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CELL CENTERED GALERKIN METHODS FOR DIFFUSIVE PROBLEMS �Daniele A. Di Pietro1Abstra
t. In this work we introdu
e a new 
lass of lowest order methods for di�usive problems ongeneral meshes with only one unknown per element. The underlying idea is to 
onstru
t an in
ompletepie
ewise a�ne polynomial spa
e with su�
ient approximation properties starting from values at 
ell
enters. To do so we borrow ideas from multi-point �nite volume methods, although we use them ina rather di�erent 
ontext. The in
omplete polynomial spa
e repla
es 
lassi
al 
omplete polynomialspa
es in dis
rete formulations inspired by dis
ontinuous Galerkin methods. Two problems are studiedin this work: a heterogeneous anisotropi
 di�usion problem, whi
h is used to lay the pillars of themethod, and the in
ompressible Navier�Stokes equations, whi
h provide a more realisti
 appli
ation.An exhaustive theoreti
al study as well as a set of numeri
al examples featuring di�erent di�
ultiesare provided.1991 Mathemati
s Subje
t Classi�
ation. TO BE COMPLETED.September 3, 2010. Introdu
tionLowest order methods for di�usive problems on general meshes have re
eived an in
reasing attention overthe last few years. The interest of general meshes is multi-fold. On the one hand, allowing general polyhedralelements may ease the dis
retization of 
omplex domains, and it is bene�
ial in the 
ontext of aggregativemultigrid strategies. On the other hand, it is a mandatory requirement whenever the user 
annot adapt the meshto the needs of the numeri
al s
heme. This is the 
ase, e.g., in the 
ontext of 
omputational geos
ien
es, wherethe dis
retization of the subsoil integrates the e�e
ts of erosion and sedimentation, and is usually developedin a separate stage. In what follows we brie�y re
all some ideas that are instrumental to the 
lass of methodsproposed in this paper. It is a well known fa
t that the 
lassi
al two-point �nite volume (FV) method isin
onsistent on non di�usion-orthogonal meshes. In the 
ontext of reservoir simulation, a su

essful attemptto adapt FV methods to general meshes and full di�usion tensors has been independently proposed in the 90sby Aavatsmark, Barkve, Bøe, and Mannseth [1, 2℄ and by Edwards and Rogers [25, 26℄. These methods areusually referred to as multi-point sin
e the main idea is to express 
onsistent numeri
al �uxes using a largersten
il than in the 
lassi
al two-point FV method. In this paper we borrow some ideas from the re
ent multi-point s
heme of Aavatsmark, Eigestad, Mallison, and Nordbotten [3℄, where the authors propose a 
ompa
t
onstru
tion to derive a 
onsistent multi-point �ux approximation honoring the heterogeneity of the di�usiontensor. A 
onvergen
e analysis of the L-
onstru
tion proposed therein has been re
ently performed by Agélas,Keywords and phrases: Cell 
entered Galerkin, �nite volumes, dis
ontinuous Galerkin, heterogeneous anisotropi
 di�usion,in
ompressible Navier�Stokes equations� This work has been partially supported by the VFSitCom ANR proje
t; see http: // ens. math. univ-montp2. fr/ droniou/ vfsit
om
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2 TITLE WILL BE SET BY THE PUBLISHERDi Pietro, and Droniou [4℄. The main drawba
k of multi-point FV methods is related to the di�
ulty in �ndingeasily 
omputable stability 
onditions. A possible remedy to the la
k of stability in multi-point methods hasbeen proposed independently by Brezzi, Lipnikov, Shashkov, and Simon
ini [10, 11℄ (Mimeti
 Finite Di�eren
emethods, MFD) and by Droniou, Eymard, Gallouët, and Herbin [23,30℄ (Mixed/Hybrid Finite Volume methods,MHFV). Both 
lasses of s
hemes are inspired from the variational form of the problem as in �nite element (FE)methods rather than from lo
al balan
es as in FV methods. The un
onditional stability of both MFD andMHFV methods results from stabilization terms in
orporated in the dis
rete bilinear form. Also, in both 
asesauxiliary fa
e unknowns are added, whi
h 
an be in some 
ases related to the enfor
ement of a �ux 
onservation
onstraint as in the mixed FE method. A way to eliminate fa
e unknowns has been proposed in [30℄, where itis suggested that a bary
entri
 interpolator 
an be used to express fa
e values in terms of a few neighboring
ell unknowns. The main drawba
k of this 
onstru
tion is that it does not respe
t the heterogeneity of thedi�usion tensor; moreover, the resulting method has a larger sten
il 
ompared to multi-point FV methods,whi
h results in denser matri
es as well as in the in
rease of data ex
hange in parallel implementations. Thealgebrai
 analogy between generalized versions of the MFD and MHFV methods has been re
ently pointed outby Droniou, Eymard, Gallouët, and Herbin [24℄.In this work we propose a di�erent philosophi
al approa
h to variational lowest-order methods whi
h is in-spired by dis
ontinuous Galerkin (dG) methods rather than mixed FEs. The motivation is twofold. A �rstobje
tive is to devise a suitable framework for a multi-physi
s platform based on lowest-order methods. Inthis respe
t, the main requirement is to dispose of a method easily adapted to a variety of di�usive problemsin
luding, e.g., pure di�usion, di�usion-adve
tion-rea
tion, linear and nonlinear elasti
ity as well as in
ompress-ible �ows. A se
ond important point is related to the robustness in the 
ontext of heterogeneous anisotropi
di�usion, whi
h is 
ru
ial in the �eld of 
omputational geos
ien
es. Cell 
entered Galerkin (

G) methods havebeen introdu
ed in [18,19℄ with appli
ation to a homogeneous di�usion problem. The main idea of 

G methodsis to build an in
omplete spa
e of pie
ewise a�ne fun
tions related to a given set of degrees of freedom (DOFs)on the mesh Th. In this work we 
onsider, in parti
ular, 

G methods with 
ell unknowns only, i.e., where thealgebrai
 spa
e of DOFs given by Vh
def� RTh .The unknown in ea
h mesh element is interpreted as the value of the dis
rete fun
tion at a given point (the
ell 
enter); a pie
ewise a�ne representation is then obtained by re
onstru
ting a 
onstant gradient in ea
hmesh element. In the present work, the elementary gradient is obtained in two steps: �rst, tra
e values arere
onstru
ted from 
ell 
enter values by means of the L-
onstru
tion, then Green's formula is used to infer alo
al value for the gradient. The pie
ewise a�ne fun
tion inside ea
h element is then 
hosen as the uniquefun
tion with pres
ribed value at 
ell 
enter and gradient equal to the re
onstru
ted gradient. Formally, thispro
edure amounts to introdu
ing an inje
tive linear operator R

ccg
h : Vh Ñ P1

dpThq and de�ning the dis
retespa
e
V

ccg
h

def� R
ccg
h pVhq � P1

dpThq.The spa
e V ccg
h is then used as a test/trial spa
e in a suitable non
onforming FE setting. In parti
ular, sin
e thefun
tions in V

ccg
h are dis
ontinuous a
ross mesh interfa
es, the dis
rete setting largely borrows from dG methods.In this work we 
onsider two appli
ations to problems naturally set in H1

0 pΩq: a homogeneous anisotropi
s
alar di�usion problem and the in
ompressible Navier�Stokes equations. The s
alar di�usion problem o�ersa simpli�ed 
ontext to outline the main ideas of the method. The 
onvergen
e analysis is here dis
ussed indetail. In parti
ular, we show that both 
lassi
al dG arguments relying on error estimates [7℄ and 
ompa
tnessarguments inspired by [29,30℄ apply. For the latter, an important remark is that the fun
tional analyti
 resultsindependently derived by Di Pietro and Ern [20℄ and Bu�a and Ortner [13℄ hold a fortiori sin
e V ccg
h � P1

dpThq.Moreover, in both 
ases, the main te
hni
al issue is related to the approximation properties of the V
ccg
h spa
e.The appli
ation to the in
ompressible Navier�Stokes equations provides a nonlinear 
ase study to illustrate howa 

G method 
an be derived from an existing dG method.The material is organized as follows: in �1 we dis
uss the dis
rete setting, provide a 
areful des
ription ofadmissible mesh sequen
es in arbitrary spa
e dimension, introdu
e the L-
onstru
tion, and de�ne the 

G spa
e



TITLE WILL BE SET BY THE PUBLISHER 3used throughout the rest of this work. Some fun
tional analyti
al results are also re
alled; in �2 we show anappli
ation of the 

G method to a heterogeneous anisotropi
 di�usion problem, derive basi
 error estimatesand 
arefully study 
onvergen
e rates. The main sour
es of inspiration are here the work of Arnold [6℄ on theweak enfor
ement of boundary and interfa
e 
onditions and the paper of Di Pietro, Ern, and Guermond [22℄on the robust handling of heterogeneous anisotropi
 di�usion tensors. To infer 
onvergen
e rates we studythe approximation properties of the spa
e V
ccg
h with respe
t to the energy norm naturally asso
iated to thedis
rete problem. In parti
ular, we distinguish between the heterogeneous 
ase, where optimal energy estimatesare obtained for fun
tions belonging to the the spa
e introdu
ed and analyzed in [4℄, and the homogeneous
ase, where weaker regularity assumptions are su�
ient and L2 error estimates 
an also be derived; in �3 wedis
uss the appli
ation of 

G methods to the in
ompressible Navier�Stokes equations inspired on the dG s
hemeof [20℄. In this 
ase, an H1-stability result for 

G spa
es is 
ru
ial to infer the stability of the velo
ity-pressure
oupling. The analysis 
losely follows the guidelines of [20℄; �nally, in �4 we present numeri
al results to assessthe theoreti
al study for both problems at hand.1. The 

G spa
e1.1. Dis
rete settingClosely following [21, Chapter 1℄, we introdu
e the 
on
ept of admissible mesh sequen
e of a bounded 
on-ne
ted polyhedral domain Ω � Rd, d ¥ 1. LetH � R�� denote a 
ountable set having 0 as its unique a

umulationpoint. For all h P H we denote by Th a �nite 
olle
tion of disjoint open polyhedra Th � tT u forming a partitionof Ω su
h that h � maxTPTh

hT , with hT denoting the diameter of the element T P Th. Mesh nodes are 
olle
tedin the set Nh. We say that a hyperplanar 
losed subset F of Ω is a mesh fa
e if it has positive pd�1q-dimensionalmeasure and if either there exist T1, T2 P Th su
h that F � BT1 X BT2 (and F is 
alled an interfa
e) or thereexist T P Th su
h that F � BT X BΩ (and F is 
alled a boundary fa
e). Interfa
es are 
olle
ted in the set F i
h,boundary fa
es in Fb

h and we let Fh
def� F i

h Y Fb
h . Moreover, we set, for all T P Th,

FT
def� tF P Fh | F � BT u. (1)Similarly, for all F P Fh, we de�ne

TF
def� tT P Th | F � BT u.The set TF 
onsists of exa
tly two mesh elements if F P F i

h and of one if F P Fb
h . For all mesh nodes P P Nh,

FP denotes the set of mesh fa
es sharing P , i.e.
FP

def� tF P Fh | P P F u. (2)For every interfa
e F P F i
h we introdu
e an arbitrary but �xed ordering of the elements in TF and let nF �

nT1,F � �nT2,F , where nTi,F , i P t1, 2u, denotes the unit normal to F pointing out Ti P TF . For all T P Th, wealso introdu
e the symbol nT to denote the ve
tor �eld su
h that nT |F � nT,F for all F P FT . On a boundaryfa
e F P Fb
h we let nF denote the unit normal pointing out of Ω. The bary
enter of a fa
e F P Fh is denotedby xF

def� ³
F
x{|F |d�1.De�nition 1 (Jumps and weighted averages). Let v be a s
alar-valued fun
tion de�ned on Ω, and assumethat v is smooth enough to admit on all F P Fh a possibly two-valued tra
e. To any interfa
e F P F i

h with
F � BT1 X BT2 we assign two non-negative real numbers ωT1,F and ωT2,F su
h that

ωT1,F � ωT2,F � 1.Then, if F P F i
h with F � BT1 X BT2 the jump and weighted average of v at F are respe
tively de�ned for a.e.

x P F as
JvKF pxq def� v|T1

� v|T2
, tvuω,F pxq def� ωT1,F v|T1

pxq � ωT2,F v|T2
pxq,



4 TITLE WILL BE SET BY THE PUBLISHERwhile, if F P Fb
h with F � BT X BΩ, we set tvuω,F pxq � JvKF pxq � v|T pxq.When v is ve
tor-valued, the jump and average operators a
t 
omponent-wise. Whenever no 
onfusion 
anarise, the subs
ript F and the variable x are omitted, and we simply write tvuω and JvK. Moreover, in the
lassi
al 
ase ωT1,F � ωT2,F � 1{2 we also omit the subs
ript ω and write tvu instead of tvuω. The use ofweighted averages in dG methods has been pointed out and used in various 
ontexts, e.g., by Stenberg [36℄ andby Heinri
h and Piets
h [32℄.De�nition 2 (Mat
hing simpli
ial submesh). Let Th be a general mesh. We say that Sh is a mat
hing simpli
ialsubmesh of Th if (i) Sh is a mat
hing simpli
ial mesh, (ii) for all T 1 P Sh, there is only one T P Th su
h that

