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Mathematial Modelling and Numerial Analysis Will be set by the publisherModélisation Mathématique et Analyse Numérique
CELL CENTERED GALERKIN METHODS FOR DIFFUSIVE PROBLEMS �Daniele A. Di Pietro1Abstrat. In this work we introdue a new lass of lowest order methods for di�usive problems ongeneral meshes with only one unknown per element. The underlying idea is to onstrut an inompletepieewise a�ne polynomial spae with su�ient approximation properties starting from values at ellenters. To do so we borrow ideas from multi-point �nite volume methods, although we use them ina rather di�erent ontext. The inomplete polynomial spae replaes lassial omplete polynomialspaes in disrete formulations inspired by disontinuous Galerkin methods. Two problems are studiedin this work: a heterogeneous anisotropi di�usion problem, whih is used to lay the pillars of themethod, and the inompressible Navier�Stokes equations, whih provide a more realisti appliation.An exhaustive theoretial study as well as a set of numerial examples featuring di�erent di�ultiesare provided.1991 Mathematis Subjet Classi�ation. TO BE COMPLETED.September 3, 2010. IntrodutionLowest order methods for di�usive problems on general meshes have reeived an inreasing attention overthe last few years. The interest of general meshes is multi-fold. On the one hand, allowing general polyhedralelements may ease the disretization of omplex domains, and it is bene�ial in the ontext of aggregativemultigrid strategies. On the other hand, it is a mandatory requirement whenever the user annot adapt the meshto the needs of the numerial sheme. This is the ase, e.g., in the ontext of omputational geosienes, wherethe disretization of the subsoil integrates the e�ets of erosion and sedimentation, and is usually developedin a separate stage. In what follows we brie�y reall some ideas that are instrumental to the lass of methodsproposed in this paper. It is a well known fat that the lassial two-point �nite volume (FV) method isinonsistent on non di�usion-orthogonal meshes. In the ontext of reservoir simulation, a suessful attemptto adapt FV methods to general meshes and full di�usion tensors has been independently proposed in the 90sby Aavatsmark, Barkve, Bøe, and Mannseth [1, 2℄ and by Edwards and Rogers [25, 26℄. These methods areusually referred to as multi-point sine the main idea is to express onsistent numerial �uxes using a largerstenil than in the lassial two-point FV method. In this paper we borrow some ideas from the reent multi-point sheme of Aavatsmark, Eigestad, Mallison, and Nordbotten [3℄, where the authors propose a ompatonstrution to derive a onsistent multi-point �ux approximation honoring the heterogeneity of the di�usiontensor. A onvergene analysis of the L-onstrution proposed therein has been reently performed by Agélas,Keywords and phrases: Cell entered Galerkin, �nite volumes, disontinuous Galerkin, heterogeneous anisotropi di�usion,inompressible Navier�Stokes equations� This work has been partially supported by the VFSitCom ANR projet; see http: // ens. math. univ-montp2. fr/ droniou/ vfsitom
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2 TITLE WILL BE SET BY THE PUBLISHERDi Pietro, and Droniou [4℄. The main drawbak of multi-point FV methods is related to the di�ulty in �ndingeasily omputable stability onditions. A possible remedy to the lak of stability in multi-point methods hasbeen proposed independently by Brezzi, Lipnikov, Shashkov, and Simonini [10, 11℄ (Mimeti Finite Di�erenemethods, MFD) and by Droniou, Eymard, Gallouët, and Herbin [23,30℄ (Mixed/Hybrid Finite Volume methods,MHFV). Both lasses of shemes are inspired from the variational form of the problem as in �nite element (FE)methods rather than from loal balanes as in FV methods. The unonditional stability of both MFD andMHFV methods results from stabilization terms inorporated in the disrete bilinear form. Also, in both asesauxiliary fae unknowns are added, whih an be in some ases related to the enforement of a �ux onservationonstraint as in the mixed FE method. A way to eliminate fae unknowns has been proposed in [30℄, where itis suggested that a baryentri interpolator an be used to express fae values in terms of a few neighboringell unknowns. The main drawbak of this onstrution is that it does not respet the heterogeneity of thedi�usion tensor; moreover, the resulting method has a larger stenil ompared to multi-point FV methods,whih results in denser matries as well as in the inrease of data exhange in parallel implementations. Thealgebrai analogy between generalized versions of the MFD and MHFV methods has been reently pointed outby Droniou, Eymard, Gallouët, and Herbin [24℄.In this work we propose a di�erent philosophial approah to variational lowest-order methods whih is in-spired by disontinuous Galerkin (dG) methods rather than mixed FEs. The motivation is twofold. A �rstobjetive is to devise a suitable framework for a multi-physis platform based on lowest-order methods. Inthis respet, the main requirement is to dispose of a method easily adapted to a variety of di�usive problemsinluding, e.g., pure di�usion, di�usion-advetion-reation, linear and nonlinear elastiity as well as inompress-ible �ows. A seond important point is related to the robustness in the ontext of heterogeneous anisotropidi�usion, whih is ruial in the �eld of omputational geosienes. Cell entered Galerkin (G) methods havebeen introdued in [18,19℄ with appliation to a homogeneous di�usion problem. The main idea of G methodsis to build an inomplete spae of pieewise a�ne funtions related to a given set of degrees of freedom (DOFs)on the mesh Th. In this work we onsider, in partiular, G methods with ell unknowns only, i.e., where thealgebrai spae of DOFs given by Vh
def� RTh .The unknown in eah mesh element is interpreted as the value of the disrete funtion at a given point (theell enter); a pieewise a�ne representation is then obtained by reonstruting a onstant gradient in eahmesh element. In the present work, the elementary gradient is obtained in two steps: �rst, trae values arereonstruted from ell enter values by means of the L-onstrution, then Green's formula is used to infer aloal value for the gradient. The pieewise a�ne funtion inside eah element is then hosen as the uniquefuntion with presribed value at ell enter and gradient equal to the reonstruted gradient. Formally, thisproedure amounts to introduing an injetive linear operator R

ccg
h : Vh Ñ P1

dpThq and de�ning the disretespae
V

ccg
h

def� R
ccg
h pVhq � P1

dpThq.The spae V ccg
h is then used as a test/trial spae in a suitable nononforming FE setting. In partiular, sine thefuntions in V

ccg
h are disontinuous aross mesh interfaes, the disrete setting largely borrows from dG methods.In this work we onsider two appliations to problems naturally set in H1

0 pΩq: a homogeneous anisotropisalar di�usion problem and the inompressible Navier�Stokes equations. The salar di�usion problem o�ersa simpli�ed ontext to outline the main ideas of the method. The onvergene analysis is here disussed indetail. In partiular, we show that both lassial dG arguments relying on error estimates [7℄ and ompatnessarguments inspired by [29,30℄ apply. For the latter, an important remark is that the funtional analyti resultsindependently derived by Di Pietro and Ern [20℄ and Bu�a and Ortner [13℄ hold a fortiori sine V ccg
h � P1

dpThq.Moreover, in both ases, the main tehnial issue is related to the approximation properties of the V
ccg
h spae.The appliation to the inompressible Navier�Stokes equations provides a nonlinear ase study to illustrate howa G method an be derived from an existing dG method.The material is organized as follows: in �1 we disuss the disrete setting, provide a areful desription ofadmissible mesh sequenes in arbitrary spae dimension, introdue the L-onstrution, and de�ne the G spae



TITLE WILL BE SET BY THE PUBLISHER 3used throughout the rest of this work. Some funtional analytial results are also realled; in �2 we show anappliation of the G method to a heterogeneous anisotropi di�usion problem, derive basi error estimatesand arefully study onvergene rates. The main soures of inspiration are here the work of Arnold [6℄ on theweak enforement of boundary and interfae onditions and the paper of Di Pietro, Ern, and Guermond [22℄on the robust handling of heterogeneous anisotropi di�usion tensors. To infer onvergene rates we studythe approximation properties of the spae V
ccg
h with respet to the energy norm naturally assoiated to thedisrete problem. In partiular, we distinguish between the heterogeneous ase, where optimal energy estimatesare obtained for funtions belonging to the the spae introdued and analyzed in [4℄, and the homogeneousase, where weaker regularity assumptions are su�ient and L2 error estimates an also be derived; in �3 wedisuss the appliation of G methods to the inompressible Navier�Stokes equations inspired on the dG shemeof [20℄. In this ase, an H1-stability result for G spaes is ruial to infer the stability of the veloity-pressureoupling. The analysis losely follows the guidelines of [20℄; �nally, in �4 we present numerial results to assessthe theoretial study for both problems at hand.1. The G spae1.1. Disrete settingClosely following [21, Chapter 1℄, we introdue the onept of admissible mesh sequene of a bounded on-neted polyhedral domain Ω � Rd, d ¥ 1. LetH � R�� denote a ountable set having 0 as its unique aumulationpoint. For all h P H we denote by Th a �nite olletion of disjoint open polyhedra Th � tT u forming a partitionof Ω suh that h � maxTPTh

hT , with hT denoting the diameter of the element T P Th. Mesh nodes are olletedin the set Nh. We say that a hyperplanar losed subset F of Ω is a mesh fae if it has positive pd�1q-dimensionalmeasure and if either there exist T1, T2 P Th suh that F � BT1 X BT2 (and F is alled an interfae) or thereexist T P Th suh that F � BT X BΩ (and F is alled a boundary fae). Interfaes are olleted in the set F i
h,boundary faes in Fb

h and we let Fh
def� F i

h Y Fb
h . Moreover, we set, for all T P Th,

FT
def� tF P Fh | F � BT u. (1)Similarly, for all F P Fh, we de�ne

TF
def� tT P Th | F � BT u.The set TF onsists of exatly two mesh elements if F P F i

h and of one if F P Fb
h . For all mesh nodes P P Nh,

FP denotes the set of mesh faes sharing P , i.e.
FP

def� tF P Fh | P P F u. (2)For every interfae F P F i
h we introdue an arbitrary but �xed ordering of the elements in TF and let nF �

nT1,F � �nT2,F , where nTi,F , i P t1, 2u, denotes the unit normal to F pointing out Ti P TF . For all T P Th, wealso introdue the symbol nT to denote the vetor �eld suh that nT |F � nT,F for all F P FT . On a boundaryfae F P Fb
h we let nF denote the unit normal pointing out of Ω. The baryenter of a fae F P Fh is denotedby xF

def� ³
F
x{|F |d�1.De�nition 1 (Jumps and weighted averages). Let v be a salar-valued funtion de�ned on Ω, and assumethat v is smooth enough to admit on all F P Fh a possibly two-valued trae. To any interfae F P F i

h with
F � BT1 X BT2 we assign two non-negative real numbers ωT1,F and ωT2,F suh that

ωT1,F � ωT2,F � 1.Then, if F P F i
h with F � BT1 X BT2 the jump and weighted average of v at F are respetively de�ned for a.e.

x P F as
JvKF pxq def� v|T1

� v|T2
, tvuω,F pxq def� ωT1,F v|T1

pxq � ωT2,F v|T2
pxq,



4 TITLE WILL BE SET BY THE PUBLISHERwhile, if F P Fb
h with F � BT X BΩ, we set tvuω,F pxq � JvKF pxq � v|T pxq.When v is vetor-valued, the jump and average operators at omponent-wise. Whenever no onfusion anarise, the subsript F and the variable x are omitted, and we simply write tvuω and JvK. Moreover, in thelassial ase ωT1,F � ωT2,F � 1{2 we also omit the subsript ω and write tvu instead of tvuω. The use ofweighted averages in dG methods has been pointed out and used in various ontexts, e.g., by Stenberg [36℄ andby Heinrih and Pietsh [32℄.De�nition 2 (Mathing simpliial submesh). Let Th be a general mesh. We say that Sh is a mathing simpliialsubmesh of Th if (i) Sh is a mathing simpliial mesh, (ii) for all T 1 P Sh, there is only one T P Th suh that

T 1 � T , (iii) for all F 1 P Fh, the set olleting the mesh faes of Sh, there is only one F P Fh suh that F 1 � F .De�nition 3 (Shape- and ontat-regularity). We say that the mesh sequene pThqhPH is shape- and ontat-regular if for all h P H, Th admits a mathing simpliial submesh Sh suh that (i) the mesh sequene pShqhPHis shape-regular in the usual sense of Ciarlet [16℄, meaning that there is a parameter ̺1 ¡ 0 independent of hsuh that for all T 1 P Sh,
̺1hT 1 ¤ δT 1 ,where hT 1 is the diameter of T 1 and δT 1 the radius of the largest ball insribed in T 1, (ii) there is a parameter

