
HAL Id: hal-00511125
https://hal.science/hal-00511125v1

Preprint submitted on 23 Aug 2010 (v1), last revised 28 Apr 2011 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cell centered Galerkin methods for diffusive problems
Daniele Antonio Di Pietro

To cite this version:
Daniele Antonio Di Pietro. Cell centered Galerkin methods for diffusive problems. 2010. �hal-
00511125v1�

https://hal.science/hal-00511125v1
https://hal.archives-ouvertes.fr


Mathematical Modelling and Numerical Analysis Will be set by the publisher

Modélisation Mathématique et Analyse Numérique

CELL CENTERED GALERKIN METHODS FOR DIFFUSIVE PROBLEMS �
Daniele A. Di Pietro1

Abstract. In this work we introduce a new class of lowest order methods for diffusive problems on

general meshes with only one unknown per element. The underlying idea is to construct an incomplete

piecewise affine polynomial space with sufficient approximation properties starting from values at cell

centers. To do so we borrow ideas from multi-point finite volume methods, although we use them in

a rather different context. The incomplete polynomial space replaces classical complete polynomial

spaces in discrete formulations inspired by discontinuous Galerkin methods. Two problems are studied

in this work: a heterogeneous anisotropic diffusion problem, which is used to lay the pillars of the

method, and the incompressible Navier–Stokes equations, which provide a more realistic application.

An exhaustive theoretical study as well as a set of numerical examples featuring different difficulties

are provided.

1991 Mathematics Subject Classification. TO BE COMPLETED.

August 23, 2010.

Introduction

Lowest order methods for diffusive problems on general meshes have received an increasing attention over
the last few years. The interest of general meshes is multi-fold. On the one hand, allowing general polyhedral
elements may ease the discretization of complex domains, and it is beneficial in the context of aggregative
multigrid strategies. On the other hand, it is a mandatory requirement whenever the user cannot adapt the mesh
to the needs of the numerical scheme. This is the case, e.g., in the context of computational geosciences, where
the discretization of the subsoil integrates the effects of erosion and sedimentation, and is usually developed
in a separate stage. In what follows we briefly recall some ideas that are instrumental to the class of methods
proposed in this paper. It is a well known fact that the classical two-point finite volume (FV) method is
inconsistent on non diffusion-orthogonal meshes. In the context of reservoir simulation, a successful attempt
to adapt FV methods to general meshes and full diffusion tensors has been independently proposed in the 90s
by Aavatsmark, Barkve, Bøe, and Mannseth [1, 2] and by Edwards and Rogers [25, 26]. These methods are
usually referred to as multi-point since the main idea is to express consistent numerical fluxes using a larger
stencil than in the classical two-point FV method. In this paper we borrow some ideas from the recent multi-
point scheme of Aavatsmark, Eigestad, Mallison, and Nordbotten [3], where the authors propose a compact
construction to derive a consistent multi-point flux approximation honoring the heterogeneity of the diffusion
tensor. A convergence analysis of the L-construction proposed therein has been recently performed by Agélas,

Keywords and phrases: Cell centered Galerkin, finite volumes, discontinuous Galerkin, heterogeneous anisotropic diffusion,
incompressible Navier–Stokes equations� This work has been partially supported by the VFSitCom ANR project; see http: // ens. math. univ-montp2. fr/ droniou/ vfsitcom

1 IFP, 1 & 4 avenue de Bois Préau, 92582 Rueil-Malmaison Cedex

c© EDP Sciences, SMAI 1999

http://ens.math.univ-montp2.fr/droniou/vfsitcom


2 TITLE WILL BE SET BY THE PUBLISHER

Di Pietro, and Droniou [4]. The main drawback of multi-point FV methods is related to the difficulty in finding
easily computable stability conditions. A possible remedy to the lack of stability in multi-point methods has
been proposed independently by Brezzi, Lipnikov, Shashkov, and Simoncini [10, 11] (Mimetic Finite Difference
methods, MFD) and by Droniou, Eymard, Gallouët, and Herbin [23,30] (Mixed/Hybrid Finite Volume methods,
MHFV). Both classes of schemes are inspired from the variational form of the problem as in finite element (FE)
methods rather than from local balances as in FV methods. The unconditional stability of both MFD and
MHFV methods results from stabilization terms incorporated in the discrete bilinear form. Also, in both cases
auxiliary face unknowns are added, which can be in some cases related to the enforcement of a flux conservation
constraint as in the mixed FE method. A way to eliminate face unknowns has been proposed in [30], where it
is suggested that a barycentric interpolator can be used to express face values in terms of a few neighboring
cell unknowns. The main drawback of this construction is that it does not respect the heterogeneity of the
diffusion tensor; moreover, the resulting method has a larger stencil compared to multi-point FV methods,
which results in denser matrices as well as in the increase of data exchange in parallel implementations. The
algebraic analogy between generalized versions of the MFD and MHFV methods has been recently pointed out
by Droniou, Eymard, Gallouët, and Herbin [24].

In this work we propose a different philosophical approach to variational lowest-order methods which is in-
spired by discontinuous Galerkin (dG) methods rather than mixed FEs. The motivation is twofold. A first
objective is to devise a suitable framework for a multi-physics platform based on lowest-order methods. In
this respect, the main requirement is to dispose of a method easily adapted to a variety of diffusive problems
including, e.g., pure diffusion, diffusion-advection-reaction, linear and nonlinear elasticity as well as incompress-
ible flows. A second important point is related to the robustness in the context of heterogeneous anisotropic
diffusion, which is crucial in the field of computational geosciences. Cell centered Galerkin (ccG) methods have
been introduced in [18,19] with application to a homogeneous diffusion problem. The main idea of ccG methods
is to build an incomplete space of piecewise affine functions related to a given set of degrees of freedom (DOFs)
on the mesh Th. In this work we consider, in particular, ccG methods with cell unknowns only, i.e., where the
algebraic space of DOFs given by Vh

def� RTh .

The unknown in each mesh element is interpreted as the value of the discrete function at a given point (the
cell center); a piecewise affine representation is then obtained by reconstructing a constant gradient in each
mesh element. In the present work, the elementary gradient is obtained in two steps: first, trace values are
reconstructed from cell center values by means of the L-construction, then Green’s formula is used to infer a
local value for the gradient. The piecewise affine function inside each element is then chosen as the unique
function with prescribed value at cell center and gradient equal to the reconstructed gradient. Formally, this
procedure amounts to introducing an injective linear operator R

ccg
h : Vh Ñ P1

dpThq and defining the discrete
space

V
ccg
h

def� R
ccg
h pVhq � P1

dpThq.
The space V

ccg
h is then used as a test/trial space in a suitable nonconforming FE setting. In particular, since the

functions in V
ccg
h are discontinuous across mesh interfaces, the discrete setting largely borrows from dG methods.

In this work we consider two applications to problems naturally set in H1
0 pΩq: a homogeneous anisotropic

scalar diffusion problem and the incompressible Navier–Stokes equations. The scalar diffusion problem offers
a simplified context to outline the main ideas of the method. The convergence analysis is here discussed in
detail. In particular, we show that both classical dG arguments relying on error estimates [7] and compactness
arguments inspired by [29,30] apply. For the latter, an important remark is that the functional analytic results
independently derived by Di Pietro and Ern [20] and Buffa and Ortner [13] hold a fortiori since V

ccg
h � P1

dpThq.
Moreover, in both cases, the main technical issue is related to the approximation properties of the V

ccg
h space.

The application to the incompressible Navier–Stokes equations provides a nonlinear case study to illustrate how
a ccG method can be derived from an existing dG method.

The material is organized as follows: in §1 we discuss the discrete setting, provide a careful description of
admissible mesh sequences in arbitrary space dimension, introduce the L-construction, and define the ccG space
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used throughout the rest of this work. Some functional analytical results are also recalled; in §2 we show an
application of the ccG method to a heterogeneous anisotropic diffusion problem, derive basic error estimates
and carefully study convergence rates. The main sources of inspiration are here the work of Arnold [6] on the
weak enforcement of boundary and interface conditions and the paper of Di Pietro, Ern, and Guermond [22]
on the robust handling of heterogeneous anisotropic diffusion tensors. To infer convergence rates we study
the approximation properties of the space V

ccg
h with respect to the energy norm naturally associated to the

discrete problem. In particular, we distinguish between the heterogeneous case, where optimal energy estimates
are obtained for functions belonging to the the space introduced and analyzed in [4], and the homogeneous
case, where weaker regularity assumptions are sufficient and L2 error estimates can also be derived; in §3 we
discuss the application of ccG methods to the incompressible Navier–Stokes equations inspired on the dG scheme
of [20]. In this case, an H1-stability result for ccG spaces is crucial to infer the stability of the velocity-pressure
coupling. The analysis closely follows the guidelines of [20]; finally, in §4 we present numerical results to assess
the theoretical study for both problems at hand.

1. The ccG space

1.1. Discrete setting

Closely following [21, Chapter 1], we introduce the concept of admissible mesh sequence of a bounded con-
nected polyhedral domain Ω � Rd, d ¥ 1. Let H � R�� denote a countable set having 0 as its unique accumulation
point. For all h P H we denote by Th a finite collection of disjoint open polyhedra Th � tT u forming a partition
of Ω such that h � maxTPTh

hT , with hT denoting the diameter of the element T P Th. Mesh nodes are collected
in the set Nh. We say that a hyperplanar closed subset F of Ω is a mesh face if it has positive pd�1q-dimensional
measure and if either there exist T1, T2 P Th such that F � BT1 X BT2 (and F is called an interface) or there
exist T P Th such that F � BT X BΩ (and F is called a boundary face). Interfaces are collected in the set F i

h,

boundary faces in Fb
h and we let Fh

def� F i
h Y Fb

h . Moreover, we set, for all T P Th,

FT
def� tF P Fh | F � BT u. (1)

Similarly, for all F P Fh, we define

TF
def� tT P Th | F � BT u.

The set TF consists of exactly two mesh elements if F P F i
h and of one if F P Fb

h . For all mesh nodes P P Nh,
FP denotes the set of mesh faces sharing P , i.e.

FP
def� tF P Fh | P P F u. (2)

For every interface F P F i
h we introduce an arbitrary but fixed ordering of the elements in TF and let nF �

nT1,F � �nT2,F , where nTi,F , i P t1, 2u, denotes the unit normal to F pointing out Ti P TF . For all T P Th, we
also introduce the symbol nT to denote the vector field such that nT |F � nT,F for all F P FT . On a boundary
face F P Fb

h we let nF denote the unit normal pointing out of Ω. The barycenter of a face F P Fh is denoted

by xF
def� ³

F
x{|F |d�1.

Definition 1 (Jumps and weighted averages). Let v be a scalar-valued function defined on Ω, and assume
that v is smooth enough to admit on all F P Fh a possibly two-valued trace. To any interface F P F i

h with
F � BT1 X BT2 we assign two non-negative real numbers ωT1,F and ωT2,F such that

ωT1,F � ωT2,F � 1.

Then, if F P F i
h with F � BT1 X BT2 the jump and weighted average of v at F are respectively defined for a.e.

x P F as
JvKF pxq def� v|T1

� v|T2
, tvuω,F pxq def� ωT1,F v|T1

pxq � ωT2,F v|T2
pxq,
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while, if F P Fb
h with F � BT X BΩ, we set tvuω,F pxq � JvKF pxq � v|T pxq.

When v is vector-valued, the jump and average operators act component-wise. Whenever no confusion can
arise, the subscript F and the variable x are omitted, and we simply write tvuω and JvK. Moreover, in the
classical case ωT1,F � ωT2,F � 1{2 we also omit the subscript ω and write tvu instead of tvuω. The use of
weighted averages in dG methods has been pointed out and used in various contexts, e.g., by Stenberg [36] and
by Heinrich and Pietsch [32].

Definition 2 (Matching simplicial submesh). Let Th be a general mesh. We say that Sh is a matching simplicial
submesh of Th if (i) Sh is a matching simplicial mesh, (ii) for all T 1 P Sh, there is only one T P Th such that
T 1 � T , (iii) for all F 1 P Fh, the set collecting the mesh faces of Sh, there is only one F P Fh such that F 1 � F .

Definition 3 (Shape- and contact-regularity). We say that the mesh sequence pThqhPH is shape- and contact-
regular if for all h P H, Th admits a matching simplicial submesh Sh such that (i) the mesh sequence pShqhPH
is shape-regular in the usual sense of Ciarlet [16], meaning that there is a parameter ̺1 ¡ 0 independent of h

such that for all T 1 P Sh,

̺1hT 1 ¤ δT 1 ,
where hT 1 is the diameter of T 1 and δT 1 the radius of the largest ball inscribed in T 1, (ii) there is a parameter
̺2 ¡ 0 independent of h such that for all T P Th and for all T 1 P ST ,

̺2hT ¤ hT 1 .
Lemma 4 (Bounds on geometric quantities). Let pThqhPH be a shape- and contact-regular mesh sequence. Then,
for all h P H and all T P Th, (i) the number of mesh faces belonging to the boundary of an element is uniformly
bounded in h,

NB def� sup
hPH, TPTh

cardpFT q   �8;

(ii) for all F P FT ,

hF ¥ ̺1̺2hT . (3)

Proof. See [21, Lemmata 1.33–1.34]. �

For all h P H and k ¥ 0, we introduce the broken polynomial spaces of total degree ¤ kPk
dpThq def� tv P L2pΩq | v|T P Pk

dpT qu,
with Pk

dpT q given by the restriction to T of the functions in Pk
d. Broken polynomial spaces are a special instance

of broken Sobolev spaces: For all k ¥ 1, HkpThq def�  
v P L2pΩq | v|T P HkpT q, �T P Th

(
. The shape- and

contact-regularity of the mesh sequence pThqhPH are essential to infer the following results; see, e.g., [21, §1.4.3].

