e-2 - 2.0444e-1 - 1.2318 11
16 x 16 1.7796e-2 0.99 1.6836e-1 0.28 1.2416 16
32 x 32 8.0164e-3 1.15 1.3747e-1  0.29 1.2459 17
64 x 64 3.5358e-3 1.18 1.1341e-1 0.28 1.2480 20

128 x 128 1.5628e-3 1.18 9.4240e-2 0.27 1.2490 23

TABLE 5. Convergence results for the Kovasznay problem

card(Tn)  |u—unl[p2(q)ye order |p—pnlL2q) order [lu—wunllns order

224 1.6539e-01 - 2.5536e-01 - 4.7777e-01 -
896 4.3732e-02 1.92 1.0737e-01 1.25  2.1759e-01  1.13
3584 1.1847e-02 1.88 3.9802e-02 143 1.0763e-01  1.02
14336 3.1620e-03 1.91 1.7385e-02 1.19  5.5182e-02  0.96

4.2. Steady incompressible Navier—Stokes equations

The Kovasznay problem. To verify the asymptotic convergence properties of the method , we consider
Kovasznay’s analytical solution of the INS equations [39] on the square domain = (—0.5,1.5) x (0, 2),

up =1 —e™2 cos(2mxs), ug = —1/2e™** sin(2wxs), p = —1/2e™ cos(2mz2) — D,

where p = (—1e™1 cos(2mz2))o ~ —0.920735694 ensures the zero mean constraint for the pressure, v = 3, and
f = 0 (the solution is nontrivial albeit f = 0 since the boundary condition is non homogeneous). The example
is run on a family of uniformly refined triangular meshes with mesh sizes ranging from 0.5 down to 0.03125.
According to Table the errors ||u — upl[ns and ||p — pn||r2() converge to first order, while second order is
attained for |u — up [L2(Q)]d-

The lid-driven cavity problem. To assess the behavior of the method in more complex situations we consider
the classical lid-driven cavity problem. Despite its simple geometry, at large Reynolds numbers this problem
presents complex flow patterns with counter-rotating vortices of significantly different scale. The domain is here
the unit square with imposed horizontal velocity on the upper side and zero velocity on the others. In Figure
we provide the values of the velocity components on the centerlines of the domain. For the sake of completeness,
we compare against the method of [22] with piecewise linear approximations of the velocity and the pressure.
In both cases a uniform 128 x 128 Cartesian orthogonal mesh is used. The reference data of Erturk, Corke, and
Gokgol [31] are also included for comparison. The proposed method shows essentially the same accuracy as the
dG method of |22 at Re = 1000. To observe more sizable differences, we also present the results for Re = 5000
on the same mesh. In this case, where a slight loss of accuracy can be observed towards the boundaries of the
domain.

Acknowledgements. The author is grateful to an anonymous referee for careful reading and constructive
remarks. Discussions with Alexandre Ern (Ecole des Ponts ParisTech) are also gratefully acknowledged.

APPENDIX A. PROOFS

A.1. Proof of Theorem [24]
We start by proving the following technical result.
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FIGURE 5. Lid-driven cavity problem, comparison of centerline velocity values (ccG = present
work, Di Pietro Ern '10 =ref. [22], Erturk et al. 05 =ref. [31]).

Lemma 44 (Consistency of the trace reconstruction). Letv € Qp, . and set vy, := I,°*(v) and (vp)per, = Th(va).

Under Assumption |23 there holds for all h € H, all ve Qp, ,, and all F € Fp,
lop —v(Xr)| < Chi, ,

where C' depends on K, on the mesh regularity parameters, on A, and on |v|c2(7;,)-

Proof. The assertion is trivially verified for F € FP. Let now F € F.. Using the Taylor expansion of v
about xr,  together with the fact that T}, is star-shaped with respect to X, ., we conclude that there exists
y(XF) € [XTGF,X] such that

o(%r) = v(xr, )+ Volxr, )(Xr —xr, )+ %(ip — xr, ) Ho(y(%))(%r — X1, ),

where Ho(y (X)) denotes the Hessian of v evaluated at y(Xp). Similarly, letting v, = Z,°*(v) and (vp)rer, :=
Th (Vh) € [R]:h,

Vp = U(XTEF) + V£35|T}3F '(iF — XTgp)'

Hence, |vp — v(XF)| < hr|VE |1, — Vo(Xp)| + %”U”W(T)- The conclusion follows from Lemma O

We are now ready to prove Theorem . The proof closely follows that of [5, Lemma 3.10]. Since it is clear

that [|w||x,+ < X1/2|||w\||7 for all w € H*(Ty), we only show the second inequality in . In the rest of the proof
we abbreviate a < b the inequality a < Cb where C can depend on &, on the mesh regularity parameters, on A,
and on [v|c2(7;,). Let v € Qp, » and set

Vy = I}Clcg(’lj) € Vh, Vp = %ffg(vh) € thcg, ('UF)FEJ:h = ‘Ih(Vh) € [R]:h.
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(i) Estimate of [|[Vv — Vyvp|[p2(q)je. For all T € T and all x € T there holds