̺2 ¡ 0 independent of h suh that for all T P Th and for all T 1 P ST ,
̺2hT ¤ hT 1 .Lemma 4 (Bounds on geometri quantities). Let pThqhPH be a shape- and ontat-regular mesh sequene. Then,for all h P H and all T P Th, (i) the number of mesh faes belonging to the boundary of an element is uniformlybounded in h,

NB def� sup
hPH, TPTh

cardpFT q   �8;(ii) for all F P FT ,
hF ¥ ̺1̺2hT . (3)Proof. See [21, Lemmata 1.33�1.34℄. �For all h P H and k ¥ 0, we introdue the broken polynomial spaes of total degree ¤ kPk

dpThq def� tv P L2pΩq | v|T P Pk
dpT qu,with Pk

dpT q given by the restrition to T of the funtions in Pk
d. Broken polynomial spaes are a speial instaneof broken Sobolev spaes: For all k ¥ 1, HkpThq def�  

v P L2pΩq | v|T P HkpT q, �T P Th
(. The shape- andontat-regularity of the mesh sequene pThqhPH are essential to infer the following results; see, e.g., [21, �1.4.3℄.Lemma 5 (Trae inequalities). Let pThqhPH be a shape- and ontat-regular mesh sequene. Then, for all h P H,all T P Th, and all F P FT ,�vh P Pk

dpThq, }vh}L2pF q ¤ Ctrh
�1{2
F }vh}L2pT q, (4)�v P H1pThq, }v}L2pF q ¤ Ctr,c

�
h�1
T }v}2L2pT q � hT |v|2H1pT q	1{2

, (5)with Ctr and Ctr,c independent of the meshsize h.The following property is neessary to obtain optimal estimates of the onvergene rate.
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Sg

xT
xT2

xT1

Figure 1. Mesh Th (left panel), submesh Sh (right panel, thin lines), and simplex Sg (rightpanel, dashed) for the L-group g in bold line. The path Pg is shaded.De�nition 6 (Optimal polynomial approximation). We say that the mesh sequene pThqhPH has optimal poly-nomial approximation properties if for all h P H, all T P Th, and all polynomial degrees k, there is a linearinterpolation operator Ik
T : L2pT q Ñ Pk

dpT q suh that for all s P t0, . . . , k � 1u and all v P HspT q, there holds|v � Ik
T v|HmpT q ¤ Capph

s�m
T |v|HspT q �m P t0, . . . , su,with Capp independent of T and h.A su�ient ondition to prove optimal approximation properties is, e.g., that the mesh is �nitely shaped, i.e.,that there exists a �nite set of referene polyhedra suh that every mesh element is the image of a referenepolyhedron via an a�ne bijetive mapping. This assumption yields a uniformly bounded Deny�Lions onstant;see, e.g., [27, Theorem 1.103℄. Other, more general, su�ient onditions an be devised. It is a simple matter toprove that the L2-orthogonal projetion has optimal approximation properties on mesh sequenes with optimalapproximation properties. In order to obtain a pieewise a�ne representation, it is useful to assoiate the uniquedegree of freedom of eah element to a point with suitable properties.De�nition 7 (Cell enters). Let pThqhPH be a shape- and ontat-regular mesh sequene. We say that pThqhPHadmits a set of ell enters if (i) for every T P Th there exists a point xT suh that T is star-shaped with respetto xT (the ell-enter) and (ii) there exists ̺3 ¡ 0 suh that for all h P H, all T P Th, and all F P FT ,

dT,F
def� distpxT , F q ¥ ̺3hT . (6)De�nition 8 (Admissible mesh sequene). We say that the mesh sequene pThqhPH is admissible if it is shape-and ontat-regular, it has optimal polynomial approximation properties, and there exists a set of ell enters.Admissible mesh sequenes inlude general polyhedral disretizations with possibly nononforming interfaes;see Figure 1 for an example. For all h P H we an de�ne a pyramidal submesh of Th as follows:

Sh
def� tPT,F uTPTh, FPFT

, (7)where, for all T P Th and all F P FT , PT,F denotes the open pyramid of apex xT and base F , i.e.,
PT,F

def� tx P T | Dy P F zBF, Dθ P p0, 1q | x � θy � p1� θqxT u.The pyramids tPT,F uTPTh, FPFT
are non-degenerated owing to assumption (6). Sine faes are planar, for all

T P Th and all F P FT there holds |PT,F |d � |F |d�1dT,F

d
, (8)
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F F

F F(a) L-groups ontaining the fae F . The primaryelement Tg suh that g � FT is shaded xT
xT2

xT1

F1

F2(b) L-onstrutionFigure 2. L-onstrutionand, for all T P Th, ¸
FPFT

|PT,F |d � ¸
FPFT

|F |d�1dT,F

d
� |T |d. (9)1.2. The L-onstrutionIn this setion we brie�y reall the L-onstrution originally introdued by Aavatsmark, Eigestad, Mallison,and Nordbotten [3℄ and analyzed by Agélas, Di Pietro, and Droniou [4℄. This onstrution is a fundamentalingredient in the de�nition of the G spaes presented in this work. Let κ P rL8pΩqsd,d denote a symmetri,uniformly ellipti tensor �eld suh that the spetrum of κpxq lies in rλ, λs for a.e. x P Ω. For the sake ofsimpliity we assume heneforth that �h P H, κ P rP0

dpThqsd,d,and denote by κ
1{2 the pieewise symmetri, uniformly ellipti tensor �eld suh that κ1{2pxqκ1{2pxq � κpxq fora.e. x P Ω. The pieewise regular ase an be handled with minor modi�ations. For all F P Fh and all T P TFwe denote the di�usion in the normal diretion by

λT,F
def� κ|TnF �nF .The key idea of the L-onstrution is to use d ell and boundary fae values (provided, in this ase, by ahomogeneous boundary ondition) to express a ontinuous pieewise a�ne funtion with ontinuous di�usive�uxes. The values are seleted using d neighboring faes belonging to a ell and sharing a ommon vertex. Morepreisely, we de�ne the set of L-groups as follows:

G
def� tg � FT X FP , T P Th, P P Nh | cardpgq � du ,with FT and FP given by (1) and (2) respetively. For eah g P G we selet a primary element Tg suh that

g � FTg
; see Figure 2(a). Suh an element may not be unique as non-onvex elements are allowed. We let, forthe sake of brevity,

gi
def� gX F i

h, gb
def� gX Fb

h .It is also useful to introdue a symbol for the set of ells onurring to the L-onstrution as well as for theunion of the pyramids based on the group faes (see Figure 2): For all g P G,
Tg

def� tT P Th | T P TF , F P gu, Pg

def� ¤
FPg, TPTF

PT,F . (10)



TITLE WILL BE SET BY THE PUBLISHER 7The path Pg is shaded in Figures 1 and 2(b). Let now g P G. In what follows, for any D � R of odimension lwe denote by xϕyD the average xϕyD def� ³
D
ϕ{|D|d�l.For all vh P Vh we onstrut the funtion ξg
vh

pieewise a�ne on the family of pyramids tPT,F uFPg, TPTF
suhthat:(i) ξg

vh
pxT q � vT for all T P Tg and xξg

vh
yF � ξg

vh
pxF q � 0 for all F P gb;(ii) ξg

vh
is ontinuous aross every interfae in the group: For all F P gi suh that F � BT1 X BT2,�x P F, ξg

vh
|T1
pxq � ξg

vh
|T2
pxq;(iii) ξg

vh
has ontinuous di�usive �ux aross every interfae in the group: For all F P gi suh that F � BT1XBT2,pκ∇ξg

vh
q|T1

�nF � pκ∇ξg
vh
q|T2

�nF .(The quantities in both sides are onstant sine ξg
vh

is pieewise a�ne and the fae F is planar).The following result is instrumental to derive approximation properties for the G spae.Proposition 9 (L-onstrution). For all vh P Vh and all g P G, there holds
Agp∇ξg

vh
q|Tg

� bgpvhq, (11)where the matrix Ag P Rd,d and the linear appliation bg : Vh Ñ Rd are de�ned row-wise by
Ag

def� ����λT,F

dT,F
pxT � xTg

q � κTg
nTg,F � κT,FnT,F

	t

giQF�TgXT�
λTg,F

dTg,F
pxF � xTg

q	t

FPgb

��� , bgpvhq � ����λT,F

dT,F
pvT � vTg

q	
giQF�TgXT��λTg,F

dTg,F
vTg

	
FPgb

��� .(12)Proof. See [4, Lemma 3.1℄. �In order to express ξg
vh

terms of the values tvT uTPTg
, the matrix Ag must be invertible. Simple su�ientinversibility onditions are disussed in what follows. In pratie, however, the inversibility an be hekeddiretly, and bakup strategies an be devised; see Remark 11.1.3. The G spaeIn this setion we introdue a G spae based on the L-onstrution and on a loal gradient inspired byGreen's formula. For a fae F P F i

h, let GF denote the set of L-groups ontaining F ,
GF

def� tg P G | F P gu.Assumption 10 (Existene of an L-group leading to an invertible matrix for eah interfae). We assume that,for all F P F i
h, GF is non-empty and there exists g P GF suh that the matrix Ag de�ned by (12) is invertible.For the sake of simpliity, Assumption 10 holds taitly from this point on. Should this not be true, bakupstrategies an be envisaged, as disussed in Remark 11. The disrete gradient is obtained as follows:(i) For every F P F i

h we selet a unique L-group gF yielding an invertible matrix and, for all vh P Vh, wedenote by ξgF
vh

the pieewise a�ne funtion on tPT,F uTPTF
obtained from the L-onstrution. Whenevermore than one suh group is present, we selet g P GF for whih }A�1

g
}2 is minimal (this ensures thebest approximation properties; see Lemma 20 and Assumption 21). For onveniene of notation, for allboundary faes F � BT X BΩ we introdue the a�ne funtion ξgF

vh
on PT,F suh that ξgF

vh
|F � 0 on F and

ξgF
vh
pxT q � vT . Suh a funtion is well-de�ned sine faes are planar.



8 TITLE WILL BE SET BY THE PUBLISHER(ii) We then de�ne the trae reonstrution operator Th : Vh Ñ RFh whih realizes the mapping Vh Q vh ÞÑ
Thpvhq � pvF qFPFh

with pvF qFPFh
P RFh and, for all F P Fh,

vF � xξgF

vh
yF � ξgF

vh
pxF q. (13)(iii) The gradient reonstrution operator Gh : Vh Ñ rP0

dpThqsd is de�ned following Droniou and Eymard [23℄as the appliation Vh Q vh ÞÑ Ghpvhq P rP0
dpThqsd with�T P Th, Ghpvhq|T � 1|T |d ¸

FPFT

|F |d�1pvF � vT qnT,F . (14)where we have set pvF qFPFh
� Thpvhq.The expression (14) is inspired by Green's formula. As suh, vF has to be related to the average on the fae F .For a�ne funtions, the average oinides with the baryentri value, thereby justifying the hoie in (13). Thelinear reonstrution operator R

ccg
h : Vh Ñ P1

dpThq leading to the G spae is �nally de�ned as the mappingVh Q vh ÞÑ vh P P1
dpThq with�T P Th, �x P T, vh|T pxq � vT �Ghpvhq|T �px� xT q.In the above formula, vT is interpreted as the point value in xT . The inomplete polynomial spae V

ccg
h uponwhih the G method relies is the image of the algebrai spae of degrees of freedom Vh through R

ccg
h ,

V
ccg
h

def� R
ccg
h pVhq � P1

dpThq.Proeeding by ontradition, it is a simple matter to prove that R
ccg
h is injetive from Vh to P1

d and, hene,bijetive from Vh to V
ccg
h . It is also useful to observe that the disrete spae V

ccg
h is ontained in the largerbroken Sobolev spae H1pThq.Remark 11 (Bakup strategies). Numerial evidene [3, 4℄ shows that Assumption 10 is true in most irum-stanes. In the presene of highly heterogeneous di�usion tensors or for extremely deformed meshes, it mayour, however, that no L-group yielding an invertible matrix an be found for some interfaes. In this ase,several bakup strategies are possible, and the hoie an be mostly guided by the implementation at hand. Wemention two possibilities, although many more are possible. A �rst strategy relying on the tight link of Gmethods to dG methods onsists in using a full P1

d basis on the mesh elements whih have at least one faefor whih no invertible L-group exists. This results in a loal inrease of the number of unknowns and yields aompletely robust method. Whenever exatly one unknown per ell is allowed, the L-onstrution an be re-plaed by the baryentri interpolator of [30, �2.2℄. The method an then be onstruted provided the d pointsinvolved in the baryentri interpolation form a non-degenerate simplex (an extremely mild mesh regularityassumption). In this ase, however, a loal loss of preision may be observed as the baryentri interpolatordoes not honor the heterogeneity of κ. We emphasize that no bakup strategy whatsoever was required in thenumerial examples of �4.Remark 12 (Polynomial order adaptivity). In the spirit of the previous remark, the polynomial degree an beadapted in G methods by using full polynomial spaes inside seleted elements. This is naturally handledwhenever the disrete formulation relying on the G spae is inspired by a dG method, as is the ase for allthe examples provided in this work.1.4. Disrete funtional analysisThis setion ollets some disrete funtional analysis results that will be used in the rest of the paper. Thematerial is mainly adapted from [20, �6℄, to whih we refer for further details. We state, in partiular, the