Lemma 5 (Trace inequalities). Let pThqhPH be a shape- and contact-regular mesh sequence. Then, for all h P H,
all T P Th, and all F P FT ,�vh P Pk

dpThq, }vh}L2pF q ¤ Ctrh
�1{2
F }vh}L2pT q, (4)�v P H1pThq, }v}L2pF q ¤ Ctr,c

�
h�1

T }v}2L2pT q � hT |v|2H1pT q	1{2
, (5)

with Ctr and Ctr,c independent of the meshsize h.

The following property is necessary to obtain optimal estimates of the convergence rate.



TITLE WILL BE SET BY THE PUBLISHER 5

Sg

xT
xT2

xT1

Figure 1. Mesh Th (left panel), submesh Sh (right panel, thin lines), and simplex Sg (right
panel, dashed) for the L-group g in bold line. The patch Pg is shaded.

Definition 6 (Optimal polynomial approximation). We say that the mesh sequence pThqhPH has optimal poly-
nomial approximation properties if for all h P H, all T P Th, and all polynomial degrees k, there is a linear
interpolation operator Ik

T : L2pT q Ñ Pk
dpT q such that for all s P t0, . . . , k � 1u and all v P HspT q, there holds|v � Ik

T v|HmpT q ¤ Capphs�m
T |v|HspT q �m P t0, . . . , su,

with Capp independent of T and h.

A sufficient condition to prove optimal approximation properties is, e.g., that the mesh is finitely shaped, i.e.,
that there exists a finite set of reference polyhedra such that every mesh element is the image of a reference
polyhedron via an affine bijective mapping. This assumption yields a uniformly bounded Deny–Lions constant;
see, e.g., [27, Theorem 1.103]. Other, more general, sufficient conditions can be devised. It is a simple matter to
prove that the L2-orthogonal projection has optimal approximation properties on mesh sequences with optimal
approximation properties. In order to obtain a piecewise affine representation, it is useful to associate the unique
degree of freedom of each element to a point with suitable properties.

Definition 7 (Cell centers). Let pThqhPH be a shape- and contact-regular mesh sequence. We say that pThqhPH
admits a set of cell centers if (i) for every T P Th there exists a point xT such that T is star-shaped with respect
to xT (the cell-center) and (ii) there exists ̺3 ¡ 0 such that for all h P H, all T P Th, and all F P FT ,

dT,F
def� distpxT , F q ¥ ̺3hT . (6)

Definition 8 (Admissible mesh sequence). We say that the mesh sequence pThqhPH is admissible if it is shape-
and contact-regular, it has optimal polynomial approximation properties, and there exists a set of cell centers.

Admissible mesh sequences include general polyhedral discretizations with possibly nonconforming interfaces;
see Figure 1 for an example. For all h P H we can define a pyramidal submesh of Th as follows:

Sh
def� tPT,F uTPTh, FPFT

, (7)

where, for all T P Th and all F P FT , PT,F denotes the open pyramid of apex xT and base F , i.e.,

PT,F
def� tx P T | Dy P F zBF, Dθ P p0, 1q | x � θy � p1� θqxT u.

The pyramids tPT,F uTPTh, FPFT
are non-degenerated owing to assumption (6). Since faces are planar, for all

T P Th and all F P FT there holds |PT,F |d � |F |d�1dT,F

d
, (8)
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F F

F F

(a) L-groups containing the face F . The primary
element Tg such that g� FT is shaded

xT
xT2

xT1

F1

F2

(b) L-construction

Figure 2. L-construction

and, for all T P Th, ¸
FPFT

|PT,F |d � ¸
FPFT

|F |d�1dT,F

d
� |T |d. (9)

1.2. The L-construction

In this section we briefly recall the L-construction originally introduced by Aavatsmark, Eigestad, Mallison,
and Nordbotten [3] and analyzed by Agélas, Di Pietro, and Droniou [4]. This construction is a fundamental
ingredient in the definition of the ccG spaces presented in this work. Let κ P rL8pΩqsd,d denote a symmetric,

uniformly elliptic tensor field such that the spectrum of κpxq lies in rλ, λs for a.e. x P Ω. For the sake of
simplicity we assume henceforth that �h P H, κ P rP0

dpThqsd,d,

and denote by κ
1{2 the piecewise symmetric, uniformly elliptic tensor field such that κ

1{2pxqκ1{2pxq � κpxq for
a.e. x P Ω. The piecewise regular case can be handled with minor modifications. For all F P Fh and all T P TF

we denote the diffusion in the normal direction by

λT,F
def� κ|TnF �nF .

The key idea of the L-construction is to use d cell and boundary face values (provided, in this case, by a
homogeneous boundary condition) to express a continuous piecewise affine function with continuous diffusive
fluxes. The values are selected using d neighboring faces belonging to a cell and sharing a common vertex. More
precisely, we define the set of L-groups as follows:

G
def� tg � FT X FP , T P Th, P P Nh | cardpgq � du ,

with FT and FP given by (1) and (2) respectively. For each g P G we select a primary element Tg such that
g � FTg

; see Figure 2(a). Such an element may not be unique as non-convex elements are allowed. We let, for
the sake of brevity,

gi def� gX F i
h, gb def� gX Fb

h .

It is also useful to introduce a symbol for the set of cells concurring to the L-construction as well as for the
union of the pyramids based on the group faces (see Figure 2): For all g P G,

Tg

def� tT P Th | T P TF , F P gu, Pg

def� ¤
FPg, TPTF

PT,F . (10)
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The patch Pg is shaded in Figures 1 and 2(b). Let now g P G. In what follows, for any D � R of codimension l

we denote by xϕyD the average xϕyD def� ³
D

ϕ{|D|d�l.
For all vh P Vh we construct the function ξg

vh
piecewise affine on the family of pyramids tPT,F uFPg, TPTF

such
that:

(i) ξg

vh
pxT q � vT for all T P Tg and xξg

vh
yF � ξg

vh
pxF q � 0 for all F P gb;

(ii) ξg

vh
is continuous across every interface in the group: For all F P gi such that F � BT1 X BT2,�x P F, ξg

vh
|T1
pxq � ξg

vh
|T2
pxq;

(iii) ξg

vh
has continuous diffusive flux across every interface in the group: For all F P gi such that F � BT1XBT2,pκξg

vh
q|T1

�nF � pκξg

vh
q|T2

�nF .

(The quantities in both sides are constant since ξg

vh
is piecewise affine and the face F is planar).

The following result is instrumental to derive approximation properties for the ccG space.

Proposition 9 (L-construction). For all vh P Vh and all g P G, there holds

Agp∇ξg

vh
q|Tg

� bgpvhq, (11)

where the matrix Ag P Rd,d and the linear application bg : Vh Ñ Rd are defined row-wise by

Ag

def� ����λT,F

dT,F
pxT � xTg

q � κTg
nTg,F � κT,F nT,F

	t

giQF�TgXT�
λTg,F

dTg,F
pxF � xTg

q	t

FPgb

��� , bgpvhq � ����λT,F

dT,F
pvT � vTg

q	
giQF�TgXT��λTg,F

dTg,F
vTg

	
FPgb

��� .

(12)

Proof. See [4, Lemma 3.1]. �

In order to express ξg

vh
terms of the values tvT uTPTg

, the matrix Ag must be invertible. Simple sufficient
inversibility conditions are discussed in what follows. In practice, however, the inversibility can be checked
directly, and backup strategies can be devised; see Remark 11.

1.3. The ccG space

In this section we introduce a ccG space based on the L-construction and on a local gradient inspired by
Green’s formula. For a face F P F i

h, let GF denote the set of L-groups containing F ,

GF
def� tg P G | F P gu.

Assumption 10 (Existence of an L-group leading to an invertible matrix for each interface). We assume that,
for all F P F i

h, GF is non-empty and there exists g P GF such that the matrix Ag defined by (12) is invertible.

For the sake of simplicity, Assumption 10 holds tacitly from this point on. Should this not be true, backup
strategies can be envisaged, as discussed in Remark 11. The discrete gradient is obtained as follows:

(i) For every F P F i
h we select a unique L-group gF yielding an invertible matrix and, for all vh P Vh, we

denote by ξgF
vh

the piecewise affine function on tPT,F uTPTF
obtained from the L-construction. Whenever

more than one such group is present, we select g P GF for which }A�1
g
}2 is minimal (this ensures the

best approximation properties; see Lemma 20 and Assumption 21). For convenience of notation, for all
boundary faces F � BT X BΩ we introduce the affine function ξgF

vh
on PT,F such that ξgF

vh
|F � 0 on F and

ξgF
vh
pxT q � vT . Such a function is well-defined since faces are planar.
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(ii) We then define the trace reconstruction operator Th : Vh Ñ RFh which realizes the mapping Vh Q vh ÞÑ
Thpvhq � pvF qFPFh

with pvF qFPFh
P RFh and, for all F P Fh,

vF � xξgF

vh
yF � ξgF

vh
pxF q. (13)

(iii) The gradient reconstruction operator Gh : Vh Ñ rP0
dpThqsd is defined following Droniou and Eymard [23]

as the application Vh Q vh ÞÑ Ghpvhq P rP0
dpThqsd with�T P Th, Ghpvhq|T � 1|T |d ¸

FPFT

|F |d�1pvF � vT qnT,F . (14)

where we have set pvF qFPFh
� Thpvhq.

The expression (14) is inspired by Green’s formula. As such, vF has to be related to the average on the face F .
For affine functions, the average coincides with the barycentric value, thereby justifying the choice in (13). The
linear reconstruction operator R

ccg
h : Vh Ñ P1

dpThq leading to the ccG space is finally defined as the mappingVh Q vh ÞÑ vh P P1
dpThq with�T P Th, �x P T, vh|T pxq � vT �Ghpvhq|T �px� xT q.

In the above formula, vT is interpreted as the point value in xT . The incomplete polynomial space V
ccg
h upon

which the ccG method relies is the image of the algebraic space of degrees of freedom Vh through R
ccg
h ,

V
ccg
h

def� R
ccg
h pVhq � P1

dpThq.
Proceeding by contradiction, it is a simple matter to prove that R

ccg
h is injective from Vh to P1

d and, hence,
bijective from Vh to V

ccg
h . It is also useful to observe that the discrete space V

ccg
h is contained in the larger

broken Sobolev space H1pThq.
Remark 11 (Backup strategies). Numerical evidence [3, 4] shows that Assumption 10 is true in most circum-
stances. In the presence of highly heterogeneous diffusion tensors or for extremely deformed meshes, it may
occur, however, that no L-group yielding an invertible matrix can be found for some interfaces. In this case,
several backup strategies are possible, and the choice can be mostly guided by the implementation at hand. We
mention two possibilities, although many more are possible. A first strategy relying on the tight link of ccG
methods to dG methods consists in using a full P1

d basis on the mesh elements which have at least one face
for which no invertible L-group exists. This results in a local increase of the number of unknowns and yields a
completely robust method. Whenever exactly one unknown per cell is allowed, the L-construction can be re-
placed by the barycentric interpolator of [30, §2.2]. The method can then be constructed provided the d points
involved in the barycentric interpolation form a non-degenerate simplex (an extremely mild mesh regularity
assumption). In this case, however, a local loss of precision may be observed as the barycentric interpolator
does not honor the heterogeneity of κ. We emphasize that no backup strategy whatsoever was required in the
numerical examples of §4.

Remark 12 (Polynomial order adaptivity). In the spirit of the previous remark, the polynomial degree can be
adapted in ccG methods by using full polynomial spaces inside selected elements. This is naturally handled
whenever the discrete formulation relying on the ccG space is inspired by a dG method, as is the case for all
the examples provided in this work.

1.4. Discrete functional analysis

This section collects some discrete functional analysis results that will be used in the rest of the paper. The
material is mainly adapted from [20, §6], to which we refer for further details. We state, in particular, the
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Sobolev embeddings for broken polynomial spaces in the Hilbertian case and the discrete counterpart of the
Rellich–Kondrachov theorem. To this end, we introduce the following norm on H1pThq:~v~2 def� }∇hv}2rL2pΩqsd � |v|2J, |v|2J def� ¸

FPFh

1

hF

}JvK}2L2pF q, (15)

where ∇h denotes the broken gradient on Th, i.e., for all v P H1pThq, ∇hv|T � ∇v for all T P Th.

Theorem 13 (Discrete Sobolev embeddings, Hilbertian case). For all q such that (i) 1 ¤ q   �8 if d ¤ 2,
(ii) 1 ¤ q ¤ 2d

d�2
if d ¡ 2, there is σq independent of h such that�vh P Pk

dpThq, }vh}LqpΩq ¤ σq~vh~. (16)

The constant σq additionally depends on k, |Ω|d and on the mesh regularity parameters.

