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Although pulsed coherent laser radar vibrometry leen introduced as an improvement
over its Continuous Wave (CW) counterpart, it ramavery sensitive to decorrelation
noises such as speckle, and other disturbancdseahéeasurement. Taking advantage of
more polyvalent poly-pulse waveforms, we address idsue with advanced signal
processing. We have conducted what we believe asfitist extensive comparison of
processing techniques considering CW, pulse-pad paly-pulse emissions. In this
framework, we introduce a computationally efficienaximum likelihood estimator and
test signal tracking on pseudo time-frequency rsgtations, which respectively help deal
with speckle noise and fading of the signal, inshamoise conditions. Our comparison on
simulated signals is validated on a 1.55um allffibdbrometer experiment, with an
apparatus simulating vibration and strong specklsen Results show the advantage of
estimators taking into account actual noise stesistand call for a wider use of time-

frequency representations to track the vibrationlufated signal.
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1. Introduction

Coherent laser radars (lidars) are able to sersertfall amplitude vibrations of remote surfaces
thanks to the Doppler effect. Long range laser Dapygbrometry has been successfully applied
to an increasing number of situations where theer@st is to determine the vibration
characteristics of an inaccessible target. Thepécagpions range from the structural assessment
of potentially damaged buildings [1] to target itidoation for military purpose [2,3]. Although
vibration frequencies and velocities are very ddfeé in magnitude, in both cases the aim is to
identify the modal frequencies of the target.

The measurement is performed as shown on Fig.rdt, Ebherent heterodyne detection,
done by mixing the Doppler-shifted backscatterestdavave and part of the emission (Local
Oscillator, LO) on a detector, is the source of ediefodyne signal with an Instantaneous
Frequency (IF) linked to the instantaneous velocityhe target surface. This heterodyne signal
is frequency demodulated to retrieve the vibratietocity time series. Then, the velocity time
series is Fourier transformed and a vibration speatis obtained, which is analyzed to extract
vibrational features. Interesting features incltltke modal frequencies of the target, appearing as
peaks on the spectrum if the Signal-to-Noise R&SNR), between the peak Power Spectral
Density (PSD) and the noise floor power spectrabig, is high enough.

In addition to continuous emission, a pulsed emisdias been considered [3]. The
simplest and most usual waveform is the pulse-pahgrited from meteorological radars,
processed by estimating the phase shift betweehmbhieonsecutive pulses. At reception, each

waveform provides one velocity sample of the tinegies. Poly-pulses were also tested [4].



Pulsed vibrometry directly benefits from existirechiniques in radar, for waveform design as
well as signal processing.

The advantages of pulsed vibrometry have been sBeclin [5,6]. First, a monostatic
configuration of the vibrometer is easier to imp&mwith static targets, because returns from
the target can be temporally separated from parasiiections on the optics; having a single
collimating optic in the instrument eases its pogtand focusing, and might be required for
compactness. Also, simultaneous telemetry by tifriight measurement becomes possible,
allowing a time-gating of the reception and theasapon of multiple targets in the laser beam.
Finally, higher peak power is available for the saaverage laser power, resulting in higher
signal detectability, and even slightly more actariiastantaneous Doppler shift estimation at
very long range.

Yet, as was shown by the comparison of CW and gadsreoperation modes led by Hill
et al. [6], the latter suffers from several dravksadNVhen compared with the same mean emitted
laser power, in normal noise conditions, pulse-gags not perform better than CW in obtaining
good SNR on the final vibration spectrum. Each @air can yield slightly more accurate
velocity estimates at long range thanks to a higleak power, but with considerable averaging
over numerous samples, CW mode still gets bettgultee Furthermore, strong phase noise,
originating from speckle or laser phase noise, tyekecreases the pulsed mode performance,
and pulse-pairs have an unambiguous velocity ramyjje a few times larger than their velocity
resolution.

In summary, past studies have concluded that, gegpiunique potential for very long
range, multifunction and monostatic instrumentdsgai vibrometry is impaired by its sensitivity

to the disturbances of the measurement channelekwthe wide diversity of waveforms and



signal processing available, compared to simplegphir operation, indicates that performance
improvement is possible. In this article, we inigste the potential of advanced signal
processing techniques, applied to the poly-pulseefeams already introduced in [4], which
benefit from supplementary degrees of freedomhénunfavorable conditions of strong speckle
noise, we conduct an extensive performance congralistween CW, pulse-pair and poly-pulse
operation, processed by various classical and n@weepsing techniques. The objective is to
show how and to what extent pulsed vibrometry cannbade more robust to harsh noise
conditions.

Section 2 introduces signal model and hypothesige Tharacteristics of poly-pulse
waveforms and known signal processing methods ¥ &d pulsed mode are recalled in
Section 3. In section 4, we propose and qualify sgmal processing techniques for poly-pulse
waveforms. We compare them to existing technigdes,the various waveforms, through
simulation in section 5. An experimental validatiof this comparison, using an all-fiber

vibrometer, is presented in section 6. Sectionrickales.

2. Signal model

The photocurrent, downshifted from the carrier fregcy § to the null frequency, either

analogically (1/Q demodulation) or digitally, isgnessed, in a complex form:

(1) = p(t)d e () +i, (8) = (1) do.m(t).exp(j By (1)) +iy (1) 1)

where H(t) is the amplitude modulation appliedhe laser emission in pulsed mode (u(t) = 1 in
CW mode), feft) is the heterodyne current, with a mean ampditug m(t) is a complex
multiplicative noise, circular and centered, witlvariance set to lp.ip(t) = 4n.Xvib(t)/A is the

phase modulation for the laser wavelengtiil.55um) caused by,t), the targeted surface



vibration displacement projected along the lasez bf sight. In case of a sinusoidal vibration,
Xvin(t) = a sin(Zf,ip.t+o) and vip(t) = 2rafii, cos(2ifyip.t+¢9) = Vimax COS(2ifyin.t+¢). Lastly, i(t) is

an additive complex noise (detector and photonea)piwhite, Gaussian valued, circular and
centered, with variance,?. The time-averaged Carrier-to-Noise Ratio (CNR)d&fined as
<CNR> = <|jef>/<[is]> = i¢/201°.

