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Abstract

This communication addresses the problem of fitting time series with smooth transition regression models.
These models are of interest to characterize transient signals in the context of system monitoring and diagnosis.
Within this modelling, time series are segmentated by sequences of piecewise constant polynomial regression
models. Moreover, smooth transitions between each segment are obtained by introducing some smooth, monotically
increasing parametric transition functions. It allows one to give a synthetic representation of signals composed by
smooth transitions between different regimes. Estimation of the parameters of these models appears to be an ill-posed
problem. Direct optimization algorithms are not robust enough with regard to the initial parameters guess. Therefore,
to achieve parameters estimation, we introduce a Bayesian framework. Appropriate priors for the unknown model
parameters are introduced to penalize a data-driven criterion built from the likelihood of the observations. As the
resulting posterior probability distributions do not admit closed-form analytical expressions, Markov Chain Monte
Carlo (MCMC) sampling methods are derived to obtain the standard Bayesian estimators of the model parameters.
Results are shown for synthetic and real appliance load monitoring data.
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Abstract

This communication addresses the problem of fitting time series with smooth transi-
tion regression models. These models are of interest to characterize transient signals
in the context of system monitoring and diagnosis. Within this modelling, time se-
ries are segmented by sequences of piecewise constant polynomial regression models.
Moreover, smooth transitions between each segment are obtained by introducing
some smooth, monotonically increasing parametric transition functions. It allows
one to give a synthetic representation of signals composed by smooth transitions
between different regimes. However, the estimation of the parameters is an ill-
posed problem. Direct optimization algorithms are not robust enough with regard
to the initial parameters guess. Therefore, the parameter estimation is achieved
in a Bayesian framework. Appropriate priors for the unknown model parameters
are introduced to penalize a data-driven criterion built from the likelihood of the
observations. As the resulting posterior probability distributions does not admit
closed-form analytical expressions, Markov Chain Monte Carlo (MCMC) sampling
methods are derived to obtain the standard Bayesian estimators of the model pa-
rameters. Results are given for synthetic signals and for some household end-uses
measurements.

1 Introduction

Residential non-intrusive load monitoring (NILM) consists in extracting informa-
tion about the turned-on electrical appliances from the global electrical load. It
aims at detecting and characterizing the active appliances plugged on the electrical
house network. Such information is useful for electrical utilities to best manage
energy quality or energy saving problems. From a customer point of view, it would
allow one to get a better understanding of its electrical consumption. Finally, an
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other application could be remote monitoring and surveillance of domestic electric
network.

The electric appliances characterization problem can be decomposed into two
steps: 1) feature extraction from signal and 2) learning of the parameters for the
different classes corresponding to the different electrical appliances. This second step
is usually performed by using a labeled database of signals. The overall detection and
classification performance will depend on both, the quality of the feature extraction
and the quality of the learning. First works on non-intrusive electric load monitoring
were performed in [7]. The electric appliances characterization task was achieved
by detecting step changes in signal, filtering transients and then clustering similar
changes. The used descriptors are derived from the active and reactive power. In
[8], a priori knowledge about the steady-states and the transients to be detected
are used for supervised classification of appliances via a matched filter [8]. More
recently, a global modelling of load curves by a hidden Markov model has been
proposed [3]. This model is based on the residual of a variance analysis with respect
to some exogenous variables such as the customer contract, the hour and the date,...
Finally in [4], a point process framework is proposed to model the space-heating
load by a linear mixture of square periodic signals with slowly time-varying duty
cycles.

In this work, we choose to concentrate on the feature extraction problem. A
general Bayesian method Our approach does not require a physical model of the
system and simply assumes that the observed transients are fully characterized by
the current envelope. This envelope is then segmented into sequences of piecewise
constant polynomial, with smooth transitions between each of them. This model
is based on the properties of electrical transients which are composed of smooth
transitions between some quasi-constant current level corresponding to steady states.
Thus, this segmentation framework allows one to reduce the electrical transient to
a few number of parameters, leading to a synthetic characterization. However, the
estimation of these parameters appears to be an ill-posed problem. Indeed, direct
optimization algorithms are not robust enough with regard to the initial parameters
guess. Parameter estimation is achieved in a Bayesian framework. Appropriate
priors on the unknown model parameters are introduced to penalize a data-driven
criterion built from the likelihood of the observations. As the resulting posterior
probability distributions does not admit closed-form analytical expressions, Markov
Chain Monte Carlo (MCMC) sampling methods are derived to obtain the standard
Bayesian estimators of the model parameters.