The discrete Poincaré inequality is obtained as a special case for q � 2. For a proof in the more general
non-Hilbertian case we refer to [20]. Sequences in pV ccg

h qhPH uniformly bounded in the ~�~-norm possess an
important compactness property. Following the idea of Brezzi, Manzini, Marini, Pietra, and Russo [12] modified
according to [5, §3.1], we introduce for all F P Fh the local lifting operator rω,F : L2pF q Ñ rP0

dpThqsd which
maps every ϕ P L2pF q to rω,F pϕq P rP0

dpThqsd solution to:»
Ω

rω,F pϕq�τh � »
F

ϕtτhuω�nF , �τh P rP0
dpThqsd. (17)

For further use we also introduce the global lifting Rω,hpϕq def� °
FPFh

rω,F pϕq. If ωT1,F � ωT2,F � 1{2 for all

F P F i
h with F � BT1XBT2 we simply write rF and Rh. The lifting operators can be used to define a corrected

discrete gradient accounting for the jumps across mesh interfaces and on BΩ. More precisely, we introduce the
linear operator Gω,h : H1pThq Ñ rL2pΩqsd defined as follows: For all v P H1pThq,

Gω,hpvq def� ∇hv �Rω,hpJvKq. (18)

As before, if ωT1,F � ωT2,F � 1{2 for all F P F i
h with F � BT1 X BT2 we omit the subscript ω and write Gh.

Lemma 14 (Discrete Rellich–Kondrachov). Let pvhqhPH be a sequence in pPk
dpThqqhPH, k ¡ 0, uniformly

bounded in the ~�~-norm. Then, there exists a function v P H1
0 pΩq such that as h Ñ 0, up to a subsequence

vh Ñ v strongly in L2pΩq.
Proof. See [21, Theorem 6.3]. �

Lemma 15 (Weak asymptotic consistency of Gω,h for sequences of discrete functions). Let pvhqhPH be a
sequence in pPk

dpThqqhPH, k ¡ 0, uniformly bounded in the ~�~-norm. Then, as h Ñ 0, Gω,hpvhq á ∇v weakly
in rL2pΩqsd, where v P H1

0 is the limit provided by Theorem 14.

Proof. Denote by πh the L2-orthogonal projection onto rP1
dpThqsd. To prove the weak convergence of Gω,hpvhq

to ∇v, let Φ P rC8
0 pΩqsd, set Φh

def� πhΦ, and observe that»
Ω

Gω,hpvhq�Φ � � »
Ω

vh∇�Φ�
ŢPTh

»BT

Φ�nT vh� ¸
FPFh

»
Ω

rω,F pJvhKq�Φh � � »
Ω

vh∇�Φ� ¸
FPFh

»
F

JvhKtΦ�Φhuω�nF ,

where we have used the definition of the L2-orthogonal projection, the fact that tΦuω � Φ on every F P Fh,
and (17). Denote by T1 and T2 the addends in the right-hand side. Clearly, T1 Ñ ³

Ω
v∇�Φ. For the second

term, the Cauchy–Schwarz inequality yields T2 ¤ |vh|J � �°
FPFh

hF

³
F
|tΦ� Φhuω|2�1{2

, which tends to zero
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owing to the approximation properties of the L2-orthogonal projection for the smooth function Φ together with
the fact that |vh|J is uniformly bounded by assumption. �

It is important to observe that, since V
ccg
h � P1

dpThq, both Theorems 13 and 14 and Lemma 15 hold a fortiori
for the sequence of ccG spaces pV ccg

h qhPH.

2. Pure diffusion

2.1. The discrete problem

The space V
ccg
h is used in this section to discretize the heterogeneous diffusion problem�∇�pκ∇uq � f in Ω,

u � 0 on BΩ,

with source term f P L2pΩq. The weak form of this problem is the following:

Find u P V s.t. apu, vq � »
Ω

fv for all v P V , (19)

with V � H1
0 pΩq and apu, vq def� ³

Ω
κ∇u�∇v. The functions in V

ccg
h are possibly discontinuous across interfaces,

and V
ccg
h is therefore not V -conforming. In order to devise a suitable discretization, we take inspiration from the

work of Arnold [6] on the weak enforcement of potential continuity across interfaces. In particular, we consider
the modification proposed by Di Pietro, Ern, and Guermond [22] in the context of degenerate diffusion-advection-
reaction problems to attain robustness with respect to the diffusion tensor κ. In [22] robustness is achieved
by relating the weights introduced in Definition 1 to the diffusion on both sides of an interface. The idea of
diffusion-dependent weights can be traced back to the work of Burman and Zunino [15] on mortaring techniques
for a singularly perturbed diffusion-advection equation. For all F P F i

h such that F � BT1 X BT2, we let

ωT1,F
def� λT2,F

λT1,F � λT2,F

, ωT2,F
def� λT1,F

λT1,F � λT2,F

.

The analysis in the spirit of Céa’s Lemma requires to extend the discrete bilinear form to a continuous space
containing the exact solution. In order to guarantee that boundary terms remain well-defined when doing so,
it is useful to introduce a space V: featuring additional local regularity with respect to V .

Definition 16 (Space V:). We let V: denote the subspace of V spanned by functions v such that, for all T P Th,
∇v�nT |T P L2pBT q.

The space containing both the discrete and the continuous solution is defined as

V:h def� V
ccg
h � V:.

We are now ready to define the bilinear form ah P LpV:h � V:h,Rq,
ahpv, wq def� »

Ω

κ∇hv�∇hw � ¸
FPFh

»
F

tκ∇hvuω �nF JwK � ¸
FPFh

»
F

JvKtκ∇hwuω �nF � ¸
FPFh

η
γF

hF

»
F

JvKJwK, (20)

where η ¡ 0 denotes a user-dependent penalty parameter while γF is such that

γF
def� #

λT1,F λT2,F

λT1,F�λT2,F
if F P F i

h, F � BT1 X BT2,

λT,F if F P Fb
h , F � BT X BΩ.
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The discrete problem reads

Find uh P V
ccg
h s.t. ahpuh, vhq � »

Ω

fvh for all vh P V
ccg
h . (21)

2.2. Basic error estimate

We introduce the following data dependent norms on V:h:~v~2
κ

def� }κ1{2∇hv}2rL2pΩqsd � |v|2J,κ, ~v~2
κ,: def� ~v~2

κ
� ¸

TPTh

hT }κ1{2∇v�nT }2L2pBT q, (22)

where the jump seminorm is given by |v|2J,κ
def� ¸

FPFh

γF

hF

}JvK}2L2pF q.
Lemma 17 (Properties of the bilinear form ah). The bilinear form ah enjoys the following properties:

(i) Consistency. Assume u P V:. Then, for all vh P V
ccg
h ,

ahpu, vhq � »
Ω

fvh;

(ii) Coercivity. For all η ¡ η � C2
trNB there holds�vh P V

ccg
h , ahpvh, vhq ¥ Csta~vh~2

κ
,

with Csta
def� pη � C2

trNBqtmaxp1{2, η � C2
trNBqu�1 independent of both κ and h;

(iii) Boundedness. There is Cbnd independent of the meshsize h and of the diffusion coefficient κ such that�pv, whq P V:h � V
ccg
h , ahpv, whq ¤ Cbnd~v~κ,:~wh~κ.

Proof. We preliminarily note the following bound resulting from the Cauchy–Schwarz inequality:�pv, whq P V:h � V
ccg
h ,

����� ¸
FPFh

»
F

tκ∇hvuω�nF JwhK

����� ¤ �
ŢPTh

¸
FPFT

hF }κ1{2∇v|T �nF }2L2pF q�1{2 |wh|J,κ. (23)

Consistency. Plugging the exact solution u into the first argument of ah and integrating by parts we obtain,
for all vh P V

ccg
h ,

ahpu, vhq � � »
Ω

∇�pκ∇uqvh � ¸
FPF i

h

»
F

Jκ∇huK�nF tvhuω � ¸
FPFh

»
F

JuKtκ∇hvhuω�nF � ¸
FPFh

η
γF

hF

»
F

JuKJvhK,

where tvhuω def� ωT2,F vh|T1
� ωT1,F vh|T2

. The conclusion follows using the fact that �∇�pκ∇uq � f for a.e.
x P Ω for the first term and the fact that both u and its diffusive flux are continuous across interfaces and u

vanishes on BΩ to infer that the remaining terms are zero.
Coercivity. It is inferred from the bound (23) together with the discrete trace inequality (4) that�vh P V

ccg
h ,

����� ¸
FPFh

»
F

tκ∇hvhuω�nF JvhK

����� ¤ CtrN
1{2B }κ1{2∇hvh}rL2pΩqsd |vh|J,κ.
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Using the inequality 2ab ¤ ǫa2 � 1{ǫb2 valid for any ǫ ¡ 0 together with the above bound, we obtain

ahpvh, vhq � }κ1{2∇hvh}2rL2pΩqsd � 2
¸

FPFh

»
F

tκ∇hvhuω�nF JvhK� η|vh|2J,κ¥ p1� C2
trNBǫq}κ1{2∇hvh}2rL2pΩqsd � pη � 1{ǫq|vh|2J,κ.

The desired result follows by properly selecting ǫ.
Boundedness. Let pv, whq P V:h � V

ccg
h and let T1, . . . , T4 denote the addends in the expression of ahpv, whq ob-

tained from (20). Using the Cauchy–Schwarz inequality it is readily inferred that |T1�T4| ¤ p1�ηq~v~κ~wh~κ.

Moreover, owing to the bound (23), |T2| ¤ ~v~κ,:|wh|J,κ ¤ ~v~κ,:~wh~κ. Finally, |T3| ¤ CtrN
1{2B |v|J,κ}κ1{2∇hwh}rL2pΩqsd ,

and the conclusion follows. �

Theorem 18 (~�~κ-error estimate). Assume u P V:. There holds~u� uh~κ ¤ �
1� Cbnd

Csta



inf

vhPV
ccg

h

~u� vh~κ,:.
Proof. By the triangular inequality, for all vh P V

ccg
h there holds ~u� uh~κ ¤ ~u� vh~κ �~vh � uh~κ. Using

the coercivity, consistency and boundedness of ah it is inferred

Csta~uh � vh~2
κ
¤ ahpuh � vh, uh � vhq � ahpu� vh, uh � vhq ¤ Cbnd~u� vh~κ,:~uh � vh~κ,

hence ~uh� vh~κ ¤ CbndC
�1
sta~u� vh~κ,:. The conclusion follows observing that ~u� vh~κ ¤ ~u� vh~κ,:. �

An important remark is that the error estimate in Theorem 18 is robust in that the multiplicative constant
in the right-hand side does not depend on κ. To infer a convergence rate from Theorem 18 we have to study
the approximation properties of the discrete space V

ccg
h and further bound the right-hand side.

2.3. Convergence rate

2.3.1. The heterogeneous case

We first consider the heterogeneous case and focus on exact solutions exhibiting further local regularity. For
k ¥ 0 define the spaces of piecewise regular functions

CkpThq def� tv P L2pΩq | v|T P CkpT q, �T P Thu,
classically equipped with the norm }v}CkpThq def� max

TPTh

max
0¤l¤k, 1¤i¤d

}Bl
iv}C0pT q,

and }w}C0pT q def� maxxPT |wpxq| for all w P C0pT q.
Theorem 19 (Test space). Let QTh,κ be the space of functions ϕ : Ω Ñ R enjoying the following properties:

(i) Global and local regularity. The function ϕ belongs to C0pΩq X C2pThq;
(ii) Continuity of the tangential derivatives at interfaces. For all F P F i

h such that F � BT1 X BT2, all vector
t parallel to F , and all x P F ,

∇ϕ|T1
pxq�t � ∇ϕ|T2

pxq�t;
(iii) Continuity of the diffusive flux at interfaces. For all F P F i

h such that F � BT1 X BT2, and all x P F ,pκ∇ϕq|T1
pxq�nF � pκ∇ϕq|T2

pxq�nF .
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Then, QTh,κ is dense in H1
0 pΩq.

An important remark is that QTh,κ is a subspace of V:, and so the assumptions required to prove the error
estimate in Theorem 18 are met by solutions that are in QTh,κ. In what follows we denote by I

ccg
h : C0pThq Ñ Vh

the interpolator at cell centers which maps every function v P C0pThq onto the vector

I
ccg
h pvq � pvpxT qqTPTh

P Vh.

Lemma 20 (Consistency of the gradient reconstruction). For all h P H, all v P QTh,κ, and all F P Fh,|∇ξgF

vh
�∇vpxTgF

q| ¤ C
�
1� }A�1

gF
}2�hTgF

,

where vh � I
ccg
h pvq and C depends on κ, on the mesh regularity parameters, and on }v}C2pThq but not on h.

Proof. Let F P F i
h. It is proved in [4, Lemma 3.3] that |∇ξgF

vh
�∇vpxTgF

q| ¤ C
�
1� }A�1

gF
}2�maxTPTgF

hT . To
bound the term in the right-hand side, use the shape- and contact-regularity of the mesh to conclude that, for
all T P TgF

ztTgF
u, ̺1̺2hT ¤ hF ¤ hTgF

. Hence, maxTPTgF
hT ¤ p̺1̺2q�1hTgF

, which yields the desired result.
A similar argument can be used for boundary faces. �

In order to estimate the convergence rate of the method (21) for solutions in QTh,κ, we introduce the following.