T 1 � T , (iii) for all F 1 P Fh, the set 
olle
ting the mesh fa
es of Sh, there is only one F P Fh su
h that F 1 � F .De�nition 3 (Shape- and 
onta
t-regularity). We say that the mesh sequen
e pThqhPH is shape- and 
onta
t-regular if for all h P H, Th admits a mat
hing simpli
ial submesh Sh su
h that (i) the mesh sequen
e pShqhPHis shape-regular in the usual sense of Ciarlet [16℄, meaning that there is a parameter ̺1 ¡ 0 independent of hsu
h that for all T 1 P Sh,
̺1hT 1 ¤ δT 1 ,where hT 1 is the diameter of T 1 and δT 1 the radius of the largest ball ins
ribed in T 1, (ii) there is a parameter

̺2 ¡ 0 independent of h su
h that for all T P Th and for all T 1 P ST ,
̺2hT ¤ hT 1 .Lemma 4 (Bounds on geometri
 quantities). Let pThqhPH be a shape- and 
onta
t-regular mesh sequen
e. Then,for all h P H and all T P Th, (i) the number of mesh fa
es belonging to the boundary of an element is uniformlybounded in h,

NB def� sup
hPH, TPTh

cardpFT q   �8;(ii) for all F P FT ,
hF ¥ ̺1̺2hT . (3)Proof. See [21, Lemmata 1.33�1.34℄. �For all h P H and k ¥ 0, we introdu
e the broken polynomial spa
es of total degree ¤ kPk

dpThq def� tv P L2pΩq | v|T P Pk
dpT qu,with Pk

dpT q given by the restri
tion to T of the fun
tions in Pk
d. Broken polynomial spa
es are a spe
ial instan
eof broken Sobolev spa
es: For all k ¥ 1, HkpThq def�  

v P L2pΩq | v|T P HkpT q, �T P Th
(. The shape- and
onta
t-regularity of the mesh sequen
e pThqhPH are essential to infer the following results; see, e.g., [21, �1.4.3℄.Lemma 5 (Tra
e inequalities). Let pThqhPH be a shape- and 
onta
t-regular mesh sequen
e. Then, for all h P H,all T P Th, and all F P FT ,�vh P Pk

dpThq, }vh}L2pF q ¤ Ctrh
�1{2
F }vh}L2pT q, (4)�v P H1pThq, }v}L2pF q ¤ Ctr,c

�
h�1
T }v}2L2pT q � hT |v|2H1pT q	1{2

, (5)with Ctr and Ctr,c independent of the meshsize h.The following property is ne
essary to obtain optimal estimates of the 
onvergen
e rate.
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Sg

xT
xT2

xT1

Figure 1. Mesh Th (left panel), submesh Sh (right panel, thin lines), and simplex Sg (rightpanel, dashed) for the L-group g in bold line. The pat
h Pg is shaded.De�nition 6 (Optimal polynomial approximation). We say that the mesh sequen
e pThqhPH has optimal poly-nomial approximation properties if for all h P H, all T P Th, and all polynomial degrees k, there is a linearinterpolation operator Ik
T : L2pT q Ñ Pk

dpT q su
h that for all s P t0, . . . , k � 1u and all v P HspT q, there holds|v � Ik
T v|HmpT q ¤ Capph

s�m
T |v|HspT q �m P t0, . . . , su,with Capp independent of T and h.A su�
ient 
ondition to prove optimal approximation properties is, e.g., that the mesh is �nitely shaped, i.e.,that there exists a �nite set of referen
e polyhedra su
h that every mesh element is the image of a referen
epolyhedron via an a�ne bije
tive mapping. This assumption yields a uniformly bounded Deny�Lions 
onstant;see, e.g., [27, Theorem 1.103℄. Other, more general, su�
ient 
onditions 
an be devised. It is a simple matter toprove that the L2-orthogonal proje
tion has optimal approximation properties on mesh sequen
es with optimalapproximation properties. In order to obtain a pie
ewise a�ne representation, it is useful to asso
iate the uniquedegree of freedom of ea
h element to a point with suitable properties.De�nition 7 (Cell 
enters). Let pThqhPH be a shape- and 
onta
t-regular mesh sequen
e. We say that pThqhPHadmits a set of 
ell 
enters if (i) for every T P Th there exists a point xT su
h that T is star-shaped with respe
tto xT (the 
ell-
enter) and (ii) there exists ̺3 ¡ 0 su
h that for all h P H, all T P Th, and all F P FT ,

dT,F
def� distpxT , F q ¥ ̺3hT . (6)De�nition 8 (Admissible mesh sequen
e). We say that the mesh sequen
e pThqhPH is admissible if it is shape-and 
onta
t-regular, it has optimal polynomial approximation properties, and there exists a set of 
ell 
enters.Admissible mesh sequen
es in
lude general polyhedral dis
retizations with possibly non
onforming interfa
es;see Figure 1 for an example. For all h P H we 
an de�ne a pyramidal submesh of Th as follows:

Sh
def� tPT,F uTPTh, FPFT

, (7)where, for all T P Th and all F P FT , PT,F denotes the open pyramid of apex xT and base F , i.e.,
PT,F

def� tx P T | Dy P F zBF, Dθ P p0, 1q | x � θy � p1� θqxT u.The pyramids tPT,F uTPTh, FPFT
are non-degenerated owing to assumption (6). Sin
e fa
es are planar, for all

T P Th and all F P FT there holds |PT,F |d � |F |d�1dT,F

d
, (8)
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F F

F F(a) L-groups 
ontaining the fa
e F . The primaryelement Tg su
h that g � FT is shaded xT
xT2

xT1

F1

F2(b) L-
onstru
tionFigure 2. L-
onstru
tionand, for all T P Th, ¸
FPFT

|PT,F |d � ¸
FPFT

|F |d�1dT,F

d
� |T |d. (9)1.2. The L-
onstru
tionIn this se
tion we brie�y re
all the L-
onstru
tion originally introdu
ed by Aavatsmark, Eigestad, Mallison,and Nordbotten [3℄ and analyzed by Agélas, Di Pietro, and Droniou [4℄. This 
onstru
tion is a fundamentalingredient in the de�nition of the 

G spa
es presented in this work. Let κ P rL8pΩqsd,d denote a symmetri
,uniformly ellipti
 tensor �eld su
h that the spe
trum of κpxq lies in rλ, λs for a.e. x P Ω. For the sake ofsimpli
ity we assume hen
eforth that �h P H, κ P rP0

dpThqsd,d,and denote by κ
1{2 the pie
ewise symmetri
, uniformly ellipti
 tensor �eld su
h that κ1{2pxqκ1{2pxq � κpxq fora.e. x P Ω. The pie
ewise regular 
ase 
an be handled with minor modi�
ations. For all F P Fh and all T P TFwe denote the di�usion in the normal dire
tion by

λT,F
def� κ|TnF �nF .The key idea of the L-
onstru
tion is to use d 
ell and boundary fa
e values (provided, in this 
ase, by ahomogeneous boundary 
ondition) to express a 
ontinuous pie
ewise a�ne fun
tion with 
ontinuous di�usive�uxes. The values are sele
ted using d neighboring fa
es belonging to a 
ell and sharing a 
ommon vertex. Morepre
isely, we de�ne the set of L-groups as follows:

G
def� tg � FT X FP , T P Th, P P Nh | cardpgq � du ,with FT and FP given by (1) and (2) respe
tively. For ea
h g P G we sele
t a primary element Tg su
h that

g � FTg
; see Figure 2(a). Su
h an element may not be unique as non-
onvex elements are allowed. We let, forthe sake of brevity,

gi
def� gX F i

h, gb
def� gX Fb

h .It is also useful to introdu
e a symbol for the set of 
ells 
on
urring to the L-
onstru
tion as well as for theunion of the pyramids based on the group fa
es (see Figure 2): For all g P G,
Tg

def� tT P Th | T P TF , F P gu, Pg

def� ¤
FPg, TPTF

PT,F . (10)



TITLE WILL BE SET BY THE PUBLISHER 7The pat
h Pg is shaded in Figures 1 and 2(b). Let now g P G. In what follows, for any D � R of 
odimension lwe denote by xϕyD the average xϕyD def� ³
D
ϕ{|D|d�l.For all vh P Vh we 
onstru
t the fun
tion ξg
vh

pie
ewise a�ne on the family of pyramids tPT,F uFPg, TPTF
su
hthat:(i) ξg

vh
pxT q � vT for all T P Tg and xξg

vh
yF � ξg

vh
pxF q � 0 for all F P gb;(ii) ξg

vh
is 
ontinuous a
ross every interfa
e in the group: For all F P gi su
h that F � BT1 X BT2,�x P F, ξg

vh
|T1
pxq � ξg

vh
|T2
pxq;(iii) ξg

vh
has 
ontinuous di�usive �ux a
ross every interfa
e in the group: For all F P gi su
h that F � BT1XBT2,pκ∇ξg

vh
q|T1

�nF � pκ∇ξg
vh
q|T2

�nF .(The quantities in both sides are 
onstant sin
e ξg
vh

is pie
ewise a�ne and the fa
e F is planar).The following result is instrumental to derive approximation properties for the 

G spa
e.Proposition 9 (L-
onstru
tion). For all vh P Vh and all g P G, there holds
Agp∇ξg

vh
q|Tg

� bgpvhq, (11)where the matrix Ag P Rd,d and the linear appli
ation bg : Vh Ñ Rd are de�ned row-wise by
Ag

def� ����λT,F

dT,F
pxT � xTg

q � κTg
nTg,F � κT,FnT,F

	t

giQF�TgXT�
λTg,F

dTg,F
pxF � xTg

q	t

FPgb

��� , bgpvhq � ����λT,F

dT,F
pvT � vTg

q	
giQF�TgXT��λTg,F

dTg,F
vTg

	
FPgb

��� .(12)Proof. See [4, Lemma 3.1℄. �In order to express ξg
vh

terms of the values tvT uTPTg
, the matrix Ag must be invertible. Simple su�
ientinversibility 
onditions are dis
ussed in what follows. In pra
ti
e, however, the inversibility 
an be 
he
keddire
tly, and ba
kup strategies 
an be devised; see Remark 11.1.3. The 

G spa
eIn this se
tion we introdu
e a 

G spa
e based on the L-
onstru
tion and on a lo
al gradient inspired byGreen's formula. For a fa
e F P F i

h, let GF denote the set of L-groups 
ontaining F ,
GF

def� tg P G | F P gu.Assumption 10 (Existen
e of an L-group leading to an invertible matrix for ea
h interfa
e). We assume that,for all F P F i
h, GF is non-empty and there exists g P GF su
h that the matrix Ag de�ned by (12) is invertible.For the sake of simpli
ity, Assumption 10 holds ta
itly from this point on. Should this not be true, ba
kupstrategies 
an be envisaged, as dis
ussed in Remark 11. The dis
rete gradient is obtained as follows:(i) For every F P F i

h we sele
t a unique L-group gF yielding an invertible matrix and, for all vh P Vh, wedenote by ξgF
vh

the pie
ewise a�ne fun
tion on tPT,F uTPTF
obtained from the L-
onstru
tion. Whenevermore than one su
h group is present, we sele
t g P GF for whi
h }A�1

g
}2 is minimal (this ensures thebest approximation properties; see Lemma 20 and Assumption 21). For 
onvenien
e of notation, for allboundary fa
es F � BT X BΩ we introdu
e the a�ne fun
tion ξgF

vh
on PT,F su
h that ξgF

vh
|F � 0 on F and

ξgF
vh
pxT q � vT . Su
h a fun
tion is well-de�ned sin
e fa
es are planar.
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e re
onstru
tion operator Th : Vh Ñ RFh whi
h realizes the mapping Vh Q vh ÞÑ
Thpvhq � pvF qFPFh

with pvF qFPFh
P RFh and, for all F P Fh,

vF � xξgF

vh
yF � ξgF

vh
pxF q. (13)(iii) The gradient re
onstru
tion operator Gh : Vh Ñ rP0

dpThqsd is de�ned following Droniou and Eymard [23℄as the appli
ation Vh Q vh ÞÑ Ghpvhq P rP0
dpThqsd with�T P Th, Ghpvhq|T � 1|T |d ¸