Note that a quite similar model has been used in the case study of a railway
infrastucture. More precisely, a piecewise polynomial model using a hidden switch
process is introduced in [1]. The proposed model needs to know the number of
transitions. Moreover, the hidden switch process appears to be not flexible enough
to model the smooth transitions observed in electrical transients.
Note also that some works have previously been done about the estimation of regres-
sion models embedded in smooth transition processes. In particular, the estimation
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problem of a two-regime regression model with smooth sigmoidal transition using
a Bayesian framework is addressed in [9]. This paper aims at extending such a
framework to a hierarchical Bayesian model with an unknown number of changes,
and with any kind of transition functions.

This paper is organized as follows. Section 2 presents the Bayesian model used
to fit the transient current envelope. In Section 3, a Gibbs sampling method is
derived to estimate the model parameters The application to electrical transient
segmentation is discussed in Section 4. Conclusions and future works are finally
reported in Section 5.

2 Smooth transition polynomial regression model

2.1 Model and notations

An observed signal x of n samples (xi)i=1,...,n acquired at time instant (ti)i=1,...,n

is considered. The transition function associated with the kth rupture is denoted as
πτk,λk(t), for all t = t1, . . . , tn. These transition functions are supposed monotonically
varying from 0 to 1. They are fully parameterized by a location parameter τk and a
smoothing parameter λk > 0. In this work, these parameters are defined as following

τk ∈ {t1, . . . , tn} such that πτk,λk(τk) =
1

2
(1)

λk ∈ R∗+ such that
dπτk,λk(t)

dt

∣∣∣∣
τk

=
1

4λk
. (2)

Small values of λk indicates an abrupt change, while as λk increases, the rupture
becomes smoother. Definition (2) comes from the natural parameterization of the
sigmoid transition function

πτk,λk(t) =
1

1 + e
− t−τk

λk

. (3)

The proposed framework can be extended to any family of functions matching the
previous constraints. For the sake of simplicity, the notation πk(t) will stand for
πτk,λk(t).

Let K be the number of segments, i.e the number of different polynomial mod-
els. The rupture configuration is then given by the parameters (τk, λk) for k =
1, . . . , (K − 1). For each segments, pk(t) denotes a polynomial of order q whose
coefficients are βk = (βk,0, βk,1, . . . , βk,q):

pk(t) = βk,0 + βk,1t+ βk,2t
2 + . . .+ βk,qt

q. (4)

Throughout this paper, the polynomial order q is assumed to be fixed and known.
Then, the signal mean on segment k = 2, . . . , K − 1 expresses as

mk(t) = [1− πk−1(t)] pk−1(t) + [πk−1(t)− πk(t)] pk(t) + πk(t) pk+1(t), (5)

3
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for all t = τk−1, . . . , τk. Based on this expression, one can see that the influence of
each transition function is local. Indeed, at each time instant t, only up to three
transition functions are taken into account. Moreover, assuming that the values
of λk−1 and λk are low enough with respect to the segment length τk − τk−1, the
polynomial regression model pk(t) predominates the others on the middle of the kth
segment, for k = 2, . . . , K − 1. In the neighborhood of the rupture location τk−1,
the mean mk(t) is close to the average of the two polynomial models πk−1 and πk.
For the first and last segment of the signal, the expressions of m1(t) and mK(t) are
slightly different

m1(t) = [1− π1(t)] p1(t) + π1(t)p2(t),

mK(t) = [1− πK−1(t)] pK−1 + πK−1(t)pK(t).
(6)

