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Abstract This paper presents a new algorithm for an ef-
ficient computation of morphological operations for gray
images and its specific hardware. The method is based
on a new recursive morphological decomposition method
of 8-convex structuring elements by only causal two-
pixel structuring elements (2PSE). Whatever the ele-
ment size, erosion or/and dilation can then be performed
during a unique raster-like image scan involving a fixed
reduced analysis neighborhood. The resulting process of-
fers low computation complexity combined with easy de-
scription of the element form. The dedicated hardware
is generic and fully regular, built from elementary inter-
connected stages. It has been synthesized into an FPGA
and achieves high frequency performances for any shape
and size of structuring element.

Keywords: Mathematical morphology, 8-
convex structuring element operators, regular
dedicated pipeline architecture

1 Introduction

Mathematical morphology was first introduced as a
method to measure binary objects, but soon became a
complete theory based on set operations [Serra (1982)].
Morphology relies on the use of set operators (intersec-
tion, union, inclusion, complement) to transform an im-
age. The transformed image usually has fewer details,
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but its main characteristics are still present. Once the im-
age has been simplified, measurements can be computed
to give a quantitative analysis of the image. Morphologi-
cal transformation is based on a structuring element (B)
characterized by its shape, size and centre location, also
called origin. Each pixel in an image is compared with B
by moving B so that its center hits the pixel. Depending
on the type of morphological transformation, the pixel
value is set to the minimal or maximal value of the pixels
in the translated structuring element.

Performing a morphological operation directly from
its formal definition would imply that all the neighbors
present within the structuring element should be sought
for each pixel. Of course, this process becomes time con-
suming for large elements. Fortunately, mathematical
morphology properties led to the introduction of meth-
ods which partially solve this problem.

The main goal of the decomposition algorithms is to
reduce the number of basic dilations needed to gener-
ate the desired structuring element. Different ways to
decompose structuring elements have been investigated
exploiting two fundamental properties: Minkowski ad-
ditions [Xu (1991), Chen and Haralick (1995)] and set
unions of elements [Wang and Bertrand (1988), Ji et al
(1989)]. More particularly, Chen has defined a decom-
position method using only two non-connected pixel el-
ements. On the other hand, Xu demonstrated how any
8-convex polygon could be constructed from a set of el-
ements included in a 4-neighborhood.

Mathematical morphology is a tool commonly used
in embedded vision systems, so a great deal of work has
been done to design hardware implementation. The qual-
ity of an architecture dedicated to mathematical mor-
phology is generally measured by the ability to describe
different element shapes versus hardware efficiency e.g.
memory and computation requirements, or number of
image scans. Of course, decomposition element methods
can help the design of efficient dedicated hardware by
limiting the number of operations.

Chien et al (2005) proposed a comparative table
among existing architectures for a dilation by a 7 × 7
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Architecture Support non
flat

Support non
rectangular

Comparator Number of
delay

Cycles required

structuring
element

structuring
element

counts elements per frames

Pitas No No 8 7L + 7 L(H+7)+6
Coltuc No No 6 6L +6 L(H+6)+5
Ong Yes No 7 [6L +6]+1 7LH

Diamantaras Yes Yes 48 [6L +42] L(H+6)
Ruetz No No 12 6L +6 L(H+6)+5
Sheu Yes No 13 6L + 20 7LH + 8
Chien No Partially 6 6L+6 L(H+6)+5

This work No Yes 12 6L+6 L(H+6)+5
Table 1 Flexibility and implementation efficiency comparison between state-of-the-art architectures for a dilation by a 7×7
square structuring element

structuring element (see Table 1). Chien architecture re-
lies on the principle of PRR (Partial-Result-Reuse), try-
ing to avoid redundant computations. This concept has
been used earlier by Pitas (1989) and Ong and Sunwoo
(1997), but their architectures were not fully optimized.
Coltuc and Pitas (1998) proposed an optimal solution
but only for rectangular elements, and Chien architec-
ture is an extension of some other shapes. A comparison
between PRR and the proposed method will be later dis-
cussed.