TITLE WILL BE SET BY THE PUBLISHER 9Sobolev embeddings for broken polynomial spaes in the Hilbertian ase and the disrete ounterpart of theRellih�Kondrahov theorem. To this end, we introdue the following norm on H1pThq:~v~2 def� }∇hv}2rL2pΩqsd � |v|2J, |v|2J def� ¸
FPFh

1

hF

}JvK}2L2pF q, (15)where ∇h denotes the broken gradient on Th, i.e., for all v P H1pThq, ∇hv|T � ∇v for all T P Th.Theorem 13 (Disrete Sobolev embeddings, Hilbertian ase). For all q suh that (i) 1 ¤ q   �8 if d ¤ 2,(ii) 1 ¤ q ¤ 2d
d�2

if d ¡ 2, there is σq independent of h suh that�vh P Pk
dpThq, }vh}LqpΩq ¤ σq~vh~. (16)The onstant σq additionally depends on k, |Ω|d and on the mesh regularity parameters.The disrete Poinaré inequality is obtained as a speial ase for q � 2. For a proof in the more generalnon-Hilbertian ase we refer to [20℄. Sequenes in pV ccg

h qhPH uniformly bounded in the ~�~-norm possess animportant ompatness property. Following the idea of Brezzi, Manzini, Marini, Pietra, and Russo [12℄ modi�edaording to [5, �3.1℄, we introdue for all F P Fh the loal lifting operator rω,F : L2pF q Ñ rP0
dpThqsd whihmaps every ϕ P L2pF q to rω,F pϕq P rP0

dpThqsd solution to:»
Ω

rω,F pϕq�τh � »
F

ϕtτhuω�nF , �τh P rP0
dpThqsd. (17)For further use we also introdue the global lifting Rω,hpϕq def� °

FPFh
rω,F pϕq. If ωT1,F � ωT2,F � 1{2 for all

F P F i
h with F � BT1XBT2 we simply write rF and Rh. The lifting operators an be used to de�ne a orreteddisrete gradient aounting for the jumps aross mesh interfaes and on BΩ. More preisely, we introdue thelinear operator Gω,h : H1pThq Ñ rL2pΩqsd de�ned as follows: For all v P H1pThq,

Gω,hpvq def� ∇hv �Rω,hpJvKq. (18)As before, if ωT1,F � ωT2,F � 1{2 for all F P F i
h with F � BT1 X BT2 we omit the subsript ω and write Gh.Lemma 14 (Disrete Rellih�Kondrahov). Let pvhqhPH be a sequene in pPk

dpThqqhPH, k ¡ 0, uniformlybounded in the ~�~-norm. Then, there exists a funtion v P H1
0 pΩq suh that as h Ñ 0, up to a subsequene

vh Ñ v strongly in L2pΩq.Proof. See [21, Theorem 6.3℄. �Lemma 15 (Weak asymptoti onsisteny of Gω,h for sequenes of disrete funtions). Let pvhqhPH be asequene in pPk
dpThqqhPH, k ¡ 0, uniformly bounded in the ~�~-norm. Then, as h Ñ 0, Gω,hpvhq á ∇v weaklyin rL2pΩqsd, where v P H1

0 is the limit provided by Theorem 14.Proof. Denote by πh the L2-orthogonal projetion onto rP1
dpThqsd. To prove the weak onvergene of Gω,hpvhqto ∇v, let Φ P rC8

0 pΩqsd, set Φh
def� πhΦ, and observe that»

Ω

Gω,hpvhq�Φ � � »
Ω

vh∇�Φ�
ŢPTh

»BT Φ�nT vh� ¸
FPFh

»
Ω

rω,F pJvhKq�Φh � � »
Ω

vh∇�Φ� ¸
FPFh

»
F

JvhKtΦ�Φhuω�nF ,where we have used the de�nition of the L2-orthogonal projetion, the fat that tΦuω � Φ on every F P Fh,and (17). Denote by T1 and T2 the addends in the right-hand side. Clearly, T1 Ñ ³
Ω
v∇�Φ. For the seondterm, the Cauhy�Shwarz inequality yields T2 ¤ |vh|J � �°

FPFh
hF

³
F
|tΦ� Φhuω|2�1{2, whih tends to zero



10 TITLE WILL BE SET BY THE PUBLISHERowing to the approximation properties of the L2-orthogonal projetion for the smooth funtion Φ together withthe fat that |vh|J is uniformly bounded by assumption. �It is important to observe that, sine V ccg
h � P1

dpThq, both Theorems 13 and 14 and Lemma 15 hold a fortiorifor the sequene of G spaes pV ccg
h qhPH. 2. Pure diffusion2.1. The disrete problemThe spae V

ccg
h is used in this setion to disretize the heterogeneous di�usion problem�∇�pκ∇uq � f in Ω,

u � 0 on BΩ,with soure term f P L2pΩq. The weak form of this problem is the following:Find u P V s.t. apu, vq � »
Ω

fv for all v P V , (19)with V � H1
0 pΩq and apu, vq def� ³

Ω
κ∇u�∇v. The funtions in V

ccg
h are possibly disontinuous aross interfaes,and V

ccg
h is therefore not V -onforming. In order to devise a suitable disretization, we take inspiration from thework of Arnold [6℄ on the weak enforement of potential ontinuity aross interfaes. In partiular, we onsiderthe modi�ation proposed by Di Pietro, Ern, and Guermond [22℄ in the ontext of degenerate di�usion-advetion-reation problems to attain robustness with respet to the di�usion tensor κ. In [22℄ robustness is ahievedby relating the weights introdued in De�nition 1 to the di�usion on both sides of an interfae. The idea ofdi�usion-dependent weights an be traed bak to the work of Burman and Zunino [15℄ on mortaring tehniquesfor a singularly perturbed di�usion-advetion equation. For all F P F i

h suh that F � BT1 X BT2, we let
ωT1,F

def� λT2,F

λT1,F � λT2,F

, ωT2,F
def� λT1,F

λT1,F � λT2,F

.The analysis in the spirit of Céa's Lemma requires to extend the disrete bilinear form to a ontinuous spaeontaining the exat solution. In order to guarantee that boundary terms remain well-de�ned when doing so,it is useful to introdue a spae V: featuring additional loal regularity with respet to V .De�nition 16 (Spae V:). We let V: denote the subspae of V spanned by funtions v suh that, for all T P Th,
∇v�nT |T P L2pBT q.The spae ontaining both the disrete and the ontinuous solution is de�ned as

V:h def� V
ccg
h � V:.We are now ready to de�ne the bilinear form ah P LpV:h � V:h,Rq,

ahpv, wq def� »
Ω

κ∇hv�∇hw � ¸
FPFh

»
F

tκ∇hvuω �nF JwK � ¸
FPFh

»
F

JvKtκ∇hwuω �nF � ¸
FPFh

η
γF

hF

»
F

JvKJwK, (20)where η ¡ 0 denotes a user-dependent penalty parameter while γF is suh that
γF

def� #
λT1,FλT2,F

λT1,F�λT2,F
if F P F i

h, F � BT1 X BT2,

λT,F if F P Fb
h , F � BT X BΩ.



TITLE WILL BE SET BY THE PUBLISHER 11The disrete problem readsFind uh P V
ccg
h s.t. ahpuh, vhq � »

Ω

fvh for all vh P V
ccg
h . (21)2.2. Basi error estimateWe introdue the following data dependent norms on V:h:~v~2

κ

def� }κ1{2∇hv}2rL2pΩqsd � |v|2J,κ, ~v~2
κ,: def� ~v~2

κ
� ¸

TPTh

hT }κ1{2∇v�nT }2L2pBT q, (22)where the jump seminorm is given by |v|2J,κ def� ¸
FPFh

γF

hF

}JvK}2L2pF q.Lemma 17 (Properties of the bilinear form ah). The bilinear form ah enjoys the following properties:(i) Consisteny. Assume u P V:. Then, for all vh P V
ccg
h ,

ahpu, vhq � »
Ω

fvh;(ii) Coerivity. For all η ¡ η � C2
trNB there holds�vh P V

ccg
h , ahpvh, vhq ¥ Csta~vh~2

κ
,with Csta

def� pη � C2
trNBqtmaxp1{2, η � C2

trNBqu�1 independent of both κ and h;(iii) Boundedness. There is Cbnd independent of the meshsize h and of the di�usion oe�ient κ suh that�pv, whq P V:h � V
ccg
h , ahpv, whq ¤ Cbnd~v~κ,:~wh~κ.Proof. We preliminarily note the following bound resulting from the Cauhy�Shwarz inequality:�pv, whq P V:h � V

ccg
h ,

����� ¸
FPFh

»
F

tκ∇hvuω�nF JwhK

����� ¤ �
ŢPTh

¸
FPFT

hF }κ1{2∇v|T �nF }2L2pF q�1{2 |wh|J,κ. (23)Consisteny. Plugging the exat solution u into the �rst argument of ah and integrating by parts we obtain,for all vh P V
ccg
h ,

ahpu, vhq � � »
Ω

∇�pκ∇uqvh � ¸
FPF i

h

»
F

Jκ∇huK�nF tvhuω � ¸
FPFh

»
F

JuKtκ∇hvhuω�nF � ¸
FPFh

η
γF

hF

»
F

JuKJvhK,where tvhuω def� ωT2,F vh|T1
� ωT1,F vh|T2

. The onlusion follows using the fat that �∇�pκ∇uq � f for a.e.
x P Ω for the �rst term and the fat that both u and its di�usive �ux are ontinuous aross interfaes and uvanishes on BΩ to infer that the remaining terms are zero.Coerivity. It is inferred from the bound (23) together with the disrete trae inequality (4) that�vh P V

ccg
h ,

����� ¸
FPFh

»
F

tκ∇hvhuω�nF JvhK

����� ¤ CtrN
1{2B }κ1{2∇hvh}rL2pΩqsd |vh|J,κ.