FPFT

|F |d�1pvF � vT qnT,F . (14)where we have set pvF qFPFh
� Thpvhq.The expression (14) is inspired by Green's formula. As su
h, vF has to be related to the average on the fa
e F .For a�ne fun
tions, the average 
oin
ides with the bary
entri
 value, thereby justifying the 
hoi
e in (13). Thelinear re
onstru
tion operator R

ccg
h : Vh Ñ P1

dpThq leading to the 

G spa
e is �nally de�ned as the mappingVh Q vh ÞÑ vh P P1
dpThq with�T P Th, �x P T, vh|T pxq � vT �Ghpvhq|T �px� xT q.In the above formula, vT is interpreted as the point value in xT . The in
omplete polynomial spa
e V

ccg
h uponwhi
h the 

G method relies is the image of the algebrai
 spa
e of degrees of freedom Vh through R

ccg
h ,

V
ccg
h

def� R
ccg
h pVhq � P1

dpThq.Pro
eeding by 
ontradi
tion, it is a simple matter to prove that R
ccg
h is inje
tive from Vh to P1

d and, hen
e,bije
tive from Vh to V
ccg
h . It is also useful to observe that the dis
rete spa
e V

ccg
h is 
ontained in the largerbroken Sobolev spa
e H1pThq.Remark 11 (Ba
kup strategies). Numeri
al eviden
e [3, 4℄ shows that Assumption 10 is true in most 
ir
um-stan
es. In the presen
e of highly heterogeneous di�usion tensors or for extremely deformed meshes, it mayo

ur, however, that no L-group yielding an invertible matrix 
an be found for some interfa
es. In this 
ase,several ba
kup strategies are possible, and the 
hoi
e 
an be mostly guided by the implementation at hand. Wemention two possibilities, although many more are possible. A �rst strategy relying on the tight link of 

Gmethods to dG methods 
onsists in using a full P1

d basis on the mesh elements whi
h have at least one fa
efor whi
h no invertible L-group exists. This results in a lo
al in
rease of the number of unknowns and yields a
ompletely robust method. Whenever exa
tly one unknown per 
ell is allowed, the L-
onstru
tion 
an be re-pla
ed by the bary
entri
 interpolator of [30, �2.2℄. The method 
an then be 
onstru
ted provided the d pointsinvolved in the bary
entri
 interpolation form a non-degenerate simplex (an extremely mild mesh regularityassumption). In this 
ase, however, a lo
al loss of pre
ision may be observed as the bary
entri
 interpolatordoes not honor the heterogeneity of κ. We emphasize that no ba
kup strategy whatsoever was required in thenumeri
al examples of �4.Remark 12 (Polynomial order adaptivity). In the spirit of the previous remark, the polynomial degree 
an beadapted in 

G methods by using full polynomial spa
es inside sele
ted elements. This is naturally handledwhenever the dis
rete formulation relying on the 

G spa
e is inspired by a dG method, as is the 
ase for allthe examples provided in this work.1.4. Dis
rete fun
tional analysisThis se
tion 
olle
ts some dis
rete fun
tional analysis results that will be used in the rest of the paper. Thematerial is mainly adapted from [20, �6℄, to whi
h we refer for further details. We state, in parti
ular, the
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es in the Hilbertian 
ase and the dis
rete 
ounterpart of theRelli
h�Kondra
hov theorem. To this end, we introdu
e the following norm on H1pThq:~v~2 def� }∇hv}2rL2pΩqsd � |v|2J, |v|2J def� ¸
FPFh

1

hF

}JvK}2L2pF q, (15)where ∇h denotes the broken gradient on Th, i.e., for all v P H1pThq, ∇hv|T � ∇v for all T P Th.Theorem 13 (Dis
rete Sobolev embeddings, Hilbertian 
ase). For all q su
h that (i) 1 ¤ q   �8 if d ¤ 2,(ii) 1 ¤ q ¤ 2d
d�2

if d ¡ 2, there is σq independent of h su
h that�vh P Pk
dpThq, }vh}LqpΩq ¤ σq~vh~. (16)The 
onstant σq additionally depends on k, |Ω|d and on the mesh regularity parameters.The dis
rete Poin
aré inequality is obtained as a spe
ial 
ase for q � 2. For a proof in the more generalnon-Hilbertian 
ase we refer to [20℄. Sequen
es in pV ccg

h qhPH uniformly bounded in the ~�~-norm possess animportant 
ompa
tness property. Following the idea of Brezzi, Manzini, Marini, Pietra, and Russo [12℄ modi�eda

ording to [5, �3.1℄, we introdu
e for all F P Fh the lo
al lifting operator rω,F : L2pF q Ñ rP0
dpThqsd whi
hmaps every ϕ P L2pF q to rω,F pϕq P rP0

dpThqsd solution to:»
Ω

rω,F pϕq�τh � »
F

ϕtτhuω�nF , �τh P rP0
dpThqsd. (17)For further use we also introdu
e the global lifting Rω,hpϕq def� °

FPFh
rω,F pϕq. If ωT1,F � ωT2,F � 1{2 for all

F P F i
h with F � BT1XBT2 we simply write rF and Rh. The lifting operators 
an be used to de�ne a 
orre
teddis
rete gradient a

ounting for the jumps a
ross mesh interfa
es and on BΩ. More pre
isely, we introdu
e thelinear operator Gω,h : H1pThq Ñ rL2pΩqsd de�ned as follows: For all v P H1pThq,

Gω,hpvq def� ∇hv �Rω,hpJvKq. (18)As before, if ωT1,F � ωT2,F � 1{2 for all F P F i
h with F � BT1 X BT2 we omit the subs
ript ω and write Gh.Lemma 14 (Dis
rete Relli
h�Kondra
hov). Let pvhqhPH be a sequen
e in pPk

dpThqqhPH, k ¡ 0, uniformlybounded in the ~�~-norm. Then, there exists a fun
tion v P H1
0 pΩq su
h that as h Ñ 0, up to a subsequen
e

vh Ñ v strongly in L2pΩq.Proof. See [21, Theorem 6.3℄. �Lemma 15 (Weak asymptoti
 
onsisten
y of Gω,h for sequen
es of dis
rete fun
tions). Let pvhqhPH be asequen
e in pPk
dpThqqhPH, k ¡ 0, uniformly bounded in the ~�~-norm. Then, as h Ñ 0, Gω,hpvhq á ∇v weaklyin rL2pΩqsd, where v P H1

0 is the limit provided by Theorem 14.Proof. Denote by πh the L2-orthogonal proje
tion onto rP1
dpThqsd. To prove the weak 
onvergen
e of Gω,hpvhqto ∇v, let Φ P rC8

0 pΩqsd, set Φh
def� πhΦ, and observe that»

Ω

Gω,hpvhq�Φ � � »
Ω

vh∇�Φ�
ŢPTh

»BT Φ�nT vh� ¸
FPFh

»
Ω

rω,F pJvhKq�Φh � � »
Ω

vh∇�Φ� ¸
FPFh

»
F

JvhKtΦ�Φhuω�nF ,where we have used the de�nition of the L2-orthogonal proje
tion, the fa
t that tΦuω � Φ on every F P Fh,and (17). Denote by T1 and T2 the addends in the right-hand side. Clearly, T1 Ñ ³
Ω
v∇�Φ. For the se
ondterm, the Cau
hy�S
hwarz inequality yields T2 ¤ |vh|J � �°

FPFh
hF

³
F
|tΦ� Φhuω|2�1{2, whi
h tends to zero



10 TITLE WILL BE SET BY THE PUBLISHERowing to the approximation properties of the L2-orthogonal proje
tion for the smooth fun
tion Φ together withthe fa
t that |vh|J is uniformly bounded by assumption. �It is important to observe that, sin
e V ccg
h � P1

dpThq, both Theorems 13 and 14 and Lemma 15 hold a fortiorifor the sequen
e of 

G spa
es pV ccg
h qhPH. 2. Pure diffusion2.1. The dis
rete problemThe spa
e V

ccg
h is used in this se
tion to dis
retize the heterogeneous di�usion problem�∇�pκ∇uq � f in Ω,

u � 0 on BΩ,with sour
e term f P L2pΩq. The weak form of this problem is the following:Find u P V s.t. apu, vq � »
Ω

fv for all v P V , (19)with V � H1
0 pΩq and apu, vq def� ³

Ω
κ∇u�∇v. The fun
tions in V

ccg
h are possibly dis
ontinuous a
ross interfa
es,and V

ccg
h is therefore not V -
onforming. In order to devise a suitable dis
retization, we take inspiration from thework of Arnold [6℄ on the weak enfor
ement of potential 
ontinuity a
ross interfa
es. In parti
ular, we 
onsiderthe modi�
ation proposed by Di Pietro, Ern, and Guermond [22℄ in the 
ontext of degenerate di�usion-adve
tion-rea
tion problems to attain robustness with respe
t to the di�usion tensor κ. In [22℄ robustness is a
hievedby relating the weights introdu
ed in De�nition 1 to the di�usion on both sides of an interfa
e. The idea ofdi�usion-dependent weights 
an be tra
ed ba
k to the work of Burman and Zunino [15℄ on mortaring te
hniquesfor a singularly perturbed di�usion-adve
tion equation. For all F P F i

h su
h that F � BT1 X BT2, we let
ωT1,F

def� λT2,F

λT1,F � λT2,F

, ωT2,F
def� λT1,F

λT1,F � λT2,F

.The analysis in the spirit of Céa's Lemma requires to extend the dis
rete bilinear form to a 
ontinuous spa
e
ontaining the exa
t solution. In order to guarantee that boundary terms remain well-de�ned when doing so,it is useful to introdu
e a spa
e V: featuring additional lo
al regularity with respe
t to V .De�nition 16 (Spa
e V:). We let V: denote the subspa
e of V spanned by fun
tions v su
h that, for all T P Th,
∇v�nT |T P L2pBT q.The spa
e 
ontaining both the dis
rete and the 
ontinuous solution is de�ned as

V:h def� V
ccg
h � V:.We are now ready to de�ne the bilinear form ah P LpV:h � V:h,Rq,

ahpv, wq def� »
Ω

κ∇hv�∇hw � ¸
FPFh

»
F

tκ∇hvuω �nF JwK � ¸
FPFh

»
F

JvKtκ∇hwuω �nF � ¸
FPFh

η
γF

hF

»
F

JvKJwK, (20)where η ¡ 0 denotes a user-dependent penalty parameter while γF is su
h that
γF

def� #
λT1,FλT2,F

λT1,F�λT2,F
if F P F i

h, F � BT1 X BT2,

λT,F if F P Fb
h , F � BT X BΩ.
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rete problem readsFind uh P V
ccg
h s.t. ahpuh, vhq � »

Ω

fvh for all vh P V
ccg
h . (21)2.2. Basi
 error estimateWe introdu
e the following data dependent norms on V:h:~v~2

κ

def� }κ1{2∇hv}2rL2pΩqsd � |v|2J,κ, ~v~2
κ,: def� ~v~2

κ
� ¸

TPTh

hT }κ1{2∇v�nT }2L2pBT q, (22)where the jump seminorm is given by |v|2J,κ def� ¸
FPFh

γF

hF

}JvK}2L2pF q.Lemma 17 (Properties of the bilinear form ah). The bilinear form ah enjoys the following properties:(i) Consisten
y. Assume u P V:. Then, for all vh P V
ccg
h ,

ahpu, vhq � »
Ω

fvh;(ii) Coer
ivity. For all η ¡ η � C2
trNB there holds�vh P V

ccg
h , ahpvh, vhq ¥ Csta~vh~2

κ
,with Csta

def� pη � C2
trNBqtmaxp1{2, η � C2

trNBqu�1 independent of both κ and h;(iii) Boundedness. There is Cbnd independent of the meshsize h and of the di�usion 
oe�
ient κ su
h that�pv, whq P V:h � V
ccg
h , ahpv, whq ¤ Cbnd~v~κ,:~wh~κ.Proof. We preliminarily note the following bound resulting from the Cau
hy�S
hwarz inequality:�pv, whq P V:h � V

ccg
h ,

����� ¸
FPFh

»
F

tκ∇hvuω�nF JwhK

����� ¤ �
ŢPTh

¸
FPFT

hF }κ1{2∇v|T �nF }2L2pF q�1{2 |wh|J,κ. (23)Consisten
y. Plugging the exa
t solution u into the �rst argument of ah and integrating by parts we obtain,for all vh P V
ccg
h ,

ahpu, vhq � � »
Ω

∇�pκ∇uqvh � ¸
FPF i

h

»
F

Jκ∇huK�nF tvhuω � ¸
FPFh

»
F

JuKtκ∇hvhuω�nF � ¸
FPFh

η
γF

hF

»
F

JuKJvhK,where tvhuω def� ωT2,F vh|T1
� ωT1,F vh|T2

. The 
on
lusion follows using the fa
t that �∇�pκ∇uq � f for a.e.
x P Ω for the �rst term and the fa
t that both u and its di�usive �ux are 
ontinuous a
ross interfa
es and uvanishes on BΩ to infer that the remaining terms are zero.Coer
ivity. It is inferred from the bound (23) together with the dis
rete tra
e inequality (4) that�vh P V

ccg
h ,

����� ¸
FPFh

»
F

tκ∇hvhuω�nF JvhK

����� ¤ CtrN
1{2B }κ1{2∇hvh}rL2pΩqsd |vh|J,κ.