Assumption 21 (Uniform bound on }A�1
gF
}2). We assume that there exists Λ   �8 independent of the meshsize

h uniformly bounding the set t}A�1
gF
}2uhPH, FPF i

h
from above.

Lemma 22 (Consistency of the trace reconstruction). Let v P QTh,κ and set vh
def� I

ccg
h pvq and pvF qFPFh

� Thpvhq.
Under Assumption 21 there holds for all h P H, all v P QTh,κ, and all F P Fh,|vF � vpxF q| ¤ Ch2

TgF
,

where C depends on κ, on the mesh regularity parameters, on Λ, and on }v}C2pThq.
Proof. The assertion is trivially verified for F P Fb

h . Let now F P F i
h. Using the Taylor expansion of v

about xTgF
together with the fact that TgF

is star-shaped with respect to xTgF
, we conclude that there exists

ypxF q P rxTgF
,xs such that

vpxF q � vpxTgF
q �∇vpxTgF

q�pxF � xTgF
q � 1

2
pxF � xTgF

qtHvpypxF qqpxF � xTgF
q,

where HvpypxF qq denotes the Hessian of v evaluated at ypxF q. Similarly, letting vh � I
ccg
h pvq and pvF qFPFh

def�
Thpvhq P RFh ,

vF � vpxTgF
q �∇ξgF

vh
|TgF

�pxF � xTgF
q.

Hence, |vF � vpxF q| ¤ hT |∇ξgF
vh
|TgF

�∇vpxF q| � h2
T

2
}v}C2pT q. The conclusion follows from Lemma 20. �

For further use we introduce the following augmented version of the ~�~-norm on V::~v~2: def� ~v~2 � ¸
TPTh

hT }∇v|T �nT }2L2pBT q. (24)

Theorem 23 (Approximation of functions in QTh,κ). Let v P QTh,κ and set vh
def� pRccg

h � Iccg
h qpvq P V

ccg
h .

Then, under Assumption 21 there holds~v � vh~κ,: ¤ λ
1{2~v � vh~: ¤ Cvh, (25)

with Cv depending on κ, on the mesh regularity parameters, on Λ, and on }v}C2pThq.
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Proof. The proof closely follows that of [5, Lemma 3.10]. Since it is clear that ~w~κ,: ¤ λ
1{2~w~: for all

w P H1pThq, we only show the second inequality in (25). In the rest of the proof we abbreviate a À b the
inequality a ¤ Cb where C can depend on κ, on the mesh regularity parameters, on Λ, and on }v}C2pThq. Let
v P QTh,κ and set

vh
def� I

ccg
h pvq P Vh, vh

def� R
ccg
h pvhq P V

ccg
h , pvF qFPFh

� Thpvhq P RFh .

(i) Estimate of }∇v �∇hvh}rL2pΩqsd . For all T P Th and all x P T there holds

∇hvh|T �∇vpxq � #
∇vpxT q �∇vpxq+�#

1|T |d ¸
FPFT

|F |d�1 pvF � vpxF qqnT,F

+�#
1|T |d ¸

FPFT

|F |d�1 pvpxF q � vpxT qqnT,F �∇vpxT q+ def� T1 � T2 � T3.

It is clear that |T1| ¤ }v}C2pT qhT , hence
°

TPTh
}T1}2L2pT q À |Ω|dh2. Using Lemma 22 together with the

geometric relation (9) and mesh regularity it is inferred that|T2| ¤ ¸
FPFT

|F |d�1dT,F|T |d |vF � vpxF q|
dT,F

À d
h2

TgF

dT,F

À hTgF
.

As a result,
°

TPTh
}T2}2L2pT q À |Ω|dh2. To handle the last term, we use the magic formula [5, eq. (33)]: For all

T P Th and all x P T ,
1|T |d ¸

FPFT

|F |d�1pxF � xqipnT,F qj � δij , (26)

where δij is Kronecker’s symbol. By virtue of (26), there holds

T3 � 1|T |d ¸
FPFT

|F |d�1 rvpxF q � vpxT q �∇vpxT q�pxF � xT qsnT,F ¤ ¸
FPFT

|F |d�1dT,F|T |d }v}C2pT qhT .

Proceeding as for T2, we easily infer that
°

TPTh
}T3}2L2pT q À |Ω|dh2, thereby concluding that}∇v �∇hvh}rL2pΩqsd À h.

(ii) Estimate of the remaining terms in ~�~:. By the continuous trace inequality (5),|v � vh|2J À ¸
FPFh

h�1
F

¸
TPTF

}pv � vhq|T }2L2pF q ¤ C2
tr,c

¸
FPFh

h�1
F

¸
TPTF

!
h�1

T }v � vh}2L2pT q � hT |v � vh|2H1pT q) .

On the other hand, owing to the previous point, for all T P Th and all x P T , |vT �vhpxq|�hT |∇hvh|T �∇vpxq| À
h2. It follows easily that |v� vh|J À h. The term

°
TPTh

hT }∇pv � vhq|T �nT }L2pBT q can be handled in a similar
way, thereby concluding the proof. �

Corollary 24 (Convergence rate, heterogeneous case). Assume u P QTh,κ. Then, under Assumption 21, there
holds ~u� uh~κ ¤ Ch

with C � Cuλ
1{2 �

1� Cbnd

Csta

	
and Cu results from Theorem 23.
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2.3.2. The homogeneous isotropic case

We assume throughout this section that

κ � 1d,d, d P t2, 3u. (27)

The more general case κ � ν1d, ν ¡ 0, can be handled with minor modifications. When (27) holds, convergence
rates can be estimated with milder regularity assumptions on the exact solution, and L2 error estimates for the
method (21) can be obtained by the Aubin–Nietsche trick [8, 35]. The key point is here to show how optimal
convergence rates can be obtained avoiding pointwise estimations, thereby removing the need for the strong
local regularity assumption u P C2pThq used all along the previous section. To this end, we need to introduce
further mild assumptions on the mesh family. For all faces we define a patch of pyramids on which the piecewise
affine functions tξgF

vh
uFPFh

are required to exhibit approximation properties. More precisely, for all F P Fh let

PF
def� #

PgF
if F P F i

h,

PT,F if F � BT X BΩ,

with PgF
defined by (10); see Figure 1.

Assumption 25 (Approximation property for L-constructions). We assume that the L-constructions are such
that, for all 0 ¤ l ¤ 1 with l ¡ d{2�1, there exists C independent of the meshsize h such that, for all 0 ¤ m ¤ l�1,
and all F P Fh �v P H l�1pPF q, |v � ξgF

vh
|HmpPF q ¤ Chl�1�m

PF
|v|Hl�1pPF q,

with vh � I
ccg
h pvq. Moreover, there exists ̺4 independent of the meshsize h such that, for all F P Fh and all

T P TF , hPF
¤ ̺4hT .

Some comments are of order. It is worth giving a hint of how Assumption 25 could be proved. We start by
observing that Assumption 10 has a straightforward interpretation in the homogeneous case, as it amounts to
requiring that, for all F P F i

h, there exists at least a group g P GF such that the cell centers of the elements in Tg

and the barycenters of the faces F P gb form a non-degenerate simplex Sg; see Figure 1. Assumption 21 is then
essentially a shape-regularity requirement on the family of simplices tSgF

uhPH, FPF i
h
. A second important remark

is that, for all v sufficiently regular, the functions ξg

vh
with vh � I

ccg
h pvq coincides with the Lagrange interpolator

on Sg. Assumption 25 can then be proved by classical FE techniques by using, e.g., the affine map onto the
reference simplex and estimating the norms on the ball circumscribed to PF . Using the circumscribed ball allows
to have a uniform bound on the Deny–Lions constant appearing when proceeding as in [27, Theorem 1.103].
Clearly, this reasoning breaks down close to the boundary of the domain Ω, as the ball may no longer be
contained in Ω. As a result, we can interpret Assumption 25 as a requirement that the patches associated to
the L-construction near the boundary of Ω be “not too far” from the simplex formed by the cell centers. To
conclude, we point out that the assumption l ¡ d{2� 1 is necessary to ensure that point values are well-defined
inside the elements. This is why the space dimension has been restricted to t2, 3u in (27).

Theorem 26 (Approximation of functions in V XH2pΩq). Under Assumption 25, there holds�v P V XH2pΩq, ~v � vh~: ¤ Ch}v}H2pΩq,
with vh

def� pRccg
h � Iccg

h qpvq P V
ccg
h and C depending on the mesh regularity parameters but not on h.

Proof. Let v P V XH2pΩq, and set vh
def� I

ccg
h pvq P Vh and pvF qFPFh

� Thpvhq P RFh . In the rest of the proof
we abbreviate a À b the inequality a ¤ Cb where C can depend on the mesh regularity parameters but not on
the meshsize h.
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(i) Estimate of }∇v �∇hvh}rL2pΩqsd . The quantity to estimate is decomposed as follows:}∇v �∇hvh}2rL2pΩqsd �
ŢPTh

¸
FPFT

»
PT,F

��∇v �∇ξgF

vh
�∇ξgF

vh
�∇vh

��2À
ŢPTh

¸
FPFT

»
PT,F

��∇v �∇ξgF

vh

��2 � ¸
TPTh

¸
FPFT

»
PT,F

��∇ξgF

vh
�∇vh

��2 def� T1 � T2.

For the first term it suffices to use Assumption 25 to infer

T1 �
ŢPTh

¸
FPFT

|v � ξgF
vh
|2H1pPT,F q À h2|v|2H2pΩq.

To estimate the second term, preliminarily observe that, for all T P Th,

∇hvh|T � ¸
F 1PFT

|F 1|d�1|T |d �
ξgF 1
vh

|PT,F 1 pxF 1q�vT

	
nT,F 1 � ¸

F 1PFT

|F 1|d�1|T |d ∇ξgF 1
vh

|PT,F 1 �pxF 1�xT qnT,F 1 ,
where we have used the linearity of ξ

gF 1
vh

to infer that ξ
gF 1
vh

|PT,F 1 pxF q � vT � ∇ξ
gF 1
vh

|PT,F 1 �pxF 1 � xT q. Using

formula (26), we obtainx∇vyT �∇hvh|T � ¸
F 1PFT

|F 1|d�1|T |d �x∇vyT �∇ξgF 1
vh

|PT,F 1	 �pxF 1 � xT qnT,F 1 .
Exploiting the above remark, the second term is then decomposed as follows:

T2 À ¸
TPTh

¸
FPFT

|PT,F |d ��∇ξgF
vh
|PT,F

� x∇vyPT,F

��2 �
ŢPTh

¸
FPFT

|PT,F |d ��x∇vyPT,F
� x∇vyT ��2�

ŢPTh

¸
FPFT

|PT,F |d ����� ¸
F 1PFT

|F 1|d�1|T |d �x∇vyPT,F 1 �∇ξgF 1
vh

|PT,F 1	 �pxF 1 � xT qnT,F 1 �����2�
ŢPTh

¸
FPFT

|PT,F |d ����� ¸
F 1PFT

|F 1|d�1|T |d �x∇vyT � x∇vyPT,F 1	 �pxF 1 � xT qnT,F 1 �����2 def� T2,1 � T2,2 � T2,3 � T2,4.

The Cauchy–Schwarz inequality yields

∇ξgF
vh
|PT,F

� x∇vyPT,F
� 1|PT,F |d »

PT,F

�
∇ξgF

vh
�∇v

� ¤ 1|PT,F |1{2d

|ξgF
vh

� v|H1pPT,F q,
whence, by Assumption 25,

T2,1 ¤
ŢPTh

¸
FPFT

|ξgF

vh
� v|2H1pPT,F q À h2|v|2H2pΩq.

The term T2,2 can be estimated in a similar fashion using the approximation properties of the L2 projection of
∇v onto rP0

dpThqsd to conclude. To estimate T2,3, observe preliminarily that, for all T P Th and all F 1 P FT ,
equation (8) yields |F 1|d�1

�x∇vyPT,F 1 �∇ξgF 1
vh

|PT,F 1	 � d

dT,F 1 »PT,F 1 �∇v �∇ξgF 1
vh

�
.
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The Cauchy–Schwarz inequality together with (6) yield����� ¸
F 1PFT

|F 1|d�1|T |d �x∇vyPT,F 1�∇ξgF 1
vh

|PT,F 1	 �pxF 1�xT q�����2 ¤ d2h2
T

d2
T,F 1 |T |2d ����� ¸

F 1PFT

»
PT,F 1 �∇v �∇ξgF 1

vh

������2¤ d2h2
T

d2
T,F 1 |T |2d # ¸

F 1PFT

|PT,F 1 |d+�# ¸
F 1PFT

|v � ξgF 1
vh

|2H1pPT,F 1 q+ � d2|T |d̺2
3

¸
F 1PFT

|v � ξgF 1
vh

|2H1pPT,F 1 q.
We therefore have

T2,3 ¤ d2

̺2
3 ŢPTh

¸
FPFT

# |PT,F |d|T |d ¸
F 1PFT

|v � ξgF 1
vh

|2H1pPT,F 1 q+¤ d2

̺2
3 ŢPTh

# ¸
FPFT

|PT,F |d|T |d +�# ¸
F 1PFT

|v � ξgF 1
vh

|2H1pPT,F 1 q+ ¤ d2

̺2
3

¸
TPTh

¸
F 1PFT

|v � ξgF 1
vh

|2H1pPT,F 1 q,
and, by Assumption 25, we infer that T2,3 À h2}v}2

H2pΩq. Proceeding in a similar way, one can prove that

T2,4 À h2}v}2
Hl�1pΩq. In conclusion, }∇v �∇hvh}rL2pΩqsd À h}v}H2pΩq.

