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Abstract

We study a family of robust nonparametric estimators for a regression function based on a kernel method when the

regressors are functional random variables. We establish the almost complete convergence rate of these estimators

under the probability measure’s concentration property on small balls of of the functional variable. Simulations are

given to show our estimator’s behavior and the prediction quality for functional data.

1 Introduction

Regression function estimation is the most important tool for nonparametric prediction problem. The

goal of this paper is to study this functional parameter when the explanatory variable is a curve by

using a robust approach. The robust method used in this paper is belongs to the class of M-estimates

∗corresponding author
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introduced by Huber (1964). The literature on this estimation method is quite important when the

data are real (see for instance Robinson (1984), Collomb and Härdle (1986), Boente and Fraiman

(1989), (1990), for previous results and Läıb and Ould-Säıd (2000), Boente and Rodriguez (2006) for

recent advances and references). For the functional case, this literature is relatively limited, indeed,

Cadre (2001) studied the estimation of the L1-median of a Banach space-valued random variable.

Cardot et al. (2004) used this robust approach to study the linear regression model on quantiles with

explanatory variable taking values in a Hilbert space. They established the L2-convergence rate. We

refer the reader to Ferraty and Vieu (2006) for the prediction problem in functional nonparametric

statistics via the regression function, the conditional mode and the conditional quantiles estimation

by the kernel method. The asymptotic normality of these parameters have been obtained by Masry

(2005) and Ezzahrioui and Ould-Säıd (2007, 2008) respectively.

Our interest in this paper is to generalize, to infinite dimension, the robust nonparametric estimation

of regression function developed by Collomb and Härdle (1986) in the real case. We establish, un-

der suitable conditions, the almost complete (a.co.)1 convergence rate of the M-estimator with the

regression function kernel weights when the observations are independent and identically distributed.

This rate is closely related to the concentration property on small balls of the functional variable’s

probability measure. Thus, by using recent results in the probability theory of small balls, we can

clarify our results for some continuous-time stochastic processes.

The paper is organized as follows. We present our model in Section 2. In Section 3 we give some nota-

tions, hypotheses and presentat the main results. Section 4 is devoted to some comments. Simulation

results appear in the last section. The proofs of the auxiliary results are relagated to the Appendix.

1We say that the sequence (Un)n converges a.co. to zero if and only if ∀ ε > 0,
∑

n≥1

IP {|Un| > ε} < ∞. Futhermore,

we say that Un = 0(xn) a.co. if there exists ε0 > 0 such that
∑

n≥1

IP {|Un| > ε0xn} < ∞.
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2 The model

Let (X,Y ) be a pair of random variables (rv) in F×IR, where the space F is dotted with a semi-metric

d(·, ·) (this covers the case of normed spaces of possibly infinite dimension). In this framework, X can

be a functional random variable. For any x in F , let ψx be a real-valued Borel function satisfying

some regularity conditions to be stated below. The nonparametric parameter studied in this paper,

denoted by θx, is implicitly defined as a zero with respect to (w.r.t.) t of the equation

Ψ(t, x) := IE (ψx(Y − t) | X = x) = 0.(1)

We suppose that, for all x ∈ F , θx exists and is unique (see, for instance, Boente and Fraiman (1989)).

The model θx, called ψx-regression in Läıb and Ould-Säıd (2000) is a generalization of the classical

regression function. Indeed, if ψx(t) = t we get θx = IE [Y | X = x].

Let (X1, Y1), . . . (Xn, Yn) be n independent pairs, identically distributed as (X,Y ). We then estimate

Ψ(t, x) by

Ψ̂(t, x) =

∑n
i=1K(h−1

K d(x,Xi))ψx(Yi − t)∑n
i=1K(h−1

K d(x,Xi))
, ∀t ∈ IR,

where K is a kernel function and hK = hK,n is a sequence of positive real numbers which decreases to

zero as n goes to infinity. A naturel estimator of θx denoted by θ̂x, is a zero w.r.t. t of

Ψ̂(t, x) = 0.(2)

Our main goal is to obtain the rate of the almost complete convergence for θ̂x. Some simulation has

been given to show how to implement our methodology for the functional data and the behavior of

our estimator.

3 Main result

In the following, x is a fixed point in F , Nx denotes a fixed neighborhood of x, and we introduce the

following assumptions:
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(H1) IP(X ∈ B(x, h)) = φx(h) > 0 ∀ h > 0 and lim
h→0

phix(h) = 0.

(H2) There exist C1 > 0 and b > 0 such that ∀x1, x2 ∈ Nx, ∀t ∈ IR

|Ψ(t, x1) − Ψ(t, x2)| ≤ C1d
b(x1, x2).

(H3) The function ψx is strictly monotone, bounded, continuously differentiable, and its derivative is

such that, |ψ′
x(t)| > C2 > 0, ∀ t ∈ IR.

(H4) K is a continuous function with support [0, 1] such that 0 < C3 < K(t) < C4 <∞.

(H5) limn→∞ hK = 0 et lim
n→∞

log n/nφx(hK) = 0.

Our main result is given in the following theorem.

Theorem 1 Assume that (H1)-(H5) are satisfied, then θ̂x exists and is unique a.s. for all sufficiently

large n, and we have

θ̂x − θx = O
(
hb

K

)
+O

(√
log n

nφx(hK)

)
a.co.(3)

Proof. In what follows, we will denote by C some strictly positive generic constant and we put

Ki = K

(
d(x,Xi)

hK

)
. Under to (H3), we have

Ψ̂(θ̂x, x) = Ψ̂(θx, x) +
(
θ̂x − θx

)
Ψ̂′(ξx,n, x)

for some ξx,n between θ̂x and θx. The condition on the derivative of ψx in (H3), leads us to write

∃ C > 0, ∀ε0 > 0, IP

(
|θ̂x − θx| ≥ ε0

(
hb +

√
log n

nφx(h)

))

≤ IP

(
|Ψ̂(θx, x) − Ψ(θx, x)| ≥ C−1ε0

(
hb +

√
log n

nφx(h)

))
.