12 TITLE WILL BE SET BY THE PUBLISHERUsing the inequality 2ab ¤ ǫa2 � 1{ǫb2 valid for any ǫ ¡ 0 together with the above bound, we obtain
ahpvh, vhq � }κ1{2∇hvh}2rL2pΩqsd � 2

¸
FPFh

»
F

tκ∇hvhuω�nF JvhK� η|vh|2J,κ¥ p1� C2
trNBǫq}κ1{2∇hvh}2rL2pΩqsd � pη � 1{ǫq|vh|2J,κ.The desired result follows by properly sele
ting ǫ.Boundedness. Let pv, whq P V:h� V

ccg
h and let T1, . . . ,T4 denote the addends in the expression of ahpv, whq ob-tained from (20). Using the Cau
hy�S
hwarz inequality it is readily inferred that |T1�T4| ¤ p1�ηq~v~κ~wh~κ.Moreover, owing to the bound (23), |T2| ¤ ~v~κ,:|wh|J,κ ¤ ~v~κ,:~wh~κ. Finally, |T3| ¤ CtrN

1{2B |v|J,κ}κ1{2∇hwh}rL2pΩqsd ,and the 
on
lusion follows. �Theorem 18 (~�~κ-error estimate). Assume u P V:. There holds~u� uh~κ ¤ �
1� Cbnd

Csta



inf

vhPV ccg

h

~u� vh~κ,:.Proof. By the triangular inequality, for all vh P V
ccg
h there holds ~u� uh~κ ¤ ~u� vh~κ �~vh � uh~κ. Usingthe 
oer
ivity, 
onsisten
y and boundedness of ah it is inferred

Csta~uh � vh~2
κ
¤ ahpuh � vh, uh � vhq � ahpu� vh, uh � vhq ¤ Cbnd~u� vh~κ,:~uh � vh~κ,hen
e ~uh� vh~κ ¤ CbndC

�1
sta~u� vh~κ,:. The 
on
lusion follows observing that ~u� vh~κ ¤ ~u� vh~κ,:. �An important remark is that the error estimate in Theorem 18 is robust in that the multipli
ative 
onstantin the right-hand side does not depend on κ. To infer a 
onvergen
e rate from Theorem 18 we have to studythe approximation properties of the dis
rete spa
e V

ccg
h and further bound the right-hand side.2.3. Convergen
e rate2.3.1. The heterogeneous 
aseWe �rst 
onsider the heterogeneous 
ase and fo
us on exa
t solutions exhibiting further lo
al regularity. For

k ¥ 0 de�ne the spa
es of pie
ewise regular fun
tions
CkpThq def� tv P L2pΩq | v|T P CkpT q, �T P Thu,
lassi
ally equipped with the norm }v}CkpThq def� max

TPTh

max
0¤l¤k, 1¤i¤d

}Bliv}C0pT q,and }w}C0pT q def� maxxPT |wpxq| for all w P C0pT q.Theorem 19 (Test spa
e). Let QTh,κ be the spa
e of fun
tions ϕ : ΩÑ R enjoying the following properties:(i) Global and lo
al regularity. The fun
tion ϕ belongs to C0pΩq X C2pThq;(ii) Continuity of the tangential derivatives at interfa
es. For all F P F i
h su
h that F � BT1 X BT2, all ve
tor

t parallel to F , and all x P F ,
∇ϕ|T1

pxq�t � ∇ϕ|T2
pxq�t;(iii) Continuity of the di�usive �ux at interfa
es. For all F P F i

h su
h that F � BT1 X BT2, and all x P F ,pκ∇ϕq|T1
pxq�nF � pκ∇ϕq|T2

pxq�nF .
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0 pΩq.An important remark is that QTh,κ is a subspa
e of V:, and so the assumptions required to prove the errorestimate in Theorem 18 are met by solutions that are in QTh,κ. In what follows we denote by I

ccg
h : C0pThq Ñ Vhthe interpolator at 
ell 
enters whi
h maps every fun
tion v P C0pThq onto the ve
tor

I
ccg
h pvq � pvpxT qqTPTh

P Vh.Lemma 20 (Consisten
y of the gradient re
onstru
tion). For all h P H, all v P QTh,κ, and all F P Fh,|∇ξgF

vh
�∇vpxTgF

q| ¤ C
�
1� }A�1

gF
}2�hTgF

,where vh � I
ccg
h pvq and C depends on κ, on the mesh regularity parameters, and on }v}C2pThq but not on h.Proof. Let F P F i

h. It is proved in [4, Lemma 3.3℄ that |∇ξgF
vh

�∇vpxTgF
q| ¤ C

�
1� }A�1

gF
}2�maxTPTgF

hT . Tobound the term in the right-hand side, use the shape- and 
onta
t-regularity of the mesh to 
on
lude that, forall T P TgF
ztTgF

u, ̺1̺2hT ¤ hF ¤ hTgF
. Hen
e, maxTPTgF

hT ¤ p̺1̺2q�1hTgF
, whi
h yields the desired result.A similar argument 
an be used for boundary fa
es. �In order to estimate the 
onvergen
e rate of the method (21) for solutions inQTh,κ, we introdu
e the following.Assumption 21 (Uniform bound on }A�1

gF
}2). We assume that there exists Λ   �8 independent of the meshsize

h uniformly bounding the set t}A�1
gF
}2uhPH, FPF i

h
from above.Lemma 22 (Consisten
y of the tra
e re
onstru
tion). Let v P QTh,κ and set vh

def� I
ccg
h pvq and pvF qFPFh

� Thpvhq.Under Assumption 21 there holds for all h P H, all v P QTh,κ, and all F P Fh,|vF � vpxF q| ¤ Ch2
TgF

,where C depends on κ, on the mesh regularity parameters, on Λ, and on }v}C2pThq.Proof. The assertion is trivially veri�ed for F P Fb
h . Let now F P F i

h. Using the Taylor expansion of vabout xTgF
together with the fa
t that TgF

is star-shaped with respe
t to xTgF
, we 
on
lude that there exists

ypxF q P rxTgF
,xs su
h that
vpxF q � vpxTgF

q �∇vpxTgF
q�pxF � xTgF

q � 1

2
pxF � xTgF

qtHvpypxF qqpxF � xTgF
q,where HvpypxF qq denotes the Hessian of v evaluated at ypxF q. Similarly, letting vh � I

ccg
h pvq and pvF qFPFh

def�
Thpvhq P RFh ,

vF � vpxTgF
q �∇ξgF

vh
|TgF

�pxF � xTgF
q.Hen
e, |vF � vpxF q| ¤ hT |∇ξgF

vh
|TgF

�∇vpxF q| � h2
T

2
}v}C2pT q. The 
on
lusion follows from Lemma 20. �For further use we introdu
e the following augmented version of the ~�~-norm on V::~v~2: def� ~v~2 � ¸

TPTh

hT }∇v|T �nT }2L2pBT q. (24)Theorem 23 (Approximation of fun
tions in QTh,κ). Let v P QTh,κ and set vh
def� pRccg

h � Iccg
h qpvq P V

ccg
h .Then, under Assumption 21 there holds~v � vh~κ,: ¤ λ

1{2~v � vh~: ¤ Cvh, (25)with Cv depending on κ, on the mesh regularity parameters, on Λ, and on }v}C2pThq.
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losely follows that of [5, Lemma 3.10℄. Sin
e it is 
lear that ~w~κ,: ¤ λ
1{2~w~: for all

w P H1pThq, we only show the se
ond inequality in (25). In the rest of the proof we abbreviate a À b theinequality a ¤ Cb where C 
an depend on κ, on the mesh regularity parameters, on Λ, and on }v}C2pThq. Let
v P QTh,κ and set

vh
def� I

ccg
h pvq P Vh, vh

def� R
ccg
h pvhq P V

ccg
h , pvF qFPFh

� Thpvhq P RFh .(i) Estimate of }∇v �∇hvh}rL2pΩqsd . For all T P Th and all x P T there holds
∇hvh|T �∇vpxq � #

∇vpxT q �∇vpxq+�#
1|T |d ¸

FPFT

|F |d�1 pvF � vpxF qqnT,F

+�#
1|T |d ¸

FPFT

|F |d�1 pvpxF q � vpxT qqnT,F �∇vpxT q+ def� T1 � T2 � T3.It is 
lear that |T1| ¤ }v}C2pT qhT , hen
e °
TPTh

}T1}2L2pT q À |Ω|dh2. Using Lemma 22 together with thegeometri
 relation (9) and mesh regularity it is inferred that|T2| ¤ ¸
FPFT

|F |d�1dT,F|T |d |vF � vpxF q|
dT,F

À d
h2
TgF

dT,F

À hTgF
.As a result, °TPTh

}T2}2L2pT q À |Ω|dh2. To handle the last term, we use the magi
 formula [5, eq. (33)℄: For all
T P Th and all x P T ,

1|T |d ¸
FPFT

|F |d�1pxF � xqipnT,F qj � δij , (26)where δij is Krone
ker's symbol. By virtue of (26), there holds
T3 � 1|T |d ¸

FPFT

|F |d�1 rvpxF q � vpxT q �∇vpxT q�pxF � xT qsnT,F ¤ ¸
FPFT

|F |d�1dT,F|T |d }v}C2pT qhT .Pro
eeding as for T2, we easily infer that °TPTh
}T3}2L2pT q À |Ω|dh2, thereby 
on
luding that}∇v �∇hvh}rL2pΩqsd À h.(ii) Estimate of the remaining terms in ~�~:. By the 
ontinuous tra
e inequality (5),|v � vh|2J À ¸

FPFh

h�1
F

¸
TPTF

}pv � vhq|T }2L2pF q ¤ C2
tr,c

¸
FPFh

h�1
F

¸
TPTF

!
h�1
T }v � vh}2L2pT q � hT |v � vh|2H1pT q) .On the other hand, owing to the previous point, for all T P Th and all x P T , |vT�vhpxq|�hT |∇hvh|T�∇vpxq| À

h2. It follows easily that |v� vh|J À h. The term °
TPTh

hT }∇pv � vhq|T �nT }L2pBT q 
an be handled in a similarway, thereby 
on
luding the proof. �Corollary 24 (Convergen
e rate, heterogeneous 
ase). Assume u P QTh,κ. Then, under Assumption 21, thereholds ~u� uh~κ ¤ Chwith C � Cuλ
1{2 �

1� Cbnd

Csta

	 and Cu results from Theorem 23.
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aseWe assume throughout this se
tion that
κ � 1d,d, d P t2, 3u. (27)The more general 
ase κ � ν1d, ν ¡ 0, 
an be handled with minor modi�
ations. When (27) holds, 
onvergen
erates 
an be estimated with milder regularity assumptions on the exa
t solution, and L2 error estimates for themethod (21) 
an be obtained by the Aubin�Niets
he tri
k [8, 35℄. The key point is here to show how optimal
onvergen
e rates 
an be obtained avoiding pointwise estimations, thereby removing the need for the stronglo
al regularity assumption u P C2pThq used all along the previous se
tion. To this end, we need to introdu
efurther mild assumptions on the mesh family. For all fa
es we de�ne a pat
h of pyramids on whi
h the pie
ewisea�ne fun
tions tξgF

vh
uFPFh

are required to exhibit approximation properties. More pre
isely, for all F P Fh let
PF

def� #
PgF

if F P F i
h,

PT,F if F � BT X BΩ,with PgF
de�ned by (10); see Figure 1.Assumption 25 (Approximation property for L-
onstru
tions). We assume that the L-
onstru
tions are su
hthat, for all 0 ¤ l ¤ 1 with l ¡ d{2�1, there exists C independent of the meshsize h su
h that, for all 0 ¤ m ¤ l�1,and all F P Fh �v P H l�1pPF q, |v � ξgF

vh
|HmpPF q ¤ Chl�1�m

PF
|v|Hl�1pPF q,with vh � I

ccg
h pvq. Moreover, there exists ̺4 independent of the meshsize h su
h that, for all F P Fh and all

T P TF , hPF
¤ ̺4hT .Some 
omments are of order. It is worth giving a hint of how Assumption 25 
ould be proved. We start byobserving that Assumption 10 has a straightforward interpretation in the homogeneous 
ase, as it amounts torequiring that, for all F P F i

h, there exists at least a group g P GF su
h that the 
ell 
enters of the elements in Tgand the bary
enters of the fa
es F P gb form a non-degenerate simplex Sg; see Figure 1. Assumption 21 is thenessentially a shape-regularity requirement on the family of simpli
es tSgF
uhPH, FPF i

h
. A se
ond important remarkis that, for all v su�
iently regular, the fun
tions ξg

vh
with vh � I

ccg
h pvq 
oin
ides with the Lagrange interpolatoron Sg. Assumption 25 
an then be proved by 
lassi
al FE te
hniques by using, e.g., the a�ne map onto thereferen
e simplex and estimating the norms on the ball 
ir
ums
ribed to PF . Using the 
ir
ums
ribed ball allowsto have a uniform bound on the Deny�Lions 
onstant appearing when pro
eeding as in [27, Theorem 1.103℄.Clearly, this reasoning breaks down 
lose to the boundary of the domain Ω, as the ball may no longer be
ontained in Ω. As a result, we 
an interpret Assumption 25 as a requirement that the pat
hes asso
iated tothe L-
onstru
tion near the boundary of Ω be �not too far� from the simplex formed by the 
ell 
enters. To
on
lude, we point out that the assumption l ¡ d{2� 1 is ne
essary to ensure that point values are well-de�nedinside the elements. This is why the spa
e dimension has been restri
ted to t2, 3u in (27).Theorem 26 (Approximation of fun
tions in V XH2pΩq). Under Assumption 25, there holds�v P V XH2pΩq, ~v � vh~: ¤ Ch}v}H2pΩq,with vh

def� pRccg
h � Iccg

h qpvq P V
ccg
h and C depending on the mesh regularity parameters but not on h.Proof. Let v P V XH2pΩq, and set vh

def� I
ccg
h pvq P Vh and pvF qFPFh

� Thpvhq P RFh . In the rest of the proofwe abbreviate a À b the inequality a ¤ Cb where C 
an depend on the mesh regularity parameters but not onthe meshsize h.