To conclude, we observe that the fact that v vanishes on the boundary has been tacitly used to estimate the
error associated to the functions ξgF

vh
on boundary faces F P Fb

h .

(ii) Estimate of the remaining terms in ~�~:. We start by estimating }v � vh}L2pΩq. Let π1
h denote the L2-

projection on to P1
dpShq with Sh defined by (7). An application of the triangular inequality yields}v � vh}L2pΩq ¤ }v � π1

hv}L2pΩq � }π1
hv � vh}L2pΩq def� T1 � T2.

By the approximation properties of the pyramidal submesh Sh (which follow from the shape- and contact-
regularity of the mesh Th as well as from the assumption that cell centers are uniformly away from the cell
boundaries), there holds T1 À h2}v}H2pΩq. To proceed, we rewrite the second term as follows:

T2
2 � ¸

TPTh

¸
FPFT

}π1
hv � vh}2L2pPT,F q.

Since, for all T P Th, all F P FT , and all x P PT,F , π1
hv|PT,F

pxq � xvyPT,F
�∇π1

hv|PT,F
�px� xT q, there holds,}π1

hv � vh}L2pPT,F q ¤ }xvyPT,F
� xξgF

vh
yPT,F

}L2pPT,F q � }∇pπ1
hv � ξgF

vh
q�px� xT q}L2pPT,F q¤ $&%»

PT,F

�»
PT,F

pv � ξgF

vh
q�2

,.-1{2 � hT |π1
hv � ξgF

vh
|H1pPT,F q¤ }v � ξgF

vh
}L2pPT,F q � hT |π1

hv � ξgF

vh
|H1pPT,F q.

Assumption 25 then yields T2 À h2|v|H2pΩq. We therefore conclude that}v � vh}L2pΩq À h2}v}H2pΩq. (28)

To bound |v � vh|J and
°

TPTh
hT }∇v|T �nF }L2pBT q use the continuous trace inequality (5) as in point (ii) of

Theorem 23 together with (28). �



18 TITLE WILL BE SET BY THE PUBLISHER

Lemma 27 (Convergence rate, homogeneous case). Let u P V XH2pΩq. Then, under Assumption 25,~u� uh~ ¤ Ch}u}H2pΩq, (29)

with C independent of the meshsize h. Moreover, if elliptic regularity holds,}u� uh}L2pΩq ¤ Ch2}u}H2pΩq. (30)

Proof. (i) Energy estimate (29). Use the error estimate of Theorem 18 together with the assumption (27) and

Theorem 26 to conclude that ~u� uh~ ¤ C
�
1� Cbnd

Csta

	 }v}H2pΩq.
(ii) L2-error estimate (30). We only give a sketch of the proof and refer, e.g., to [7] or [21, §4.1.3] for further
details. Preliminarily remark that the bilinear form ah is coercive in V

ccg
h �V

ccg
h with respect to the augmented

norm ~�~:, i.e., there exists C 1
sta such that, for all η ¡ η and all vh P V

ccg
h , ahpvh, vhq ¥ C 1

sta~vh~2: (indeed,

the ~�~-norm and the ~�~:-norm are uniformly equivalent on V
ccg
h ). Also, there exists C 1

bnd independent of the
meshsize h such that, for all w, v P V:h, ah ¤ C 1

bnd~w~:~v~:. Hence, proceeding as in Theorem 18 and using
Theorem 26 we conclude that ~u � uh~: ¤ Ch}v}H2pΩq with C independent of the meshsize h. Consider now
the auxiliary problem

Find χ P V such that apχ, vq � »
Ω

pu� uhqv for all v P V .

By the elliptic regularity assumption, there exists Cell such that }χ}H2pΩq ¤ Cell}u�uh}L2pΩq. Moreover, owing

to the symmetry and the consistency of ah, ahpu�uh, χq � � ³
Ω
△χpu�uhq and, for χh � pRccg

h �Iccg
h qpχq P V

ccg
h ,

ahpu� uh, χhq � 0. As a result,}u� uh}2L2pΩq � ahpu�uh, χ�χhq À ~u�uh~:~χ�χh~: À ~u� uh~:h}χ}H2pThq À ~u� uh~:h}u� uh}L2pΩq,
with À indicating inequalities up to a multiplicative constant independent of the meshsize h. To conclude the
proof, use the fact that ~u� uh~: ¤ Ch}v}H2pΩq. �

2.4. Convergence to minimal regularity solutions

We investigate the convergence of the method (21) to minimal regularity solutions, i.e., solutions that barely
sit in H1

0 pΩq. Throughout this section we restore the original assumptions on the diffusion coefficient κ, and we
consider an arbitrary space dimension, i.e.

κ P rP0
dpThqsd,d, d ¥ 1.

The analysis follows the ideas of Eymard, Gallouët, and Herbin [29, 30] originally developed in the context of
FV methods and recently transposed to dG methods by Di Pietro and Ern [20]. An important remark is that
the bilinear form ah admits the following equivalent form on V

ccg
h � V

ccg
h :

ahpuh, vhq � »
Ω

κGω,hpuhq�Gω,hpvhq � jhpuh, vhq, (31)

with jhpuh, vhq def� ³
Ω

κRω,hpJuhKq�Rω,hpJvhKq �°
FPFh

ηγF h�1
F

³
F
JuhKJvhK and discrete gradients defined by (18).

When extended to V:h�V
ccg
h , this alternative form is no longer consistent in the sense of point (i) in Lemma 17;

see [20, Remark 3.3] and [21, §5.2.1]. However, ah retains a different form of consistency which suffices to infer
the convergence of the method when u only exhibits the minimal regularity.

Definition 28 (Asymptotic consistency). We say that the bilinear form ah is asymptotically consistent with
the exact bilinear form a on pV ccg

h qhPH if, for any sequence pvhqhPH in pV ccg
h qhPH uniformly bounded in the
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def� pRccg

h � Iccg
h qpϕq P V

ccg
h ,

lim
hÑ0

ahpvh, ϕhq � apv, ϕq � »
Ω

κ∇v�∇ϕ,

and v P H1
0 pΩq results from Theorem 14.

To prove the convergence of the method, we then proceed as follows: (i) using the coercivity of ah we prove
a uniform bound for the ~�~-norm of the discrete solutions puhqhPH; (ii) by virtue of Theorem 14, we infer
the existence of u P V � H1

0 pΩq limit of puhqhPH; (iii) using the asymptotic consistency of ah together with
the fact that QTh,κ is dense in V , we conclude that u � u (and, by the uniqueness of u, that the convergence
property extends to the whole sequence); (iv) using the above result, we prove the strong convergence of the
sequence pGω,hpuhqqhPH to ∇u in rL2pΩqsd as h Ñ 0. An important intermediate result to prove the asymptotic
consistency of ah is the consistency of the discrete gradient Gω,h defined by (18) for the interpolates of functions
in QTh,κ. We first prove the following.

Lemma 29 (Bound on global lifting). For all v P V:, there holds}κ1{2Rω,hpJvKq}2rL2pΩqsd ¤ CtrN
1{2B |v|2J,κ.

Proof. By definition,}κ1{2Rω,hpJvKq}2rL2pΩqsd � ¸
FPFh

»
Ω

κRω,hpJvKq�rω,F pJvKq � ¸
FPFh

»
F

tκRω,hpJvhKquω �nF JvK.

For brevity of notation, for all F P F i
h with F � BT1 X BT2, let ωi � ωTi,F , λTi,F � λi, κi � κ|Ti

, and

ai � κ

1{2
i Rω,hpJvKq|Ti

, i P t1, 2u. The Cauchy–Schwarz inequality yields»
F

tκRω,hpJvKquω �nF JvK � »
F

pω1κ
1{2
1 nT1

�a1 � ω2κ
1{2
2 nT2

�a2qJvK¤ "
1

2
hF

�}a1}2rL2pF qsd � }a2}2rL2pF qsd	*1{2 � "
2pω2

1λ1 � ω2
2λ2q 1

hF

}JvK}2L2pF q*1{2
,

and since 2pω2
1λ1 � ω2

2λ2q � γF , it is inferred that»
F

tκRω,hpJvKquω �nF JvK ¤ "
1

2
hF

�}a1}2rL2pF qsd � }a2}2rL2pF qsd	*1{2 � "
γF

hF

}JvK}2L2pF q*1{2
.

Moreover, for all F P Fb
h with F � BT X BΩ,»

F

tκRω,hpJvKquω �nF JvK ¤ h
1{2
F }pκ1{2Rω,hpJvKqq|T �nF }L2pF q �#

γF

hF

}JvK}2L2pF qhF

¸
TPTF

}κ1{2Rω,hpJvKq|T }+1{2
.

Summing over mesh faces, and using the Cauchy–Schwarz inequality we obtain}κ1{2Rω,hpJvKq}2rL2pΩqsd ¤ ¸
FPFh

#
hF

¸
TPTF

}pκ1{2Rω,hpJvKqq|T }2L2pF q+1{2 |v|J,κ ¤ CtrN
1{2B }κ1{2Rω,hpJvKq}rL2pΩqsd |v|J,κ.

This concludes the proof. �
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Lemma 30 (Strong convergence of Gω,h for smooth functions). Let ϕ P QTh,κ and set ϕh
def� pRccg

h � Iccg
h qpϕq P V

ccg
h .

Under Assumption 21, there holds

Gω,hpϕhq Ñ ∇ϕ strongly in rL2pΩqsd
Proof. The triangular inequality yields}Gω,hpϕhq �∇ϕ}rL2pΩqsd ¤ }∇hϕh �∇ϕ}rL2pΩqsd � }Rω,hpJϕhKq}rL2pΩqsd def� T1 � T2.

Using Theorem 23 it is readily inferred that T1 Ñ 0 as h Ñ 0. For the second term, use Lemma 29 together
with the fact that JϕKF pxq � 0 for all F P Fh and all x P F to infer

λ
1{2}Rω,hpJϕhKq}rL2pΩqsd ¤ }κRω,hpJϕhKq}rL2pΩqsd ¤ CtrN

1{2B |ϕh|J,κ ¤ CtrN
1{2B |ϕh � ϕ|J,κ,

and the right-hand side tends to zero as h Ñ 0 again by virtue of Theorem 23. This concludes the proof. �

We are now ready to prove the following.

Lemma 31 (Asymptotic consistency of the bilinear form ah). Under Assumption 21, the bilinear form ah is
asymptotically consistent with the exact bilinear form a on pV ccg

h qhPH.

Proof. Let pvhqhPH be a sequence in pV ccg
h qhPH bounded in the ~�~-norm and let ϕ P QTh,κ. For all h P H, we

set ϕh
def� pRccg

h � Iccg
h qpϕq P V

ccg
h . By Theorem 23, it is clear that ~ϕ� ϕh~κ Ñ 0 as h Ñ 0. Observe that

ahpvh, ϕhq � »
Ω

κGω,hpvhq�Gω,hpϕhq � jhpvh, ϕhq def� T1 � T2.

Clearly, as h Ñ 0, T1 Ñ ³
Ω

κ∇v�∇ϕ owing to the weak convergence of Gω,hpvhq to ∇v stated in Lemma 15 and
to the strong convergence of Gω,hpϕhq to ∇ϕ proved in Lemma 30. Furthermore, using the Cauchy–Schwarz

inequality together with Lemma 29 and the fact that, for all w P H1pThq, |w|J,κ ¤ λ
1{2|w|J, it is inferred that|T2| � |jhpvh, ϕhq| ¤ �

C2
trNB � η

� |vh|J,κ|ϕh|J,κ ¤ �
C2

trNB � η
�
λ

1{2|vh|J|ϕh|J,κ

Since |vh|J is bounded by assumption, and since |ϕh|J,κ � |ϕh �ϕ|J,κ tends to zero as h Ñ 0, it is inferred that
T2 Ñ 0. The proof is complete. �

Remark 32 (Weakening Assumption 21). To prove the asymptotic consistency of ah, and hence the convergence
to minimal regularity solutions, we only need that�ϕ P QTh,κ, ~ϕ� ϕh~ Ñ 0 as h Ñ 0, (32)

with ϕh � pRccg
h � Iccg

h qpϕq P V
ccg
h . Property (32) holds, e.g., if maxFPFh

}A�1
gF
}2 ¤ Ch�ǫ with 0 ¤ ǫ   1 and

C independent of the meshsize h. Whenever the solution exhibits sufficient regularity, however, one may wish
to have ǫ � 0 to attain optimal convergence rates. For the sake of simplicity, Assumption 21 is required in the
statements of Lemma 31 and Theorem 33, although (32) could have been used instead.