Finally, the signal is assumed to be corrupted by white Gaussian noise with variance
σ2

x(ti) ∼ N (mk(ti), σ
2), ∀k = 1, . . . , K, ∀ti ∈ [τk−1, τk], (7)

and the model is fully specified by the parameter vector

θ =
(
K, τ1, . . . , τK−1, λ1, . . . , λK−1, β1, . . . , βK , σ

2
)T

(8)

2.2 Likelihood Model

Under the assumption of white and Gaussian noise, the expression of the likelihood
becomes

L(x|θ) =
1(√

2πσ2
)n K∏

k=1

e
− 1

2σ2

Pτk
ti=τk−1

(x(ti)−mk(ti))
2

. (9)

2.3 Matrix Formulation

In order to synthesize the previous equations, a matrix formulation of the signal
observation model is given. Let m be the n× 1 column vector such as

m = (m1(t1)...m1(τ1),m2(τ1 + 1)...m2(τ2), . . . ,mK(τK−1 + 1)...mK(tn))T , (10)

while τ and λ are the (K − 1)× 1 column vectors such as

τ = [τ1, . . . , τK−1]T , (11)

λ = [λ1, . . . , λK−1]T , (12)

and β is the following K(q + 1)× 1 column vector:

β = [β1, . . . ,βK ]T = [β1,0, . . . , β1,q, . . . , βK,0, . . . , βK,q]
T . (13)

We introduce Z as the following n×K(q + 1) block tridiagonal matrix

Z =

26666664

(I1 −Π1
1)T1 Π1

1T1

(I2 −Π2
1)T2 (Π2

1 −Π2
2)T2 Π2

2T2

. . .
. . .

. . .

(IK−1 −ΠK−1
K−2)TK−1 (ΠK−1

K−2 −ΠK−1
K−1)TK−1 ΠK−1

K−1TK−1

(IK −ΠKK−1)TK ΠKK−1TK

37777775, (14)

4
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where Ik is the identity matrix of size (τk−τk−1), Πl
k is the diagonal matrix generated

by the vector (πk(τl−1), . . . , πk(τl+1))T , and Tk is defined as

Tk =

2664
1 τk−1 τ2

k−1 · · · τqk−1

...
...

...
...

1 (τk−1 − 1) (τk−1 − 1)2 · · · (τk − 1)q

3775. (15)

The expression of the signal mean m is finally obtained as

m = Zβ. (16)

Note that in the case of step transition function (i.e, when λ → 0), the matrix Z
becomes block diagonal as in [10],[2]. Using smooth transition function, upper and
lower diagonal blocks appear as the mean mk depends also on pk−1 and pk+1.

Equation (16) underlines the linear dependence between m and β. Consequently
the maximum likelihood estimator of the polynomial coefficient β̂ML conditionally
to (τ ,λ) is the classical linear least mean square estimator

β̂ML =
(
ZTZ

)−1
ZTx, (17)

where x = (x1, . . . , xn)T denotes the the observed time series.

Finally, the matrix expression of the likelihood yields

L(x|θ) =

(
1

(2πσ2)
n
2

)
e−

1
2σ2 (x−Zβ)T (x−Zβ). (18)

If one deals with a fixed model order K, the estimation of the parameter θ can simply
be performed by iterative maximization of the likelihood function (18). However,
this method is not robust with regard to the initial guess, and is unsuitable if the
estimation of K must be performed jointly with the other parameters. In this case,
some priors defined on K have to defined to regularize this ill-posed problem. This
paper proposes to use a hierarchical Bayesian framework to achieve the parameter
estimation.

2.4 Hierarchical Bayesian Model

Inspired by [2], a standard reparameterization of the model is done by introducing
indicator variables ri for i = 1, .., n such as:

ri =

{
1 if ∃ τk = ti,
0 otherwise

(19)

Then the parameter vector r = [r1, . . . , rn]T replaces the parameters (τ , K) and θ
becomes :

θ =
(
r,λ,β, σ2

)T
. (20)

By convention, first and last indicators variables are fixed to one, i.e. r1 = rn = 1.
Thus, K(r) = (

∑n
i=1 ri)− 1

5
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2.5 Parameter Prior

In a Bayesian framework, a prior distribution must be set on each parameter. In
order to keep a data-driven estimation of parameters, this prior should not be too
informative.