Complex multiplicative noise m(t) contains ampliéudnd phase fluctuations terms, and
is the result of several phenomena [7]: specklesejolaser phase noise, and the effect of
atmospheric turbulence.

The random speckle pattern backscattered by tlyettas not static if the illuminated
surface is moving, and as a consequence the adpktad phase of the received wave will vary,
a phenomenon either called “speckle noise” or &adgcorrelation noise” in literature [8]. The
resulting multiplier has a complex normal distributand autocorrelation functidi(t) = exp(-
It?) = exp(-Bpeckie T°). This means its phase and amplitude is rougtdplstover durations
shorter than, = 1/Bspecke @and that its frequency width is about gd3.dn. Depending on target
distance and movement (target rotation has thesaigipact), speckle bandwidti Buevaries
in the 100Hz — 100kHz range.

Laser phase noise is due to the finite spectrawlidth of the laser: as the emitted
frequency is random, the frequency spread of tlae sfignal between the received wave and the
local oscillator increases as the target is furtheay and the waves become decorrelated. The
result is a random phase term, which PSD can kdigbeel given the optical path difference. It
can however be greatly mitigated by using a wediseim delay line in the local oscillator path.

Last, atmospheric turbulence, as an index disiobupushed across the beam by

transverse wind, can also produce a complex migiéifive noise that affects both phase and



amplitude, which characteristics have been infelrgdshimaru [9]. Yet, the phase term due to
turbulence piston is rather slow. Unless the ldsam is low above the ground, the amplitude
fluctuations are slower than those due to targetldp, and turbulence noise is negligible in
applications that involve moving targets.

Complex multiplicative noise impacts the measurdmémough signal fading
(temporarily low CNR), as well as spectral broadgnbecause of phase fluctuations, which
directly lowers the accuracy of the velocity estiio

The signal model of Eq. 1 is based on several $iynpg hypothesis: i) it is assumed that
any bulk Doppler shift due to target global velgchias previously been removed; ii) the
illuminated surface vibrates as a whole, and naisgp vibrators generate signals with various
IFs; iii) the target’s distance is known precis@dby means of simultaneous telemetry); iv) the
emitted mean laser power is equal for all operatmgles, which implies taking <p(t)%> = 1; v)
lastly, we neglect the phase effects of atmospheritulence and laser phase noise and only
consider speckle noise.

In that case, the noise parameters are the spleaktiwidth Bpeckeand the CNR. Beckie
is set to 5kHz (as induced by the parallax of gaawith a 500km/h velocity perpendicular to
the line of sight of a laser radar with 200mm pupihe vibration amplitude is chosen so that the
modulation bandwidth is of the same order. Sucheshbre consistent with the actual parameters
expected for long range moving vehicle identifioat{previous studies [6,8] considered speckle
noise with lower bandwidth, few hundred Hertz). TBBR, averaged in time, is a common
parameter for all operating modes, given the hygsithof equal mean laser power in every case.

It is calculated in the full sampling band of 1MHz.

3. Background



3.1. Poly-pulse waveforms

Pulsed waveforms are created by modulating theoghiatent amplitude by a square wave pi(t).

Because of the poor ambiguity-to-resolution ratie. (neasurement dynamic) offered by
pulse-pair waveforms, we considered more genergtmpdse waveforms as was already done
by Gatt et al. [4]. Though staggered poly-pulsessent the highest measurement dynamic in
theory, their velocity ambiguities are difficult smlve in harsh noise conditions, and we rather
focus on regular poly-pulses. As shown in Fig. 2,define poly-pulses as a finite succession of
Np pulses of short duratiop. fThese trains of pulses are repeated with periaceTat repetition
frequency PRF = 1/T. The pulses in the train atgaky separated by duratiors, Tand the total
waveform duration is &= (Np-1).Ts.

We now discuss the constraints that apply on wawefearameters, in order to choose a
waveform best suited to given vibration and noiseditions.

One Instantaneous Frequency (IF) estimation (ixelacity estimate) is performed for
each poly-pulse. Its general principle is to défeiate the phase of singular pulses along the
train, in order to obtain the IF, which is supposedstant during the short waveform duration
Tm, chosen accordingly. The precision on this esionais Fourier limited at approximately
1/Ty, and, as a consequence, longer waveforms allow@rlygecision. But, when compared to a
continuous wave of same effective duration, a polise waveform has the advantage that the
energy is concentrated in pulses, and the sigmalbeatemporally separated from most of the
noise affecting the measurement. In case of staoldlifive noise, with the same energy, slightly
better velocity precision is obtained in pulsed motihe downside is that Doppler ambiguities

exist: velocity is known only within ambiguity imieal V, =21/(2 Ts).



The constraints for waveform design are the foltayvii) the waveform repetition
frequency PRF has to match Nyquist's criteriontf@ correct sampling of the vibration itself,
PRF > 2 §ip max With f,ih max IS the maximum significant vibration frequencytbé target. ii)
should be a function of the maximum velocity to remain in ambiguity interval ¥ Ts <M/(4
Vmay. iii) depending on the required velocity accurably should then be chosen so that the
effective duration of the waveforms = [t2.p(t)dt, roughly proportional to N allows a small
enough velocity resolutiodV = A/8rao;, while satisfying the hypothesis of a stationdfyduring
the waveform duration. Poly-pulses indeed providéarger measurement dynamic (linear)
D = V4/8V than pulse-pairs: Buses~ 9, while Dipuses~ 28, for instance.