Vivnr — Vou(x) = {VU(XT) — Vv(x)} + {|1}| Z |Fla—1 (vF — v(XF)) nT’F}

d FE]:T

{m PG >—v<xT>>nT,F—w<xT>}:: T+ T+ T

It is clear that [T1| < [[v]c27)hr, hence Yper [T1 ”%LQ(T)]d < |Q]ah?. Using Lemma [44] together with the
geometric relation and mesh regularity it is inferred that

— (% h2
1T,] < Z |Flg—1dr,p |vp —v(XF)| <d Typ <

hr .
rer, Tl dr,r dpp =T
As a result, > o ||Eg||[L2(T < [9]4h?. To handle the last term, we use the magic formula |5, eq. (33)]: For
alT e Ty and all xe T,
1 —_
T FZ |Fla—1(Xp — x)i(nr,p); = dij, (52)
6.7:7'

where d;; is Kronecker’s symbol. By virtue of (52)), there holds

|Flg—1dr,F

T3 = |T| > 1Fla1 [v(Xr) = v(xr) = Vo(xr)-(Xp —x7)|nr e < ), T o]l g2 7y hr-

FE}—T FEJ:T

Proceeding as for T, we easily infer that > ;.. ||‘I3H%L2(T)]d < |92|4h?, thereby concluding that

HVv—thhH[Lz )]d = < h.

(ii) Estimate of the remaining terms in ||-||+. By the continuous trace inequality (6],

=l s Y b5 Y 0= v)rlam < Che X B D, {h7 v =l + hrlo —onlhir) |

FeFy TeTr FeFy TeTr

On the other hand, for all T € Ty, expanding v at x7 and using the previous point to estimate |Vvp — Vo (xr)|, it
is proven that [[v—uvp|p2(ry S h3. Tt follows easily that [v—v, |5 < h. The term Yo hr|V(v—vp)rnr|L2or)
can be handled in a similar way using the trace inequality @, thereby concluding the proof.

A.2. Proof of Theorem 27|

Let v e V n H?(), and set vy, := Z,;°%(v) € V), and (vp)rer, = Tn(vs) € R7". In the rest of the proof we
abbreviate a < b the inequality a < Cb where C can depend on the mesh regularity parameters but not on the
meshsize h.

(i) Estimate of |[Vv — Vyvp|[12(q)- The quantity to estimate is decomposed as follows:

V0 = VienlZaioe = 3 3 J Vo — VEor + Verr — Vo[’

TeT, FeFr PTF
| + Z Z l[ f:—Vvh|2:=31+Sg.

22[

TeT, FEFT Pr.r TeTn FEFT Pr,r

(53)
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For the first term it suffices to use Assumption 26 to infer

%= Z Z v — fgfﬁp Prp) ~ < B |U|H2(Q)

TETh FE]'—T

To estimate the second term, preliminarily observe that, for all T' € Tp,

|F'|a—1 - | F"|a—1
Viopr = Z 7] ( VE Py (XF')—’UT) ny pr = Z Wv Py (X —=Xr)07, P
F'eFr d F'eFr d

where we have used the linearity of &y7° /P, together with the fact that 5?,5"% o (x7) = vr to infer that
v P g (Xr) = vr + V& 1Py (X7 — xT). Using formula together with the definition of the gradient
reconstruction , we obtain

F'la_

<VU>T - thh‘T = | |d ! <V’U>T - ‘g,ﬁ' [Py o '(EF’ — XT)nT,F/. (54)
Tl

F'eFr

Exploiting (54)), we estimate |T»| as follows:

T2l < Y N 1Prrla[VEE 1oy — VO + Y S Prpla[(V0dps e — (VD[

TeT, FeFr TeT, FeFr
I i
d— , _
+ Z Z |Pr,Fla Z IT] - (<VU>PT,F, - Vfgf |Pr. F,) (Xpr — X7)07 P20
TET},, FeFr F'eFr d
] i
d—1 _
+ Z Z |Pr,pla Z 7] (<VU>T - <VU>7>T7F,) (Xpr —xp)nppr| = To1 +Too + Tz + Tog.
TeT;, FeFr FleFr d

The Cauchy—Schwarz inequality yields

1

vah |Pr,F <VU>PT,F = m

J (vah )< 1/2|5 _v|H1(7’T,F)’
Pr.r |Pr.Flg

whence, by Assumption

Ton < D) 2 1680 = vl ) S B loligq).
TeTn FeFr

The term %5 > can be estimated in a similar fashion using the fact that
1
(V0Yppp = W1 = | oo,
|Pr.rla Jor s,

and the approximation properties of the L2-projection of Vv onto [PY(75)]? to conclude. To estimate Ts 3,
observe preliminarily that, for all T € T}, and all F’ € Fr, equation @ yields

d
|F'|4—1 (<V’U>PT)F, - V& e, F,) = T L (Vo — VESF) .
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The Cauchy—Schwarz inequality together with yield