Diamantaras and Kung (1997) architecture pro-
vides the best flexibility, supporting both non flat and
arbitrarily-shaped elements. However, it is at the ex-
pense of complexity. The architecture is built as a sys-
tolic array, and one Processor Element is defined for each
pixel of the element. Ruetz and Brodersen (1987), Sheu
et al (1992) both proposed pipelined implementations
deduced from decomposition element techniques, that
are also limited to flat rectangular elements. The perfor-
mance and capability of their approach will be further
discussed in the section on “Results”.

Other works concern computational efficiency for
grayscale morphological operators. Van Herk (1992) pro-
posed a very efficient method for grayscale erosions and
dilations, requiring only three comparisons for 1D struc-
turing elements, whatever the element size. It relies on a
recursive forward and backward ranking of pixel values
inside temporary buffers. Extension to 2D rectangular
structuring elements is achieved by consecutively apply-
ing the same process to rows and columns, for a total of 6
comparisons. 2D circular symmetric filtering can also be
considered by running the process along the two diago-
nal directions, doubling the number of operations. Soille
et al (1996) introduced an extension of this algorithm
to any angle 1D structuring elements. Gil and Kimmel
(2002) further improved the initial algorithm to reach
1.5 comparisons for 1D erosions and dilations, thanks
to a sliding window technique. The major drawback is
that this algorithm induces non regular data flow pro-
cessing, as well as the generation of ordered lists, which

are not compatible with efficient implementations. The
other drawback is that all Van Herk-based techniques
have been designed and optimized in 1D space: 2D ex-
tension requires a second pass, and is mainly restricted
to rectangular elements shapes. The technique proposed
in this paper performs one pass erosion or dilation, con-
sidering more generalized 2D convex shapes.

In this paper, we address the problem of grayscale
morphology with a restricted class of discrete convex
polygons (2). We then introduce a fast recursive tech-
nique for grayscale dilations, relying on this particular
decomposition scheme. The process regularity also en-
ables the design of a pipeline architecture (section 3).
We summarize the results in section 4.

2 Fast recursive morphological operators

2.1 Grayscale morphology

Applying morphological operations on an image involve
basic templates called structuring elements, used as
shape parameters for the operations. The two most fun-
damental morphological operations are dilation and ero-
sion. Grayscale morphology is a natural extension of bi-
nary morphology, using the Umbra and Top operators.
In most of the cases grayscale morphology is generally
restricted to plane structuring elements leading to sim-
ple dilation and erosion operations based on Min and
Max functions.

A gray image A is a function whose domain is a subset
of the two dimensional digitized space Z × Z. For any
point p ∈ Z × Z, the translation of A by p is defined by

(A)p = {a + p | ∀a ∈ A} (1)

and the erosion and dilation by the structuring ele-
ment B are respectively given by

A	B = min {(A)p|p ∈ B} = min
p∈B

(A)p ,

A⊕B = max {(A)p|p ∈ B} = max
p∈B

(A)p .
(2)
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Some useful properties must be presented to justify
the algorithm proposed later.

Translation. The dilation by the translated of a structur-
ing element can be easier to compute than the dilation by
the element itself. The following properties demonstrate
the equivalence of operations (except for the translation):

A	 (B)p = (A)p 	B = (A	B)p

A⊕ (B)p = (A)p ⊕B = (A⊕B)p
(3)

Associativity. Dilations (respectively erosions) by a se-
ries of structuring elements are equivalent to a dilation
(resp. erosion) by the Minkowski addition of all the ele-
ments of the series:

(A	B)	 C = A	 (B ⊕ C)
(A⊕B)⊕ C = A⊕ (B ⊕ C) (4)

This property justifies a lot of algorithms since, as
long as a structuring element can be decomposed by
Minkowski additions of smaller elements, it is generally
advantageous from a computational point of view to di-
late or erode the image successively by all these elements.
This property is often used conjointly with the previous
one. Hence dilating by a series of translated elements is
equivalent to the combination of one global translation
and dilations by the elements themselves. The number of
operations per pixel can then be drastically reduced, but
the major drawback is that the image has to be scanned
several times.