Theorem 33 (Convergence to minimal regularity solutions). Let puhqhPH be the sequence of approximate
solutions generated by solving the discrete problems (21). Then, under Assumption 21, as h Ñ 0, (i) uh Ñ u

strongly in L2pΩq, (ii) ∇huh Ñ ∇u strongly in rL2pΩqsd, (iii) |uh|J Ñ 0, with u P V unique solution to (19).
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Proof. We follow the four steps outlined above.
(i) A priori estimate. Owing to Lemma 17ii and to the discrete Poincaré inequality obtained from (16) with
q � 2,

Cstaλ~uh~2 ¤ Csta~uh~2
κ
¤ apuh, uhq � »

Ω

fuh ¤ }f}L2pΩq}uh}L2pΩq ¤ σ2}f}L2pΩq~uh~,

hence ~uh~ ¤ σ2pCηλq�1}f}L2pΩq.
(ii) Compactness. Owing to Theorem 14 together with Lemma 15, there exists u P V � H1

0 pΩq such that, as
h Ñ 0, up to a subsequence, uh Ñ u strongly in L2pΩq and Gω,hpuhq á ∇u weakly in rL2pΩqsd.
(iii) Identification of the limit. Owing to the asymptotic consistency of ah proved in Lemma 31, for all ϕ P QTh,κ

with ϕh
def� pRccg

h � Iccg
h qpϕq P V

ccg
h ,»

Ω

fϕ � »
Ω

fϕh � ahpuh, ϕhq Ñ »
Ω

κ∇u�∇ϕ,

i.e., u solves problem (19) by the density of QTh,κ in V stated in Theorem 19 and, hence, u � u. Moreover,
since the solution u to problem (19) is unique, the whole sequence converges (prove by contradiction).
(iv) Strong convergence of the gradient and of the jumps. Lemma 29 and (31) yield�vh P V

ccg
h , ahpvh, vhq ¥ }κ1{2Gω,hpvhq}rL2pΩqsd � �

η � C2
trNB� |vh|2J,κ (33)

Moreover, from the weak convergence of Gω,hpuhq to ∇u, we readily infer the weak convergence of κ
1{2Gω,hpuhq

to κ
1{2∇u. Owing to (33) and to weak convergence,

lim inf
hÑ0

ahpuh, uhq ¥ lim inf
hÑ0

}κ1{2Gω,hpuhq}2rL2pΩqsd ¥ }κ1{2∇u}2rL2pΩqsd .

Furthermore, still owing to (33),

lim sup
hÑ0

}κ1{2Gω,hpuhq}2rL2pΩqsd ¤ lim sup
hÑ0

ahpuh, uhq � lim sup
hÑ0

»
Ω

fuh � »
Ω

fu � }κ1{2∇u}2rL2pΩqsd .

This classically proves the strong convergence of κ
1{2Gω,hpuhq to κ

1{2∇u in rL2pΩqsd and, hence, the strong

convergence of Gω,hpuhq to ∇u in rL2pΩqsd. Note that ahpuh, uhq Ñ }κ1{2∇u}2rL2pΩqsd also. Owing to (33),pη � C2
trNBq|uh|2J,κ ¤ ahpuh, uhq � }κ1{2Gω,hpuhq}2rL2pΩqsd ,

and, since η ¡ C2
trNB and the right-hand side tends to zero, |uh|J,κ Ñ 0. To infer that |uh|J Ñ 0, simply observe

that |uh|J ¤ λ�1{2|uh|J,κ and that the right-hand side tends to zero. �

Remark 34 (Rough forcing terms). A possible way to handle forcing terms f in H�1pΩq consists in replacing
the test function by an interpolate in H1

0 pΩq in the second member. For the sake of simplicity, assume that
Th is conforming (if this is not the case, Sh can be used instead) and let IOs denote the Oswald interpolator
discussed, e.g., by Burman and Ern [14]. It can be proved that there exists C independent of the meshsize h such
that, for all vh P V

ccg
h , }IOsvh}H1pΩq ¤ Csta,Os~vh~. We consider the following modification of the method (21):

Find uh P V
ccg
h s.t. ahpuh, vhq � xf, IOsvhy�1,1.

The a priori estimate for the discrete solutions on the admissible mesh family pThqhPH is obtained as follows:

Cstaλ~uh~2 ¤ ahpuh, uhq � xf, IOsuhy�1,1 ¤ }f}H�1pΩq}IOsuh}H1pΩq ¤ Csta,Os}f}H�1pΩq~uh~,

hence ~uh~ ¤ Csta,Os{Csta}f}H�1pΩq. The convergence to minimal regularity solutions can then be proved as
in Theorem 33.
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3. Steady incompressible Navier–Stokes equations

3.1. The continuous setting

In the second part of this work we corroborate the claim that ccG methods are easily extended to problems
for which a dG scheme can be devised. Our focus is on the steady incompressible Navier–Stokes (INS) equations
for d P t2, 3u, �ν△ui � Bjpuiujq � Bip � fi in Ω, i P t1, . . . , du,Biui � 0 in Ω,

u � 0 on BΩ,xpyΩ � 0,

(34)

where the positive real ν denotes the kinematic viscosity and f P rL2pΩqsd. In (34) and throughout this section
Einstein’s convention on repeated indices is adopted. The natural spaces for the weak formulation of (34) are

U
def� rH1

0 pΩqsd, P
def� L2

0pΩq, X
def� U � P,

where we have set L2
0pΩq def� tv P L2pΩq | xvyΩ � 0u. We define the linear forms a P LpU � U,Rq and

b P LpU � P,Rq, and the trilinear form t P LpU � U � U,Rq such that

apu, vq def� »
Ω

ν∇ui�∇vi, bpv, qq def� � »
Ω

q∇�v, tpw, u, vq def� » pw�∇uiqvi � 1

2

»
Ω

p∇�wqpu�vq.
The trilinear form t includes Temam’s device [37] to control the kinetic energy balance as this is needed in what
follows for the asymptotic consistency of its discrete counterpart. The weak formulation of system (34) is:

Find pu, pq P X s.t. cppu, pq, pv, qqq � tpu, u, vq � »
Ω

f �v for all pv, qq P X , (35)

with bilinear form c P LpX �X,Rq such that cppu, pq, pv, qqq � apu, vq � bpv, pq � bpu, qq.
3.2. The discrete setting

We seek a discretization of (35) based on the following discrete spaces:

Uh
def� rV ccg

h sd, Ph
def� P0

dpThq{R, Xh
def� Uh � Ph.

The main difficulties in the approximation of the INS equations lie in the discretization of the velocity-pressure
coupling and of the convective term. In our case, the velocity-pressure coupling is stabilized by penalizing the
pressure jumps across interfaces with a weight proportional to the meshsize; see, e.g., [17]. As regards the
convective term, we use the non-dissipative trilinear form recently proposed by Di Pietro and Ern [20], which
has proved suitable to convection-dominated regimes; see also Botti and Di Pietro [9] for the application to a
dG discretization of the advection step in the context of a pressure-correction time-integration scheme. As the
convergence analysis is similar as for the dG method of [20], the proofs of the results that hold a fortiori are
sometimes omitted to leave room to specific issues related to the ccG method.

3.2.1. Velocity-pressure coupling

The velocity-pressure coupling is based on the bilinear form bh P LpUh � Ph,Rq such that

bhpvh, qhq def� � »
Ω

qh∇�vh � ¸
FPFh

»
F

JvhK�nF tqhu � � ¸
FPF i

h

»
F

tvhu�nF JqhK. (36)
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A useful equivalent form for bh can be inferred introducing the discrete divergence operator Dh : rH1pThqsd Ñ P0
dpThq

and the discrete gradient operator rGh : H1pThq Ñ rP0
dpThqsd defined as follows: For all v P rH1pThqsd and all

w P H1pThq,
Dhpvq def� Ghpviq�ei, rGhpwq def� ∇hw � ¸

FPF i
h

rF pJwKq.
The subscript ω has been omitted from discrete gradients and lifting operators since κ � ν1d,d (as the kinematic
viscosity is homogeneous and isotropic) implies ωT1,F � ωT2,F � 1{2 for all F P F i

h with F � BT1 X BT2. The

discrete divergence Dh is defined as the trace of Gh applied to a vector function, whereas rGh only differs from
Gh in that boundary faces are not included in the summation in the right-hand side. It follows from (36) that�pvh, qhq P Xh, bhpvh, qhq � »

Ω

vh
rGhpqhq � � »

Ω

qh Dhpvhq. (37)

We let, for all vector functions vh P Uh,~vh~2 def� ḑ

i�1

~vh,i~2, |vh|2J def� ḑ

i�1

|vh,i|2J.
As the discrete operator associated to the discrete bilinear form bh is not surjective, pressure stabilization must
be introduced. To this end, we define the bilinear form sh P LpPh � Ph,Rq and the associated seminorm |�|p
such that

shpph, qhq def� ¸
FPF i

h

hF

»
F

JphKJqhK, |qh|p def� ¸
FPF i

h

hF }JqhK}2L2pF q.
We are now ready to state the main result of this section.

Lemma 35 (Stability of the velocity-pressure coupling). Under Assumption 21, there exists β ¡ 0 independent
of the meshsize h such that�qh P Ph, β}qh}L2pΩq ¤ sup

whPUhzt0u bhpwh, qhq~wh~ � |qh|p.
Proof. In the proof we abbreviate a À b the inequality a ¤ Cb where C can depend on the mesh regularity
parameters and on Ω but not on the meshsize h. Owing to the surjectivity of the divergence operator from
U to P , there exists CΩ ¡ 0 uniquely depending on the domain Ω such that, for all q P L2

0pΩq, there exists
v P rH1

0 pΩqsd such that
∇�v � q, CΩ}v}rH1pΩqsd ¤ }q}L2pΩq. (38)

Let now q � qh, denote by v the element of rH1
0 pΩqsd satisfying (38) and set vh

def� pxvyT qTPTh
P Vh and

vh
def� R

ccg
h pvhq P V

ccg
h . Then,

CΩ}v}rH1pΩqsd}qh}L2pΩq ¤ }qh}2L2pΩq � »
Ω

qh∇�v � ¸
FPF i

h

»
F

JqhKtvu�nF � �bhpvh, qhq � ¸
FPF i

h

»
F

JqhKtv � vhu�nF¤ #
sup

whPUhzt0u bhpwh, qhq~wh~ +~vh~ � |qh|p �$&% ¸
FPF i

h

h�1
F

»
F

|tv � vhu|2,.- .

It follows from Lemma 36 that ~vh~ À }v}rH1pΩqsd . Moreover, using the continuous trace inequality (5) together

with the approximation properties of the mesh sequence pThqhPH, it is readily proved that
!°

FPF i
h

h�1
F

³
F
|tv � vhu|2) À}v}H1pΩq. The result follows. �
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The following lemma establishes the H1-stability property for functions in V
ccg
h used in the proof of Lemma 35.

Observe that, unlike elsewhere, the degrees of freedom are here interpreted as average values over the cells, since
the regularity of the function v is in general insufficient for point values to be defined inside elements.

Lemma 36 (H1-stability). Under Assumption 21, for all v P H1
0 pΩq there holds~vh~ ¤ C}v}H1pΩq,

where vh � pxvyT qTPTh
P Vh, vh � R

ccg
h pvhq P V

ccg
h and C is independent of the meshsize h.

Proof. In the proof we abbreviate a À b the inequality a ¤ Cb where C can depend on the mesh regularity
parameters and on Ω but not on the meshsize h. By definition,~vh~2 � }∇hvh}2rL2pΩqsd � |vh|2J def� T1 � T2.

The first term can be bounded as follows:

T1 À ¸
TPTh

|T |d ����� 1|T |d ¸
FPFT

|F |d�1 pxvyT � xvyF qnT,F

�����2 �
ŢPTh

|T |d ����� 1|T |d ¸
FPFT

|F |d�1

�xvyF � xξgF

vh
yF �nT,F

�����2 .

Denote by T1,1 and T1,2 the addends in the right-hand side. Using the Cauchy–Schwarz inequality together
with formula (9)

T1,1 ¤ ¸
TPTh

#� ¸
FPFT

|F |d�1|T |d dT,F

��� ¸
FPFT

d�1
T,F }xvyT � v}2L2pF q�+ ¤ dC2

ŢPTh

¸
FPFT

hT

dT,F

}v}2H1pT q À }v}2H1pΩq,
where we have used the classical estimate }xvyT � v}L2pF q � }π0

hv � v}L2pF q ¤ Ch
1{2
T |v|H1pT q. As for the term

T1,2, repeated applications of the Cauchy–Schwarz inequality together with (8) yield

T1,2 ¤ ¸
TPTh

1|T |d # ¸
FPFT

»
F

pv � ξgF

vh
qnT,F

+2 ¤
ŢPTh

1|T |d # ¸
FPFT

|F |1{2d�1}v � ξgF

vh
}L2pF q+2¤ ¸

TPTh

# ¸
FPFT

|F |d�1dT,F|T |d +�#
1

dT,F

¸
FPFT

}v � ξgF
vh
}2L2pF q+ ¤ d

ŢPTh

¸
FPFT

1

dT,F

}v � ξgF
vh
}2L2pF q.