Indicators variables The changes in the model are detected via the indicators
variables ri, for i = 1, . . . , n. These variables ri are chosen to be mutually indepen-
dent and distributed according to a Bernoulli distribution of parameter p:

ri ∼ Bernoulli(p) ∀i = 1, . . . , n. (21)

Variance and polynomial coefficients The β and σ2 prior distribution are
chosen among a so-called conjugate prior distribution with respect to the model
likelihood (18). This particular choice of distribution is very convenient as it allows
one to integrate these parameters in the posterior distribution.

The conjugate prior for the variance parameter with respect to the likelihood is
an inverse-gamma distribution. That is:

σ2|(ν, ρ) ∼ IG
(ν

2
,
ρ

2

)
, (22)

where ν is a shape hyperparameter and ρ a scale hyperparameter. In the following,
ν is set to ν = 2. Similarly, the conjugate prior for the polynomial coefficients β is
a Gaussian distribution:

β|
(
r,λ, σ2, δ2

0

)
∼ N

(
0, δ2

0σ
2(ZTZ)−1

)
, (23)

A consequence of this specific parameterization of the Gaussian distribution is that
the posterior distribution is invariant from the choice of the polynomial time basis
(15). Morover, it is interesting to see that the parameter δ2

0 corresponds to the

signal-to-noise ratio since δ2
0 = E[mTm]

nσ2 .

Smoothing parameters As the dependence of the likelihood with λ is non-linear
and non-standard, one cannot find a conjugate-prior distribution for these parame-
ters. Then, regardless to the chosen prior distribution, λ cannot be integrate in the
posterior distribution. Few prior information is available for this parameter. It is
defined on R+ ,and the probability it takes large values should be low. Indeed, as
mention in [9], if λi →∞, an identification problem for the polynomial pi appears.

In order to tackle this problem, a higher bound on λ, denoted as λmax, is intro-
duced. This bound is defined by the higher acceptable value of λ, i.e in the situation
where there is only one rupture on the middle of the signal: πn

2
,λmax(0) = α, α being

some arbitrary low threshold (in this work, α = 0.01).

6
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Symmetrically, a lower bound is computed such that πi+1,λmin(i) = α. Finally a
truncated inverse-gamma prior is chosen in order to favor abrupt changes:

λi|(ν ′, ρ′) ∼ IG[λminλmax]

(
ν ′

2
,
ρ′

2

)
∀i = 1, . . . , n, (24)

with ν ′ = 2. It is important to note that a smoothing parameter λi is introduced for
each indicator variable ri regardless of the value of ri, i.e regardless of the presence
of a rupture.

2.6 Hyperparameter prior

Let φ be the vector of the prior distribution parameters: φ = (p, ρ, δ2
0, ρ
′)T .

Rather than using fixed deterministic values for the prior parameters, these pa-
rameters are supposed to be distributed according to some hyperprior distributions.
That is, a second level of Bayesian modelling is introduced leading to a hierarchical
Bayesian model. Since no specific knowledge about how hyperparameters should
be distributed is available, non-informative prior distributions are introduced. One
advantage of such a hierarchical model is that the overall model is more robust than
standard Bayesian models [10].

For the parameter p, a conjugate beta distribution is chosen:

p|(Ω,Ω′) ∼ β (Ω,Ω′) . (25)

Setting Ω = Ω′ = 1 ensures that the prior is a uniform distribution.

For the parameter ρ, a non-informative improper Jeffrey’s prior is used:

f(ρ) =
1

ρ
IR+(ρ). (26)

Finally, for ρ′, a vague conjugate gamma distribution is used :

ρ′ ∼ G (χ, ψ) (27)

with χ = 1 and a large value of ψ (basically, ψ = 100).