Union of structuring elements. The other way to split a
structuring element is to realize a set union of smaller
elements. The dilation (resp. erosion) by a set union of
structuring elements is then equal to the union of the
dilations (resp. intersection of the erosions) by all the
structuring elements:

A	 (B ∪ C) = (A	B) ∩ (A	 C)
A⊕ (B ∪ C) = (A⊕B) ∪ (A⊕ C) (5)

Opening/closing operators. Erosion and dilation opera-
tions are frequently combined to provide powerful filters.
An erosion (resp. dilation) by B followed by a dilation
(resp. erosion) by B̃, the symmetrical element of B, is
called an opening (resp. closing) operation:

Opening : A ◦B = (A	B)⊕ B̃

Closing : A •B = (A⊕B)	 B̃
(6)

2.2 H-convex polygons

A shape in R×R is said to be H-convex if it corresponds
to the (possibly unbounded) intersection of a set of half-
planes [Boltyanskii and Soltan (1978)], or, equivalently,
if it contains all line segments defined by a couple of
its points. A discrete set of points (in Z × Z) is said

to be H-convex if it is equal to the intersection of a H-
convex shape of R×R with Z×Z [Eckhardt (2001)]. As
a consequence, a discrete H-convex shape is not neces-
sarily connected in the usual sense (4- or 8-connexity).
A bounded discrete H-convex shape is by definition the
convex hull of a finite set of discrete points, hence is a
polygon. In [Normand (2003)], a method to decompose
arbitrary discrete H-convex polygons is presented and
applied to the construction of structuring elements for
binary morphology.

We call 8-convex polygon, a 8-connected discrete H-
convex polygon whose edge directions are restricted to
0◦, 45◦, 90◦ and 135◦ like the structuring elements used
in [Xu (1991)]. In the following, we show that 8-convex
polygons can be decomposed with a fixed (4) number of
2PSEs whereas this amount varies for general H-convex
polygons.

2.3 Xu decomposition

Q1

Q61Q6Q53

Q52Q5Q4Q3Q2

Q8Q71

Q51

Q7

Fig. 1 Generating set of structuring elements for 8-convex
polygons

Xu proved that any 8-convex polygon can be built by
dilations with a restricted set of generating structuring
elements [Xu (1991)]. The 13 generating elements pro-
posed by Xu are shown in figure 1. They constitute the
minimal set to generate any 8-convex polygon, i.e. any
convex polygon whose border is 8-connected. Their ori-
gin is normally the center of the cross but in order to
restrict later considerations to causal relationships, we
replace the elements by their translated version whose
origin is the last point in a raster scan order. According
to (3) it introduces only a translation of the resulting
image. In the following the translated version of an el-
ement Qx will be referred to Q′x. Figure 2 provides an
example of a 8-convex structuring element and its Xu
decomposition.

2.4 Causal Recursive Decomposition of structuring
elements

We have demonstrated in [Normand (2003)] that all the
Xu’s decomposition elements can themselves be built as
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=

Q’4 Q’71 Q’5B

Fig. 2 Example of structuring element decomposition

unions and dilations of the four Two-Pixel Structuring
Elements (2PSEs) depicted in figure 3.a. By extension,
it implies that these 2PSEs are also sufficient to build
any 8-convex element as a series of both set unions and
dilations. The main advantage of using 2PSEs is that
they involve a restricted 8-connected causal neighbor-
hood of analysis defined by four elementary translations
pk, k ∈ {1 . . . 4} (see figure 3.b).

p4

p1

p2 p3

a) b)

c)

E4E3E1 E2

B4B3B1 B2B0

Fig. 3 2PSE decomposition (a) Elementary elements, (b)
corresponding translations and (c) example of growing struc-
turing family

We have established in [Normand (2003)] that any
convex structuring element can be iteratively con-
structed: for each step of the construction, already-built
elements can be joined together in any combination of
translations and set unions. We have also introduced a
deterministic method for convex shape decomposition.

Restricting elementary structuring elements to the
set of four 2PSEs depicted in figure 3.b not only leads to
consideration of only 8-convex elements but also limits
the analysis space to an 8-connected causal neighbor-
hood. In this case, each 8-convex Bi can be recursively
constructed according to:

B−1 = ∅; B0 = {O};∀i > 1, Bi =
⋃

k∈{1..4}
BIk(i)⊕Ek, (7)

where Ik(i) (Ik(i) < i) denotes which previous ele-
ment belonging to the family and dilated by Ek is used to
build Bi. The empty set is represented by Ik(i) = −1 and
B0 only contains the origin. {Bi}i=0..N forms an increas-
ing family of structuring elements as long as Bi−1 ⊂ Bi.