16 TITLE WILL BE SET BY THE PUBLISHER(i) Estimate of }∇v �∇hvh}rL2pΩqsd . The quantity to estimate is de
omposed as follows:}∇v �∇hvh}2rL2pΩqsd �
ŢPTh

¸
FPFT

»
PT,F

��∇v �∇ξgF

vh
�∇ξgF

vh
�∇vh

��2À
ŢPTh

¸
FPFT

»
PT,F

��∇v �∇ξgF

vh

��2 � ¸
TPTh

¸
FPFT

»
PT,F

��∇ξgF

vh
�∇vh

��2 def� T1 � T2.For the �rst term it su�
es to use Assumption 25 to infer
T1 �

ŢPTh

¸
FPFT

|v � ξgF
vh
|2H1pPT,F q À h2|v|2H2pΩq.To estimate the se
ond term, preliminarily observe that, for all T P Th,

∇hvh|T � ¸
F 1PFT

|F 1|d�1|T |d �
ξgF 1
vh

|PT,F 1 pxF 1q�vT

	
nT,F 1 � ¸

F 1PFT

|F 1|d�1|T |d ∇ξgF 1
vh

|PT,F 1 �pxF 1�xT qnT,F 1 ,where we have used the linearity of ξgF 1
vh

to infer that ξ
gF 1
vh

|PT,F 1 pxF q � vT � ∇ξ
gF 1
vh

|PT,F 1 �pxF 1 � xT q. Usingformula (26), we obtainx∇vyT �∇hvh|T � ¸
F 1PFT

|F 1|d�1|T |d �x∇vyT �∇ξgF 1
vh

|PT,F 1	 �pxF 1 � xT qnT,F 1 .Exploiting the above remark, the se
ond term is then de
omposed as follows:
T2 À ¸

TPTh

¸
FPFT

|PT,F |d ��∇ξgF
vh
|PT,F

� x∇vyPT,F

��2 �
ŢPTh

¸
FPFT

|PT,F |d ��x∇vyPT,F
� x∇vyT ��2�

ŢPTh

¸
FPFT

|PT,F |d ����� ¸
F 1PFT

|F 1|d�1|T |d �x∇vyPT,F 1 �∇ξgF 1
vh

|PT,F 1	 �pxF 1 � xT qnT,F 1 �����2�
ŢPTh

¸
FPFT

|PT,F |d ����� ¸
F 1PFT

|F 1|d�1|T |d �x∇vyT � x∇vyPT,F 1	 �pxF 1 � xT qnT,F 1 �����2 def� T2,1 � T2,2 � T2,3 � T2,4.The Cau
hy�S
hwarz inequality yields
∇ξgF

vh
|PT,F

� x∇vyPT,F
� 1|PT,F |d »PT,F

�
∇ξgF

vh
�∇v

� ¤ 1|PT,F |1{2d

|ξgF
vh

� v|H1pPT,F q,when
e, by Assumption 25,
T2,1 ¤

ŢPTh

¸
FPFT

|ξgF

vh
� v|2H1pPT,F q À h2|v|2H2pΩq.The term T2,2 
an be estimated in a similar fashion using the approximation properties of the L2 proje
tion of

∇v onto rP0
dpThqsd to 
on
lude. To estimate T2,3, observe preliminarily that, for all T P Th and all F 1 P FT ,equation (8) yields |F 1|d�1

�x∇vyPT,F 1 �∇ξgF 1
vh

|PT,F 1	 � d

dT,F 1 »PT,F 1 �∇v �∇ξgF 1
vh

�
.



TITLE WILL BE SET BY THE PUBLISHER 17The Cau
hy�S
hwarz inequality together with (6) yield����� ¸
F 1PFT

|F 1|d�1|T |d �x∇vyPT,F 1�∇ξgF 1
vh

|PT,F 1	 �pxF 1�xT q�����2 ¤ d2h2
T

d2T,F 1 |T |2d ����� ¸
F 1PFT

»
PT,F 1 �∇v �∇ξgF 1

vh

������2¤ d2h2
T

d2T,F 1 |T |2d # ¸
F 1PFT

|PT,F 1 |d+�# ¸
F 1PFT

|v � ξgF 1
vh

|2H1pPT,F 1 q+ � d2|T |d̺23 ¸
F 1PFT

|v � ξgF 1
vh

|2H1pPT,F 1 q.We therefore have
T2,3 ¤ d2

̺23 ŢPTh

¸
FPFT

# |PT,F |d|T |d ¸
F 1PFT

|v � ξgF 1
vh

|2H1pPT,F 1 q+¤ d2

̺23 ŢPTh

# ¸
FPFT

|PT,F |d|T |d +�# ¸
F 1PFT

|v � ξgF 1
vh

|2H1pPT,F 1 q+ ¤ d2

̺23

¸
TPTh

¸
F 1PFT

|v � ξgF 1
vh

|2H1pPT,F 1 q,and, by Assumption 25, we infer that T2,3 À h2}v}2
H2pΩq. Pro
eeding in a similar way, one 
an prove that

T2,4 À h2}v}2
Hl�1pΩq. In 
on
lusion, }∇v �∇hvh}rL2pΩqsd À h}v}H2pΩq.To 
on
lude, we observe that the fa
t that v vanishes on the boundary has been ta
itly used to estimate theerror asso
iated to the fun
tions ξgF

vh
on boundary fa
es F P Fb

h .(ii) Estimate of the remaining terms in ~�~:. We start by estimating }v � vh}L2pΩq. Let π1
h denote the L2-proje
tion on to P1

dpShq with Sh de�ned by (7). An appli
ation of the triangular inequality yields}v � vh}L2pΩq ¤ }v � π1
hv}L2pΩq � }π1

hv � vh}L2pΩq def� T1 � T2.By the approximation properties of the pyramidal submesh Sh (whi
h follow from the shape- and 
onta
t-regularity of the mesh Th as well as from the assumption that 
ell 
enters are uniformly away from the 
ellboundaries), there holds T1 À h2}v}H2pΩq. To pro
eed, we rewrite the se
ond term as follows:
T2
2 � ¸

TPTh

¸
FPFT

}π1
hv � vh}2L2pPT,F q.Sin
e, for all T P Th, all F P FT , and all x P PT,F , π1

hv|PT,F
pxq � xvyPT,F

�∇π1
hv|PT,F

�px� xT q, there holds,}π1
hv � vh}L2pPT,F q ¤ }xvyPT,F

� xξgF

vh
yPT,F

}L2pPT,F q � }∇pπ1
hv � ξgF

vh
q�px� xT q}L2pPT,F q¤ $&%»

PT,F

�»
PT,F

pv � ξgF

vh
q�2

,.-1{2 � hT |π1
hv � ξgF

vh
|H1pPT,F q¤ }v � ξgF

vh
}L2pPT,F q � hT |π1

hv � ξgF

vh
|H1pPT,F q.Assumption 25 then yields T2 À h2|v|H2pΩq. We therefore 
on
lude that}v � vh}L2pΩq À h2}v}H2pΩq. (28)To bound |v � vh|J and °

TPTh
hT }∇v|T �nF }L2pBT q use the 
ontinuous tra
e inequality (5) as in point (ii) ofTheorem 23 together with (28). �
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e rate, homogeneous 
ase). Let u P V XH2pΩq. Then, under Assumption 25,~u� uh~ ¤ Ch}u}H2pΩq, (29)with C independent of the meshsize h. Moreover, if ellipti
 regularity holds,}u� uh}L2pΩq ¤ Ch2}u}H2pΩq. (30)Proof. (i) Energy estimate (29). Use the error estimate of Theorem 18 together with the assumption (27) andTheorem 26 to 
on
lude that ~u� uh~ ¤ C
�
1� Cbnd

Csta

	 }v}H2pΩq.(ii) L2-error estimate (30). We only give a sket
h of the proof and refer, e.g., to [7℄ or [21, �4.1.3℄ for furtherdetails. Preliminarily remark that the bilinear form ah is 
oer
ive in V
ccg
h �V

ccg
h with respe
t to the augmentednorm ~�~:, i.e., there exists C 1

sta su
h that, for all η ¡ η and all vh P V
ccg
h , ahpvh, vhq ¥ C 1

sta~vh~2: (indeed,the ~�~-norm and the ~�~:-norm are uniformly equivalent on V
ccg
h ). Also, there exists C 1

bnd independent of themeshsize h su
h that, for all w, v P V:h, ah ¤ C 1
bnd~w~:~v~:. Hen
e, pro
eeding as in Theorem 18 and usingTheorem 26 we 
on
lude that ~u � uh~: ¤ Ch}v}H2pΩq with C independent of the meshsize h. Consider nowthe auxiliary problem Find χ P V su
h that apχ, vq � »

Ω

pu� uhqv for all v P V .By the ellipti
 regularity assumption, there exists Cell su
h that }χ}H2pΩq ¤ Cell}u�uh}L2pΩq. Moreover, owingto the symmetry and the 
onsisten
y of ah, ahpu�uh, χq � � ³
Ω
△χpu�uhq and, for χh � pRccg

h �Iccg
h qpχq P V

ccg
h ,

ahpu� uh, χhq � 0. As a result,}u� uh}2L2pΩq � ahpu�uh, χ�χhq À ~u�uh~:~χ�χh~: À ~u� uh~:h}χ}H2pThq À ~u� uh~:h}u� uh}L2pΩq,with À indi
ating inequalities up to a multipli
ative 
onstant independent of the meshsize h. To 
on
lude theproof, use the fa
t that ~u� uh~: ¤ Ch}v}H2pΩq. �2.4. Convergen
e to minimal regularity solutionsWe investigate the 
onvergen
e of the method (21) to minimal regularity solutions, i.e., solutions that barelysit in H1
0 pΩq. Throughout this se
tion we restore the original assumptions on the di�usion 
oe�
ient κ, and we
onsider an arbitrary spa
e dimension, i.e.

κ P rP0
dpThqsd,d, d ¥ 1.The analysis follows the ideas of Eymard, Gallouët, and Herbin [29, 30℄ originally developed in the 
ontext ofFV methods and re
ently transposed to dG methods by Di Pietro and Ern [20℄. An important remark is thatthe bilinear form ah admits the following equivalent form on V

ccg
h � V

ccg
h :

ahpuh, vhq � »
Ω

κGω,hpuhq�Gω,hpvhq � jhpuh, vhq, (31)with jhpuh, vhq def� ³
Ω
κRω,hpJuhKq�Rω,hpJvhKq �°

FPFh
ηγFh

�1
F

³
F
JuhKJvhK and dis
rete gradients de�ned by (18).When extended to V:h�V

ccg
h , this alternative form is no longer 
onsistent in the sense of point (i) in Lemma 17;see [20, Remark 3.3℄ and [21, �5.2.1℄. However, ah retains a di�erent form of 
onsisten
y whi
h su�
es to inferthe 
onvergen
e of the method when u only exhibits the minimal regularity.De�nition 28 (Asymptoti
 
onsisten
y). We say that the bilinear form ah is asymptoti
ally 
onsistent withthe exa
t bilinear form a on pV ccg

h qhPH if, for any sequen
e pvhqhPH in pV ccg
h qhPH uniformly bounded in the



TITLE WILL BE SET BY THE PUBLISHER 19~�~-norm, and for all ϕ P QTh,κ with ϕh
def� pRccg

h � Iccg
h qpϕq P V

ccg
h ,

lim
hÑ0

ahpvh, ϕhq � apv, ϕq � »
Ω

κ∇v�∇ϕ,and v P H1
0 pΩq results from Theorem 14.To prove the 
onvergen
e of the method, we then pro
eed as follows: (i) using the 
oer
ivity of ah we provea uniform bound for the ~�~-norm of the dis
rete solutions puhqhPH; (ii) by virtue of Theorem 14, we inferthe existen
e of u P V � H1

0 pΩq limit of puhqhPH; (iii) using the asymptoti
 
onsisten
y of ah together withthe fa
t that QTh,κ is dense in V , we 
on
lude that u � u (and, by the uniqueness of u, that the 
onvergen
eproperty extends to the whole sequen
e); (iv) using the above result, we prove the strong 
onvergen
e of thesequen
e pGω,hpuhqqhPH to ∇u in rL2pΩqsd as hÑ 0. An important intermediate result to prove the asymptoti

onsisten
y of ah is the 
onsisten
y of the dis
rete gradientGω,h de�ned by (18) for the interpolates of fun
tionsin QTh,κ. We �rst prove the following.Lemma 29 (Bound on global lifting). For all v P V:, there holds}κ1{2Rω,hpJvKq}2rL2pΩqsd ¤ CtrN
1{2B |v|2J,κ.Proof. By de�nition,}κ1{2Rω,hpJvKq}2rL2pΩqsd � ¸