Those three fundamental constraints are set acmprai the expected vibration, for
which coarse assumptions can be made by knowingatuge of the target. Beyond this essential
adaptation to the vibration, actually optimizingwe&form parameters will rely on other variables,
such as the noise conditions. In fact, the optimadke number Nis very dependent on the
relative power of the signal and noise, as wellhascorrelation time of the phase of the signal,
due to phase noise. Indeed, the duration of thg-pabke should remain shorter than this
correlation time. Like in [6], we choose to comparaveforms by setting the same mean laser
power for all, in order to avoid taking into accodme evolving limitations of lasers, and benefit
from a common ground to evaluate the efficiency sjpending a given energy for the
measurement. This hypothesis implies that, thisrggndeing equally divided into the (N
individual pulses, their peak power decreases s Mcreased. Simple considerations led us to
choose N=6 (above which velocity resolution stalls beeaud IF non-stationarity) and
PRF = 500Hz (just above Nyquist’s criterion for @Bz maximum vibration frequency) in our

study.



3.2. Signal processing for coherent laser radar vibrometry

In this sub-section, we recall signal processingtsgies for vibrometry and present the
estimators that are compared in section 6.

The goal of the measurement is to determine theatidm velocity by IF estimation, in
order to evaluate modal frequencies of vibrationesas detection noise, phase noise and fading
disturb this estimation. Two main strategies stant i) phase differentiation over samples (in
CW) or pulses, like in conventional frequency demiation, ii) spectral maximum estimation or
Time-Frequency processing, which works by detemgnihe frequency localization of the
maximum of energy along time, on a Time-FrequenaprBsentation (TFR) such as a
spectrogram [10]. Parametric estimation, based anl signal model, is a third possible way,
supposedly optimal [6,11] but never applied becaides complexity. We have not considered
this approach in this paper.

The vibration velocity is usually Fourier transfadto identify peaks at potential modal
frequencies, which are the actual data of intel&stelevant performance indicator is then the
SNR, the power spectral density ratio between teaekpand the noise spectrum. For
completeness, we mention there are variations Hiwr last step of the process, such as the

parametric estimation of the vibration modes gittenpre-evaluated noise variance [12].

IF estimators in CW mode
The sliding « coherent average » of phase diffexermetween K consecutive samples is an
enhancement of pulse-pair processing [6]. Thigresor, first in Tab. 1, belongs to the phase

differentiation family defined earlier and is cal@utocorrelation First Lag (AFL).



The following two techniques use a TFR; the spegtm is here preferred to more
performing kernels such as Born-Jordan’s [11], beeaof its much shorter computation time.
First, we implement the centroid of the spectrogcahimns [7], with a circular sum in order to
avoid bias from the non-zero-mean noise backgrd@mkctroGram Centroid, SGC). But the
spectrogram can also be processed using a spedualalent of the phase based estimator
originally given by Lee, as explained in [13,14fds Spectral Matching (LSM) consists in
finding the best match in position between a refeeespectrum §(f) (Gaussian spectrum
induced by the speckle noise) and the short-teentsgp composing the spectrogram.

Centroid based (SGC) and Lee’s (LSM) estimatorsnak large improvement over the
simple maximum detection along time on a Time-Fesmy Representation, especially when
strong complex multiplicative noise is involveddastompared to other frequency estimators [10,

14].

IF estimators in pulsed mode
In Pulse-Pair mode, the fourth estimator of Tabsés the phase difference between each pair of
pulses (Pulse-Pair estimator, PP). Telemetry datpreviously performed pulse detection is
necessary in order to properly window the signaisTmethod is straightforwardly extended to
Poly-Pulse waveforms: the phase difference betveeasecutive pulses is coherently averaged
(Poly Pulse-Pair estimator, PPP). This estimatdiasfastest applied to poly-pulses. But several
authors, as in [14,15], insist on the benefit cigghdifferentiation over non-consecutive pulses.
The Autocorrelation Fourier Transform (AFT) estiorathus performs a linear regression
of the autocorrelation function phase, i.e. thedeaf the Fourier Transform (FT) maximum,

after a proper windowing. In order to take into @att the decorrelation induced by speckle
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noise, and to avoid using uncorrelated pairs ofgsjl windowing function hY is set to the
modulus ofl's (), averaged on all poly-pulses.

The matched filter approach, as in radar processiqgivalent to the previous one when
h(r) = 1, uses the spectrum of the received waveforoftiplied by the emitted waveform
(Matched Filter, MF). It can be applied to any waven. With only additive white noise, this

estimator is the maximum likelihood estimator, aptatically optimal at high CNR.

4. Advanced IF estimation with poly-pulse waveforms

4.1. Maximum likelihood IF estimation

In coherent laser radar, however, multiplicativésaas also present. We thus propose the actual
maximum likelihood estimator of the instantaneaes|fiency of a received poly-pulse, given the
signal model of Eq. 1. We assume stationary wawesoand prior knowledge of the noise
parameters.

For faster computation, the likelihood is calcuthtey applying a variable change
proposed by Ghogho et al. in [16]. It uses the fhat if the phase of the signal can be put in
factor, what remains is the sum of multiplicativedavhite additive noises, which have known
statistics. The resulting poly-pulse instantanedresquency Maximum Likelihood (ML)

estimator is
f,.«(t = k/ PRF) = argmax{- Re(')" Q, . Re() - Im(s)" Q, . Im(3")) 9)
f
with

§'(p) =< is >k,p eXp(— Jznf 'pTS)for p = 11"" N p andQs‘ :CNR)eaka-'- INp (10)
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where Q is the sum of the noise covariance matrices, awpleal by the pulses, Qis the
covariance matrix of multiplicative noise m, afg is the identity matrix. Element (p,q) of,Qs

given by the autocorrelation function of the coesatl multiplicative noise, in our case speckle:

QP D) = Qoo P ) = Tl (P-0)Ts) = € > for p.q=1,...N (11)

ML is the equivalent of Levin’s own maximum liketibd estimator developed for CW
laser radar, explained in [13], but applied to pplyse waveforms. As Levin’s estimator does in
the spectral domain, when the phase modulationhef dignal is suppressed assuming the
instantaneous frequency was f, this likelihood difias how much the result is close to having
the same covariance matrix as the supposedly reamgamultiplicative and additive noises. Like
the matched filter, it can also been seen as ardiregression of the phase: the scalar product
with exp(-j2rft) is calculated on series of correlated pulsdscsed by @™, and averaged over
the considered series. Note that in fact, whepeck tends towards zero, the ML estimator
becomes equivalent to the matched filter.