Going on with the previous example we see that the
translated Xu elements (Q′4, Q′71, and Q′5) can be built
by dilations and unions of 2PSEs:

Q′4 = E2, Q′71 = (E3 ⊕ E3) ∪ E4, Q′5 = E1 ∪ E3 (8)

In most of the cases (9/13), the Q′ are expressed by
an unique set of unions, like Q′4 and Q′5, and the recursive
relationship from (7) is straightforward. To change over
from the Xu decomposition scheme to the proposed one
for the four left structuring elements, we introduce an
intermediate step: let us assume that Bi = Bi−2 ⊕Q′71,
according to (5) and (8)we get

Bi = (Bi−2 ⊕ E3 ⊕ E3) ∪ (Bi−2 ⊕ E4)
= (Bi−1 ⊕ E3) ∪ (Bi−2 ⊕ E4) (9)

where Bi−1 = Bi−2 ⊕ E3. From relation (7) it gives
I3(i−1) = i−2, I3(i) = i−1 and I4(i) = i−2. The corre-
sponding growing family is given below, and the iterative
construction is depicted in figure 3.c.

Dil. by Q′4 B1 = B0 ⊕ E2

Dil. by Q′71 (step 1) B2 = B1 ⊕ E3

Dil. by Q′71 (step 2) B3 = (B2 ⊕ E3) ∪ (B1 ⊕ E4)
Dil. by Q′5 B4 = (B3 ⊕ E1) ∪ (B3 ⊕ E3)

(10)

A growing structuring element family is then very
easily described by providing only the four Ik(i) indices
per level. In practice most of the structuring elements
used are symmetrical ones. In that particular case, all of
them (except crosses) can be obtained when restricting
formulae (7) to only elementary dilations. The simplified
associated expression is given by:

Bi = Bi−1 ⊕ Ei, Ei ∈ {E1, E2, E3, E4} (11)

Only one index per level is necessary here for the
decomposition description. The alternatively use of
E1, E2, E3, E4 leads to a circular structuring element,
while limiting the construction to E1 and E3 generates
rectangular ones.

2.5 Grayscale image recursive dilation and erosion

In [Normand (2003)], we took advantage of the previ-
ous structuring element decomposition method by intro-
ducing a fast binary erosion operator. The binary case,
which presents a fixed number of operations whatever
the structuring element, cannot be used to expand the
grayscale morphology. Even if comparable performances
cannot be achieved, we propose here a fast algorithm for
grayscale erosion and dilation operators. The principle
will be detailed only for dilation.

First, consider that as the four 2PSEs contain the
origin, an elementary dilation by Ek is equivalent to the
union of the element and the element translated by pk:

B ⊕ Ek = B ∪ (B)pk
(12)
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Let {Bi}i=0..N be a family of growing structuring el-
ements constructed recursively by union sets and ele-
mentary dilations according to (7). In the following DBi

states the dilation of A by Bi. Based on the 2PSE de-
composition a recursive computation of DBi

is possible:
DBi

= A⊕Bi

= A⊕

( ⋃
k∈{1..4}

BIk(i)⊕Ek

)

= A⊕

( ⋃
k∈{1..4}

BIk(i) ∪
(
BIk(i)

)
pk

)

= Max

{
(A)p |p ∈

⋃
k∈{1..4}

BIk(i) ∪
(
BIk(i)

)
pk

}
= Max

k∈{1..4}

(
Max

{
(A)p |p∈

(
BIk(i) ∪

(
BIk(i)

)
pk

)})
= Max

k∈{1..4}

(
Max

{
(A)p |p ∈ BIk(i)

}
,

Max
{

(A)p |p ∈
(
BIk(i)

)
pk

})
= Max

k∈{1..4}

(
DBIk(i) ,

(
DBIk(i)

)
pk

)

(13)

These results show that the dilated values when con-
sidering successively all the elements in the family, are
recursively obtained by performing a maximum extrac-
tion between the values of the dilation by the elements
involved to build the current one, at the current position
and at positions pk in the 8-connected causal neighbor-
hood. The process is fully regular because it uses a raster
scan of the image.

