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Statistics of resonance statesin a weakly open chaotic cavity

Charles Poli, Olivier Legrand, and Fabrice Mortessagne
Laboratoire de Physique de la Matiere Condensée, CNRS BBR
Université de Nice-Sophia Antipolis - 06108 Nice cedexranée
(Dated: August 6, 2010)

In this letter, we demonstrate that a non-Hermitian RandcatriM description can account for both spectral
and spatial statistics of resonance states in a weakly opaotic wave system with continuously distributed
losses. More specifically, the statistics of resonancesiatan open 2D chaotic microwave cavity are investi-
gated by solving the Maxwell equations with lossy boundasebject to Ohmic dissipation. We successfully
compare the statistics of its complex-valued resonandesséad associated widths with analytical predictions
based on a non-Hermitian effective Hamiltonian model deffimga finite number of fictitious open channels.

PACS numbers: 05.45.Mt,05.60.Gg,03.65.Ad

Examples of waves in enclosures can be found in as di- 4
verse contexts as room acoustics, guided optics, vibmtbn
structures, etc. While these situations imply differentpbal

which reveals universal features of cavities with non #iivi

geometries[ll]. As long as these systems can be considered

as closed, their generic spectral and spatial properteesiar o )

rently well described through the theory of Hermitian ramdo F!C- 1. Real (on the left) and imaginary (on the right) comgatrof

matrices from a statistical point of view. Neverthelessreo m:tﬁggth resonance state obtained by means of the Finitecle

alistic system is truly closed, thus calling for a descdptof '

the coupling mechanisms to the environment. Physically, th

latter include bulk absorption, leads or waveguides, a$ welform a bi-orthogonal and complete set which can be normal-

as dissipative or radiative boundaries. In the domain of&Vavized by: (1, [1,) = Srm.-

Chaos, open systems are actively investigated both from ex- While field statistics of open chaotic systems have been

perimental and theoretical points of view (see REf{][2, 8] fo systematically studied for a given energy and considering

reviews). Among the domains concerned by experimentathe energy as a continuous parameter (fe [4] and references

studies, one can cite: microwave cavitifls [4], optical mHcr therein), statistics of resonance sttesleft and right eigen-

cavities [b], and elastodynamids [2, 6]. vectors ofH.g, for TRS systems are less understood. For
To analyze these open chaotic systems, the scattering athese systems, the impact of the openness is to turn real-eige

proach was found to be a powerful theoﬂ/ [3]. In this frame-functions into complex internal wavefunctions associated

work, a system composed d¥ resonances is analyzed in resonances. This complexness being uniquely related to the

terms of aV x N non-Hermitian random matrix, the so-called presence of currents inside the systgh{]7, 8] (after a plmase r

effective Hamiltonian: tation leading to independent real and imaginary compa@nent
i [@D. In order to quantify the presence of currents, one can
Heg = H — §VVT , 1) use the complexness paramefgrintroduced by Lobkis and

Weaver [1D] as the ratio of the variance of the imaginary and
where its Hermitian patt/ corresponds to the Hamiltonian of real parts of thexith resonance state.

the closed system and its anti-Hermitian paégva models Making use of right eigenvectors:

the coupling to the environment. More precisely, the open- _

ness is introduced by means of thex M coupling matrix o 2 (Im[yh])? 3)
V whose elementB)/ connectthe: = 1,..., N states to the I = > (Re[yr])?

j =1,..., M scattering channel:ﬂ[l]. The non-Hermiticity 4 _ _
of H.g yields a set of complex eigenvalug$, } associated to  Wherey;, corresponds to thith component of the right eigen-
two distinct sets of eigenvectors called I¢ft), |} and right ~ vector (we note thag;, can also be defined using left eigen-

{|1)} eigenvectors: vectors). This parameter has recently gained attentioh bot
~ R experimentally [[6[ 4]1] and theoreticallly [12] 13] in pautiar
Hett|Un) = Enln),  (Un|Hert = (¥nlEn, (2)  due to its relationship to the resonance width. A linear-rela

tionship betweemn, andI',, was first noticed by Barthélemy
where the eigenvalug, = E,, —iI', /2 gives respectively the et a|. [f1]] analyzing hundreds of resonance states of a 2D
energyE, and the resonance widih, of thenth resonance. chaotic microwave cavity at room temperature. This result
The left and right eigenvectors, which describe the reso@an was then confirmed using the effective Hamiltonian formal-
states respectively for systems with positive or negataig,g  ism in the limit A/ >> 1, relevant in the experimenf J12].