The maximum likelihood is theoretically optimaltife signal model of Eq. 1 is verified,
but might not perform as well under strong noiseditions (low CNR or very high 8eckg, Or
in case of deviations from the model. Also, thewlsalge of noise parameters CNR angeRie
IS necessary to use this estimator. Both of thembeaevaluated by studying the amplitude of the
signal: CNR via the ratio of power in and out of thulses, and fBeceby calculating the width
of the autocorrelation function of amplitude fluations. A third, more direct method is to

evaluate Q from the signal, demodulated by a quick coarsestimate. This can be written

~ K ~
Q, = Akz_l§'k.§'kt with §'(p) =<i, > , exptj27f,.pTs) forp=1,....N, (12)
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where K is the total number of waveforms during tieasurement, and is the coarse estimate
previously obtained for waveform #k. The PPP editimis fast enough to provide this estimate.
The proposed ML estimator can be modified in casenbise characteristics differ from
those of our primary model; for instance, if théselaser frequency noise in addition to the
speckle noise in m(t), then,(pecomes the element-wise product gfeQieand Qises also given

by the autocorrelation function of the laser phasise, found in [17].

4.2. Performance of the ML estimator

In order to assess the performance of the ML estim¢éhe Cramér-Rao Bound (CRB) of the
velocity estimation over each received poly-pulseveform is calculated from the likelihood

function, without variable change and pulse average
/1 aQ -1\2\1-1/2
o,2—[Tr((— 13
y 2[ ((an))] (13)

in which Tr() designates the matrix trace operatod Q is the covariance matrix of the non-

zero samples of the signal, with elements
QUV) = nalsMn((U=V)AY) ™ + 576U -V) (14)

foruv=1, ..., N, so that p(u)u(v¥ 0, whereAt is the sampling period, and,Ns the number
of samples in the total duration of one poly-pulseform: T,+t,.
This CRB can be evaluated numerically, and is fotmdagree with the analytical

expression in case of only additive noise [13]:

i 1 JJCNR, +1 s)

>
'~ 4m/25, CNR,

13



in which CNRys is the CNR taken in terms of waveform energy: GNR Evavefornd(PSDhaisetp)
(Ewaveform Waveform energy, PSRse noise power spectral density).

As described in [7], error saturation and fadingyend@o be taken into account. The
resulting error after fading is indeed the quadratim of the CRB at given CNRs weighted by
the probability of this CNR occurring (Rayleigh [awhis probabilistic inclusion of fading helps
better predict the error, but may affect the loieund property.

Fig. 3 shows velocity error as a function of CNRhMPP, PPP and ML estimators and
CRBs on simulated signals assuming a non-vibratnget and a 5kHz bandwidth speckle noise.
We inject the real values of CNR angh&uein the ML estimator.

In pulse-pair mode, theory predicts a limit for tredocity precision at high CNR, due to
the predominant complex multiplicative noise. PBcpssing on a simulated signal shows the
expected plateau related to this phenomenon, bahrigher than expected. For this reason, we
can suspect PP processing may not be optimal.

For 6-pulse waveforms, Fig. 3 shows globally lowelocity error. At high CNR, the
CRB does not saturate, and decreases, which isth@tcase with PPP processing, as
decorrelation between pulses impacts the veloatymation. On the other hand, ML processing
follows the bound and achieves velocity precisiéraloout 0.2mm/s instead of 0.5mm/s with
PPP, and 2 mm/s with pulse-pairs, at high CNR.dddeshen the measurement is predominantly
affected by complex multiplicative noise, i.e. alhCNR, the ML estimator performs better
than PPP, for any value ofBcke

The ML estimator is robust to the CNR and,d« parameters. For signals with
CNR =20dB and Becke= 5kHz, and varying parameter inputs for the MLtireator,

performance is not significantly affected unless.&e<0r CNR are misestimated by several kHz

14



and tens of dB respectively. As the estimatiorheke parameters on the amplitude of the signal
provides very accurate values compared to suchreggents, in the conditions where the ML
estimator is useful (Becweof a few kHz, CNR > 0dB), no problem should afigen the strategy

of pre-estimating noise parameters. If it shouldvprdifficult in practice, we are still able to
evaluate the covariance matrix of the noise, atdast PPP demodulation of the signal that
would allow us to reconstitute a vibration suppeessignal containing only noise.

Finally, we have investigated the modification loé tML estimator for laser phase noise
incorporated in the signal model, using the aut@tation predicted by [17] for a narrow
linewidth laser [18]. In that case, we notice thdtile 6-pulse waveforms still bring general
precision improvement over pulse-pairs, ML proaggsioes not provide much smaller velocity
error than PPP, except for predominant speckleenagswe have already seen, and moderate
decorrelations (optical path difference well beliaser coherence length). When the correlation
time of the signal is under pulse separatigntfie CRB quickly rises, and both PPP and ML
estimators stick to that bound.

We conclude that the ML estimator is interestingnplement in order to make pulsed
vibrometry less sensitive to decorrelation suchthes one produced by target speckle. The
remaining velocity error approaches the CRB wherRG# high, which indicates it is close to
optimal for the signal model of Eg. 1. Noise partere are required as inputs and can be
previously estimated on the signal amplitude. Thepact of laser phase noise cannot be
mitigated as much, certainly because the correidtioe of the signal easily falls belows. TWe
must finally stress that deviations from the sigmaldel are well known to affect ML estimators.
For instance, high frequency vibrations cause o Idrift even within the short duration, Df

the poly-pulse, in which case ML processing as eg&ghed it here will not perform as well.
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This preliminary qualification is however incomm@etithout a thorough comparison to

other estimators from literature on actual vibnatsagnals, which is presented in section 5.

4.3. Time-Frequency Representation in Pulsed Mode

Another way of improving signal processing in pdisgbrometry is to perform signal tracking
on a Time Frequency Representation, in order to pemsate for the small number of
measurements. A great gain over non-tracking meti®e@xpected. At low CNR, it will avoid
outlying values of velocity due to temporarily wesignal. Also multiple components caused by
several vibrating parts of the target could be s#pd. The downside is that TFR processing is
more demanding in computation time and memory.