In this scheme, resources requirements are linear.
– Complexity : Processing requirements concern Max

operators. If ND and NU are respectively the total
number of elementary dilations and unions used to
build Bi, then the algorithm requires only ND + NU

comparisons to perform the dilation of an image by
Bi whatever the shape of the structuring element.

– Memory : Only intermediate results {DBi
}i=0..N

have to be recorded, so the number of stored ele-
ments is given by the number of decomposition levels.
When only p1 is involved for one level, the intermedi-
ate value corresponds to the previous computed one,
and an unique variable is necessary to store the result.
In other cases, a line-memory per level is necessary
to store intermediate results from the previous line.
Figure 4 shows the progressive steps to get dilated

values up to the structuring element B3 from figure 3.
DB3 computation requires five comparisons, and DB4

eight.
When B is a structuring element composed of only

dilations (eq. (11) for symmetrical elements), the opera-
tions at each stage are reduced to an unique comparison
between the dilated values by the previous element at the
current position and at position pi, pi ∈ {p1, p2, p3, p4},
so that
Bi = Bi−1 ∪ (Bi−1)pi

⇒ DBi
= Max

(
DBi−1 ,

(
DBi−1

)
pi

) (14)

      =

DB0

DB1

DB2 DB1

(DB0) p2
(DB1) p3

(DB2) p3 (DB1) p4

DB0 = Pixel value DB1 = Max(DB0, (DB0) p2) DB2 = Max(DB1, (DB1) p3)

DB3 = Max{ Max(DB2, (DB2) p3), Max(DB1, (DB1) p4) } 

Fig. 4 Recursive dilation process

In this particular case, the number of operations is
also given by the number of decomposition levels.

Image borders. To handle the problem of image borders,
one has generally to expand the image or to introduce
conditional processing. For a dilation operation, a suit-
able way consists of considering values as 0 outside bor-
ders. This can be done here without preliminary image
expansion as explained below.

– If L is the image width, then the line-memories have
to be of size (L+2 ).

– Memory-lines have to be initialized to 0 once at the
beginning of the process, variables to store results in
p1 position have to be initialized at the beginning of
each line process.

– The position values for pixels in the image are con-
sidered in the range [1..L]. Thus, for pixel position
1 (resp. L) and for p2 (resp. p4) neighborhood, line-
memory is accessed at address 0 (resp. L + 1) and
provides 0 as a dilated value.

Considering 0 values outside the borders has of course
an impact on results near these borders. Assuming that
that DBi

= 0 if Bi is totally outside the image, it modi-
fies equation (13):

DBi = Max
k∈{1..4}

DBIk(i) ,
(
DBIk(i)

)
pk

ifBIk(i) ⊂ A
DBIk(i) otherwise.

 (15)

From the previous formulae, one can see that the pro-
cess automatically adapts the shape of the structuring
element near borders and that the actual structuring el-
ement expression is:

Bi =
⋃

k∈{1..4}
BI′k(i) ∪

(
BI′′k (i)

)
pk

, with

I ′k(i) = argmax (j ∈ {0 . . . Ik(i)} |Bj ⊂ A)
I ′′k (i) = argmax

(
j ∈ {0 . . . Ik(i)} | (Bj)pk

⊂ A
) (16)

To sum up for this part, the proposed method enables
an efficient software implementation of dilation and ero-
sion operators with the following main features:
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– an unique scan of the image whatever the shape and
size of the structuring element,

– an easy and systematic way to describe any 8-convex
structuring element,

– limited resources requirements in terms of both mem-
ory and computation,

– automatic adaptation to borders without image ex-
pansion nor conditional processing.

Further improvements could be made, in particular
concerning the number of comparisons. In Chien et al
(2005), Chien introduced the concept of Partial-Result-
Reuse (PRR). The idea is to limit the number of oper-
ations by avoiding redundant comparisons as much as
possible and by exploiting already computed data. The
example of a 1D structuring element of 8 pixels (called
B4) given by Chien is illustrated figure 5. B4 is recur-
sively constructed by gathering non-overlapped structur-
ing elements. Intermediate results have to be stored at
different distances from the current position : 1 for B0, 2
for B1 and 4 for B3, giving a total of 7 recorded values.