A linear relationship betweedy, andI’,, was also verified in
an elastodynamics experiment for a given resonance when a 1
spatially extended coupling is varidﬂl [6]. Lately the coexpl i () = i)
ness parameter was investigated at arbitidrigy means of its 2M/2(M/2)
probability distribution in the regime of weak coupl_ir@|13 and a further calculation shows th4t satisfies the Porter-
There, _|t was shown that the average value;_,?pﬁs directly  Thomas distributionﬂS]:P(A/aQ) = x2,_, which is in-
proportional to the variance @f,,, which constitutes the nat- dependent of\f. The distribution of the rescaled parame-
ural measure of the fluctuations of the widths. T ] GOE .

It is the aim of the present work to confront our theoretical o " = &24n 1S defined byPy~(X) = (o(X = Xn)),
predictions to numerical solutions of the Maxwell equasion
a 2D chaotic microwave cavity with lossy boundaries subjec
to Ohmic dissipation. After a brief introduction to the theo
retical model [1]3], we will describe the cavity we numerigal
investigate. Then we will discuss the statistical resuksols- PCOE(X)
tained concerning the complex wavefunctions and the widths
of its resonance states and will compare them to the theory.

In the regime of weak coupling, which was sho [14] to
correspond to the conditiogyvar(I') < A, whereA is the
mean level spacing, the anti-Hermitian part?fg is small
compared to the Hermitian part and the perturbation theor
can be applied. As the eigenvalues are nondegenerate with t
probability 1 due to the linear level repulsion at small sSpgs
[], one gets directly expressions of the spectral widtlistha
complexness parametefk (3):

]LI/Q—le—'y/Q7 (6)

where the statistical averages are performed over the ieserg
{E,}, the resonances widt{$",,} and the{ A,,}. By making
lise of group integral methods [15] it reads:

72 (3+ M)
B M 1+ =5

24 X2 (1+ %)M/2+2 ’

()

where strong mode-to-mode fluctuations clearly appear, em-
bodied in the power law tail/ X2 of the distribution.

In the following, this prediction will be compared with the
numerical solutions of the Maxwell equations in a 2D chaotic

icrowave cavity. The chaotic cavity we consider has a quar-
ter of a stadium shape with a radius®f= 1 m and a length
of [ = 2m (see Fig. [|1). In order to reduce the bouncing
ball modes between the two parallel sides, an oblique cut is
performed on one side and a movable perfectly reflecting half

M 2 disk of diameterl = 0.3 m is placed on the opposite side. The
r, = Z(VT{)Q, @ = Z %, (4)  absorbing boundary condition is imposed on an adjustable
=1 pEn (En — Ep) part of the upper arc of circle of the cavity. For the TM po-

larization, the electromagnetic fie&, H) inside the cavity is
wherel’,,, = Z;‘il V,{V;)j and the{E,,} correspond to the uniquely characterized by the single component of the etect
energies of the closed system. We would like to stressgthat field: ¥ (r) = E.(r), wherer = (z,y). The field component
also gives information about the non-orthogonality of eige s solution of the Helmholtz equation:
functions, with important implications in various phydis#- 52 52
uations. For example, the non-orthogonality induces an en- — (_2 + _2)¢(r) = U(r), (8)
hancement of the line width of a lasing mofld [15], influences Oz dy ¢
branching ratios of nuclear cross secti [16] and is @lsoO i
vestigated in open quantum maps|[[7, 18]. The distributio
of the energieg§ E,,} corresponds to the eigenvalue distribu-
tion of the Gaussian Orthogonal Ensemble with— oo [].
The coupling amplitudes are chosen to be real Gaussian ra
dom variables with zero mean and covariad& V") =
026,m0’% [fl]. To obtain an analytical expression of the
distribution, we use the fact that,, = Z;L; VJVJ can
be viewed as a scalar product betweddimensional vec- 1 -
tors and then can be expressed using polar variaplgs [19]: P~ —(1410) Siooww -V, 9)
I'yp = /I'nI'pcosb,,. The complexness parameter is now 0%
given by: whereo, is the effective conductivity of the contour, and
is the unit normal vector directed toward the interior of the
@=T.> Anp - (5)  conductor[1}1[30].
pin A(E, — Ep) As we examine resonance states, the Finite Element
Method ] reveals to be very efficient to solve the time in-
where A, = T, cos®6,,. Considering that the widths are dependent wave equatidy (8). Using the commercial software
given by a sum of\/ squared independent Gaussian randonComsol™, we are able to obtain the complex eigenvalues
variables|(4), the distribution of the rescaled widths T'/o>  &,, = w,, — i(,/2 and the resonance states of the first 800
(with () = M) is given by ay? distribution with A/ degrees resonances. To increase the statistical samples at owsadisp
of freedom: ensemble averages were performed by sliding the half disk re
flector along the largest side of the cavity (ensuring a @rist

where® is a complex angular frequency andhe light ve-
rTocity. Starting from the ideal closed system where the field
satisfies the Dirichlet boundary conditiar. an infinite con-
ductivity along the whole contour of the cavity:(?)|; = 0,

the openness is introduced through a finite conductzitgn

a lengthl,;; of the contour. To first order, the electric field
along the lossy contour is then given by:




3

area and perimeter of the cavity) with 7 different positionsworst case{/ = 3) the discrepancy is only of 17%, consistent
well enough separated to produce completely statistiéadly ~with the relative variation of\/ given above.
dependent spectra leading to samples of 2100 resonances forThus, having validated the description of losses through th
each numerical distribution. To compare the numericalltesu introduction of effective scattering channels, whose nemb
from the electromagnetic cavity with the theoretical model M is solely fixed through the length of the absorbing part of
the usual correspondence betweehp (I',,) and (w2, w,(,)is  the boundary, the numerical distribution of the complesnes
performed. parametetX is finally compared to the theoretical prediction
In the 2D chaotic cavity we study, the number of channelqFig. B) for the same absorbing lengths, conductivitiesl an
M is related to the effective absorbing lendths along the frequencyranges as those givenin Fﬂg. 2. The excelleneagre
boundary. This number can be evaluated by using the Sabinersent, even in the tail of the distribution, confirms that the
law of reverberation known in room acousti@[lZ]. Thislawi prediction ﬂ7), obtained within the perturbation theorgne
formally equivalent to the so-called Weisskopf’s estinfate  tains the essential features to account for the complexafess
the level width (well-known in Nuclear Physiqs [19]) proeidl  the resonance states due to spatially continuously digéib
the effective number of channels be related to the absorbinipsses.

perimeter through the intuitive relationship : In conclusion, we investigated the statistics of complex re
onance states in an open 2D chaotic microwave cavity by solv-
M= Labs 7 (10) @ng the Maxyvell equations in a cavity whose boundary is sub

A/2 ject to Ohmic losses. We successfully compared the stisti

of its resonance states and associated widths with thegredi
tions of an effective non-Hermitian Hamiltonian model. e t
limit of weak coupling, we have shown that spatially continu
%‘usly distributed losses could be mapped to a discrete model
involving a finite numben/ of coupling channels, which con-
Ltitutes a variable parameter in the cavity. To our knowéedg
these results are the first unambiguous confirmation of the ad
equacy of an effective Random Matrix description to account
for the spectral and spatial statistics of an open chaoti®@wa
system with continuously distributed losses.

We wish to thank Laurent Labonté for his helpful support
th Comsol™.

where\ = 27c/w is the wavelength. Clearly, as this estimate
is frequency dependent, to compare numerical distribation
to our theoretical predictions, one must use samples of re
onances for which the parametif is approximately a con-
stant. This can be achieved by considering resonanceswith
high-frequency intervals. Indeed, as the cumulated number
levels grows likev? and)M like w (according to[(1J0)), the rel-
ative variation ofM/ within a sequence aA V adjacent levels
around theNth level is given byAM/M = LAN/N. In
practice, we considered intervals of 100 adjacent res@sanc
above the 300th resonance. To explore various numbers %
channels, namely two frequency ranges were considered :
from the 300th to the 400th resonancas\(/M ~ 14%), and

from the 700th to the 800th resonanceN/ /M ~ 7%), and
three different lengths of the absorbing part of the perénet
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FIG. 2. (Color on line). Distributions of the widths = ~/ (v) FIG. 3. (Color on line). Distributions of the complexnessgmaeter
for different absorbing lengths, conductivities and freqey ranges:  P$°”(X) for the same absorbing length, conductivities, frequency
(@) laps = /18, 0. = 80Sm~! and from the 300th to the 400th ranges as given in Figﬂ 2. The histograms show the numerisal d
resonances; (b).,. = 7/6, o. = 400Sm~! and from the 300th tributions. The solid lines correspond to the theoretigadjztion

to the 400th resonances; (G)s = /6, 0. = 400Sm~' and from (ﬂ) where the numbel/ of channels corresponds to the nearest in-
the 700th to the 800th resonances;i(d) = 7/2, o. = 1000Sm™* teger value of reIationO) computed with the median valuthe
and from the 700th to the 800th resonances. The histogramastile ~ wavelength in each frequency interval.

numerical distribution. The solid lines correspond to g law @).

The number)M of channels used for the comparison corresponds to

the nearest integer value of reIati(lO) computed withntleelian

value of the wavelength in each frequency interval.