12 TITLE WILL BE SET BY THE PUBLISHERUsing the inequality 2ab ¤ ǫa2 � 1{ǫb2 valid for any ǫ ¡ 0 together with the above bound, we obtain
ahpvh, vhq � }κ1{2∇hvh}2rL2pΩqsd � 2

¸
FPFh

»
F

tκ∇hvhuω�nF JvhK� η|vh|2J,κ¥ p1� C2
trNBǫq}κ1{2∇hvh}2rL2pΩqsd � pη � 1{ǫq|vh|2J,κ.The desired result follows by properly seleting ǫ.Boundedness. Let pv, whq P V:h� V

ccg
h and let T1, . . . ,T4 denote the addends in the expression of ahpv, whq ob-tained from (20). Using the Cauhy�Shwarz inequality it is readily inferred that |T1�T4| ¤ p1�ηq~v~κ~wh~κ.Moreover, owing to the bound (23), |T2| ¤ ~v~κ,:|wh|J,κ ¤ ~v~κ,:~wh~κ. Finally, |T3| ¤ CtrN

1{2B |v|J,κ}κ1{2∇hwh}rL2pΩqsd ,and the onlusion follows. �Theorem 18 (~�~κ-error estimate). Assume u P V:. There holds~u� uh~κ ¤ �
1� Cbnd

Csta



inf

vhPV ccg

h

~u� vh~κ,:.Proof. By the triangular inequality, for all vh P V
ccg
h there holds ~u� uh~κ ¤ ~u� vh~κ �~vh � uh~κ. Usingthe oerivity, onsisteny and boundedness of ah it is inferred

Csta~uh � vh~2
κ
¤ ahpuh � vh, uh � vhq � ahpu� vh, uh � vhq ¤ Cbnd~u� vh~κ,:~uh � vh~κ,hene ~uh� vh~κ ¤ CbndC

�1
sta~u� vh~κ,:. The onlusion follows observing that ~u� vh~κ ¤ ~u� vh~κ,:. �An important remark is that the error estimate in Theorem 18 is robust in that the multipliative onstantin the right-hand side does not depend on κ. To infer a onvergene rate from Theorem 18 we have to studythe approximation properties of the disrete spae V

ccg
h and further bound the right-hand side.2.3. Convergene rate2.3.1. The heterogeneous aseWe �rst onsider the heterogeneous ase and fous on exat solutions exhibiting further loal regularity. For

k ¥ 0 de�ne the spaes of pieewise regular funtions
CkpThq def� tv P L2pΩq | v|T P CkpT q, �T P Thu,lassially equipped with the norm }v}CkpThq def� max

TPTh

max
0¤l¤k, 1¤i¤d

}Bliv}C0pT q,and }w}C0pT q def� maxxPT |wpxq| for all w P C0pT q.Theorem 19 (Test spae). Let QTh,κ be the spae of funtions ϕ : ΩÑ R enjoying the following properties:(i) Global and loal regularity. The funtion ϕ belongs to C0pΩq X C2pThq;(ii) Continuity of the tangential derivatives at interfaes. For all F P F i
h suh that F � BT1 X BT2, all vetor

t parallel to F , and all x P F ,
∇ϕ|T1

pxq�t � ∇ϕ|T2
pxq�t;(iii) Continuity of the di�usive �ux at interfaes. For all F P F i

h suh that F � BT1 X BT2, and all x P F ,pκ∇ϕq|T1
pxq�nF � pκ∇ϕq|T2

pxq�nF .
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0 pΩq.An important remark is that QTh,κ is a subspae of V:, and so the assumptions required to prove the errorestimate in Theorem 18 are met by solutions that are in QTh,κ. In what follows we denote by I

ccg
h : C0pThq Ñ Vhthe interpolator at ell enters whih maps every funtion v P C0pThq onto the vetor

I
ccg
h pvq � pvpxT qqTPTh

P Vh.Lemma 20 (Consisteny of the gradient reonstrution). For all h P H, all v P QTh,κ, and all F P Fh,|∇ξgF

vh
�∇vpxTgF

q| ¤ C
�
1� }A�1

gF
}2�hTgF

,where vh � I
ccg
h pvq and C depends on κ, on the mesh regularity parameters, and on }v}C2pThq but not on h.Proof. Let F P F i

h. It is proved in [4, Lemma 3.3℄ that |∇ξgF
vh

�∇vpxTgF
q| ¤ C

�
1� }A�1

gF
}2�maxTPTgF

hT . Tobound the term in the right-hand side, use the shape- and ontat-regularity of the mesh to onlude that, forall T P TgF
ztTgF

u, ̺1̺2hT ¤ hF ¤ hTgF
. Hene, maxTPTgF

hT ¤ p̺1̺2q�1hTgF
, whih yields the desired result.A similar argument an be used for boundary faes. �In order to estimate the onvergene rate of the method (21) for solutions inQTh,κ, we introdue the following.Assumption 21 (Uniform bound on }A�1

gF
}2). We assume that there exists Λ   �8 independent of the meshsize

h uniformly bounding the set t}A�1
gF
}2uhPH, FPF i

h
from above.Lemma 22 (Consisteny of the trae reonstrution). Let v P QTh,κ and set vh

def� I
ccg
h pvq and pvF qFPFh

� Thpvhq.Under Assumption 21 there holds for all h P H, all v P QTh,κ, and all F P Fh,|vF � vpxF q| ¤ Ch2
TgF

,where C depends on κ, on the mesh regularity parameters, on Λ, and on }v}C2pThq.Proof. The assertion is trivially veri�ed for F P Fb
h . Let now F P F i

h. Using the Taylor expansion of vabout xTgF
together with the fat that TgF

is star-shaped with respet to xTgF
, we onlude that there exists

ypxF q P rxTgF
,xs suh that
vpxF q � vpxTgF

q �∇vpxTgF
q�pxF � xTgF

q � 1

2
pxF � xTgF

qtHvpypxF qqpxF � xTgF
q,where HvpypxF qq denotes the Hessian of v evaluated at ypxF q. Similarly, letting vh � I

ccg
h pvq and pvF qFPFh

def�
Thpvhq P RFh ,

vF � vpxTgF
q �∇ξgF

vh
|TgF

�pxF � xTgF
q.Hene, |vF � vpxF q| ¤ hT |∇ξgF

vh
|TgF

�∇vpxF q| � h2
T

2
}v}C2pT q. The onlusion follows from Lemma 20. �For further use we introdue the following augmented version of the ~�~-norm on V::~v~2: def� ~v~2 � ¸

TPTh

hT }∇v|T �nT }2L2pBT q. (24)Theorem 23 (Approximation of funtions in QTh,κ). Let v P QTh,κ and set vh
def� pRccg

h � Iccg
h qpvq P V

ccg
h .Then, under Assumption 21 there holds~v � vh~κ,: ¤ λ

1{2~v � vh~: ¤ Cvh, (25)with Cv depending on κ, on the mesh regularity parameters, on Λ, and on }v}C2pThq.



14 TITLE WILL BE SET BY THE PUBLISHERProof. The proof losely follows that of [5, Lemma 3.10℄. Sine it is lear that ~w~κ,: ¤ λ
1{2~w~: for all

w P H1pThq, we only show the seond inequality in (25). In the rest of the proof we abbreviate a À b theinequality a ¤ Cb where C an depend on κ, on the mesh regularity parameters, on Λ, and on }v}C2pThq. Let
v P QTh,κ and set

vh
def� I

ccg
h pvq P Vh, vh

def� R
ccg
h pvhq P V

ccg
h , pvF qFPFh

� Thpvhq P RFh .(i) Estimate of }∇v �∇hvh}rL2pΩqsd . For all T P Th and all x P T there holds
∇hvh|T �∇vpxq � #

∇vpxT q �∇vpxq+�#
1|T |d ¸

FPFT

|F |d�1 pvF � vpxF qqnT,F

+�#
1|T |d ¸

FPFT

|F |d�1 pvpxF q � vpxT qqnT,F �∇vpxT q+ def� T1 � T2 � T3.It is lear that |T1| ¤ }v}C2pT qhT , hene °
TPTh

}T1}2L2pT q À |Ω|dh2. Using Lemma 22 together with thegeometri relation (9) and mesh regularity it is inferred that|T2| ¤ ¸
FPFT

|F |d�1dT,F|T |d |vF � vpxF q|
dT,F

À d
h2
TgF

dT,F

À hTgF
.As a result, °TPTh

}T2}2L2pT q À |Ω|dh2. To handle the last term, we use the magi formula [5, eq. (33)℄: For all
T P Th and all x P T ,

1|T |d ¸
FPFT

|F |d�1pxF � xqipnT,F qj � δij , (26)where δij is Kroneker's symbol. By virtue of (26), there holds
T3 � 1|T |d ¸

FPFT

|F |d�1 rvpxF q � vpxT q �∇vpxT q�pxF � xT qsnT,F ¤ ¸
FPFT

|F |d�1dT,F|T |d }v}C2pT qhT .Proeeding as for T2, we easily infer that °TPTh
}T3}2L2pT q À |Ω|dh2, thereby onluding that}∇v �∇hvh}rL2pΩqsd À h.(ii) Estimate of the remaining terms in ~�~:. By the ontinuous trae inequality (5),|v � vh|2J À ¸

FPFh

h�1
F

¸
TPTF

}pv � vhq|T }2L2pF q ¤ C2
tr,c

¸
FPFh

h�1
F

¸
TPTF

!
h�1
T }v � vh}2L2pT q � hT |v � vh|2H1pT q) .On the other hand, owing to the previous point, for all T P Th and all x P T , |vT�vhpxq|�hT |∇hvh|T�∇vpxq| À

h2. It follows easily that |v� vh|J À h. The term °
TPTh

hT }∇pv � vhq|T �nT }L2pBT q an be handled in a similarway, thereby onluding the proof. �Corollary 24 (Convergene rate, heterogeneous ase). Assume u P QTh,κ. Then, under Assumption 21, thereholds ~u� uh~κ ¤ Chwith C � Cuλ
1{2 �

1� Cbnd

Csta

	 and Cu results from Theorem 23.



TITLE WILL BE SET BY THE PUBLISHER 152.3.2. The homogeneous isotropi aseWe assume throughout this setion that
κ � 1d,d, d P t2, 3u. (27)The more general ase κ � ν1d, ν ¡ 0, an be handled with minor modi�ations. When (27) holds, onvergenerates an be estimated with milder regularity assumptions on the exat solution, and L2 error estimates for themethod (21) an be obtained by the Aubin�Nietshe trik [8, 35℄. The key point is here to show how optimalonvergene rates an be obtained avoiding pointwise estimations, thereby removing the need for the strongloal regularity assumption u P C2pThq used all along the previous setion. To this end, we need to introduefurther mild assumptions on the mesh family. For all faes we de�ne a path of pyramids on whih the pieewisea�ne funtions tξgF

vh
uFPFh

are required to exhibit approximation properties. More preisely, for all F P Fh let
PF

def� #
PgF

if F P F i
h,

PT,F if F � BT X BΩ,with PgF
de�ned by (10); see Figure 1.Assumption 25 (Approximation property for L-onstrutions). We assume that the L-onstrutions are suhthat, for all 0 ¤ l ¤ 1 with l ¡ d{2�1, there exists C independent of the meshsize h suh that, for all 0 ¤ m ¤ l�1,and all F P Fh �v P H l�1pPF q, |v � ξgF

vh
|HmpPF q ¤ Chl�1�m

PF
|v|Hl�1pPF q,with vh � I

ccg
h pvq. Moreover, there exists ̺4 independent of the meshsize h suh that, for all F P Fh and all

T P TF , hPF
¤ ̺4hT .Some omments are of order. It is worth giving a hint of how Assumption 25 ould be proved. We start byobserving that Assumption 10 has a straightforward interpretation in the homogeneous ase, as it amounts torequiring that, for all F P F i

h, there exists at least a group g P GF suh that the ell enters of the elements in Tgand the baryenters of the faes F P gb form a non-degenerate simplex Sg; see Figure 1. Assumption 21 is thenessentially a shape-regularity requirement on the family of simplies tSgF
uhPH, FPF i

h
. A seond important remarkis that, for all v su�iently regular, the funtions ξg

vh
with vh � I

ccg
h pvq oinides with the Lagrange interpolatoron Sg. Assumption 25 an then be proved by lassial FE tehniques by using, e.g., the a�ne map onto thereferene simplex and estimating the norms on the ball irumsribed to PF . Using the irumsribed ball allowsto have a uniform bound on the Deny�Lions onstant appearing when proeeding as in [27, Theorem 1.103℄.Clearly, this reasoning breaks down lose to the boundary of the domain Ω, as the ball may no longer beontained in Ω. As a result, we an interpret Assumption 25 as a requirement that the pathes assoiated tothe L-onstrution near the boundary of Ω be �not too far� from the simplex formed by the ell enters. Toonlude, we point out that the assumption l ¡ d{2� 1 is neessary to ensure that point values are well-de�nedinside the elements. This is why the spae dimension has been restrited to t2, 3u in (27).Theorem 26 (Approximation of funtions in V XH2pΩq). Under Assumption 25, there holds�v P V XH2pΩq, ~v � vh~: ¤ Ch}v}H2pΩq,with vh

def� pRccg
h � Iccg

h qpvq P V
ccg
h and C depending on the mesh regularity parameters but not on h.Proof. Let v P V XH2pΩq, and set vh

def� I
ccg
h pvq P Vh and pvF qFPFh

� Thpvhq P RFh . In the rest of the proofwe abbreviate a À b the inequality a ¤ Cb where C an depend on the mesh regularity parameters but not onthe meshsize h.