B0B1B2

Step 1

Step 2

Step 3

B3

B0B1B2

Step 1

Step 2

Step 3

B3

Fig. 5 PRR principle for a 1D structuring element of 8 pixels

If we compare this with our approach, the same struc-
turing element would be built according to :
B7 = B6 ∪ (B6)p1

. . .
B1 = B0 ∪ (B0)p1

(17)

The dilation is performed here after 7 comparisons.
Actually, 1D dilations are the worst case for our method
in terms of size of the element versus number of com-
parisons. Concerning memory, both methods require the
storage of 7 values but our method involves an unique
distance (equal to 1) whereas the depth for PRR is de-
pendant on the element decomposition.

The PRR concept has been extended to square and
circular elements. Square representation is the simplest
shape leading to the greatest computational reduction.
For circular elements (13 pixel elements), Chien’s heuris-
tic method requires 6 computation steps, whereas the
proposed method requires 8. However, the authors do
not propose a systematic method of decomposition. For
a dichotomic approach, the problem can be reformulated
by trying to find the minimum element Bj of the family
(where j ∈ [0 . . . i− 1]) such that Bi can be expressed as

Bi = Bj ∪ (Bj)T×pi

T ∈ {1 . . . b i
2c}, pi ∈ {p1, p2, p3, p4}

(18)

The 1D case is simple. Formula (17) can first be ex-
panded, and, by factoring process, it is easy to find that
there are four possible solutions meeting the condition
set out in (17). Among them, B3 is the minimum ele-
ment.

B7 = B6 ∪ (B6)p1
B7 = B5 ∪ (B5)2p1

B7 = B4 ∪ (B4)3p1
B7 = B3 ∪ (B3)4p1

(19)

The approach can be extended to 2D space but only
for simple element shapes. For more complex elements,
PRR is more difficult to determine, and as mentioned be-
fore, the benefit of PRR decreases when the complexity
of the pattern increases.

Opening and closing Opening and closing operations im-
ply the need to consider symmetrical elements. If B is
causal, B̃ is necessarily anti-causal, which would lead to
an inverse scan of the image in order to preserve the se-
quential feature of the process. A better solution takes
advantage of the property (3) by defining BT = (B̃)pB

,
with pB a fixed vector such that BT is causal. Then the
use of BT instead of B̃ simply requires a global image
translation of pB once processing has been completed.
For a regular data flow it consists merely of introducing
a constant delay in the output flow.

When B is symmetrical, deduced from (11), then B

and B̃ have the same shape, and the same structuring
element can be used.

3 Specific pipeline architecture

The regularity of the algorithm and the restriction of the
relationship area to the 8-connected causal neighborhood
enable the design of a fast generic and regular specific
architecture, requiring few resources in terms of memory
and logic. A dilation implementation suited for an FPGA
target is presented in the following paragraphs.

The whole architecture is synchronized by a global
clock with a data flow rate of one input and output pixel
data for each clock pulse. Each elementary stage com-
puting DBi from previous values, requires two types of
components: a memory module to store and to provide
previous results and a combinatory operative part to re-
alize the maximum extraction.

For the following, let T be the clock period, DBi
(n)

be the dilation value by the structuring element Bi at
time n×T (nth pixel), L be the size of an image row and
M be the number of bits to encode a value.

3.1 Memory module

For easier systematic design of the architecture, a generic
memory module has been designed. The knowledge of a
previous result in the {p2, p3, p4} neighborhood implies



8

the storage of one row at each step of the decomposi-
tion. We have chosen a “dual port RAM” memory solu-
tion allowing both a reading and a writing access dur-
ing one clock cycle. The following temporal relationships
avoid the need for multiple address management process
in each of the various stages:

(DBi
(n)))p1

= DBi
(n− 1)

(DBi(n))p4
= DBi(n− (L− 1))

(DBi(n))p3
= DBi(n− L) = (DBi(n− 1))p4

(DBi
(n))p2

= DBi
(n− (L + 1)) = (DBi

(n− 1))p3

(20)