A prior distribution could also be introduced for the hyperparameter δ2
0. However,

a fixed deterministic value is preferred in our application. Indeed, δ2
0 represents the

signal-to-noise ratio (SNR) of the observed signal. Therefore, its value controls the
precision of the signal segmentation. Thus, δ2

0 must be fixed to the desired SNR to
be reached in our segmentation algorithm.

7
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2.7 Joint Posterior Distribution

Within this hierarchical Bayesian framework, the posterior distribution of the
parameters θ becomes:

f(θ|x) =

∫
f(θ, φ)dφ ∝

∫
L(x|θ)f(θ|φ)f(φ)dφ, (28)

where f(φ) expresses as:

f(φ) ∝
(
pΩ−1(1− p)Ω′−1

)(1

ρ

)(
(ρ′)χ−1e−

ρ′
ψ

)
, (29)

and f(θ|φ) is:

f(θ|φ) ∝
(
pK(r)(1− p)n−K(r)

)(
ρ
ν
2 e
− ρ

2σ2

(σ2)1+
ν
2

)
×

(∏n−1
i=2

ρ′
ν′
2 e
−ρ′
2λi

λ
1+ ν′

2
i

I[λminλmax](λi)

)(
e

−1

2δ20σ
2
βT ZT Zβ

(2πδ20σ
2)
K(r)(q+1)

2 |ZTZ|−
1
2

)
.

(30)

2.8 Nuisance parameter integration

The choice of conjugate prior allows one to integrate out the parameters σ2 and β,
and the hyperparameters p and ρ′ in the expression of the joint posterior distribution
f(θ, φ|x).

After integration of these parameters, the following marginal posterior is obtained:

f(r,λ, ρ, δ2
0|x) ∝ Qn−1

i=2 λ
−(1+ ν′

2 )

ih
1
ψ

+
Pn−1
i=1

1
2λi

i(χ+(n−2) ν
′

2 )


Γ(K(r)+Ω)Γ(n−2−K(r)+Ω′)(δ20+1)−

K(r)(q+1)
2„

ρ
2

+ 1
2

»
xTx−

δ20
1+δ20

(xTZ[ZTZ]−1ZTx)

–«n+ν
2

 (31)

Obviously, this posterior distribution is too complex to permit closed-form calcu-
lation of standard Bayesian estimators (namely, the maximum a posteriori (MAP) or
the minimum mean square error (MMSE) estimators) for the parameters of interest
(r,λ). A classical solution to tackle this problem is to use a Markov Chain Mont-
Carlo (MCMC) method to generate samples asymptotically distributed according to
the posterior distribution (31). Estimators can then be derived from their empirical
posterior distribution.

As mention in [2], the advantage of choosing indicators variable r instead of
natural parameters (τ , K) is to constrain the parameter vector of the problem to
live in a fixed dimensional space. Then the simple Gibbs sampler can be used to
generate samples instead of more complex Reversible Jump Markov Chain Monte-
Carlo samplers [6]. Note, however, that, using this parameterization, the number of
variables to sample is increased since the couple (ri, λi) must be sampled for each
time instant i = 1, . . . , n, regardless if there is a rupture.

8
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3 Gibbs sampler for parameters estimation

The Gibbs sampler is a MCMC sampling strategy introduced in [5]. It consists of
successive scans of the parameter vector. For each scan, each parameter is sampled
according to its posterior distribution conditionally on all other variables. By this
mean, all the simulation steps are univariate although the global problem is mul-
tivariate. So, in order to perform Gibbs sampling, one needs to be able to sample
from each of these univariate conditional posterior distributions.