Since κ � ν1d, for all F P F i
h, ξgF

vh
pxF q can be expressed as a linear combination of the values txvyT uTPTg

with coefficients tτF
T uTPTg

such that 0 ¤ τF
T ¤ 1. Hence, for all F P F i

h, using the triangular inequality, the

continuous trace inequality (5), and the approximation properties of the L2-projector onto P0
dpThq we infer}v � ξgF

vh
}L2pF q ¤

ŢPTg

τF
T }v � xvyT }L2pF q ¤ Ctr,c

ŢPTg

τF
T

�
h�1

T }v � xvyT }2L2pT q�hT |v|2H1pT q	1{2À max
TPTg

|τF
T |h1{2

T

ŢPTg

}v}H1pT q, (39)

and maxTPTg
|τF

T | is uniformly bounded owing to Assumption 21. Moreover, for all F P Fb
h , }v� ξgF

vh
}L2pF q � 0.

We conclude that T1,2 À }v}H1pΩq. To bound T2 observe that since, v is continuous across interfaces and it
vanishes on BΩ, |vh|J � |vh � v|J. The conclusion follows from (3), (6), and (39). �
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3.2.2. A non-dissipative convective trilinear form

The discrete convective trilinear form th P LpUh � Uh � Uh,Rq is given by

thpwh, uh, vhq def� »
Ω

pwh�∇huh,iqvh,i� ¸
FPF i

h

»
F

twhu�nF JuhK�tvhu�1

2

»
Ω

p∇h�whqpuh�vhq�1

2

¸
FPFh

»
F

JwhK�nF tuh�vhu.
The following lemma collects some important results. The proof essentially follows [20, Proposition 5.2]. In
particular, the Sobolev embedding 16 for q � 4 is required, which limits the space dimension to d P t2, 3u.
Lemma 37 (Properties of the trilinear form th). For all h P H, let Uh

def� rPk
dpThqsd for some k ¡ 0. The

trilinear form th defined by (3.2.2) enjoys the following properties:

(i) Non-dissipativity. For all wh, vh P Uh, thpwh, vh, vhq � 0.
(ii) Boundedness. There is Cbnd,t independent of the meshsize h such that, for all wh, uh, vh P Uh, thpwh, uh, vhq ¤

Cbnd,t~wh~~uh~~vh~.
(iii) Asymptotic consistency for smooth functions. Let pvhqhPH be a sequence in pUhqhPH bounded in the ~�~-

norm. Then, for all Φ P rC8
0 pΩqsd, as h Ñ 0, up to a subsequence, thpvh, vh, Φhq Ñ tpv, v, Φq, where

Φh
def� pRccg

h � Iccg
h qpΦq P Uh and v P U is the limit provided by Theorem 14.

(iv) Asymptotic consistency for test functions. In the setting of point (iii), further suppose that Ghpvhq Ñ ∇v

strongly in rL2pΩqsd and that |vh|J Ñ 0. Let pwhqhPH be another sequence in pUhqhPH bounded in the~�~-norm. Then, as h Ñ 0, up to a subsequence, thpvh, vh, whq Ñ tpv, v, wq, with both v, w P U resulting
from Theorem 14.

The discrete problem reads

Find puh, phq P Xh s.t. chppuh, phq, pvh, qhqq � thpuh, uh, vhq � »
Ω

f �vh for all pvh, qhq P Xh, (40)

with bilinear form ch P LpXh�Xh,Rq such that ch
def� ahpuh,i, vh,iq � bhpvh, phq � bhpuh, qhq � shpph, qhq, where

we have set κ � ν1d,d in the expression of ah and a sum over the index i is understood in the first term.

3.3. Convergence

We study the convergence of the method (40) in the spirit of §2.4. As the ccG space V
ccg
h is a subspace ofP1

dpThq, some of the results presented in [20, §5] in the context of dG methods hold a fortiori. In such cases, the
details of the proofs are omitted in order to restrict the focus to the peculiarities of the proposed ccG method.
Also, since the diffusion coefficient is homogeneous, the standard test space C8

0 pΩq can replace QTh,κ in the
convergence proof. The following lemmata contain results that are instrumental to the analysis.

Lemma 38 (Properties of Dh). The discrete divergence Dh enjoys the following properties:

(i) Consistency for smooth functions. Let Φ P rC8
0 pΩqsd and set Φh

def� pRccg
h � Iccg

h qpΦq P Uh. Then, under
Assumption 21, as h Ñ 0, DhpΦhq Ñ ∇�Φ strongly in L2pΩq.

(ii) Weak asymptotic consistency for test functions. Let pvhqhPH be a sequence in Uh. The, as h Ñ 0, up to a
subsequence, Dhpvhq á ∇�v weakly in L2pΩq, where v P rH1

0 pΩqsd is the limit resulting from Theorem 14.

Proof. Point (i) is a direct consequence of Theorem 23 together with the fact that κ � ν1d implies C8
0 pΩq �

QTh,κ, whereas point (ii) immediately follows from Lemma 15. �

Lemma 39 (Weak asymptotic consistency of rGh). Let pvhqhPH be a sequence in pPk
dpThqqhPH, k ¡ 0, uniformly

bounded in the ~�~-norm. Then, as h Ñ 0, up to a subsequence, rGhpvhq á ∇v weakly in rL2pΩqsd, where
v P H1

0 pΩq is the limit resulting from Theorem 14.

Proof. See [20, §2.3]. �
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Lemma 40 (Existence of a solution to (40)). There exists puh, phq P Xh solution to (40).

Proof. The proof is based on a topological degree argument and it follows [20, Proposition 5.1]. The use of a
topological degree argument to assert the existence of a discrete solution can be traced back to Eymard, Herbin,
and Latché [31]. �

The first step in the convergence proof is to derive a uniform a priori estimate on a suitable norm of the
discrete solution. This estimate is used to infer a compactness property for the sequence of discrete solutions.
To this end, we introduce the following norm on Xh:~pvh, qhq~2

ns
def� ~vh~2 � }qh}2L2pΩq � |qh|2p.

Lemma 41 (A priori estimate). There exists γ ¡ 0 independent of the meshsize h such that

γ~puh, phq~ ¤ σ2}f}rL2pΩqsd � Cbnd,tpνCstaq�1
�
σ2}f}rL2pΩqsd�2 . (41)

where Cbnd,t results from Lemma 37ii, Csta is the coercivity constant of ah, and σ2 results from Theorem 13.

Proof. The proof proceeds along the lines of [20, Lemma 5.1]. The details are omitted for the sake of brevity. �

Theorem 42 (Convergence). Let ppuh, phqqhPH be a sequence of approximate solutions generated by solving the
discrete problems (40) on the admissible mesh sequence pThqhPH. Then, under Assumption 21, as h Ñ 0, up
to a subsequence, (i) uh Ñ u strongly in rL2pΩqsd, (ii) ∇huh Ñ ∇u strongly in rL2pΩqsd,d, (iii) |uh|J Ñ 0,
(iv) ph Ñ p strongly in L2pΩq, (v) |ph|p Ñ 0, with pu, pq P X solution to (35). If the continuous solution pu, pq
is unique, the convergence property extends to the whole sequence.

Proof. (i) Compactness. Owing to the a priori estimate (41), by Theorem 14 together with Lemma 15 there
exists pu, pq P X such that, up to a subsequence, uh Ñ u strongly in rL2pΩqsd, Ghpuh,iq á ∇ui weakly inrL2pΩqsd for i P t1, . . . , du, and ph á p weakly in L2pΩq (as the sequence pphqhPH is uniformly bounded in the
L2-norm). For the sake of conciseness, subsequences are not renumbered in what follows.

(ii) Identification of the limit and convergence of a subsequence. Let Φ P rC8
0 pΩqsd and set Φh

def� pRccg
h � Iccg

h qpΦq P Uh.
Testing against pΦh, 0q yields

ahpuh, Φhq � bhpΦh, phq � thpuh, uh, Φhq � »
Ω

f �Φh.

Clearly, as h Ñ 0, the right-hand side tends to
³
Ω

f �Φ. Furthermore, by virtue of Lemma 31, the first term

in the left-hand side converges to apu, Φq � ³
Ω

ν∇ui�∇Φi. Using (37), the second term can be written as

bhpΦh, phq � � ³
Ω

ph DhpΦhq. Owing to the weak convergence of pphqhPH to p in L2pΩq and to the strong

convergence of pDhpΦhqqhPH to ∇�Φ in L2pΩq stated in Lemma 38, this term converges to bpΦ, pq � � ³
Ω

p∇�Φ.
Finally thpuh, uh, Φhq tends to tpu, u, Φq owing to Lemma37iii. As a result,

apu, Φq � bpΦ, pq � tpu, u, Φq � »
Ω

f �Φ.

Let now ϕ P C8
0 pΩq{R and set ϕh

def� π0
hϕ, where π0

h denotes the L2-orthogonal projection onto P0
dpThq. Testing

against p0, ϕhq yields �bhpuh, ϕhq � shpph, ϕhq � 0.

Clearly, �bhpuh, ϕhq � ³
Ω

ϕh Dhpuhq tends to
³
Ω

ϕ∇�u as h Ñ 0 since pDhpuhqqhPH weakly converges to ∇�u
in L2pΩq and pϕhqhPH strongly converges to ϕ in L2pΩq. Furthermore, using the a priori estimate (41),
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zero. Hence, »

Ω

ϕ∇�u � 0.

By density of rC8
0 pΩqsd � pC8

0 pΩq{Rq in X , this shows that pu, pq � pu, pq solution to (35).
(iii) Strong convergence of the velocity gradient and of the velocity and pressure jumps. Owing to the non-
dissipativity of th,»

Ω

f �uh � chppuh, phq, puh, phqq � ahpuh, uhq � shpph, phq ¥ ahpuh, uhq ¥ ν

ḑ

i�1

}Ghpuh,iq}2rL2pΩqsd .

Thus, ν lim suphÑ0

°d
i�1 }Ghpuh,iq}2rL2pΩqsd,d ¤ lim suphÑ0

³
Ω

f �uh � ³
Ω

f �u � ν}∇u}2rL2pΩqsd,d . Proceeding as in

point (iv) of Theorem 33, it is then inferred that Ghpuh,iq Ñ ∇ui in rL2pΩqsd for all i P t1, . . . , du and that|uh|J Ñ 0. Finally, since |ph|2p � bhpuh, phq � ³
Ω

f �uh � ahpuh, uhq, we conclude that |ph|p Ñ 0.

(v) Strong convergence of the pressure. Let v P rH1
0 pΩqsd be such that ∇�v � ph with }v}rH1pΩqsd ¤ CΩ}ph}L2pΩq,

and set vh
def� R

ccg
h pvhq P V

ccg
h with vh � pxvyT qTPTh

P Vh. In the rest of the proof we abbreviate a À b the
inequality a ¤ Cb with C independent of the meshsize h. Proceeding as in the proof of Lemma 35 yields}ph}2L2pΩq À |ph|p}ph}L2pΩq � bhpvh, phq À |ph|p}ph}L2pΩq � ahpuh, vhq � thpuh, uh, vhq � »

Ω

f �vh.

Let Ti, i P t1, . . . , 4u denote the terms in the right-hand side. Since |ph|p tends to zero and }ph}L2pΩq is
bounded, T1 converges to zero. Furthermore, since the sequence pvhqhPH is bounded in the ~�~-norm because~vh~ À }v}rH1pΩqsd À }ph}L2pΩq there is v P rH1

0 pΩqsd such that, up to a subsequence, vh Ñ v strongly inrL2pΩqsd and Ghpvh,iq Ñ ∇vi weakly in rL2pΩqsd for i P t1, . . . , du. Owing to the uniqueness of the limit in the
distribution sense, it is inferred that ∇�v � p. There holds

T2 � ahpuh, vhq � »
Ω

νGhpuh,iq�Ghpvh,iq � shpuh, vhq � T2,1 � T2,2.

Owing to the strong convergence of pGhpuh,iqqhPH in rL2pΩqsd proved in the previous point and to the weak
convergence of pGhpvh,iqqhPH in rL2pΩqsd, it is inferred that T2,1 Ñ ³

Ω
∇ui�∇vi. Moreover, |T2,2| À |uh|J|vh|J,

which converges to zero. Owing to Lemma 37iv, T3 Ñ tpu, u, vq. Finally, since T4 Ñ ³
Ω

f �v, the strong

convergence of the pressure in L2 classically follows from

lim sup
hÑ0

}ph}2L2pΩq ¤ »
Ω

∇ui�∇vi � tpu, u, vq � »
Ω

f �v � »
Ω

p∇�v � }p}2L2pΩq. �

4. Numerical examples

4.1. Pure diffusion

Anisotropy. To assess the robustness of the method with respect to the anisotropy of the diffusion tensor we
consider the following exact solution to problem (19) in d � 2:

u � sinpπxq sinpπyq, κ � �
1 0

0 ǫ

�
, f � p1� ǫqπ2 sinpπxq sinpπyq,

with anisotropy ratio ǫ � 10�3. The discrete problem is solved on the Kershaw mesh sequence 4.2 of the
FVCA5 benchmark [33], and the results are listed in Table 1. Besides the errors in the L2- and energy-norms,
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Table 1. Anisotropic test case

cardpThq }u � uh}L2pΩq order ~u � uh~ order max
FPF i

h
}A�1

gF
}8 cg+AMG it.