In pulsed mode, a TFR can be drawn for three estirmave proposed in this article. MF
(radar matched filter), AFT (see Tab. 1) and the BHtimator all rely on the search of a
frequency maximum, whether it is a spectrum or @glikelihood function, for each received
waveform. We propose to track the frequency loesitim of the maxima of energy for noise
mitigation at low CNR. We build a 2D representatiaith, as coordinates, frequency and
waveform number, which can be linked to instantsnre. Fig. 4 shows examples of what can be
obtained on simulated signals.

From a five-tone vibration with maximum velocity about 6mm/s, we simulate the
heterodyne signal according to the model of EqiHe average CNR (in 1 MHz bandwidth) is
chosen as low as -20dB to show the phenomenonuoiosis peaks that come from temporarily
strong noise or weak signal, and strong specklsenoi bandwidth Becxe= SkHz is applied. 6-
pulse waveforms with,t 2us, &= 50us and PRF = 500Hz are used. For ML we chaose
1/3Tn frequency step, and for MF and AFT, which are Hase Fast Fourier Transforms, zero-

padding is applied to provide a similar resolutidiso, for better visibility, the plotted function
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is the normalized likelihood function, instead bétlog-likelihood of Eqg. 9. The functions for
each waveform are plotted within ambiguity rang/Zds; 1/2Tg] = [-10kHz; 10kHz]. On the
left side of these charts, there is no additiomakcessing. The frequency modulated signal is
seen as a discontinuous trace, which producesyanaésy velocity time series if processed by
maximum picking or even by centroiding.

The interest of TFR is highlighted here, as theremrvibration trace is still visible,
despite isolated peaks originating from the noigdeereas standard algorithms give velocity time
series corrupted by many outliers. We use an I|Rimoity hypothesis on the pseudo TFR in
order to better extract the vibration in case obrgj noise conditions, which should especially
benefit our ML processing, inherently inclined ® &ffected in such a case.

A number of techniques are available that take aidege of the continuity of the signal
trace [19,20]. We rather choose a simple temponaloshing of the TFRs, as is done from on the
right side of Fig. 4. The lines of the TFR have rbdew-pass filtered, with a bandwidth
preserving the higher frequencies of vibrationalfew consecutive waveforms detect slowly
drifting IF, due to the frequency spread the enasgyitegrated, whereas transitory peaks from
the noise are smoothed. Such regularization allavieetter recovery of the vibration velocity
time series by a subsequent maximum picking orroihihg, especially in the case of ML
processing, as will be seen in the next section.

In our comparative simulations of processing meshasd waveforms, we applied
temporal smoothing to MF, AFT and ML generated THR&l also to TFRs in continuous mode,
for a fair comparison. The methods are then anedtatcordingly: MF-s, AFT-s, ML-s, SGC-s,

LSM-s.
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5. Comparative simulation of processing methods in pulsed and CW

mode

We now study the performance of the advanced psougdechniques that were introduced in
section 4, relative to the existing methods presgitt section 3. This comparison is conducted
on realistic signals, with additive detection nags®l complex multiplicative speckle noise, with
a vibration comprising several modes. In this sectithe study is based on simulated signals.

The simulation relies on the model developed intigec2. Subroutines generate the
complex phasor induced by the vibration, as weld@ditive and multiplicative noises, which are
re-sampled as suitable for each type of waveform, ased to produce the signal. The same
mean power hypothesis is taken into account asraaization of signal amplitude.

Using simulated heterodyne signals, we qualifypadisented processing methods on the
criterion of Signal-to-Noise Ratio (SNR), whichesaluated on the vibration spectrum, as the
ratio of the Power Spectral Density (PSD) at thakp&equency of interest over the power
spectral density of the noise floor. The PSD isnestied using the periodogram. The simulated
vibration has 5 peak frequencies between 8 andH2Z0and the maximum velocity is over
5mm/s. The retained SNR value is the average obtimelividual SNRs. For each given result,
we average the SNR values obtained in 200 sigaibations.

The wavelength ish = 1.55um; measurement duration igesFE 1S, with sampling
frequency §:n= 1MHz in CW, and 2MHz in pulsed mode. In pulsedd®, the modulation
parameters are: N 2 (pulse-pairs) or N= 6 (6-pulse),t= 2us, = 50us and PRF = 500 Hz,
which is a little above Nyquist’s criterion for tleerrect sampling of the vibration. The analysis
bandwidth in which the IF estimation is performbdth in CW and pulsed mode, igB20kHz,

corresponding to £7.75 mm/s at our working wavellenB, is thus closely adapted to the signal
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bandwidth induced by vibration and speckle. Thecspgram and autocorrelation window
duration in CW mode is chosen as 1/PRF = 2ms. THR 3 still given in average in a 1MHz

bandwidth for CW mode (noted <CNR>); for comparistthe peak CNR in pulsed mode, in the
reduced analysis bandwidth, is greater by 17dB ¢8[@27dB (2p). The speckle noise bandwidth
IS Bspeckie= SkHz.

Fig. 5 shows vibration spectra averaged over 20@,robtained at high CNR: 30 dB.
Only the best results for each waveform are plofiéx 5 vibration peak frequencies are visible
on each curve, and can be identified. However,nthise floor is much lower with poly-pulse
waveforms and ML estimator with smoothing (ML-s),vath CW and SGC-s, than with pulse-
pairs, which remain the most sensitive to the strgpeckle noise applied in this simulation. In
that case, pulse-pair operation cannot detect tworanodes with peak velocities under 0.1
mm/s, contrarily to poly-pulses with advanced pesoeg.

A more detailed comparison in terms of SNR restdts all processing methods is
presented in Fig. 6 a) at high CNR, and in Fig) @tbvery low CNR. The mean SNR of each
method is plotted as well as its standard deviatier the 200 runs.