3.1 Conditional Posterior distribution

The following conditional posterior distributions are derived from the expression
of f(θ, φ). For the parameter σ2, the posterior is obtain after integration of β over
Rq+1:

ρ|σ2 ∼ G
(
1, 2σ2

)
, (32)

β|r,λ,x, δ2
0 ∼ N

(
δ2

0

1 + δ2
0

(ZTZ)−1ZTx,
σ2δ2

0

1 + δ2
0

(ZTZ)−1

)
, (33)

σ2|r,λ, ρ, δ2
0,x ∼ IG

(
n+ ν

2
,
ρ

2
+

1

2

[
xTx− δ2

0

1 + δ2
0

(
xTZ[ZTZ]−1ZTx

)])
.(34)

Indicators variables conditional posterior Let r̃i be the vector r where the
ith element has been removed: r̃i = (r1, . . . , ri−1, ri+1, . . . , rn)T . Although the dis-
tribution of ri|r̃i,λ, δ2

0, ρ is not in a standard form, its posterior distribution can be
easily obtained since ri is a binary variable. Indeed, to generate samples distributed
according to this posterior distribution, one just need to compute the value of the
joint posterior distribution (31) for ri = 0 and ri = 1 with all other parameter fixed.
After normalization ri is sampled from a Bernoulli distribution:

f(ri = 0) = f(ri = 0, r̃i,λ, ρ, δ
2
0|x),

f(ri = 1) = f(ri = 1, r̃i,λ, ρ, δ
2
0|x),

pri = f(ri=1)
f(ri=0)+f(ri=1)

,

ri ∼ Bernoulli(pri).

(35)

Smoothing parameter conditional posterior The last distribution needed for
completing a Gibbs scan is the conditional posterior of each parameter λi. Unfor-
tunately, these parameters are not distributed according to a standard probability
distribution. To tackle this problem, a Metropolis-Hastings within Gibbs algorithm
is used. The Metropolis-Hastings algorithm is a special case of acceptance-rejection
algorithm. It is used to generate samples from a distribution whose probability den-
sity function is known analytically, up to a constant. Metropolis-Hastings algorithm
requires a proposition distribution q(λ) hoped to be close enough from real distri-
bution f(λ). Then, a sample λ̃ is generated from this proposition distribution and
is accepted or not according to the following the procedure:

λmi =

{
λ̃ if u <

f(λ̃|λ/λm−1
i ,r,δ20 ,ρ)q(λm−1

i |λ/λm−1
i ,r,δ20 ,ρ)

f(λm−1
i |λ/λm−1

i ,r,δ20 ,ρ)q(λ̃|λ/λm−1
i ,r,δ20 ,ρ)

λm−1
i otherwise,

(36)

9
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where u ∼ U(0, 1), λmi is the value of the smoothing parameter at time instant ti
and Gibbs scan m. This procedure ensures that the sample λmi is asymptotically
distributed according to f(λi|λ/λi, r, δ2

0, ρ).

In order to increase the efficiency of the Metropolis-Hastings step, one need to
choose q(λ) as close as possible from the conditional posterior distribution of λi.
A Gaussian distribution is used, with mean λp and variance σ2

p. These values are
computed at each time instant i, and for each rupture configuration r, by performing
a local regression of the normalized observations (between 0 and 1) with respect to
the transition function πi,λ. The regression estimation is done via a linear least
mean square procedure and the the smoothness parameter of the fitted transition
function parameter gives λp, whereas the variance of the residual gives s2

p.

3.2 Gibbs sampling algorithm

Finally, the Gibbs algorithm can be decomposed as follow:

1. for each time index i = 1, . . . , n of the time series x

• compute proposition distribution parameter µp and σ2
p

• sample λ̃ ∼ N (µp, σ
2
p)

• accept/reject λ̃ following (36)
• sample ri following (35)

2. sample σ2 following (34)

3. sample β following (33)

4. sample ρ following (32)

4 Simulations

4.1 Electrical transient data

The algorithm presented in this paper has been tested on both synthetic and real
electrical transient data. The “ON” event transients correspond to the observed
signal while an electrical appliance is turned-on on a domestic electrical network.
They are characterized by periodic, slow-varying envelope current. The fundamental
frequency is dependent of the utility frequency of the country electrical network and
is 50 Hz in France. As this frequency is known, the envelope can be easily extracted
from the signal. These envelopes are then segmented by the Gibbs algorithm. Fig-
ures 1 and 2 show respectively real data from a refrigerator ON event transient and
a hoover ON transient event.