9801 1.2396e-02 – 5.1296e-02 – 1.0028e+03 41

17424 6.8589e-03 2.06 3.3572e-02 1.47 1.0018e+03 49

27225 3.9340e-03 2.49 2.3897e-02 1.52 1.0013e+03 55

39204 2.5485e-03 2.38 1.8058e-02 1.54 1.0009e+03 62

Table 2. Heterogeneous test case

cardpThq }u � uh}L2pΩq order ~u � uh~ order max
FPF i

h
}A�1

gF
}8 cg+AMG it.

224 7.3209e-03 – 1.1526e-01 – 1.2800e+02 7

896 1.9172e-03 1.93 5.6440e-02 1.03 1.2800e+02 8

3584 4.8802e-04 1.97 2.7925e-02 1.02 1.2800e+02 9

14336 1.2330e-04 1.98 1.3891e-02 1.01 1.2800e+02 10

Table 1 lists the maximum }�}8-norm of the matrices defined by (12) as well as the number of conjugate gradient
iterations with AMG preconditioner required to solve the linear system. An inspection of column 6 shows that
Assumption 21 is satisfied as the }�}8-norm of the matrices involved in the local construction remains almost
constant when refining the mesh. Here and in what follows, we estimate the order of convergence as

order � d ln pe1{e2q { ln pcardpTh2
q{cardpTh1

qq ,
where e1 and e2 denote, respectively, the errors committed on Th1

and Th2
, h1, h2 P H.

Heterogeneity. To assess the robustness with respect to the heterogeneity of κ, consider the following pseudo
2d exact solution to (19) on the unit square domain Ω � p0, 1q2:

u � #� 1
2
x2 � 3�ǫ

4p1�ǫqx if x ¤ 1
2
,� 1

2ǫ
x2 � 3�ǫ

4ǫp1�ǫqx� ǫ�1
4ǫp1�ǫq if x ¡ 1

2
.

κ � #
12 if x   1

2
,

ǫ12 if x ¡ 1
2
,

f � 1. (42)

The parameter ǫ represents here the heterogeneity ratio, and it has been taken equal to 10�2. The numerical
results are collected in Table 2, and symbols have the same meaning as in the previous case.

4.2. Steady incompressible Navier–Stokes equations

The Kovasznay problem. To verify the asymptotic convergence properties of the method (40), we consider
Kovasznay’s analytical solution of the INS equations [34] on the square domain Ω � p�0.5, 1.5q � p0, 2q,

u1 � 1� eπx2 cosp2πx2q, u2 � �1{2eπx1 sinp2πx2q, p � �1{2eπx1 cosp2πx2q � p,

where p � x� 1
2
eπx1 cosp2πx2qyΩ � �0.920735694 ensures the zero mean constraint for the pressure, ν � 3π,

and f � 0. The example is run on a family of uniformly refined triangular meshes with mesh sizes ranging from
0.5 down to 0.03125. According to Table 1, the errors |||u� uh|||sto and }p � ph}L2pΩq converge to first order,
while second order is attained for }u� uh}rL2pΩqsd . The results are collected in Table 4.2.
The lid-driven cavity problem. To assess the behavior of the method in more complex situations we consider
the classical lid-driven cavity problem. Despite its simple geometry, at large Reynolds numbers this problem
presents complex flow patterns with counter-rotating vortices of significantly different scale. The domain is here
the unit square with imposed horizontal velocity on the upper side and zero velocity on the others. In Figure 3
we provide the values of the velocity components on the centerlines of the domain. For the sake of completeness,
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Table 3. Convergence results for the Kovasznay problem

cardpThq }u � uh}rL2pΩqsd order }p � ph}L2pΩq order |||u� uh|||sto order

224 1.6539e-01 – 2.5536e-01 – 4.7777e-01 –

896 4.3732e-02 1.92 1.0737e-01 1.25 2.1759e-01 1.13

3584 1.1847e-02 1.88 3.9802e-02 1.43 1.0763e-01 1.02

14336 3.1620e-03 1.91 1.7385e-02 1.19 5.5182e-02 0.96
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Figure 3. Lid-driven cavity problem, comparison of centerline velocity values (ccG = present
work, Di Pietro Ern ’10 = ref. [20], Erturk et al. ’05 = ref. [28]).

we compare against the method of [20] with piecewise linear approximations of the velocity and the pressure.
In both cases a uniform 128� 128 Cartesian orthogonal mesh was used. The reference data of Erturk, Corke,
and Gökçöl [28] are also included. The proposed method shows essentially the same accuracy as the dG method
of [20] at Re � 1000. To observe more sizable differences, we also present the results for Re � 5000 on the same
mesh. In this case, where a slight loss of accuracy can be observed towards the boundaries of the domain.

References

[1] I. Aavatsmark, T. Barkve, Ø. Bøe, and T. Mannseth. Discretization on unstructured grids for inhomogeneous, anisotropic
media, Part I: Derivation of the methods. SIAM J. Sci. Comput., 19(5):1700–1716, 1998.

[2] I. Aavatsmark, T. Barkve, Ø. Bøe, and T. Mannseth. Discretization on unstructured grids for inhomogeneous, anisotropic
media, Part II: Discussion and numerical results. SIAM J. Sci. Comput., 19(5):1717–1736, 1998.

[3] I. Aavatsmark, G. T. Eigestad, B. T. Mallison, and J. M. Nordbotten. A compact multipoint flux approximation method with
improved robustness. Numer. Methods Partial Differ. Eq., 24:1329–1360, 2008.

[4] L. Agélas, D. A. Di Pietro, and J. Droniou. The G method for heterogeneous anisotropic diffusion on general meshes. M2AN
Math. Model. Numer. Anal., 44(4):597–625, 2010. DOI: 10.1051/m2an/2010021.

[5] L. Agélas, D. A. Di Pietro, R. Eymard, and R. Masson. An abstract analysis framework for nonconforming approximations of
diffusion problems on general meshes. IJFV, 7(1):1–29, 2010.

[6] D. N. Arnold. An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal., 19:742–760,
1982.

[7] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified analysis of discontinuous Galerkin methods for elliptic
problems. SIAM J. Numer. Anal., 39(5):1749–1779, 2002.

[8] J.-P. Aubin. Analyse fonctionnelle appliquée. Presses Universitaires de France, Paris, 1987.
[9] L. Botti and D. A. Di Pietro. A pressure-correction scheme for convection-dominated incompressible flows with discontinuous

velocity and continuous pressure. Submitted. Preprint available at http://hal.archives-ouvertes.fr/hal-00458293/en/ ,
2010.

http://dx.doi.org/10.1051/m2an/2010021
http://hal.archives-ouvertes.fr/hal-00458293/en/


30 TITLE WILL BE SET BY THE PUBLISHER

[10] F. Brezzi, K. Lipnikov, and M. Shashkov. Convergence of mimetic finite difference methods for diffusion problems on polyhedral
meshes. SIAM J. Numer. Anal., 45:1872–1896, 2005.

[11] F. Brezzi, K. Lipnikov, and V. Simoncini. A family of mimetic finite difference methods on polygonal and polyhedral meshes.
M3AS, 15:1533–1553, 2005.

[12] F. Brezzi, G. Manzini, L. D. Marini, P. Pietra, and A. Russo. Discontinuous Galerkin approximations for elliptic problems.
Numer. Methods Partial Differential Equations, 16(4):365–378, 2000.

[13] A. Buffa and C. Ortner. Compact embeddings of broken Sobolev spaces and applications. IMA J. Numer. Anal., 4(29):827–855,
2009.

[14] E. Burman and A. Ern. Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations.
Math. Comp., 76(259):1119–1140, 2007.

[15] E. Burman and P. Zunino. A domain decomposition method for partial differential equations with non-negative form based on
interior penalties. SIAM J. Numer. Anal., 44:1612–1638, 2006.

[16] P. G. Ciarlet. The finite element method for elliptic problems, volume 40 of Classics in Applied Mathematics. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. Reprint of the 1978 original [North-Holland, Amsterdam;
MR0520174 (58 #25001)].

[17] D. A. Di Pietro. Analysis of a discontinuous Galerkin approximation of the Stokes problem based on an artificial compressibility
flux. Int. J. Numer. Methods Fluids, 55:793–813, 2007.

[18] D. A. Di Pietro. Cell centered Galerkin methods. C. R. Acad. Sci. Paris, Ser. I, 348:31–34, 2010.
DOI: 10.1016/j.crma.2009.11.012.

[19] D. A. Di Pietro. A compact cell-centered Galerkin method with subgrid stabilization. Submitted. Preprint available at
http://hal.archives-ouvertes.fr/hal-00476222/en/ , April 2010.

[20] D. A. Di Pietro and A. Ern. Discrete functional analysis tools for discontinuous Galerkin methods with application to the
incompressible Navier–Stokes equations. Math. Comp., 79:1303–1330, 2010. DOI: 10.1090/S0025-5718-10-02333-1.

[21] D. A. Di Pietro and A. Ern. Mathematical aspects of discontinuous Galerkin methods. Mathematics & Applications. Springer-
Verlag, Berlin, 2010. In press.

[22] D. A. Di Pietro, A. Ern, and J.-L. Guermond. Discontinuous Galerkin methods for anisotropic semi-definite diffusion with
advection. SIAM J. Numer. Anal., 46(2):805–831, 2008.

[23] J. Droniou and R. Eymard. A mixed finite volume scheme for anisotropic diffusion problems on any grid. Num. Math.,
105(1):35–71, 2006.

[24] J. Droniou, R. Eymard, T. Gallouët, and R. Herbin. A unified approach to mimetic finite difference, hybrid finite volume and
mixed finite volume methods. M3AS, Math. Models Methods Appl. Sci., 20(2):265–295, 2010.

[25] M. G. Edwards and C. F. Rogers. A flux continuous scheme for the full tensor pressure equation. In Prov. of the 4th European
Conf. on the Mathematics of Oil Recovery, volume D, Røros, Norway, 1994.

[26] M. G. Edwards and C. F. Rogers. Finite volume discretization with imposed flux continuity for the general tensor pressure
equation. Comput. Geosci., 2:259–290, 1998.

[27] A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements, volume 159 of Applied Mathematical Sciences. Springer-
Verlag, New York, NY, 2004.

[28] E. Erturk, T. C. Corke, and C. Gökçöl. Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds
numbers. Int. J. Num. Meth. Fluids, 48:747–774, 2005.

[29] R. Eymard, Th. Gallouët, and R. Herbin. The Finite Volume Method. Ph. Charlet and J.L. Lions eds, North Holland, 2000.
[30] R. Eymard, Th. Gallouët, and R. Herbin. Discretization of heterogeneous and anisotropic diffusion problems on gen-

eral nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal., June 2009.
DOI: 10.1093/imanum/drn084.

[31] R. Eymard, R. Herbin, and J.-C. Latché. Convergence analysis of a colocated finite volume scheme for the incompressible
Navier-Stokes equations on general 2D or 3D meshes. SIAM J. Numer. Anal., 45(1):1–36, 2007.

[32] B. Heinrich and K. Pietsch. Nitsche type mortaring for some elliptic problem with corner singularities. Computing, 68(3):217–
238, 2002.

[33] R. Herbin and F. Hubert. Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In R. Eymard
and J.-M. Hérard, editors, Finite Volumes for Complex Applications V, pages 659–692. John Wiley & Sons, 2008.

[34] L. S. G. Kovasznay. Laminar flow behind a two-dimensional grid. Proc. Camb. Philos. Soc., 44:58–62, 1948.
[35] J. Nitsche. On Dirichlet problems using subspaces with nearly zero boundary conditions. In The mathematical foundations of

the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md.,
1972), pages 603–627. Academic Press, New York, 1972.

[36] R. Stenberg. Mortaring by a method of J.A. Nitsche. In Idelsohn S.R., Oñate E., and Dvorkin E.N., editors, Computational
Mechanics: New trends and applications, pages 1–6, Barcelona, Spain, 1998. Centro Internacional de Métodos Numéricos en
Ingeniería.

[37] R. Temam. Navier-Stokes Equations, volume 2 of Studies in Mathematics and its Applications. North-Holland Publishing Co.,
Amsterdam, revised edition, 1979. Theory and numerical analysis, With an appendix by F. Thomasset.

http://dx.doi.org/10.1016/j.crma.2009.11.012
http://hal.archives-ouvertes.fr/hal-00476222/en/
http://dx.doi.org/10.1090/S0025-5718-10-02333-1
http://dx.doi.org/10.1093/imanum/drn084

	Introduction
	1. The ccG space
	1.1. Discrete setting
	1.2. The L-construction
	1.3. The ccG space
	1.4. Discrete functional analysis

	2. Pure diffusion
	2.1. The discrete problem
	2.2. Basic error estimate
	2.3. Convergence rate
	2.4. Convergence to minimal regularity solutions

	3. Steady incompressible Navier–Stokes equations
	3.1. The continuous setting
	3.2. The discrete setting
	3.3. Convergence

	4. Numerical examples
	4.1. Pure diffusion
	4.2. Steady incompressible Navier–Stokes equations

	References