At high CNR (<CNR> = 30 dB), when speckle noisepredominant, all processing
methods in CW mode perform equivalently well, wiasrénportant differences appear between
the various techniques applied to pulsed modet, Ffitdse-pair SNR is more than 10dB worse
than the best results obtained with 6-pulse wawedoor in CW mode. Better averaging of the
phase noise with “longer” waveforms is the reasbeueh difference. We also find an average
5dB higher SNR given by the ML estimator proposedehcompared to the other estimators,
including the commonly used radar matched filteFjMHowever, it should be noted that CNRs

over 15dB are scarcely encountered, and in pratttiseggain may remain limited (see section 6).
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The PPP estimator offers relatively good performeaf@n top of low computational load),
because it only relies on pairs of consecutive $asnpwvhich have less chance of being
decorrelated, whereas standard spectral estimkioksfor a global phase trend, more easily
corrupted when ambiguities are possible.

At very low CNR (<CNR> =-25dB in 1 MHz), it is kmo that without speckle noise
high peak power waveforms (such as pulse-pairsalilightly better SNR on the measured
vibration spectrum. In this simulation, howevercégse speckle noise is strong, there is no such
gain. In CW mode, spectrogram centroiding allovestibst SNR, while Lee’s spectral matching
is badly affected by strong detection noise. Withlygpulse waveforms, all estimators are
roughly equivalent. Temporal smoothing benefits entar spectrogram processing in CW (5dB
gain) than to ML and MF processing with poly-pul¢8dB gain). This is because of the lesser
number of averaged columns of the pseudo TFR isegumode. We also note that ML and MF
are equivalent when the effects of speckle noiseat predominant.

The results obtained at medium CNR are intermediBng usual plateau at higher CNR
starts at CNBw 1mnz= -5dB. However ML performance does not stall amtdeases slowly with
CNR.

The computational load of the various processinghots is summarized in Tab. 2.
Attention is called to the following results: pusair based estimators are practically immediate
compared to all other estimators, and can providmi#ial estimate of the vibration velocity, for
more complex estimators that would be employednaéted. The ML estimator is the fastest
spectral estimator used here. MF is equivalengy. faGC remains the best but also the heaviest
estimator in this study. As expected, pulsed viletgnis faster to process in general, due to the

fewer number of samples.
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We now conduct another performance simulation aitrarying analysis bandwidth,B
that was previously fixed at 20kHz to match theration bandwidth. This assumption was in
fact very restrictive because, in practice, thedwadth of the vibration is unknown, so; &nd
thus B, = 1/Ts have to be chosen large enough so that no velaailyiguity is possible. Yet,
bandwidth adaptation is important at low CNR, stécaavoid letting too much additive detection
noise in the IF estimators.

All other simulation parameters remaining the sameFig. 7, we plot SNR results
obtained at low CNR (-20dB), when bandwidth adaptamatters the most, as a function of
bandwidth adaptation parameter= B4/B.i,, Where Bj, is the vibration induced frequency
excursion. It shows that SNR is very dependenthef analysis bandwidth. When< 1, as
expected, signal losses and Doppler ambiguitiegsrideaite the measurement, especially in
pulsed mode, for which slightly above one is preferable to avoid ambigsitBut fora > 1, the
various estimators react differently to the morepamant noise accepted in the analysis
bandwidth. Temporal smoothing in both CW and pulsestie is necessary to avoid a fall of
SNR beyondy = 2. For instance, for a 100kHz analysis bandwidéh Ts = 10ps and = 5, only
pulsed mode with poly-pulse waveforms processedvbhyor MF and pseudo TFR temporal
smoothing is able to retain around 10dB SNR. In esaonditions, even with strong speckle
noise, pulsed mode as enhanced by the methodsilsbsdn this article can be preferable,

because of its robustness to additive noise.

6. Experimental validation

6.1. Apparatus
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In order to confirm the results of section 5, arfiakr 1.55um vibrometer was implemented,
with the configuration described in Fig. 8. Fibemadtems with a MOPA configuration are an
interesting choice in this case, because of thempactness, ease of use, and versatility;
switching from CW emission to pulsed emission ordguires applying a modulation on the
driving signal of the Acousto-Optic Modulator (AOMised for the frequency shifting of the
emitted laser wave.

Separate optics were used for emission and receptioich is essential in CW mode on
static targets. The output waveforms were monitdsedause the amplifier distorts the input
impulsions, and the modulating signal needs to djasted in compensation. The laboratory
experiment also includes an apparatus to createaime vibration as the one used in section 5,
and to produce speckle noise with controllable attaristic Byecke While the CNR can be acted
upon via a tunable attenuator placed before thesam optics.

The optical beam from a Koheras laser injectorveeing 10mW with 90kHz linewidth
is split into a signal beam and a LO beam. Theadigiave is modulated by an IntraAction AOM
frequency shifter at 70MHz. Its driving signal dag amplitude modulated in pulsed mode by a
digital gating signal that provides the waveforranfie and an analogic signal, generated by a
Wavetek arbitrary waveform generator, which alldhs fine tuning of the emitted power along
time. Both signals are necessary to ensure coendaiction of the emission. The modulated
optical wave is then fed into a Keopsys 1W Erbiuop&d Fiber Amplifier (EDFA), operated at
100mW output. The power is sent to the emissioest&lpe, but can be attenuated to vary the
CNR. The emitted wave reflects on the vibratingrarira few meters away, and is scattered by a

rotating diffuse target. The rotation rate of tlaget sets the speckle bandwidthcBie A
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second telescope receives this backscattered wdneh is mixed with the LO on a Hamamatsu
InGaAs detector with a 100MHz bandwidth.

The heterodyne signal around 70MHz, is amplified fitaquency downshifted by mixing
it with the 67.5MHz output of a HF generator. Tlesulting signal, with 2.5MHz intermediate
frequency, is low-pass filtered at 5SMHz and digitizon 16 bits at a 15MHz sampling frequency,
by a National Instruments 5922 acquisition card (AD

Signal processing is then implemented on Matlabl fsecond duration acquisitions. The
analytic signal (complex signal around null fregex@nis derived by a Hilbert transform of the
acquisition, and is either decimated to 1MHz santplfrequency in CW mode, or pulse-
averaged in pulsed mode. Both of these methodsvallseful data reduction. Finally, the
processing methods discussed in this study areeail determine the vibration spectrum of the
mirror, and performance in terms of SNR is cal@ddby the same means as in section 5.