4.2 Synthetic Data

The proposed segmentation algorithm has been first tested on a synthetic signal
built according to the studied model. The values of the parameters were chosen to
reflect those of the real refrigerator signals displayed in Fig. 1. Figure 3 displays
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Figure 1: Refrigerator ON event
transient

Figure 2: Hoover ON event tran-
sient

the marginal posteriors of the parameters of interest. These empirical posteriors are
obtained from the samples generated by the MCMC method. The number of Gibbs
scans that has been performed in these simulations is N = 10000. A fixed SNR
parameter was chosen: δ2

0 = 50. The true parameter value, denoted by a tilde, the
MAP and MMSE estimates of the parameters are reported in Table 1. Despite a
small bias on the smoothness parameters, one can see that the obtained Bayesian
estimates are close to the true values. In particular, the Bayesian estimates of the
rupture locations are in good agreement with the true values.

4.3 Real Data

Simulations on real electrical transient data has been performed. These real data
are gathered by Electricité de France (EDF) in some houses. The data used in this
paper are the transient observed for only one appliance. The experimental setup
is the same that the one introduced for synthetic data (N = 10000 Gibbs scans,
δ2

0 = 50). The maximum likelihood (ML) values of the parameters are used as
reference to appreciate the estimation results. These ML values are obtained by a
direct numerical maximization of the likelihood for a fixed number of segments. The
results of the algorithm applied to a real refrigerator transient signal are displayed
and reported in Figure 4 and Table 2 respectively. Similarly, the results of the
algorithm applied to a real hoover transient signal are displayed and reported in
Figure 5 and Table 3 respectively. In the last simulation the following exponential
transition function is used:

πτ,λ = max

(
1− 1

2
e−

(x−τ)
2λ , 0

)
. (37)

As in the synthetic case, the Bayesian estimates appears to be slightly biased with
respect to the Maximum Likelihood estimates. However, one can see that these
Bayesian estimates are in good agreement with the Maximum Likelihood estimates.

5 Conclusions

A smooth transition regression method, based on a hierarchical Bayesian model, has
been studied. This method has been tested on both synthetic and real transients
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τ̃
(
41 56 104

)
τMAP

(
41 56 103

)
τMMSE

(
41 54.9 104.2

) λ̃
(
0.3 2.5 5.8

)
λMAP

(
0.5 3.9 6.6

)
λMMSE

(
0.5 4.1 6.6

)
Table 1: Synthetic signal simulation results

Figure 3: Synthetic transient modelization : upper-left : (r|KMAP ) posterior distri-
bution - upper-right : K posterior distribution - lower-left : λ1 posterior distribution
- lower-middle : λ2 posterior distribution - lower-right : λ3 posterior distribution

τML

(
41 56 104

)
τMAP

(
41 55 105

)
τMMSE

(
41 51.9 104.2

) λML

(
0.3 2.5 5.8

)
λMAP

(
0.6 3.7 6.0

)
λMMSE

(
0.6 3.8 5.5

)
Table 2: Refrigerator signal simulation results

τML

(
24 30

)
τMAP

(
24 33

)
τMMSE

(
24 33

) λML

(
0.3 6

)
λMAP

(
0.4 5.7

)
λMMSE

(
0.4 5.7

)
Table 3: Hoover signal simulation results
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Figure 4: Refrigerator transient modelization : upper-left : (r|KMAP ) posterior
distribution - upper-right : K posterior distribution - lower-left : λ1 posterior dis-
tribution - lower-middle : λ2 posterior distribution - lower-right : λ3 posterior dis-
tribution

Figure 5: Hoover transient modelization : upper-left : (r|KMAP ) posterior distribu-
tion - upper-right : K posterior distribution - lower-left : λ1 posterior distribution -
lower-right : λ2 posterior distribution
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generated by different electrical appliances, in a context of residential non-intrusive
load monitoring. It allows one to obtain a parsimonious representation of the tran-
sients that characterize the electrical appliances. The extension to other classes of
electrical devices, and the learning of the parameters in order to detect and classify
these different classes, are currently under investigation.
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