Figure 6 presents the general solution for the mem-
ory module. For this example we have considered L = 7
(3 bits to encode the address) and M=4. The storage
DBi

(n−1) requires only a simple register. The memory is
addressed at a fixed relative position ((n+2) Modulo L)
to provide (DBi

)p4
at the next clock pulse. Then the di-

lated values at the two other positions are available by a
temporal pipeline through two registers. The reading and
writing addresses have a constant difference (equal to 3)
which can be also seen as a temporal delay in terms of
clock cycle. Therefore the simplest architectural solution
consists of the implementation of three registers.
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Of course all the resources displayed in the memory
module are not always necessary. For instance, when only
p1 among the neighborhood is involved it requires only
one register. However, these kinds of optimizations are
generally automatically performed by synthesis tools re-
moving all unused resources.
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Fig. 7 Border processing

3.2 Image borders

As mentioned before, image borders induce specific pro-
cessing which can break the data flow regularity of the
architecture. To avoid such problem, a solution has been
designed. Only one extra storage element is required for
the memory-lines, and as borders for both the p2 and
p4 neighborhoods. Figure 7 illustrates the behavior of
the output memory module on right and left borders. To
flush the pipeline at the end of each row, and to load
values at the beginning, an additional clock pulse is per-
formed. Then a control signal (wren) is generated to
avoid to overwrite stored value (0) at address L, and to
reset value in p1.

3.3 Global architecture
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The global architecture (see fig. 8) is composed of a
simple global control (counter) providing the address and
the set of pipelined elementary stage of dilation. The con-
figuration of each stage consists of determining the num-
ber of elementary dilations and connecting the output of
each memory module according to the Bi definition. The
“Max extraction module” designates an elementary sub-
tractor whose carry-out output drives the selection input
of a multiplexer. The temporal performances of the sys-

Dilation by B2

Fig. 9 Expected values for a dilation by B2

tem are determined by the maximal data path time fix-
ing the minimal period. Thus the maximal frequency is
dependant on (ND + NU ). A conventional solution relies
on the introduction of additional registers between stages
to reduce the critical data path. This method produces
a constant latency in terms of clock pulses between the
inputs and outputs but leads to a faster clock frequency,
independently of the number of stages. These registers
are represented by gray boxes in the global architecture
diagram. In practice, registers are available in FPGA at
the output of all logic modules. So additional registers
for a pipeline implementation are only required for data
paths with no operation between stages such as the ad-
dress of the counter or the propagation of B2 towards
B4.

Figure 9 shows expected results for a dilation of an
input image by B2, and figure 10 gives the results of the
simulation.

3.4 Implementation

Comparative implementation efficiency with existing ar-
chitectures is summarized in Table 1. Except for the Dia-
mantaras solution, all the other techniques have been op-
timized for only rectangular elements. For memory and
cycle requirements, the proposed method achieves the
same performances as the best solutions. Only Chien ar-
chitecture provides a better solution in terms of com-
parators, but as mentioned before, the PRR concept
is essentially efficient for 1D and rectangular elements.
Moreover, PRR and the proposed methods are not in-
compatible : additional improvements in order to reduce
the number of operations, for simple shapes, can be a
posteriori realized after the decomposition definition.

The proposed architecture has been synthesized into
FPGAs. As the architecture requires few resources, a
medium FPGA such as an APEX 20KC (Altera) used
in these experiments is sufficient to support dilations by

large structuring elements. Maximum clock rate is de-
pendant only on one combinatorial stage and thus de-
pendant only on M . For M = 8 the maximum clock
frequency is 50 MHz. For instance, a 512×512 grayscale
image is computed during one pass in 5 ms whatever the
structuring element shape and size.

4 Conclusion

In this paper, we have presented an algorithm en-
abling the design of fast mathematical grayscale mor-
phology operations. We have proposed a systematic way
to describe any 8-convex structuring elements through
a generic decomposition process using 2-pixel structur-
ing elements. Then these 8-convex structuring elements
are recursively constructed by elementary dilations and
union sets, based on a fixed and close neighborhood. This
decomposition system has been used to define the effi-
cient implementation of elementary morphological oper-
ators in both software and hardware. Computation com-
plexity is directly correlated to the number of elementary
dilations involved in the decomposition.
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