Parameters,t Ts and PRF of the waveforms are also roughly idehtacéhe ones chosen
previously. As expected, the amplitude modulatippli@d on the AOM driving signal has to be
pre-compensated in order to obtain a suitable veamefamplitude function p(t), because of
EDFA-related phenomena [21]. In order to avoidih@to retune this pre-compensation as we
switch from one waveform type to another, pulse-pade is implemented by simply taking the
first two pulses of 6-pulse waveforms. After a prithary calibration of average CNR in regard
to output power in the several emission modes, avg the power attenuation at the emission in
order to study the SNR given by each estimatoraabus CNR values. The speckle bandwidth
induced by the rotating disk is set to approximatékHz, as verified by fitting the

autocorrelation function of the signal, without rabon.
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Two main difficulties had to be resolved. In pulsewde, we had to overcome the
saturation of the electrical amplification chairr foigh signal peak power, which originally
saturated the CNR at 10dB. Also, parasitic vibragiof the speckle generating disk (including a
broadband component that particularly impactedhenML estimator, which assumes stationary
IF during the waveform) had to be minimized, whiehas done by using lower rotation rates and
larger spot sizes and thus a larger vibrating miffbese parasitic vibrations were reduced by a
factor of 2 but could not be entirely suppresséd;fbllowing experimental results include this

artifact.

6.2. Results

Fig. 9 summarizes the results of this experimewrt@inparison of waveforms and signal
processing methods, with a) SNR vs CNR curves Herliest methods found in the previous
section and b) average vibration spectra at higRCN

Fig. 9 b) shows the vibration spectra averaged @240 runs of 1 second each, at the
highest CNR achieved for each waveform. We seevibation is fine-tuned to be almost
identical to that used in the simulations (cf. FY.

The SNR vs CNR curves on Fig. 9 a) follow the tgpiocreasing trend with a plateau at
high CNR, when velocity precision becomes spedkhgtéd. However, parasitic vibrations
cause of this SNR saturation to occur about 3dBetavan in simulation. At low CNR, we find
the expected SNR fall as CRIPor spectrogram demodulation (SGC) and as CNPiitse-pair
vibrometry (PP), as demonstrated in [7].

Overall, the simulation results are corroborated|uding the better performance of the
ML estimator at high CNR, compared to more clagsitBRP or MF processing. 6-pulse

waveforms are clearly more successful than pulss-pathese conditions. This is also seen by
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comparing the vibration spectra obtained at highRCdh Fig. 9 b). However, experimental
artifacts make the gain in SNR of the ML estimdéss important than in simulation. It is also
noticeable that this gain does not become intergsinless the CNR is above 5dB, and after that
threshold it increases linearly, as simulationswsdth Unfortunately, as CNR over 20dB is
difficult to obtain, very important gains due teethse of ML over regular IF estimators cannot
be relied upon in practice.

Yet, the SNR increase due to TFR smoothing, whielr$1 5dB in some cases, was not
expected to persist at such high CNR values inegufsode. It is still measurable when signal is
fairly strong, which means that the impact of sigading is underestimated in our simulation,

and that TFR smoothing is indeed helpful in pulsedie, when velocity measurements are few.

7. Conclusion

We have presented and qualified advanced signalepsing techniques applicable to pulsed
laser vibrometry with poly-pulse waveforms, to emte the determination of the modal
frequencies of a remote target in harsh noise tiongi This work focuses on what we believe is
the first extensive comparison between these wavef@nd processing methods, particularly in
the case when this measurement is made difficulstogng decorrelation noise like target
speckle noise. It can indeed reduce the interesputéed vibrometry, for instance when
compared to classical CW vibrometry that averagesarous velocity measurements. An
additional hypothesis is taken: an equal mean |pserer to be distributed between emitted
waveforms.

In this frame of work, poly-pulse waveforms do hetve peak power as high as the first
employed pulse-pairs, and will not present as ngash at very long range. But because of their

longer effective duration when the pulse separaigoset to avoid Doppler ambiguities, every
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test presented here has proved them more robtse isaid noise conditions. Because it did not
exist in pulsed mode, a specific processing basedviaximum Likelihood Instantaneous
Frequency estimation, which takes into account wietknow of the noise statistics, has been
developed. By comparing the velocity precisionhog processing method to its theoretical limits
(CRB), it has been shown that it is closer to optirthan that of simple poly-pulse pair
processing. Also, we have proposed Time-Frequerggyrddentations, already applied in CW
vibrometry, and show that they can be of use fasenoegularization in pulsed vibrometry, for
instance by temporal smoothing.

A comprehensive comparison of the SNR performaftieeodescribed processing to that
of classical methods, for vibrometry with pulsedda@W emission, has been conducted on
simulated signals, and later confirmed by expertaigon. The first conclusion is that advanced
processing, based on the TFR of the likelihood asation of the IF for each waveform, with
an additional temporal smoothing of this TFR, gitee best result in pulsed vibrometry,
especially with dominant speckle, with no additiooamputational cost. Secondly, in case of
weak signals (low CNR), at long range for instarteejporal smoothing of TFR proved useful
as a noise regularization. Moreover, in case ofnmatshed analysis bandwidth, pulsed
vibrometry with poly-pulse waveforms and matchetkefing was finally shown to be more
robust than CW vibrometry with spectrogram centrd&modulation. This is in spite of the
strong speckle noise that was impacting the signal.