16 TITLE WILL BE SET BY THE PUBLISHER(i) Estimate of }∇v �∇hvh}rL2pΩqsd . The quantity to estimate is deomposed as follows:}∇v �∇hvh}2rL2pΩqsd �
ŢPTh

¸
FPFT

»
PT,F

��∇v �∇ξgF

vh
�∇ξgF

vh
�∇vh

��2À
ŢPTh

¸
FPFT

»
PT,F

��∇v �∇ξgF

vh

��2 � ¸
TPTh

¸
FPFT

»
PT,F

��∇ξgF

vh
�∇vh

��2 def� T1 � T2.For the �rst term it su�es to use Assumption 25 to infer
T1 �

ŢPTh

¸
FPFT

|v � ξgF
vh
|2H1pPT,F q À h2|v|2H2pΩq.To estimate the seond term, preliminarily observe that, for all T P Th,

∇hvh|T � ¸
F 1PFT

|F 1|d�1|T |d �
ξgF 1
vh

|PT,F 1 pxF 1q�vT

	
nT,F 1 � ¸

F 1PFT

|F 1|d�1|T |d ∇ξgF 1
vh

|PT,F 1 �pxF 1�xT qnT,F 1 ,where we have used the linearity of ξgF 1
vh

to infer that ξ
gF 1
vh

|PT,F 1 pxF q � vT � ∇ξ
gF 1
vh

|PT,F 1 �pxF 1 � xT q. Usingformula (26), we obtainx∇vyT �∇hvh|T � ¸
F 1PFT

|F 1|d�1|T |d �x∇vyT �∇ξgF 1
vh

|PT,F 1	 �pxF 1 � xT qnT,F 1 .Exploiting the above remark, the seond term is then deomposed as follows:
T2 À ¸

TPTh

¸
FPFT

|PT,F |d ��∇ξgF
vh
|PT,F

� x∇vyPT,F

��2 �
ŢPTh

¸
FPFT

|PT,F |d ��x∇vyPT,F
� x∇vyT ��2�

ŢPTh

¸
FPFT

|PT,F |d ����� ¸
F 1PFT

|F 1|d�1|T |d �x∇vyPT,F 1 �∇ξgF 1
vh

|PT,F 1	 �pxF 1 � xT qnT,F 1 �����2�
ŢPTh

¸
FPFT

|PT,F |d ����� ¸
F 1PFT

|F 1|d�1|T |d �x∇vyT � x∇vyPT,F 1	 �pxF 1 � xT qnT,F 1 �����2 def� T2,1 � T2,2 � T2,3 � T2,4.The Cauhy�Shwarz inequality yields
∇ξgF

vh
|PT,F

� x∇vyPT,F
� 1|PT,F |d »PT,F

�
∇ξgF

vh
�∇v

� ¤ 1|PT,F |1{2d

|ξgF
vh

� v|H1pPT,F q,whene, by Assumption 25,
T2,1 ¤

ŢPTh

¸
FPFT

|ξgF

vh
� v|2H1pPT,F q À h2|v|2H2pΩq.The term T2,2 an be estimated in a similar fashion using the approximation properties of the L2 projetion of

∇v onto rP0
dpThqsd to onlude. To estimate T2,3, observe preliminarily that, for all T P Th and all F 1 P FT ,equation (8) yields |F 1|d�1

�x∇vyPT,F 1 �∇ξgF 1
vh

|PT,F 1	 � d

dT,F 1 »PT,F 1 �∇v �∇ξgF 1
vh

�
.



TITLE WILL BE SET BY THE PUBLISHER 17The Cauhy�Shwarz inequality together with (6) yield����� ¸
F 1PFT

|F 1|d�1|T |d �x∇vyPT,F 1�∇ξgF 1
vh

|PT,F 1	 �pxF 1�xT q�����2 ¤ d2h2
T

d2T,F 1 |T |2d ����� ¸
F 1PFT

»
PT,F 1 �∇v �∇ξgF 1

vh

������2¤ d2h2
T

d2T,F 1 |T |2d # ¸
F 1PFT

|PT,F 1 |d+�# ¸
F 1PFT

|v � ξgF 1
vh

|2H1pPT,F 1 q+ � d2|T |d̺23 ¸
F 1PFT

|v � ξgF 1
vh

|2H1pPT,F 1 q.We therefore have
T2,3 ¤ d2

̺23 ŢPTh

¸
FPFT

# |PT,F |d|T |d ¸
F 1PFT

|v � ξgF 1
vh

|2H1pPT,F 1 q+¤ d2

̺23 ŢPTh

# ¸
FPFT

|PT,F |d|T |d +�# ¸
F 1PFT

|v � ξgF 1
vh

|2H1pPT,F 1 q+ ¤ d2

̺23

¸
TPTh

¸
F 1PFT

|v � ξgF 1
vh

|2H1pPT,F 1 q,and, by Assumption 25, we infer that T2,3 À h2}v}2
H2pΩq. Proeeding in a similar way, one an prove that

T2,4 À h2}v}2
Hl�1pΩq. In onlusion, }∇v �∇hvh}rL2pΩqsd À h}v}H2pΩq.To onlude, we observe that the fat that v vanishes on the boundary has been taitly used to estimate theerror assoiated to the funtions ξgF

vh
on boundary faes F P Fb

h .(ii) Estimate of the remaining terms in ~�~:. We start by estimating }v � vh}L2pΩq. Let π1
h denote the L2-projetion on to P1

dpShq with Sh de�ned by (7). An appliation of the triangular inequality yields}v � vh}L2pΩq ¤ }v � π1
hv}L2pΩq � }π1

hv � vh}L2pΩq def� T1 � T2.By the approximation properties of the pyramidal submesh Sh (whih follow from the shape- and ontat-regularity of the mesh Th as well as from the assumption that ell enters are uniformly away from the ellboundaries), there holds T1 À h2}v}H2pΩq. To proeed, we rewrite the seond term as follows:
T2
2 � ¸

TPTh

¸
FPFT

}π1
hv � vh}2L2pPT,F q.Sine, for all T P Th, all F P FT , and all x P PT,F , π1

hv|PT,F
pxq � xvyPT,F

�∇π1
hv|PT,F

�px� xT q, there holds,}π1
hv � vh}L2pPT,F q ¤ }xvyPT,F

� xξgF

vh
yPT,F

}L2pPT,F q � }∇pπ1
hv � ξgF

vh
q�px� xT q}L2pPT,F q¤ $&%»

PT,F

�»
PT,F

pv � ξgF

vh
q�2

,.-1{2 � hT |π1
hv � ξgF

vh
|H1pPT,F q¤ }v � ξgF

vh
}L2pPT,F q � hT |π1

hv � ξgF

vh
|H1pPT,F q.Assumption 25 then yields T2 À h2|v|H2pΩq. We therefore onlude that}v � vh}L2pΩq À h2}v}H2pΩq. (28)To bound |v � vh|J and °

TPTh
hT }∇v|T �nF }L2pBT q use the ontinuous trae inequality (5) as in point (ii) ofTheorem 23 together with (28). �



18 TITLE WILL BE SET BY THE PUBLISHERLemma 27 (Convergene rate, homogeneous ase). Let u P V XH2pΩq. Then, under Assumption 25,~u� uh~ ¤ Ch}u}H2pΩq, (29)with C independent of the meshsize h. Moreover, if ellipti regularity holds,}u� uh}L2pΩq ¤ Ch2}u}H2pΩq. (30)Proof. (i) Energy estimate (29). Use the error estimate of Theorem 18 together with the assumption (27) andTheorem 26 to onlude that ~u� uh~ ¤ C
�
1� Cbnd

Csta

	 }v}H2pΩq.(ii) L2-error estimate (30). We only give a sketh of the proof and refer, e.g., to [7℄ or [21, �4.1.3℄ for furtherdetails. Preliminarily remark that the bilinear form ah is oerive in V
ccg
h �V

ccg
h with respet to the augmentednorm ~�~:, i.e., there exists C 1

sta suh that, for all η ¡ η and all vh P V
ccg
h , ahpvh, vhq ¥ C 1

sta~vh~2: (indeed,the ~�~-norm and the ~�~:-norm are uniformly equivalent on V
ccg
h ). Also, there exists C 1

bnd independent of themeshsize h suh that, for all w, v P V:h, ah ¤ C 1
bnd~w~:~v~:. Hene, proeeding as in Theorem 18 and usingTheorem 26 we onlude that ~u � uh~: ¤ Ch}v}H2pΩq with C independent of the meshsize h. Consider nowthe auxiliary problem Find χ P V suh that apχ, vq � »

Ω

pu� uhqv for all v P V .By the ellipti regularity assumption, there exists Cell suh that }χ}H2pΩq ¤ Cell}u�uh}L2pΩq. Moreover, owingto the symmetry and the onsisteny of ah, ahpu�uh, χq � � ³
Ω
△χpu�uhq and, for χh � pRccg

h �Iccg
h qpχq P V

ccg
h ,

ahpu� uh, χhq � 0. As a result,}u� uh}2L2pΩq � ahpu�uh, χ�χhq À ~u�uh~:~χ�χh~: À ~u� uh~:h}χ}H2pThq À ~u� uh~:h}u� uh}L2pΩq,with À indiating inequalities up to a multipliative onstant independent of the meshsize h. To onlude theproof, use the fat that ~u� uh~: ¤ Ch}v}H2pΩq. �2.4. Convergene to minimal regularity solutionsWe investigate the onvergene of the method (21) to minimal regularity solutions, i.e., solutions that barelysit in H1
0 pΩq. Throughout this setion we restore the original assumptions on the di�usion oe�ient κ, and weonsider an arbitrary spae dimension, i.e.

κ P rP0
dpThqsd,d, d ¥ 1.The analysis follows the ideas of Eymard, Gallouët, and Herbin [29, 30℄ originally developed in the ontext ofFV methods and reently transposed to dG methods by Di Pietro and Ern [20℄. An important remark is thatthe bilinear form ah admits the following equivalent form on V

ccg
h � V

ccg
h :

ahpuh, vhq � »
Ω

κGω,hpuhq�Gω,hpvhq � jhpuh, vhq, (31)with jhpuh, vhq def� ³
Ω
κRω,hpJuhKq�Rω,hpJvhKq �°

FPFh
ηγFh

�1
F

³
F
JuhKJvhK and disrete gradients de�ned by (18).When extended to V:h�V

ccg
h , this alternative form is no longer onsistent in the sense of point (i) in Lemma 17;see [20, Remark 3.3℄ and [21, �5.2.1℄. However, ah retains a di�erent form of onsisteny whih su�es to inferthe onvergene of the method when u only exhibits the minimal regularity.De�nition 28 (Asymptoti onsisteny). We say that the bilinear form ah is asymptotially onsistent withthe exat bilinear form a on pV ccg

h qhPH if, for any sequene pvhqhPH in pV ccg
h qhPH uniformly bounded in the



TITLE WILL BE SET BY THE PUBLISHER 19~�~-norm, and for all ϕ P QTh,κ with ϕh
def� pRccg

h � Iccg
h qpϕq P V

ccg
h ,

lim
hÑ0

ahpvh, ϕhq � apv, ϕq � »
Ω

κ∇v�∇ϕ,and v P H1
0 pΩq results from Theorem 14.To prove the onvergene of the method, we then proeed as follows: (i) using the oerivity of ah we provea uniform bound for the ~�~-norm of the disrete solutions puhqhPH; (ii) by virtue of Theorem 14, we inferthe existene of u P V � H1

0 pΩq limit of puhqhPH; (iii) using the asymptoti onsisteny of ah together withthe fat that QTh,κ is dense in V , we onlude that u � u (and, by the uniqueness of u, that the onvergeneproperty extends to the whole sequene); (iv) using the above result, we prove the strong onvergene of thesequene pGω,hpuhqqhPH to ∇u in rL2pΩqsd as hÑ 0. An important intermediate result to prove the asymptotionsisteny of ah is the onsisteny of the disrete gradientGω,h de�ned by (18) for the interpolates of funtionsin QTh,κ. We �rst prove the following.Lemma 29 (Bound on global lifting). For all v P V:, there holds}κ1{2Rω,hpJvKq}2rL2pΩqsd ¤ CtrN
1{2B |v|2J,κ.Proof. By de�nition,}κ1{2Rω,hpJvKq}2rL2pΩqsd � ¸