2

2
|[F"la—1 ap _ d*h3. o
Z T <VU>PT,F, V& 1Py (Xpr—xr)| < Z e |Vo — VETF|
F'eFr | |d T,F'| |d F'eFr Pr,pr
d2h% d2
S a2 |T|2 Z |,PT7F’|d X Z |U_ \g'fjl HY(Pp ) ( |T| Q2 Z |U— \g,f' HY Py pr)”
.15 ld  FreFy F'eFp 4E3 preFy

We therefore have

|Pr.rla
5273\* Z Z { Z o — &8 13 HY (P pr)
Tla  pic,

3 TeTn FeFr

& P
S DIRPNL T T BT 45 i o S

93 re7;, \ Ferr FleFp A TeTs, FleFr

and, by Assumption , we infer that Ty 3 < hz||v||Hz(Q Similar geometric manipulations allow to prove that
Tou < h2||v||%{,+1(9). In conclusion,

Vv = Viaon|r2 e < blvllaz@)-
(ii) Estimate of the remaining terms in ||-||;. We start by estimating ||v — v z2(q) in view of applying the trace
inequality @ Let wy, € P}(Sy) be such that
YT €Ty, VF € Fr, WhiPr e = &b |Prop-
The triangle inequality yields
[v =vnlr2) < v —wnlle2() + [whn — vallL2 () == T1 + Ta.

By Assumption [26 E %1 < h?|v] g2(q). To estimate the second term, observe that for all T € Ty, all F € Fr and
all x € PT Fy

& prr (%) = 01 + (VET) 1Py (X = X1).- (55)

since, by construction, £|p, .(x7) = vr. As a consequence, by virtue of (53), and the triangular
inequality, there holds

=Y 3 lwn = onl32(pp oy < 0T Ivesr — Vonlfre (g e

TeTy, FeFr TeTy FeFr
Proceeding as for the second term in the right-hand side of , we infer that To < h2|v| m2(q)- Therefore,
lo = vnlL20) S P2 vlla0)- (56)

To bound |v — vx|; and D por hr|V (V) np |27y use the continuous trace inequality @ as in point (ii) of

Theorem [24] together with .
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A.3. Proof of Lemma [3§

In the proof we abbreviate a < b the inequality a < Cb where C' can depend on the mesh regularity parameters
and on 2 but not on the meshsize h. By definition,

H\Uh\HQ = thvhH%L2(Q)]d + |Uh|§ =% + %o

(i) Bound for T;. The first term can be bounded as follows:

TS D Tl

TeTh

2

+ > T

TeTy

2

> IFlar ((o)p = 8 yp) nr p

FeFr

3 1Fla1 ((wyr — wyp) nrp

FeFr

ITI ITI

Denote by %11 and T; » the addends in the right-hand side. Using the Cauchy—-Schwarz inequality together

with formula
|F|a—1 1 5 hr
Ti1< ), > TP drr | x| Y dilplkoyr = vlee |t Sd D) Z drr % () S ol

TeTh FeFr FeFr TeTy, FeFr

where we have used the classical estimate
o)z = vllz2(m) = 790 — vl z2(r) < BP[vlmer). (57)

As for the term T; o, repeated applications of the Cauchy-Schwarz inequality together with yield

a<d ) Y

TeTh FE}'T

Hv — 382

Since kK = vly, for all F' € }“}L and all x € F', £3F(x) can be expressed as a linear combination of the values
{(v)r}rer, with coefficients {71 (x)}reT, equal to the barycentric coordinates of x with respect to the simplex
Sy (cf. Figure[). Clearly, there exists Cy < +0o0 depending on A in Assumption 23]and on the mesh regularity
parameters but independent of h such that maxxer maxrer, |74 (x)| < Cy. Hence, for all F € F}, using the
triangular inequality, the continuous trace inequality (6, and we infer

1
o= oy < X (maxief Gl ) o= orliacey < Ca 3 7 lan e (59)

TeTy TeTy

On boundary faces F € F}? both £3F (by definition, cf. point (i) of :i and v vanish, hence |v—&97 | 12(p) = 0.
We conclude that T1 2 < [v| g1 ()

(ii) Bound for 5. Using the fact that [v]r(x) = 0 for all F' € F;, and all x € F together with the continuous
trace inequality (6) and the bound (4) there holds

|onl3 = Z Ilvn = v]lI72(r) < Z Z hptl(w = on) 1|72y

FeFy FeFn, TeFr
Z 2 h?llv = UhHL2(T + Z Z V(v H[L2 (e = T2+ Zap.
FeF, TeTr FeF, TeTr

To estimate the first term, use together with the approximation properties of Ty to infer, for all T' € Tp,

2
v = vlfeer) = J’T (vr + &n(vi)r-(x = x7) —v(x))" dx $ [Ko)r = V| P27y + hr | Vor]Frz -
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Using point (i) it is inferred that Ty < HVUH%LQ(Q)](I. To conclude the proof use again point (i) to estimate

12,2 < HVUH%LZ(Q)]d .
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