However, these results are tempered by the high Cé&tRiired for the developed
estimator to obtain a gain in SNR, and its sengjtito deviations from the model assumed in
section 2 of this article. As has been proven by eqperiment, high frequency vibrations are

enough to decrease its performance, because imassstationary IF during the velocity

26



measurement timeI This defect could nevertheless be acted upomdyding the possibility

of IF drift in the model. Another issue of the eant study is that, by assuming the same average
laser power for each emission mode, it allowed e comparison, but failed to take into
account technological limitations. For instancebefi lasers at 1.55um with a MOPA
configuration, such as the one we used, are indteatéd by the peak power, or the energy
accumulated in the amplifying fiber. A direct seljokthis study will be to evaluate the actual
optimal performance of such a fibered vibrometer.

The results of this work still push towards the asnger waveforms, of estimators that
take into account signal statistics, and of TFRul&ggation in pulsed vibrometry. Further
advances can be made in each of these three directWith sufficiently resilient ambiguity
resolving algorithms, and assuming suitable emmssitchitecture, staggered poly-pulses can
achieve very large measurement dynamics. Also, Méell parametric estimators including a
complete model of the vibration remain the optipraicessing method, if the computational load
is not prohibitive despite the many parameters irequor it to be robust. Finally, if the latter
improvements are not possible, the vibration cdhb&t better estimated from a TFR, by taking
advantage of the signal continuity in the Time-fecy space.

Our future works will involve studying such techonés for IF tracking on TFRs, and

developing parametric estimation for other appiareg of vibrometry.
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Figures
Fig. 1. (color online) Diagram of a heterodyne aen¢lidar vibrometer, with a Master
Oscillator Power Amplifier (MOPA) configuration, neenient to emit arbitrary waveforms

using the same Acousto-Optic Modulator (AOM) astfer frequency shift.
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Fig. 2. (color online) Parameters of poly-pulse afavms in amplitude modulation p(t):(pulse
duration, & pulse separation,yI poly-pulse duration, PRF: waveform repetitiorgitency,

. pulse number per waveformg4k : maximal amplitude of pi(t))

p(t) T=1/PRF N, pulses
Tm per waveform
umax =
t4-|‘|-| |-| H |-| |-| |-| |-| (Np.tp-PRF).1/2
«
Ts :

32



Fig. 3. (color online) Comparison of velocity esaf PP, PPP and Maximum Likelihood (ML)
estimators and theoretical Cramér-Rao lower Bo@RIR) for the velocity error, as a function
of average CNR, for pulse-pair (2p) and 6-pulsg.(BPO0 simulated waveforms withy F 50s

and p = 2us, at Bieckie= SkHz. Only the ML estimator reaches the CRB.
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Fig. 4. Time-Frequency Representations (TFRs) nbthfor simulated signals (6-pulse
waveforms, PRF = 500HzsF 50us and,t= 2ps) with matched filtering, autocorrelation
Fourier Transform, and likelihood, at low CNR (-Bh 1MHz), and Byece= SkHz. On the

right side, temporal smoothing of the TFRs bringstbe vibration trace.
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Fig. 5. (color online) Average vibration spectragiated at high CNR (30dB in 1MHz),
processed by the estimators giving the best SNR Y pulse-pairs (2p) and 6-pulse
waveforms (6p). The noise floor is much lower wvilie ML estimator than with the PPP
estimator.
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Fig. 6. Average SNRs obtained in simulation gl&e= 5 kHz and a) (top) high CNR (30dB) or
b) (bottom) low CNR (-25dB) for CW, pulse-pairs {2md 6-pulse waveforms (6p). Suffix —s

means that smoothing is applied on the pseudo TH#&red using the preceding estimator.
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Fig. 7. (color online) Average SNRs at low CNR @B plotted as a function of the ratio
between analysis bandwidth Bnd vibration bandwidth B, for CW, pulse-pairs (2p) and 6-

pulse waveforms (6p).
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Fig. 8. (color online) Diagram of experimental aggtas allowing CW and poly-pulse
operations. A rotating scatterer is used to crepéekle noise with bandwidth,Bcxe= SkHz.
(EDFA: Erbium-doped fiber amplifier, ATT: attenuat®et: detector, HF: high frequency,

ADC: analog to digital converter).
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Fig. 9. (color online) a) (top) Experimental SNRid as a function of CNR and b) (bottom)
Experimental spectra at high CNR, averaged ovedo 20 measurements, for CW, pulse-pairs

(2p) and 6-pulse waveforms (6p).
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Tables

Table 1. Implemented instantaneous frequency etima

AFL

i m= 2lmtar NZm:is(t FnAi (+(n- 1).At)J

(2)

At: sempling
period, n:
sample index,
Nm: number of
samples for IF
estimation

CW mode

SGC

f = ZB—;T ar{ [ [sTFTC, f)|2.exr{ janinfJ

®3)

B.: analysis
bandwidth,
[STFT(t,f)[2
spectrogram

LSM

f () =argman{s, (f) O|STET(, 1))

(4)

Sef): reference
spectrum

PP

f (t=k/PRF)=
|nst( F) 2]7-1-

1

S

arg<i, >, <1, >,.)

(5)

PPP

frut =K/ PRA) ==

S

Np
ar{z< is >k,p< is >*k,p—l

p=2

|

(6)

k: waveform

index, <i>yp
signal average
over pulse #p of
waveform #k

AFT

Pulsed mode

f _(t=k/PRF)= argma% [argC,, (1)) h(@).exp(-j27dT)d r\) @)

l—‘is,k(":):
autocorrelation
of poly-pulse
#k, hk):
weighting
function

MF

ﬂnst(t =k/PRF) = argmax(
f

J.Poly-pulse#k

i (t).u(t").exp(-j274t")dt]

)

Radar matched
filter

Acronyms definition: AFL: Autocorrelation First La§GC: SpectroGram Centroid, LSM: Lee’s

Spectral Matching, PP: Pulse-Pair, PPP: Poly-Feise AFT: Autocorrelation Fourier

Transform, MF: Matched Filter.

40



Table 2. Computation times for implemented estimsato

Method AFL  SGC LSM PP PPP AFT MF ML

Comp. time (s) 0.9 1.5 11 fo 10° 0.97 0.18 0.17

These results are obtained on Matlab with a 2.12 GHU.
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