FPFh

»
Ω

κRω,hpJvKq�rω,F pJvKq � ¸
FPFh

»
F

tκRω,hpJvhKquω �nF JvK.For brevity of notation, for all F P F i
h with F � BT1 X BT2, let ωi � ωTi,F , λTi,F � λi, κi � κ|Ti

, and
ai � κ

1{2
i Rω,hpJvKq|Ti

, i P t1, 2u. The Cauhy�Shwarz inequality yields»
F

tκRω,hpJvKquω �nF JvK � »
F

pω1κ
1{2
1 nT1

�a1 � ω2κ
1{2
2 nT2

�a2qJvK¤ "
1

2
hF

�}a1}2rL2pF qsd � }a2}2rL2pF qsd	*1{2 � "
2pω2

1λ1 � ω2
2λ2q 1

hF

}JvK}2L2pF q*1{2
,and sine 2pω2

1λ1 � ω2
2λ2q � γF , it is inferred that»

F

tκRω,hpJvKquω �nF JvK ¤ "
1

2
hF

�}a1}2rL2pF qsd � }a2}2rL2pF qsd	*1{2 � "
γF

hF

}JvK}2L2pF q*1{2
.Moreover, for all F P Fb

h with F � BT X BΩ,»
F

tκRω,hpJvKquω �nF JvK ¤ h
1{2
F }pκ1{2Rω,hpJvKqq|T �nF }L2pF q �#

γF

hF

}JvK}2L2pF qhF

¸
TPTF

}κ1{2Rω,hpJvKq|T }+1{2
.Summing over mesh faes, and using the Cauhy�Shwarz inequality we obtain}κ1{2Rω,hpJvKq}2rL2pΩqsd ¤ ¸

FPFh

#
hF

¸
TPTF

}pκ1{2Rω,hpJvKqq|T }2L2pF q+1{2 |v|J,κ ¤ CtrN
1{2B }κ1{2Rω,hpJvKq}rL2pΩqsd |v|J,κ.This onludes the proof. �



20 TITLE WILL BE SET BY THE PUBLISHERLemma 30 (Strong onvergene ofGω,h for smooth funtions). Let ϕ P QTh,κ and set ϕh
def� pRccg

h � Iccg
h qpϕq P V

ccg
h .Under Assumption 21, there holds

Gω,hpϕhq Ñ ∇ϕ strongly in rL2pΩqsdProof. The triangular inequality yields}Gω,hpϕhq �∇ϕ}rL2pΩqsd ¤ }∇hϕh �∇ϕ}rL2pΩqsd � }Rω,hpJϕhKq}rL2pΩqsd def� T1 � T2.Using Theorem 23 it is readily inferred that T1 Ñ 0 as h Ñ 0. For the seond term, use Lemma 29 togetherwith the fat that JϕKF pxq � 0 for all F P Fh and all x P F to infer
λ

1{2}Rω,hpJϕhKq}rL2pΩqsd ¤ }κRω,hpJϕhKq}rL2pΩqsd ¤ CtrN
1{2B |ϕh|J,κ ¤ CtrN

1{2B |ϕh � ϕ|J,κ,and the right-hand side tends to zero as hÑ 0 again by virtue of Theorem 23. This onludes the proof. �We are now ready to prove the following.Lemma 31 (Asymptoti onsisteny of the bilinear form ah). Under Assumption 21, the bilinear form ah isasymptotially onsistent with the exat bilinear form a on pV ccg
h qhPH.Proof. Let pvhqhPH be a sequene in pV ccg

h qhPH bounded in the ~�~-norm and let ϕ P QTh,κ. For all h P H, weset ϕh
def� pRccg

h � Iccg
h qpϕq P V

ccg
h . By Theorem 23, it is lear that ~ϕ� ϕh~κ Ñ 0 as hÑ 0. Observe that

ahpvh, ϕhq � »
Ω

κGω,hpvhq�Gω,hpϕhq � jhpvh, ϕhq def� T1 � T2.Clearly, as hÑ 0, T1 Ñ ³
Ω
κ∇v�∇ϕ owing to the weak onvergene of Gω,hpvhq to ∇v stated in Lemma 15 andto the strong onvergene of Gω,hpϕhq to ∇ϕ proved in Lemma 30. Furthermore, using the Cauhy�Shwarzinequality together with Lemma 29 and the fat that, for all w P H1pThq, |w|J,κ ¤ λ

1{2|w|J, it is inferred that|T2| � |jhpvh, ϕhq| ¤ �
C2

trNB � η
� |vh|J,κ|ϕh|J,κ ¤ �

C2
trNB � η

�
λ

1{2|vh|J|ϕh|J,κSine |vh|J is bounded by assumption, and sine |ϕh|J,κ � |ϕh�ϕ|J,κ tends to zero as hÑ 0, it is inferred that
T2 Ñ 0. The proof is omplete. �Remark 32 (Weakening Assumption 21). To prove the asymptoti onsisteny of ah, and hene the onvergeneto minimal regularity solutions, we only need that�ϕ P QTh,κ, ~ϕ� ϕh~ Ñ 0 as hÑ 0, (32)with ϕh � pRccg

h � Iccg
h qpϕq P V

ccg
h . Property (32) holds, e.g., if maxFPFh

}A�1
gF
}2 ¤ Ch�ǫ with 0 ¤ ǫ   1 and

C independent of the meshsize h. Whenever the solution exhibits su�ient regularity, however, one may wishto have ǫ � 0 to attain optimal onvergene rates. For the sake of simpliity, Assumption 21 is required in thestatements of Lemma 31 and Theorem 33, although (32) ould have been used instead.Theorem 33 (Convergene to minimal regularity solutions). Let puhqhPH be the sequene of approximatesolutions generated by solving the disrete problems (21). Then, under Assumption 21, as hÑ 0, (i) uh Ñ ustrongly in L2pΩq, (ii) ∇huh Ñ ∇u strongly in rL2pΩqsd, (iii) |uh|J Ñ 0, with u P V unique solution to (19).



TITLE WILL BE SET BY THE PUBLISHER 21Proof. We follow the four steps outlined above.(i) A priori estimate. Owing to Lemma 17ii and to the disrete Poinaré inequality obtained from (16) with
q � 2,

Cstaλ~uh~2 ¤ Csta~uh~2
κ
¤ apuh, uhq � »

Ω

fuh ¤ }f}L2pΩq}uh}L2pΩq ¤ σ2}f}L2pΩq~uh~,hene ~uh~ ¤ σ2pCηλq�1}f}L2pΩq.(ii) Compatness. Owing to Theorem 14 together with Lemma 15, there exists u P V � H1
0 pΩq suh that, as

hÑ 0, up to a subsequene, uh Ñ u strongly in L2pΩq and Gω,hpuhq á ∇u weakly in rL2pΩqsd.(iii) Identi�ation of the limit. Owing to the asymptoti onsisteny of ah proved in Lemma 31, for all ϕ P QTh,κwith ϕh
def� pRccg

h � Iccg
h qpϕq P V

ccg
h ,»

Ω

fϕ� »
Ω

fϕh � ahpuh, ϕhq Ñ »
Ω

κ∇u�∇ϕ,i.e., u solves problem (19) by the density of QTh,κ in V stated in Theorem 19 and, hene, u � u. Moreover,sine the solution u to problem (19) is unique, the whole sequene onverges (prove by ontradition).(iv) Strong onvergene of the gradient and of the jumps. Lemma 29 and (31) yield�vh P V
ccg
h , ahpvh, vhq ¥ }κ1{2Gω,hpvhq}rL2pΩqsd � �

η � C2
trNB� |vh|2J,κ (33)Moreover, from the weak onvergene of Gω,hpuhq to ∇u, we readily infer the weak onvergene of κ1{2Gω,hpuhqto κ

1{2∇u. Owing to (33) and to weak onvergene,
lim inf
hÑ0

ahpuh, uhq ¥ lim inf
hÑ0

}κ1{2Gω,hpuhq}2rL2pΩqsd ¥ }κ1{2∇u}2rL2pΩqsd .Furthermore, still owing to (33),
lim sup

hÑ0

}κ1{2Gω,hpuhq}2rL2pΩqsd ¤ lim sup
hÑ0

ahpuh, uhq � lim sup
hÑ0

»
Ω

fuh � »
Ω

fu � }κ1{2∇u}2rL2pΩqsd .This lassially proves the strong onvergene of κ1{2Gω,hpuhq to κ
1{2∇u in rL2pΩqsd and, hene, the strongonvergene of Gω,hpuhq to ∇u in rL2pΩqsd. Note that ahpuh, uhq Ñ }κ1{2∇u}2rL2pΩqsd also. Owing to (33),pη � C2

trNBq|uh|2J,κ ¤ ahpuh, uhq � }κ1{2Gω,hpuhq}2rL2pΩqsd ,and, sine η ¡ C2
trNB and the right-hand side tends to zero, |uh|J,κ Ñ 0. To infer that |uh|J Ñ 0, simply observethat |uh|J ¤ λ�1{2|uh|J,κ and that the right-hand side tends to zero. �Remark 34 (Rough foring terms). A possible way to handle foring terms f in H�1pΩq onsists in replaingthe test funtion by an interpolate in H1

0 pΩq in the seond member. For the sake of simpliity, assume that
Th is onforming (if this is not the ase, Sh an be used instead) and let IOs denote the Oswald interpolatordisussed, e.g., by Burman and Ern [14℄. It an be proved that there exists C independent of the meshsize h suhthat, for all vh P V

ccg
h , }IOsvh}H1pΩq ¤ Csta,Os~vh~. We onsider the following modi�ation of the method (21):Find uh P V

ccg
h s.t. ahpuh, vhq � xf, IOsvhy�1,1.The a priori estimate for the disrete solutions on the admissible mesh family pThqhPH is obtained as follows:

Cstaλ~uh~2 ¤ ahpuh, uhq � xf, IOsuhy�1,1 ¤ }f}H�1pΩq}IOsuh}H1pΩq ¤ Csta,Os}f}H�1pΩq~uh~,hene ~uh~ ¤ Csta,Os{Csta}f}H�1pΩq. The onvergene to minimal regularity solutions an then be proved asin Theorem 33.



22 TITLE WILL BE SET BY THE PUBLISHER3. Steady inompressible Navier�Stokes equations3.1. The ontinuous settingIn the seond part of this work we orroborate the laim that G methods are easily extended to problemsfor whih a dG sheme an be devised. Our fous is on the steady inompressible Navier�Stokes (INS) equationsfor d P t2, 3u, �ν△ui � Bjpuiujq � Bip � fi in Ω, i P t1, . . . , du,Biui � 0 in Ω,

u � 0 on BΩ,xpyΩ � 0,

(34)where the positive real ν denotes the kinemati visosity and f P rL2pΩqsd. In (34) and throughout this setionEinstein's onvention on repeated indies is adopted. The natural spaes for the weak formulation of (34) are
U

def� rH1
0 pΩqsd, P

def� L2
0pΩq, X

def� U � P,where we have set L2
0pΩq def� tv P L2pΩq | xvyΩ � 0u. We de�ne the linear forms a P LpU � U,Rq and

b P LpU � P,Rq, and the trilinear form t P LpU � U � U,Rq suh that
apu, vq def� »

Ω

ν∇ui�∇vi, bpv, qq def� � »
Ω

q∇�v, tpw, u, vq def� » pw�∇uiqvi � 1

2

»
Ω

p∇�wqpu�vq.The trilinear form t inludes Temam's devie [37℄ to ontrol the kineti energy balane as this is needed in whatfollows for the asymptoti onsisteny of its disrete ounterpart. The weak formulation of system (34) is:Find pu, pq P X s.t. cppu, pq, pv, qqq � tpu, u, vq � »
Ω

f �v for all pv, qq P X , (35)with bilinear form c P LpX �X,Rq suh that cppu, pq, pv, qqq � apu, vq � bpv, pq � bpu, qq.3.2. The disrete settingWe seek a disretization of (35) based on the following disrete spaes:
Uh

def� rV ccg
h sd, Ph

def� P0
dpThq{R, Xh

def� Uh � Ph.The main di�ulties in the approximation of the INS equations lie in the disretization of the veloity-pressureoupling and of the onvetive term. In our ase, the veloity-pressure oupling is stabilized by penalizing thepressure jumps aross interfaes with a weight proportional to the meshsize; see, e.g., [17℄. As regards theonvetive term, we use the non-dissipative trilinear form reently proposed by Di Pietro and Ern [20℄, whihhas proved suitable to onvetion-dominated regimes; see also Botti and Di Pietro [9℄ for the appliation to adG disretization of the advetion step in the ontext of a pressure-orretion time-integration sheme. As theonvergene analysis is similar as for the dG method of [20℄, the proofs of the results that hold a fortiori aresometimes omitted to leave room to spei� issues related to the G method.3.2.1. Veloity-pressure ouplingThe veloity-pressure oupling is based on the bilinear form bh P LpUh � Ph,Rq suh that
bhpvh, qhq def� � »