FPFh

»
Ω

κRω,hpJvKq�rω,F pJvKq � ¸
FPFh

»
F

tκRω,hpJvhKquω �nF JvK.For brevity of notation, for all F P F i
h with F � BT1 X BT2, let ωi � ωTi,F , λTi,F � λi, κi � κ|Ti

, and
ai � κ

1{2
i Rω,hpJvKq|Ti

, i P t1, 2u. The Cau
hy�S
hwarz inequality yields»
F

tκRω,hpJvKquω �nF JvK � »
F

pω1κ
1{2
1 nT1

�a1 � ω2κ
1{2
2 nT2

�a2qJvK¤ "
1

2
hF

�}a1}2rL2pF qsd � }a2}2rL2pF qsd	*1{2 � "
2pω2

1λ1 � ω2
2λ2q 1

hF

}JvK}2L2pF q*1{2
,and sin
e 2pω2

1λ1 � ω2
2λ2q � γF , it is inferred that»

F

tκRω,hpJvKquω �nF JvK ¤ "
1

2
hF

�}a1}2rL2pF qsd � }a2}2rL2pF qsd	*1{2 � "
γF

hF

}JvK}2L2pF q*1{2
.Moreover, for all F P Fb

h with F � BT X BΩ,»
F

tκRω,hpJvKquω �nF JvK ¤ h
1{2
F }pκ1{2Rω,hpJvKqq|T �nF }L2pF q �#

γF

hF

}JvK}2L2pF qhF

¸
TPTF

}κ1{2Rω,hpJvKq|T }+1{2
.Summing over mesh fa
es, and using the Cau
hy�S
hwarz inequality we obtain}κ1{2Rω,hpJvKq}2rL2pΩqsd ¤ ¸

FPFh

#
hF

¸
TPTF

}pκ1{2Rω,hpJvKqq|T }2L2pF q+1{2 |v|J,κ ¤ CtrN
1{2B }κ1{2Rω,hpJvKq}rL2pΩqsd |v|J,κ.This 
on
ludes the proof. �
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onvergen
e ofGω,h for smooth fun
tions). Let ϕ P QTh,κ and set ϕh
def� pRccg

h � Iccg
h qpϕq P V

ccg
h .Under Assumption 21, there holds

Gω,hpϕhq Ñ ∇ϕ strongly in rL2pΩqsdProof. The triangular inequality yields}Gω,hpϕhq �∇ϕ}rL2pΩqsd ¤ }∇hϕh �∇ϕ}rL2pΩqsd � }Rω,hpJϕhKq}rL2pΩqsd def� T1 � T2.Using Theorem 23 it is readily inferred that T1 Ñ 0 as h Ñ 0. For the se
ond term, use Lemma 29 togetherwith the fa
t that JϕKF pxq � 0 for all F P Fh and all x P F to infer
λ

1{2}Rω,hpJϕhKq}rL2pΩqsd ¤ }κRω,hpJϕhKq}rL2pΩqsd ¤ CtrN
1{2B |ϕh|J,κ ¤ CtrN

1{2B |ϕh � ϕ|J,κ,and the right-hand side tends to zero as hÑ 0 again by virtue of Theorem 23. This 
on
ludes the proof. �We are now ready to prove the following.Lemma 31 (Asymptoti
 
onsisten
y of the bilinear form ah). Under Assumption 21, the bilinear form ah isasymptoti
ally 
onsistent with the exa
t bilinear form a on pV ccg
h qhPH.Proof. Let pvhqhPH be a sequen
e in pV ccg

h qhPH bounded in the ~�~-norm and let ϕ P QTh,κ. For all h P H, weset ϕh
def� pRccg

h � Iccg
h qpϕq P V

ccg
h . By Theorem 23, it is 
lear that ~ϕ� ϕh~κ Ñ 0 as hÑ 0. Observe that

ahpvh, ϕhq � »
Ω

κGω,hpvhq�Gω,hpϕhq � jhpvh, ϕhq def� T1 � T2.Clearly, as hÑ 0, T1 Ñ ³
Ω
κ∇v�∇ϕ owing to the weak 
onvergen
e of Gω,hpvhq to ∇v stated in Lemma 15 andto the strong 
onvergen
e of Gω,hpϕhq to ∇ϕ proved in Lemma 30. Furthermore, using the Cau
hy�S
hwarzinequality together with Lemma 29 and the fa
t that, for all w P H1pThq, |w|J,κ ¤ λ

1{2|w|J, it is inferred that|T2| � |jhpvh, ϕhq| ¤ �
C2

trNB � η
� |vh|J,κ|ϕh|J,κ ¤ �

C2
trNB � η

�
λ

1{2|vh|J|ϕh|J,κSin
e |vh|J is bounded by assumption, and sin
e |ϕh|J,κ � |ϕh�ϕ|J,κ tends to zero as hÑ 0, it is inferred that
T2 Ñ 0. The proof is 
omplete. �Remark 32 (Weakening Assumption 21). To prove the asymptoti
 
onsisten
y of ah, and hen
e the 
onvergen
eto minimal regularity solutions, we only need that�ϕ P QTh,κ, ~ϕ� ϕh~ Ñ 0 as hÑ 0, (32)with ϕh � pRccg

h � Iccg
h qpϕq P V

ccg
h . Property (32) holds, e.g., if maxFPFh

}A�1
gF
}2 ¤ Ch�ǫ with 0 ¤ ǫ   1 and

C independent of the meshsize h. Whenever the solution exhibits su�
ient regularity, however, one may wishto have ǫ � 0 to attain optimal 
onvergen
e rates. For the sake of simpli
ity, Assumption 21 is required in thestatements of Lemma 31 and Theorem 33, although (32) 
ould have been used instead.Theorem 33 (Convergen
e to minimal regularity solutions). Let puhqhPH be the sequen
e of approximatesolutions generated by solving the dis
rete problems (21). Then, under Assumption 21, as hÑ 0, (i) uh Ñ ustrongly in L2pΩq, (ii) ∇huh Ñ ∇u strongly in rL2pΩqsd, (iii) |uh|J Ñ 0, with u P V unique solution to (19).



TITLE WILL BE SET BY THE PUBLISHER 21Proof. We follow the four steps outlined above.(i) A priori estimate. Owing to Lemma 17ii and to the dis
rete Poin
aré inequality obtained from (16) with
q � 2,

Cstaλ~uh~2 ¤ Csta~uh~2
κ
¤ apuh, uhq � »

Ω

fuh ¤ }f}L2pΩq}uh}L2pΩq ¤ σ2}f}L2pΩq~uh~,hen
e ~uh~ ¤ σ2pCηλq�1}f}L2pΩq.(ii) Compa
tness. Owing to Theorem 14 together with Lemma 15, there exists u P V � H1
0 pΩq su
h that, as

hÑ 0, up to a subsequen
e, uh Ñ u strongly in L2pΩq and Gω,hpuhq á ∇u weakly in rL2pΩqsd.(iii) Identi�
ation of the limit. Owing to the asymptoti
 
onsisten
y of ah proved in Lemma 31, for all ϕ P QTh,κwith ϕh
def� pRccg

h � Iccg
h qpϕq P V

ccg
h ,»

Ω

fϕ� »
Ω

fϕh � ahpuh, ϕhq Ñ »
Ω

κ∇u�∇ϕ,i.e., u solves problem (19) by the density of QTh,κ in V stated in Theorem 19 and, hen
e, u � u. Moreover,sin
e the solution u to problem (19) is unique, the whole sequen
e 
onverges (prove by 
ontradi
tion).(iv) Strong 
onvergen
e of the gradient and of the jumps. Lemma 29 and (31) yield�vh P V
ccg
h , ahpvh, vhq ¥ }κ1{2Gω,hpvhq}rL2pΩqsd � �

η � C2
trNB� |vh|2J,κ (33)Moreover, from the weak 
onvergen
e of Gω,hpuhq to ∇u, we readily infer the weak 
onvergen
e of κ1{2Gω,hpuhqto κ

1{2∇u. Owing to (33) and to weak 
onvergen
e,
lim inf
hÑ0

ahpuh, uhq ¥ lim inf
hÑ0

}κ1{2Gω,hpuhq}2rL2pΩqsd ¥ }κ1{2∇u}2rL2pΩqsd .Furthermore, still owing to (33),
lim sup

hÑ0

}κ1{2Gω,hpuhq}2rL2pΩqsd ¤ lim sup
hÑ0

ahpuh, uhq � lim sup
hÑ0

»
Ω

fuh � »
Ω

fu � }κ1{2∇u}2rL2pΩqsd .This 
lassi
ally proves the strong 
onvergen
e of κ1{2Gω,hpuhq to κ
1{2∇u in rL2pΩqsd and, hen
e, the strong
onvergen
e of Gω,hpuhq to ∇u in rL2pΩqsd. Note that ahpuh, uhq Ñ }κ1{2∇u}2rL2pΩqsd also. Owing to (33),pη � C2

trNBq|uh|2J,κ ¤ ahpuh, uhq � }κ1{2Gω,hpuhq}2rL2pΩqsd ,and, sin
e η ¡ C2
trNB and the right-hand side tends to zero, |uh|J,κ Ñ 0. To infer that |uh|J Ñ 0, simply observethat |uh|J ¤ λ�1{2|uh|J,κ and that the right-hand side tends to zero. �Remark 34 (Rough for
ing terms). A possible way to handle for
ing terms f in H�1pΩq 
onsists in repla
ingthe test fun
tion by an interpolate in H1

0 pΩq in the se
ond member. For the sake of simpli
ity, assume that
Th is 
onforming (if this is not the 
ase, Sh 
an be used instead) and let IOs denote the Oswald interpolatordis
ussed, e.g., by Burman and Ern [14℄. It 
an be proved that there exists C independent of the meshsize h su
hthat, for all vh P V

ccg
h , }IOsvh}H1pΩq ¤ Csta,Os~vh~. We 
onsider the following modi�
ation of the method (21):Find uh P V

ccg
h s.t. ahpuh, vhq � xf, IOsvhy�1,1.The a priori estimate for the dis
rete solutions on the admissible mesh family pThqhPH is obtained as follows:

Cstaλ~uh~2 ¤ ahpuh, uhq � xf, IOsuhy�1,1 ¤ }f}H�1pΩq}IOsuh}H1pΩq ¤ Csta,Os}f}H�1pΩq~uh~,hen
e ~uh~ ¤ Csta,Os{Csta}f}H�1pΩq. The 
onvergen
e to minimal regularity solutions 
an then be proved asin Theorem 33.
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ompressible Navier�Stokes equations3.1. The 
ontinuous settingIn the se
ond part of this work we 
orroborate the 
laim that 

G methods are easily extended to problemsfor whi
h a dG s
heme 
an be devised. Our fo
us is on the steady in
ompressible Navier�Stokes (INS) equationsfor d P t2, 3u, �ν△ui � Bjpuiujq � Bip � fi in Ω, i P t1, . . . , du,Biui � 0 in Ω,

u � 0 on BΩ,xpyΩ � 0,

(34)where the positive real ν denotes the kinemati
 vis
osity and f P rL2pΩqsd. In (34) and throughout this se
tionEinstein's 
onvention on repeated indi
es is adopted. The natural spa
es for the weak formulation of (34) are
U

def� rH1
0 pΩqsd, P

def� L2
0pΩq, X

def� U � P,where we have set L2
0pΩq def� tv P L2pΩq | xvyΩ � 0u. We de�ne the linear forms a P LpU � U,Rq and

b P LpU � P,Rq, and the trilinear form t P LpU � U � U,Rq su
h that
apu, vq def� »

Ω

ν∇ui�∇vi, bpv, qq def� � »
Ω

q∇�v, tpw, u, vq def� » pw�∇uiqvi � 1

2

»
Ω

p∇�wqpu�vq.The trilinear form t in
ludes Temam's devi
e [37℄ to 
ontrol the kineti
 energy balan
e as this is needed in whatfollows for the asymptoti
 
onsisten
y of its dis
rete 
ounterpart. The weak formulation of system (34) is:Find pu, pq P X s.t. cppu, pq, pv, qqq � tpu, u, vq � »
Ω

f �v for all pv, qq P X , (35)with bilinear form c P LpX �X,Rq su
h that cppu, pq, pv, qqq � apu, vq � bpv, pq � bpu, qq.3.2. The dis
rete settingWe seek a dis
retization of (35) based on the following dis
rete spa
es:
Uh

def� rV ccg
h sd, Ph

def� P0
dpThq{R, Xh

def� Uh � Ph.The main di�
ulties in the approximation of the INS equations lie in the dis
retization of the velo
ity-pressure
oupling and of the 
onve
tive term. In our 
ase, the velo
ity-pressure 
oupling is stabilized by penalizing thepressure jumps a
ross interfa
es with a weight proportional to the meshsize; see, e.g., [17℄. As regards the
onve
tive term, we use the non-dissipative trilinear form re
ently proposed by Di Pietro and Ern [20℄, whi
hhas proved suitable to 
onve
tion-dominated regimes; see also Botti and Di Pietro [9℄ for the appli
ation to adG dis
retization of the adve
tion step in the 
ontext of a pressure-
orre
tion time-integration s
heme. As the
onvergen
e analysis is similar as for the dG method of [20℄, the proofs of the results that hold a fortiori aresometimes omitted to leave room to spe
i�
 issues related to the 

G method.3.2.1. Velo
ity-pressure 
ouplingThe velo
ity-pressure 
oupling is based on the bilinear form bh P LpUh � Ph,Rq su
h that
bhpvh, qhq def� � »

Ω

qh∇�vh � ¸
FPFh

»
F

JvhK�nF tqhu � � ¸
FPF i

h

»
F

tvhu�nF JqhK. (36)
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an be inferred introdu
ing the dis
rete divergen
e operatorDh : rH1pThqsd Ñ P0
dpThqand the dis
rete gradient operator rGh : H1pThq Ñ rP0

dpThqsd de�ned as follows: For all v P rH1pThqsd and all
w P H1pThq,

Dhpvq def� Ghpviq�ei, rGhpwq def� ∇hw � ¸
FPF i

h

rF pJwKq.The subs
ript ω has been omitted from dis
rete gradients and lifting operators sin
e κ � ν1d,d (as the kinemati
vis
osity is homogeneous and isotropi
) implies ωT1,F � ωT2,F � 1{2 for all F P F i
h with F � BT1 X BT2. Thedis
rete divergen
e Dh is de�ned as the tra
e of Gh applied to a ve
tor fun
tion, whereas rGh only di�ers from

Gh in that boundary fa
es are not in
luded in the summation in the right-hand side. It follows from (36) that�pvh, qhq P Xh, bhpvh, qhq � »
Ω

vh rGhpqhq � � »
Ω

qh Dhpvhq. (37)We let, for all ve
tor fun
tions vh P Uh,~vh~2 def� ḑ

i�1

~vh,i~2, |vh|2J def� ḑ

i�1

|vh,i|2J.As the dis
rete operator asso
iated to the dis
rete bilinear form bh is not surje
tive, pressure stabilization mustbe introdu
ed. To this end, we de�ne the bilinear form sh P LpPh � Ph,Rq and the asso
iated seminorm |�|psu
h that
shpph, qhq def� ¸

FPF i
h

hF

»
F

JphKJqhK, |qh|p def� ¸
FPF i

h

hF }JqhK}2L2pF q.We are now ready to state the main result of this se
tion.Lemma 35 (Stability of the velo
ity-pressure 
oupling). Under Assumption 21, there exists β ¡ 0 independentof the meshsize h su
h that�qh P Ph, β}qh}L2pΩq ¤ sup
whPUhzt0u bhpwh, qhq~wh~ � |qh|p.Proof. In the proof we abbreviate a À b the inequality a ¤ Cb where C 
an depend on the mesh regularityparameters and on Ω but not on the meshsize h. Owing to the surje
tivity of the divergen
e operator from

U to P , there exists CΩ ¡ 0 uniquely depending on the domain Ω su
h that, for all q P L2
0pΩq, there exists

v P rH1
0 pΩqsd su
h that

∇�v � q, CΩ}v}rH1pΩqsd ¤ }q}L2pΩq. (38)Let now q � qh, denote by v the element of rH1
0 pΩqsd satisfying (38) and set vh

def� pxvyT qTPTh
P Vh and

vh
def� R

ccg
h pvhq P V

ccg
h . Then,

CΩ}v}rH1pΩqsd}qh}L2pΩq ¤ }qh}2L2pΩq � »
Ω

qh∇�v � ¸
FPF i

h

»
F

JqhKtvu�nF � �bhpvh, qhq � ¸
FPF i

h

»
F

JqhKtv � vhu�nF¤ #
sup

whPUhzt0u bhpwh, qhq~wh~ +~vh~ � |qh|p �$&% ¸
FPF i

h

h�1
F

»
F

|tv � vhu|2,.- .It follows from Lemma 36 that ~vh~ À }v}rH1pΩqsd . Moreover, using the 
ontinuous tra
e inequality (5) togetherwith the approximation properties of the mesh sequen
e pThqhPH, it is readily proved that !°FPF i
h
h�1
F

³
F
|tv � vhu|2) À}v}H1pΩq. The result follows. �
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tions in V
ccg
h used in the proof of Lemma 35.Observe that, unlike elsewhere, the degrees of freedom are here interpreted as average values over the 
ells, sin
ethe regularity of the fun
tion v is in general insu�
ient for point values to be de�ned inside elements.Lemma 36 (H1-stability). Under Assumption 21, for all v P H1

0 pΩq there holds~vh~ ¤ C}v}H1pΩq,where vh � pxvyT qTPTh
P Vh, vh � R

ccg
h pvhq P V

ccg
h and C is independent of the meshsize h.Proof. In the proof we abbreviate a À b the inequality a ¤ Cb where C 
an depend on the mesh regularityparameters and on Ω but not on the meshsize h. By de�nition,~vh~2 � }∇hvh}2rL2pΩqsd � |vh|2J def� T1 � T2.The �rst term 
an be bounded as follows:

T1 À ¸
TPTh

|T |d ����� 1|T |d ¸
FPFT

|F |d�1 pxvyT � xvyF qnT,F

�����2 �
ŢPTh

|T |d ����� 1|T |d ¸
FPFT

|F |d�1

�xvyF � xξgF

vh
yF �nT,F

�����2 .Denote by T1,1 and T1,2 the addends in the right-hand side. Using the Cau
hy�S
hwarz inequality togetherwith formula (9)
T1,1 ¤ ¸

TPTh

#� ¸
FPFT

|F |d�1|T |d dT,F

��� ¸
FPFT

d�1
T,F }xvyT � v}2L2pF q�+ ¤ dC2

ŢPTh

¸
FPFT

hT

dT,F

}v}2H1pT q À }v}2H1pΩq,where we have used the 
lassi
al estimate }xvyT � v}L2pF q � }π0
hv � v}L2pF q ¤ Ch

1{2
T |v|H1pT q. As for the term

T1,2, repeated appli
ations of the Cau
hy�S
hwarz inequality together with (8) yield
T1,2 ¤ ¸

TPTh

1|T |d # ¸
FPFT

»
F

pv � ξgF

vh
qnT,F

+2 ¤
ŢPTh

1|T |d # ¸
FPFT

|F |1{2d�1}v � ξgF

vh
}L2pF q+2¤ ¸

TPTh

# ¸
FPFT

|F |d�1dT,F|T |d +�#
1

dT,F

¸
FPFT

}v � ξgF
vh
}2L2pF q+ ¤ d

ŢPTh

¸
FPFT

1

dT,F

}v � ξgF
vh
}2L2pF q.Sin
e κ � ν1d, for all F P F i

h, ξgF
vh
pxF q 
an be expressed as a linear 
ombination of the values txvyT uTPTgwith 
oe�
ients tτFT uTPTg

su
h that 0 ¤ τFT ¤ 1. Hen
e, for all F P F i
h, using the triangular inequality, the
ontinuous tra
e inequality (5), and the approximation properties of the L2-proje
tor onto P0

dpThq we infer}v � ξgF

vh
}L2pF q ¤

ŢPTg

τFT }v � xvyT }L2pF q ¤ Ctr,c

ŢPTg

τFT

�
h�1
T }v � xvyT }2L2pT q�hT |v|2H1pT q	1{2À max

TPTg

|τFT |h1{2
T

ŢPTg

}v}H1pT q, (39)and maxTPTg
|τFT | is uniformly bounded owing to Assumption 21. Moreover, for all F P Fb

h , }v� ξgF
vh
}L2pF q � 0.We 
on
lude that T1,2 À }v}H1pΩq. To bound T2 observe that sin
e, v is 
ontinuous a
ross interfa
es and itvanishes on BΩ, |vh|J � |vh � v|J. The 
on
lusion follows from (3), (6), and (39). �
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onve
tive trilinear formThe dis
rete 
onve
tive trilinear form th P LpUh � Uh � Uh,Rq is given by
thpwh, uh, vhq def� »

Ω

pwh�∇huh,iqvh,i� ¸
FPF i

h

»
F

twhu�nF JuhK�tvhu�1

2

»
Ω

p∇h�whqpuh�vhq�1

2

¸
FPFh

»
F

JwhK�nF tuh�vhu.The following lemma 
olle
ts some important results. The proof essentially follows [20, Proposition 5.2℄. Inparti
ular, the Sobolev embedding 16 for q � 4 is required, whi
h limits the spa
e dimension to d P t2, 3u.Lemma 37 (Properties of the trilinear form th). For all h P H, let Uh
def� rPk

dpThqsd for some k ¡ 0. Thetrilinear form th de�ned by (3.2.2) enjoys the following properties:(i) Non-dissipativity. For all wh, vh P Uh, thpwh, vh, vhq � 0.(ii) Boundedness. There is Cbnd,t independent of the meshsize h su
h that, for all wh, uh, vh P Uh, thpwh, uh, vhq ¤
Cbnd,t~wh~~uh~~vh~.(iii) Asymptoti
 
onsisten
y for smooth fun
tions. Let pvhqhPH be a sequen
e in pUhqhPH bounded in the ~�~-norm. Then, for all Φ P rC8

0 pΩqsd, as h Ñ 0, up to a subsequen
e, thpvh, vh,Φhq Ñ tpv, v,Φq, where
Φh

def� pRccg
h � Iccg

h qpΦq P Uh and v P U is the limit provided by Theorem 14.(iv) Asymptoti
 
onsisten
y for test fun
tions. In the setting of point (iii), further suppose that Ghpvhq Ñ ∇vstrongly in rL2pΩqsd and that |vh|J Ñ 0. Let pwhqhPH be another sequen
e in pUhqhPH bounded in the~�~-norm. Then, as h Ñ 0, up to a subsequen
e, thpvh, vh, whq Ñ tpv, v, wq, with both v, w P U resultingfrom Theorem 14.The dis
rete problem readsFind puh, phq P Xh s.t. chppuh, phq, pvh, qhqq � thpuh, uh, vhq � »
Ω

f �vh for all pvh, qhq P Xh, (40)with bilinear form ch P LpXh�Xh,Rq su
h that ch def� ahpuh,i, vh,iq � bhpvh, phq � bhpuh, qhq � shpph, qhq, wherewe have set κ � ν1d,d in the expression of ah and a sum over the index i is understood in the �rst term.3.3. Convergen
eWe study the 
onvergen
e of the method (40) in the spirit of �2.4. As the 

G spa
e V
ccg
h is a subspa
e ofP1

dpThq, some of the results presented in [20, �5℄ in the 
ontext of dG methods hold a fortiori. In su
h 
ases, thedetails of the proofs are omitted in order to restri
t the fo
us to the pe
uliarities of the proposed 

G method.Also, sin
e the di�usion 
oe�
ient is homogeneous, the standard test spa
e C8
0 pΩq 
an repla
e QTh,κ in the
onvergen
e proof. The following lemmata 
ontain results that are instrumental to the analysis.Lemma 38 (Properties of Dh). The dis
rete divergen
e Dh enjoys the following properties:(i) Consisten
y for smooth fun
tions. Let Φ P rC8

0 pΩqsd and set Φh
def� pRccg

h � Iccg
h qpΦq P Uh. Then, underAssumption 21, as hÑ 0, DhpΦhq Ñ ∇�Φ strongly in L2pΩq.(ii) Weak asymptoti
 
onsisten
y for test fun
tions. Let pvhqhPH be a sequen
e in Uh. The, as hÑ 0, up to asubsequen
e, Dhpvhq á ∇�v weakly in L2pΩq, where v P rH1

0 pΩqsd is the limit resulting from Theorem 14.Proof. Point (i) is a dire
t 
onsequen
e of Theorem 23 together with the fa
t that κ � ν1d implies C8
0 pΩq �

QTh,κ, whereas point (ii) immediately follows from Lemma 15. �Lemma 39 (Weak asymptoti
 
onsisten
y of rGh). Let pvhqhPH be a sequen
e in pPk
dpThqqhPH, k ¡ 0, uniformlybounded in the ~�~-norm. Then, as h Ñ 0, up to a subsequen
e, rGhpvhq á ∇v weakly in rL2pΩqsd, where

v P H1
0 pΩq is the limit resulting from Theorem 14.Proof. See [20, �2.3℄. �
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e of a solution to (40)). There exists puh, phq P Xh solution to (40).Proof. The proof is based on a topologi
al degree argument and it follows [20, Proposition 5.1℄. The use of atopologi
al degree argument to assert the existen
e of a dis
rete solution 
an be tra
ed ba
k to Eymard, Herbin,and Lat
hé [31℄. �The �rst step in the 
onvergen
e proof is to derive a uniform a priori estimate on a suitable norm of thedis
rete solution. This estimate is used to infer a 
ompa
tness property for the sequen
e of dis
rete solutions.To this end, we introdu
e the following norm on Xh:~pvh, qhq~2
ns

def� ~vh~2 � }qh}2L2pΩq � |qh|2p.Lemma 41 (A priori estimate). There exists γ ¡ 0 independent of the meshsize h su
h that
γ~puh, phq~ ¤ σ2}f}rL2pΩqsd � Cbnd,tpνCstaq�1