Ω

qh∇�vh � ¸
FPFh

»
F

JvhK�nF tqhu � � ¸
FPF i

h

»
F

tvhu�nF JqhK. (36)



TITLE WILL BE SET BY THE PUBLISHER 23A useful equivalent form for bh an be inferred introduing the disrete divergene operatorDh : rH1pThqsd Ñ P0
dpThqand the disrete gradient operator rGh : H1pThq Ñ rP0

dpThqsd de�ned as follows: For all v P rH1pThqsd and all
w P H1pThq,

Dhpvq def� Ghpviq�ei, rGhpwq def� ∇hw � ¸
FPF i

h

rF pJwKq.The subsript ω has been omitted from disrete gradients and lifting operators sine κ � ν1d,d (as the kinemativisosity is homogeneous and isotropi) implies ωT1,F � ωT2,F � 1{2 for all F P F i
h with F � BT1 X BT2. Thedisrete divergene Dh is de�ned as the trae of Gh applied to a vetor funtion, whereas rGh only di�ers from

Gh in that boundary faes are not inluded in the summation in the right-hand side. It follows from (36) that�pvh, qhq P Xh, bhpvh, qhq � »
Ω

vh rGhpqhq � � »
Ω

qh Dhpvhq. (37)We let, for all vetor funtions vh P Uh,~vh~2 def� ḑ

i�1

~vh,i~2, |vh|2J def� ḑ

i�1

|vh,i|2J.As the disrete operator assoiated to the disrete bilinear form bh is not surjetive, pressure stabilization mustbe introdued. To this end, we de�ne the bilinear form sh P LpPh � Ph,Rq and the assoiated seminorm |�|psuh that
shpph, qhq def� ¸

FPF i
h

hF

»
F

JphKJqhK, |qh|p def� ¸
FPF i

h

hF }JqhK}2L2pF q.We are now ready to state the main result of this setion.Lemma 35 (Stability of the veloity-pressure oupling). Under Assumption 21, there exists β ¡ 0 independentof the meshsize h suh that�qh P Ph, β}qh}L2pΩq ¤ sup
whPUhzt0u bhpwh, qhq~wh~ � |qh|p.Proof. In the proof we abbreviate a À b the inequality a ¤ Cb where C an depend on the mesh regularityparameters and on Ω but not on the meshsize h. Owing to the surjetivity of the divergene operator from

U to P , there exists CΩ ¡ 0 uniquely depending on the domain Ω suh that, for all q P L2
0pΩq, there exists

v P rH1
0 pΩqsd suh that

∇�v � q, CΩ}v}rH1pΩqsd ¤ }q}L2pΩq. (38)Let now q � qh, denote by v the element of rH1
0 pΩqsd satisfying (38) and set vh

def� pxvyT qTPTh
P Vh and

vh
def� R

ccg
h pvhq P V

ccg
h . Then,

CΩ}v}rH1pΩqsd}qh}L2pΩq ¤ }qh}2L2pΩq � »
Ω

qh∇�v � ¸
FPF i

h

»
F

JqhKtvu�nF � �bhpvh, qhq � ¸
FPF i

h

»
F

JqhKtv � vhu�nF¤ #
sup

whPUhzt0u bhpwh, qhq~wh~ +~vh~ � |qh|p �$&% ¸
FPF i

h

h�1
F

»
F

|tv � vhu|2,.- .It follows from Lemma 36 that ~vh~ À }v}rH1pΩqsd . Moreover, using the ontinuous trae inequality (5) togetherwith the approximation properties of the mesh sequene pThqhPH, it is readily proved that !°FPF i
h
h�1
F

³
F
|tv � vhu|2) À}v}H1pΩq. The result follows. �



24 TITLE WILL BE SET BY THE PUBLISHERThe following lemma establishes theH1-stability property for funtions in V
ccg
h used in the proof of Lemma 35.Observe that, unlike elsewhere, the degrees of freedom are here interpreted as average values over the ells, sinethe regularity of the funtion v is in general insu�ient for point values to be de�ned inside elements.Lemma 36 (H1-stability). Under Assumption 21, for all v P H1

0 pΩq there holds~vh~ ¤ C}v}H1pΩq,where vh � pxvyT qTPTh
P Vh, vh � R

ccg
h pvhq P V

ccg
h and C is independent of the meshsize h.Proof. In the proof we abbreviate a À b the inequality a ¤ Cb where C an depend on the mesh regularityparameters and on Ω but not on the meshsize h. By de�nition,~vh~2 � }∇hvh}2rL2pΩqsd � |vh|2J def� T1 � T2.The �rst term an be bounded as follows:

T1 À ¸
TPTh

|T |d ����� 1|T |d ¸
FPFT

|F |d�1 pxvyT � xvyF qnT,F

�����2 �
ŢPTh

|T |d ����� 1|T |d ¸
FPFT

|F |d�1

�xvyF � xξgF

vh
yF �nT,F

�����2 .Denote by T1,1 and T1,2 the addends in the right-hand side. Using the Cauhy�Shwarz inequality togetherwith formula (9)
T1,1 ¤ ¸

TPTh

#� ¸
FPFT

|F |d�1|T |d dT,F

��� ¸
FPFT

d�1
T,F }xvyT � v}2L2pF q�+ ¤ dC2

ŢPTh

¸
FPFT

hT

dT,F

}v}2H1pT q À }v}2H1pΩq,where we have used the lassial estimate }xvyT � v}L2pF q � }π0
hv � v}L2pF q ¤ Ch

1{2
T |v|H1pT q. As for the term

T1,2, repeated appliations of the Cauhy�Shwarz inequality together with (8) yield
T1,2 ¤ ¸

TPTh

1|T |d # ¸
FPFT

»
F

pv � ξgF

vh
qnT,F

+2 ¤
ŢPTh

1|T |d # ¸
FPFT

|F |1{2d�1}v � ξgF

vh
}L2pF q+2¤ ¸

TPTh

# ¸
FPFT

|F |d�1dT,F|T |d +�#
1

dT,F

¸
FPFT

}v � ξgF
vh
}2L2pF q+ ¤ d

ŢPTh

¸
FPFT

1

dT,F

}v � ξgF
vh
}2L2pF q.Sine κ � ν1d, for all F P F i

h, ξgF
vh
pxF q an be expressed as a linear ombination of the values txvyT uTPTgwith oe�ients tτFT uTPTg

suh that 0 ¤ τFT ¤ 1. Hene, for all F P F i
h, using the triangular inequality, theontinuous trae inequality (5), and the approximation properties of the L2-projetor onto P0

dpThq we infer}v � ξgF

vh
}L2pF q ¤

ŢPTg

τFT }v � xvyT }L2pF q ¤ Ctr,c

ŢPTg

τFT

�
h�1
T }v � xvyT }2L2pT q�hT |v|2H1pT q	1{2À max

TPTg

|τFT |h1{2
T

ŢPTg

}v}H1pT q, (39)and maxTPTg
|τFT | is uniformly bounded owing to Assumption 21. Moreover, for all F P Fb

h , }v� ξgF
vh
}L2pF q � 0.We onlude that T1,2 À }v}H1pΩq. To bound T2 observe that sine, v is ontinuous aross interfaes and itvanishes on BΩ, |vh|J � |vh � v|J. The onlusion follows from (3), (6), and (39). �



TITLE WILL BE SET BY THE PUBLISHER 253.2.2. A non-dissipative onvetive trilinear formThe disrete onvetive trilinear form th P LpUh � Uh � Uh,Rq is given by
thpwh, uh, vhq def� »

Ω

pwh�∇huh,iqvh,i� ¸
FPF i

h

»
F

twhu�nF JuhK�tvhu�1

2

»
Ω

p∇h�whqpuh�vhq�1

2

¸
FPFh

»
F

JwhK�nF tuh�vhu.The following lemma ollets some important results. The proof essentially follows [20, Proposition 5.2℄. Inpartiular, the Sobolev embedding 16 for q � 4 is required, whih limits the spae dimension to d P t2, 3u.Lemma 37 (Properties of the trilinear form th). For all h P H, let Uh
def� rPk

dpThqsd for some k ¡ 0. Thetrilinear form th de�ned by (3.2.2) enjoys the following properties:(i) Non-dissipativity. For all wh, vh P Uh, thpwh, vh, vhq � 0.(ii) Boundedness. There is Cbnd,t independent of the meshsize h suh that, for all wh, uh, vh P Uh, thpwh, uh, vhq ¤
Cbnd,t~wh~~uh~~vh~.(iii) Asymptoti onsisteny for smooth funtions. Let pvhqhPH be a sequene in pUhqhPH bounded in the ~�~-norm. Then, for all Φ P rC8

0 pΩqsd, as h Ñ 0, up to a subsequene, thpvh, vh,Φhq Ñ tpv, v,Φq, where
Φh

def� pRccg
h � Iccg

h qpΦq P Uh and v P U is the limit provided by Theorem 14.(iv) Asymptoti onsisteny for test funtions. In the setting of point (iii), further suppose that Ghpvhq Ñ ∇vstrongly in rL2pΩqsd and that |vh|J Ñ 0. Let pwhqhPH be another sequene in pUhqhPH bounded in the~�~-norm. Then, as h Ñ 0, up to a subsequene, thpvh, vh, whq Ñ tpv, v, wq, with both v, w P U resultingfrom Theorem 14.The disrete problem readsFind puh, phq P Xh s.t. chppuh, phq, pvh, qhqq � thpuh, uh, vhq � »
Ω

f �vh for all pvh, qhq P Xh, (40)with bilinear form ch P LpXh�Xh,Rq suh that ch def� ahpuh,i, vh,iq � bhpvh, phq � bhpuh, qhq � shpph, qhq, wherewe have set κ � ν1d,d in the expression of ah and a sum over the index i is understood in the �rst term.3.3. ConvergeneWe study the onvergene of the method (40) in the spirit of �2.4. As the G spae V
ccg
h is a subspae ofP1

dpThq, some of the results presented in [20, �5℄ in the ontext of dG methods hold a fortiori. In suh ases, thedetails of the proofs are omitted in order to restrit the fous to the peuliarities of the proposed G method.Also, sine the di�usion oe�ient is homogeneous, the standard test spae C8
0 pΩq an replae QTh,κ in theonvergene proof. The following lemmata ontain results that are instrumental to the analysis.Lemma 38 (Properties of Dh). The disrete divergene Dh enjoys the following properties:(i) Consisteny for smooth funtions. Let Φ P rC8

0 pΩqsd and set Φh
def� pRccg

h � Iccg
h qpΦq P Uh. Then, underAssumption 21, as hÑ 0, DhpΦhq Ñ ∇�Φ strongly in L2pΩq.(ii) Weak asymptoti onsisteny for test funtions. Let pvhqhPH be a sequene in Uh. The, as hÑ 0, up to asubsequene, Dhpvhq á ∇�v weakly in L2pΩq, where v P rH1

0 pΩqsd is the limit resulting from Theorem 14.Proof. Point (i) is a diret onsequene of Theorem 23 together with the fat that κ � ν1d implies C8
0 pΩq �

QTh,κ, whereas point (ii) immediately follows from Lemma 15. �Lemma 39 (Weak asymptoti onsisteny of rGh). Let pvhqhPH be a sequene in pPk
dpThqqhPH, k ¡ 0, uniformlybounded in the ~�~-norm. Then, as h Ñ 0, up to a subsequene, rGhpvhq á ∇v weakly in rL2pΩqsd, where

v P H1
0 pΩq is the limit resulting from Theorem 14.Proof. See [20, �2.3℄. �



26 TITLE WILL BE SET BY THE PUBLISHERLemma 40 (Existene of a solution to (40)). There exists puh, phq P Xh solution to (40).Proof. The proof is based on a topologial degree argument and it follows [20, Proposition 5.1℄. The use of atopologial degree argument to assert the existene of a disrete solution an be traed bak to Eymard, Herbin,and Lathé [31℄. �The �rst step in the onvergene proof is to derive a uniform a priori estimate on a suitable norm of thedisrete solution. This estimate is used to infer a ompatness property for the sequene of disrete solutions.To this end, we introdue the following norm on Xh:~pvh, qhq~2
ns

def� ~vh~2 � }qh}2L2pΩq � |qh|2p.Lemma 41 (A priori estimate). There exists γ ¡ 0 independent of the meshsize h suh that
γ~puh, phq~ ¤ σ2}f}rL2pΩqsd � Cbnd,tpνCstaq�1

�
σ2}f}rL2pΩqsd�2 . (41)where Cbnd,t results from Lemma 37ii, Csta is the oerivity onstant of ah, and σ2 results from Theorem 13.Proof. The proof proeeds along the lines of [20, Lemma 5.1℄. The details are omitted for the sake of brevity. �Theorem 42 (Convergene). Let ppuh, phqqhPH be a sequene of approximate solutions generated by solving thedisrete problems (40) on the admissible mesh sequene pThqhPH. Then, under Assumption 21, as h Ñ 0, upto a subsequene, (i) uh Ñ u strongly in rL2pΩqsd, (ii) ∇huh Ñ ∇u strongly in rL2pΩqsd,d, (iii) |uh|J Ñ 0,(iv) ph Ñ p strongly in L2pΩq, (v) |ph|p Ñ 0, with pu, pq P X solution to (35). If the ontinuous solution pu, pqis unique, the onvergene property extends to the whole sequene.Proof. (i) Compatness. Owing to the a priori estimate (41), by Theorem 14 together with Lemma 15 thereexists pu, pq P X suh that, up to a subsequene, uh Ñ u strongly in rL2pΩqsd, Ghpuh,iq á ∇ui weakly inrL2pΩqsd for i P t1, . . . , du, and ph á p weakly in L2pΩq (as the sequene pphqhPH is uniformly bounded in the

L2-norm). For the sake of oniseness, subsequenes are not renumbered in what follows.(ii) Identi�ation of the limit and onvergene of a subsequene. Let Φ P rC8
0 pΩqsd and set Φh

def� pRccg
h � Iccg

h qpΦq P Uh.Testing against pΦh, 0q yields
ahpuh,Φhq � bhpΦh, phq � thpuh, uh,Φhq � »

Ω

f �Φh.Clearly, as h Ñ 0, the right-hand side tends to ³
Ω
f �Φ. Furthermore, by virtue of Lemma 31, the �rst termin the left-hand side onverges to apu,Φq � ³

Ω
ν∇ui�∇Φi. Using (37), the seond term an be written as

bhpΦh, phq � � ³
Ω
phDhpΦhq. Owing to the weak onvergene of pphqhPH to p in L2pΩq and to the strongonvergene of pDhpΦhqqhPH to ∇�Φ in L2pΩq stated in Lemma 38, this term onverges to bpΦ, pq � � ³

Ω
p∇�Φ.Finally thpuh, uh,Φhq tends to tpu, u,Φq owing to Lemma37iii. As a result,

apu,Φq � bpΦ, pq � tpu, u,Φq � »
Ω

f �Φ.Let now ϕ P C8
0 pΩq{R and set ϕh

def� π0
hϕ, where π0

h denotes the L2-orthogonal projetion onto P0
dpThq. Testingagainst p0, ϕhq yields �bhpuh, ϕhq � shpph, ϕhq � 0.Clearly, �bhpuh, ϕhq � ³

Ω
ϕh Dhpuhq tends to ³

Ω
ϕ∇�u as h Ñ 0 sine pDhpuhqqhPH weakly onverges to ∇�uin L2pΩq and pϕhqhPH strongly onverges to ϕ in L2pΩq. Furthermore, using the a priori estimate (41),



TITLE WILL BE SET BY THE PUBLISHER 27|shpph, ϕhq| ¤ |ph|p|ϕh|p ¤ C|ϕh|p with C independent of the meshsize h and this upper bound tends tozero. Hene, »
Ω

ϕ∇�u � 0.By density of rC8
0 pΩqsd � pC8

0 pΩq{Rq in X , this shows that pu, pq � pu, pq solution to (35).(iii) Strong onvergene of the veloity gradient and of the veloity and pressure jumps. Owing to the non-dissipativity of th,»
Ω

f �uh � chppuh, phq, puh, phqq � ahpuh, uhq � shpph, phq ¥ ahpuh, uhq ¥ ν

ḑ

i�1

}Ghpuh,iq}2rL2pΩqsd .Thus, ν lim suphÑ0

°d
i�1 }Ghpuh,iq}2rL2pΩqsd,d ¤ lim suphÑ0

³
Ω
f �uh � ³

Ω
f �u � ν}∇u}2rL2pΩqsd,d . Proeeding as inpoint (iv) of Theorem 33, it is then inferred that Ghpuh,iq Ñ ∇ui in rL2pΩqsd for all i P t1, . . . , du and that|uh|J Ñ 0. Finally, sine |ph|2p � bhpuh, phq � ³

Ω
f �uh � ahpuh, uhq, we onlude that |ph|p Ñ 0.(v) Strong onvergene of the pressure. Let v P rH1
0 pΩqsd be suh that ∇�v � ph with }v}rH1pΩqsd ¤ CΩ}ph}L2pΩq,and set vh

def� R
ccg
h pvhq P V

ccg
h with vh � pxvyT qTPTh

P Vh. In the rest of the proof we abbreviate a À b theinequality a ¤ Cb with C independent of the meshsize h. Proeeding as in the proof of Lemma 35 yields}ph}2L2pΩq À |ph|p}ph}L2pΩq � bhpvh, phq À |ph|p}ph}L2pΩq � ahpuh, vhq � thpuh, uh, vhq � »
Ω

f �vh.Let Ti, i P t1, . . . , 4u denote the terms in the right-hand side. Sine |ph|p tends to zero and }ph}L2pΩq isbounded, T1 onverges to zero. Furthermore, sine the sequene pvhqhPH is bounded in the ~�~-norm beause~vh~ À }v}rH1pΩqsd À }ph}L2pΩq there is v P rH1
0 pΩqsd suh that, up to a subsequene, vh Ñ v strongly inrL2pΩqsd and Ghpvh,iq Ñ ∇vi weakly in rL2pΩqsd for i P t1, . . . , du. Owing to the uniqueness of the limit in thedistribution sense, it is inferred that ∇�v � p. There holds

T2 � ahpuh, vhq � »
Ω

νGhpuh,iq�Ghpvh,iq � shpuh, vhq � T2,1 � T2,2.Owing to the strong onvergene of pGhpuh,iqqhPH in rL2pΩqsd proved in the previous point and to the weakonvergene of pGhpvh,iqqhPH in rL2pΩqsd, it is inferred that T2,1 Ñ ³
Ω
∇ui�∇vi. Moreover, |T2,2| À |uh|J|vh|J,whih onverges to zero. Owing to Lemma 37iv, T3 Ñ tpu, u, vq. Finally, sine T4 Ñ ³

Ω
f �v, the strongonvergene of the pressure in L2 lassially follows from

lim sup
hÑ0

}ph}2L2pΩq ¤ »
Ω

∇ui�∇vi � tpu, u, vq � »
Ω

f �v � »
Ω

p∇�v � }p}2L2pΩq. �4. Numerial examples4.1. Pure di�usionAnisotropy. To assess the robustness of the method with respet to the anisotropy of the di�usion tensor weonsider the following exat solution to problem (19) in d � 2:
u � sinpπxq sinpπyq, κ � �

1 0

0 ǫ

�
, f � p1� ǫqπ2 sinpπxq sinpπyq,with anisotropy ratio ǫ � 10�3. The disrete problem is solved on the Kershaw mesh sequene 4.2 of theFVCA5 benhmark [33℄, and the results are listed in Table 1. Besides the errors in the L2- and energy-norms,



28 TITLE WILL BE SET BY THE PUBLISHERTable 1. Anisotropi test ase
cardpThq }u� uh}L2pΩq order ~u� uh~ order max

FPF i
h
}A�1

gF
}8 g+AMG it.9801 1.2396e-02 � 5.1296e-02 � 1.0028e+03 4117424 6.8589e-03 2.06 3.3572e-02 1.47 1.0018e+03 4927225 3.9340e-03 2.49 2.3897e-02 1.52 1.0013e+03 5539204 2.5485e-03 2.38 1.8058e-02 1.54 1.0009e+03 62Table 2. Heterogeneous test ase

cardpThq }u� uh}L2pΩq order ~u� uh~ order max
FPF i

h
}A�1

gF
}8 g+AMG it.224 7.3209e-03 � 1.1526e-01 � 1.2800e+02 7896 1.9172e-03 1.93 5.6440e-02 1.03 1.2800e+02 83584 4.8802e-04 1.97 2.7925e-02 1.02 1.2800e+02 914336 1.2330e-04 1.98 1.3891e-02 1.01 1.2800e+02 10Table 1 lists the maximum }�}8-norm of the matries de�ned by (12) as well as the number of onjugate gradientiterations with AMG preonditioner required to solve the linear system. An inspetion of olumn 6 shows thatAssumption 21 is satis�ed as the }�}8-norm of the matries involved in the loal onstrution remains almostonstant when re�ning the mesh. Here and in what follows, we estimate the order of onvergene as

order � d ln pe1{e2q { ln pcardpTh2
q{cardpTh1

qq ,where e1 and e2 denote, respetively, the errors ommitted on Th1
and Th2

, h1, h2 P H.Heterogeneity. To assess the robustness with respet to the heterogeneity of κ, onsider the following pseudo2d exat solution to (19) on the unit square domain Ω � p0, 1q2:
u � #� 1

2
x2 � 3�ǫ

4p1�ǫqx if x ¤ 1
2
,� 1

2ǫ
x2 � 3�ǫ

4ǫp1�ǫqx� ǫ�1
4ǫp1�ǫq if x ¡ 1

2
.

κ � #
12 if x   1

2
,

ǫ12 if x ¡ 1
2
,

f � 1. (42)The parameter ǫ represents here the heterogeneity ratio, and it has been taken equal to 10�2. The numerialresults are olleted in Table 2, and symbols have the same meaning as in the previous ase.4.2. Steady inompressible Navier�Stokes equationsThe Kovasznay problem. To verify the asymptoti onvergene properties of the method (40), we onsiderKovasznay's analytial solution of the INS equations [34℄ on the square domain Ω � p�0.5, 1.5q � p0, 2q,
u1 � 1� eπx2 cosp2πx2q, u2 � �1{2eπx1 sinp2πx2q, p � �1{2eπx1 cosp2πx2q � p,where p � x� 1

2
eπx1 cosp2πx2qyΩ � �0.920735694 ensures the zero mean onstraint for the pressure, ν � 3π,and f � 0. The example is run on a family of uniformly re�ned triangular meshes with mesh sizes ranging from0.5 down to 0.03125. Aording to Table 1, the errors |||u� uh|||sto and }p � ph}L2pΩq onverge to �rst order,while seond order is attained for }u� uh}rL2pΩqsd . The results are olleted in Table 4.2.The lid-driven avity problem. To assess the behavior of the method in more omplex situations we onsiderthe lassial lid-driven avity problem. Despite its simple geometry, at large Reynolds numbers this problempresents omplex �ow patterns with ounter-rotating vorties of signi�antly di�erent sale. The domain is herethe unit square with imposed horizontal veloity on the upper side and zero veloity on the others. In Figure 3we provide the values of the veloity omponents on the enterlines of the domain. For the sake of ompleteness,
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cardpThq }u� uh}rL2pΩqsd order }p� ph}L2pΩq order |||u� uh|||sto order224 1.6539e-01 � 2.5536e-01 � 4.7777e-01 �896 4.3732e-02 1.92 1.0737e-01 1.25 2.1759e-01 1.133584 1.1847e-02 1.88 3.9802e-02 1.43 1.0763e-01 1.0214336 3.1620e-03 1.91 1.7385e-02 1.19 5.5182e-02 0.96
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