�
σ2}f}rL2pΩqsd�2 . (41)where Cbnd,t results from Lemma 37ii, Csta is the 
oer
ivity 
onstant of ah, and σ2 results from Theorem 13.Proof. The proof pro
eeds along the lines of [20, Lemma 5.1℄. The details are omitted for the sake of brevity. �Theorem 42 (Convergen
e). Let ppuh, phqqhPH be a sequen
e of approximate solutions generated by solving thedis
rete problems (40) on the admissible mesh sequen
e pThqhPH. Then, under Assumption 21, as h Ñ 0, upto a subsequen
e, (i) uh Ñ u strongly in rL2pΩqsd, (ii) ∇huh Ñ ∇u strongly in rL2pΩqsd,d, (iii) |uh|J Ñ 0,(iv) ph Ñ p strongly in L2pΩq, (v) |ph|p Ñ 0, with pu, pq P X solution to (35). If the 
ontinuous solution pu, pqis unique, the 
onvergen
e property extends to the whole sequen
e.Proof. (i) Compa
tness. Owing to the a priori estimate (41), by Theorem 14 together with Lemma 15 thereexists pu, pq P X su
h that, up to a subsequen
e, uh Ñ u strongly in rL2pΩqsd, Ghpuh,iq á ∇ui weakly inrL2pΩqsd for i P t1, . . . , du, and ph á p weakly in L2pΩq (as the sequen
e pphqhPH is uniformly bounded in the

L2-norm). For the sake of 
on
iseness, subsequen
es are not renumbered in what follows.(ii) Identi�
ation of the limit and 
onvergen
e of a subsequen
e. Let Φ P rC8
0 pΩqsd and set Φh

def� pRccg
h � Iccg

h qpΦq P Uh.Testing against pΦh, 0q yields
ahpuh,Φhq � bhpΦh, phq � thpuh, uh,Φhq � »

Ω

f �Φh.Clearly, as h Ñ 0, the right-hand side tends to ³
Ω
f �Φ. Furthermore, by virtue of Lemma 31, the �rst termin the left-hand side 
onverges to apu,Φq � ³

Ω
ν∇ui�∇Φi. Using (37), the se
ond term 
an be written as

bhpΦh, phq � � ³
Ω
phDhpΦhq. Owing to the weak 
onvergen
e of pphqhPH to p in L2pΩq and to the strong
onvergen
e of pDhpΦhqqhPH to ∇�Φ in L2pΩq stated in Lemma 38, this term 
onverges to bpΦ, pq � � ³

Ω
p∇�Φ.Finally thpuh, uh,Φhq tends to tpu, u,Φq owing to Lemma37iii. As a result,

apu,Φq � bpΦ, pq � tpu, u,Φq � »
Ω

f �Φ.Let now ϕ P C8
0 pΩq{R and set ϕh

def� π0
hϕ, where π0

h denotes the L2-orthogonal proje
tion onto P0
dpThq. Testingagainst p0, ϕhq yields �bhpuh, ϕhq � shpph, ϕhq � 0.Clearly, �bhpuh, ϕhq � ³

Ω
ϕh Dhpuhq tends to ³

Ω
ϕ∇�u as h Ñ 0 sin
e pDhpuhqqhPH weakly 
onverges to ∇�uin L2pΩq and pϕhqhPH strongly 
onverges to ϕ in L2pΩq. Furthermore, using the a priori estimate (41),



TITLE WILL BE SET BY THE PUBLISHER 27|shpph, ϕhq| ¤ |ph|p|ϕh|p ¤ C|ϕh|p with C independent of the meshsize h and this upper bound tends tozero. Hen
e, »
Ω

ϕ∇�u � 0.By density of rC8
0 pΩqsd � pC8

0 pΩq{Rq in X , this shows that pu, pq � pu, pq solution to (35).(iii) Strong 
onvergen
e of the velo
ity gradient and of the velo
ity and pressure jumps. Owing to the non-dissipativity of th,»
Ω

f �uh � chppuh, phq, puh, phqq � ahpuh, uhq � shpph, phq ¥ ahpuh, uhq ¥ ν

ḑ

i�1

}Ghpuh,iq}2rL2pΩqsd .Thus, ν lim suphÑ0

°d
i�1 }Ghpuh,iq}2rL2pΩqsd,d ¤ lim suphÑ0

³
Ω
f �uh � ³

Ω
f �u � ν}∇u}2rL2pΩqsd,d . Pro
eeding as inpoint (iv) of Theorem 33, it is then inferred that Ghpuh,iq Ñ ∇ui in rL2pΩqsd for all i P t1, . . . , du and that|uh|J Ñ 0. Finally, sin
e |ph|2p � bhpuh, phq � ³

Ω
f �uh � ahpuh, uhq, we 
on
lude that |ph|p Ñ 0.(v) Strong 
onvergen
e of the pressure. Let v P rH1
0 pΩqsd be su
h that ∇�v � ph with }v}rH1pΩqsd ¤ CΩ}ph}L2pΩq,and set vh

def� R
ccg
h pvhq P V

ccg
h with vh � pxvyT qTPTh

P Vh. In the rest of the proof we abbreviate a À b theinequality a ¤ Cb with C independent of the meshsize h. Pro
eeding as in the proof of Lemma 35 yields}ph}2L2pΩq À |ph|p}ph}L2pΩq � bhpvh, phq À |ph|p}ph}L2pΩq � ahpuh, vhq � thpuh, uh, vhq � »
Ω

f �vh.Let Ti, i P t1, . . . , 4u denote the terms in the right-hand side. Sin
e |ph|p tends to zero and }ph}L2pΩq isbounded, T1 
onverges to zero. Furthermore, sin
e the sequen
e pvhqhPH is bounded in the ~�~-norm be
ause~vh~ À }v}rH1pΩqsd À }ph}L2pΩq there is v P rH1
0 pΩqsd su
h that, up to a subsequen
e, vh Ñ v strongly inrL2pΩqsd and Ghpvh,iq Ñ ∇vi weakly in rL2pΩqsd for i P t1, . . . , du. Owing to the uniqueness of the limit in thedistribution sense, it is inferred that ∇�v � p. There holds

T2 � ahpuh, vhq � »
Ω

νGhpuh,iq�Ghpvh,iq � shpuh, vhq � T2,1 � T2,2.Owing to the strong 
onvergen
e of pGhpuh,iqqhPH in rL2pΩqsd proved in the previous point and to the weak
onvergen
e of pGhpvh,iqqhPH in rL2pΩqsd, it is inferred that T2,1 Ñ ³
Ω
∇ui�∇vi. Moreover, |T2,2| À |uh|J|vh|J,whi
h 
onverges to zero. Owing to Lemma 37iv, T3 Ñ tpu, u, vq. Finally, sin
e T4 Ñ ³

Ω
f �v, the strong
onvergen
e of the pressure in L2 
lassi
ally follows from

lim sup
hÑ0

}ph}2L2pΩq ¤ »
Ω

∇ui�∇vi � tpu, u, vq � »
Ω

f �v � »
Ω

p∇�v � }p}2L2pΩq. �4. Numeri
al examples4.1. Pure di�usionAnisotropy. To assess the robustness of the method with respe
t to the anisotropy of the di�usion tensor we
onsider the following exa
t solution to problem (19) in d � 2:
u � sinpπxq sinpπyq, κ � �

1 0

0 ǫ

�
, f � p1� ǫqπ2 sinpπxq sinpπyq,with anisotropy ratio ǫ � 10�3. The dis
rete problem is solved on the Kershaw mesh sequen
e 4.2 of theFVCA5 ben
hmark [33℄, and the results are listed in Table 1. Besides the errors in the L2- and energy-norms,
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 test 
ase
cardpThq }u� uh}L2pΩq order ~u� uh~ order max

FPF i
h
}A�1

gF
}8 
g+AMG it.9801 1.2396e-02 � 5.1296e-02 � 1.0028e+03 4117424 6.8589e-03 2.06 3.3572e-02 1.47 1.0018e+03 4927225 3.9340e-03 2.49 2.3897e-02 1.52 1.0013e+03 5539204 2.5485e-03 2.38 1.8058e-02 1.54 1.0009e+03 62Table 2. Heterogeneous test 
ase

cardpThq }u� uh}L2pΩq order ~u� uh~ order max
FPF i

h
}A�1

gF
}8 
g+AMG it.224 7.3209e-03 � 1.1526e-01 � 1.2800e+02 7896 1.9172e-03 1.93 5.6440e-02 1.03 1.2800e+02 83584 4.8802e-04 1.97 2.7925e-02 1.02 1.2800e+02 914336 1.2330e-04 1.98 1.3891e-02 1.01 1.2800e+02 10Table 1 lists the maximum }�}8-norm of the matri
es de�ned by (12) as well as the number of 
onjugate gradientiterations with AMG pre
onditioner required to solve the linear system. An inspe
tion of 
olumn 6 shows thatAssumption 21 is satis�ed as the }�}8-norm of the matri
es involved in the lo
al 
onstru
tion remains almost
onstant when re�ning the mesh. Here and in what follows, we estimate the order of 
onvergen
e as

order � d ln pe1{e2q { ln pcardpTh2
q{cardpTh1

qq ,where e1 and e2 denote, respe
tively, the errors 
ommitted on Th1
and Th2

, h1, h2 P H.Heterogeneity. To assess the robustness with respe
t to the heterogeneity of κ, 
onsider the following pseudo2d exa
t solution to (19) on the unit square domain Ω � p0, 1q2:
u � #� 1

2
x2 � 3�ǫ

4p1�ǫqx if x ¤ 1
2
,� 1

2ǫ
x2 � 3�ǫ

4ǫp1�ǫqx� ǫ�1
4ǫp1�ǫq if x ¡ 1

2
.

κ � #
12 if x   1

2
,

ǫ12 if x ¡ 1
2
,

f � 1. (42)The parameter ǫ represents here the heterogeneity ratio, and it has been taken equal to 10�2. The numeri
alresults are 
olle
ted in Table 2, and symbols have the same meaning as in the previous 
ase.4.2. Steady in
ompressible Navier�Stokes equationsThe Kovasznay problem. To verify the asymptoti
 
onvergen
e properties of the method (40), we 
onsiderKovasznay's analyti
al solution of the INS equations [34℄ on the square domain Ω � p�0.5, 1.5q � p0, 2q,
u1 � 1� eπx2 cosp2πx2q, u2 � �1{2eπx1 sinp2πx2q, p � �1{2eπx1 cosp2πx2q � p,where p � x� 1

2
eπx1 cosp2πx2qyΩ � �0.920735694 ensures the zero mean 
onstraint for the pressure, ν � 3π,and f � 0. The example is run on a family of uniformly re�ned triangular meshes with mesh sizes ranging from0.5 down to 0.03125. A

ording to Table 1, the errors |||u� uh|||sto and }p � ph}L2pΩq 
onverge to �rst order,while se
ond order is attained for }u� uh}rL2pΩqsd . The results are 
olle
ted in Table 4.2.The lid-driven 
avity problem. To assess the behavior of the method in more 
omplex situations we 
onsiderthe 
lassi
al lid-driven 
avity problem. Despite its simple geometry, at large Reynolds numbers this problempresents 
omplex �ow patterns with 
ounter-rotating vorti
es of signi�
antly di�erent s
ale. The domain is herethe unit square with imposed horizontal velo
ity on the upper side and zero velo
ity on the others. In Figure 3we provide the values of the velo
ity 
omponents on the 
enterlines of the domain. For the sake of 
ompleteness,
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e results for the Kovasznay problem
cardpThq }u� uh}rL2pΩqsd order }p� ph}L2pΩq order |||u� uh|||sto order224 1.6539e-01 � 2.5536e-01 � 4.7777e-01 �896 4.3732e-02 1.92 1.0737e-01 1.25 2.1759e-01 1.133584 1.1847e-02 1.88 3.9802e-02 1.43 1.0763e-01 1.0214336 3.1620e-03 1.91 1.7385e-02 1.19 5.5182e-02 0.96
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(b) Re � 5000Figure 3. Lid-driven 
avity problem, 
omparison of 
enterline velo
ity values (

G=presentwork, Di Pietro Ern '10= ref. [20℄, Erturk et al. '05= ref. [28℄).we 
ompare against the method of [20℄ with pie
ewise linear approximations of the velo
ity and the pressure.In both 
ases a uniform 128� 128 Cartesian orthogonal mesh was used. The referen
e data of Erturk, Corke,and Gökçöl [28℄ are also in
luded. The proposed method shows essentially the same a

ura
y as the dG methodof [20℄ at Re � 1000. To observe more sizable di�eren
es, we also present the results for Re � 5000 on the samemesh. In this 
ase, where a slight loss of a

ura
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