Then, (3) is proved as soon as the following result could be checked

Ψ̂(θx, x) − Ψ(θx, x) = O

(
hb

K +

√
log n

nφx(hK)

)
a.co.(4)
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The proof of (4) is based on the decomposition

∀t ∈ IR, Ψ̂(t, x) − Ψ(t, x) =
1

Ψ̂D(x)

[(
Ψ̂N(t, x) − IE

[
Ψ̂N(t, x)

] )
−
(
Ψ(t, x) − IE

[
Ψ̂N(t, x)

] )]

−
Ψ(t, x)

Ψ̂D(x)

[
Ψ̂D(x) − IE

[
Ψ̂D(x)

] ]
(5)

where

Ψ̂D(x) =
1

nIE [K1]

n∑

i=1

Ki, Ψ̂N(t, x) =
1

nIE [K1]

n∑

i=1

Kiψx(Yi − t)

and with the fact that Ψ̂(t, x) =
ΨN(t, x)

Ψ̂D(x)
and IE

[
Ψ̂D(x)

]
= 1. Finally, the proof of Theorem 1 is

achieved with the following lemmas

Lemma 3.1 Under Hypotheses (H1), (H4) and (H5), we have,

Ψ̂D(x) − IE
[
Ψ̂D(x)

]
= O

(√
log n

nφx(hK)

)
a.co.

This lemma gives straightforwardly the following corollary

Corollary 3.2 Under the hypotheses of Lemma 3.1, we have,

∑

n≥1

IP
(∣∣∣Ψ̂D(x)

∣∣∣ ≤ 1/2
)

≤
∑

n≥1

IP
(∣∣∣Ψ̂D(x) − 1

∣∣∣ > 1/2
)
<∞.

Lemma 3.3 Under Hypotheses (H1),(H2), (H4) and (H5), we have , for all t ∈ IR

Ψ(t, x) − E

[
Ψ̂N(t, x)

]
= O(hb

K).

Lemma 3.4 Under Hypotheses (H1) and (H3)-(H5), we have, for all t ∈ IR

Ψ̂N(t, x) − E

[
Ψ̂N(t, x)

]
= O

(√
log n

nφx(hK)

)
a.co.

Lemma 3.5 Under the hypotheses of Theorem 1, θ̂x exists and is unique a.s. for all sufficiently large

n.
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4 Comments

1. Remarks on the functional variable:

The concentration hypothesis (H1) is less restrictive than the strict positivity of the explanatory

variable’s density X which is usually assumed in most of previous works in the finite-dimensional

case (see Collomb and Härdle (1986) and Läıb and Ould-Säıd (2000)). Moreover, it is checked

for a great class of continuous time processes (see for instance Bogachev (1999) for a Gaussian

measure and Li and Shao (2001) for a general Gaussian process).

2. Remarks on the nonparametric model:

The functional character of our model is well exploited in this work. Indeed, Hypothesis (H2) is

a regularity condition which characterizes the functional space.

3. Remarks on the robustness properties:

In this paper, we consider a family of ψ-functions indexed by x, in order to cover most of M-

estimates classes (see Collomb and Härdle (1986) for some examples of ψx). It is also worth

noting that we keep the same conditions on the function ψx (assumption (H3)) given by Collomb

and Härdle (1986) in the multivariate case. Furthermore, the boundedness assumption on ψx is

made only for the simplificity of the proof. It can be dropped while using truncation methods

as to those used in Läıb and Ould-Säıd (2000).

4. Remarks on the convergence rate:

The expression of convergence rate (3) is identical with those of Ferraty and Vieu (2006) and

Collomb and Härdle (1986) for the regression model in the functional and the multivariate cases

respectively. Thus, by considering the same arguments to those of Ferraty et al. (2005), we

obtain the almost complete convergence rate O
(
(log n)−b/2

)
for the estimator θ̂x for continuous-

time stochastic process having a probability measure which is absolutely continuous with respect

to the Wiener measure, under suitable bandwidth choice (hK ∼ η(log n)−1/2) and for the L∞

metric. The almost complete convergence rate of the estimator θ̂x for the fractional Brownian

6



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

motion of parameter δ, (0 < δ < 2), hK ∼ η(log n)−δ/2 and d(., .) is L∞-norm, is of order

O
(
(log n)−δb/2

)
. A convergence rate of order O

(
n

−b
(2b+p)

)
is obtained in the finite-dimensional

case (X ∈ IRp) under positivity of the density of X and for hK ∼ n−1/(2b+p).

5 Simulation study

In this section, we examine one example for which the forecast via the estimated conditional median

which is a robust method (the medianogram corresponds to ψx(t) = 1I(t≥0) − 1/2) is better than that

obtained by the kernel method defined as

m̂(x) = inf{y such that F̂ x(y) ≥ 0.5}

where

F̂ x(y) =

∑n
i=1K(h−1

K d(x,Xi))H(h−1
H (y − Yi))∑n

i=1K(h−1
K d(x,Xi))

is a kernel estimator of the conditional cumulative distribution and H is a distribution function.

In this example, we consider two diffusion processes on the interval [0, 1], Z1(t) = 2 − cos(πtW )) and

Z2(t) = cos(πtW )), (W  N(0, 1) ) and we take X(t) = AZ1(t)+(1−A)Z2(t), where A is a Bernoulli

random variable distributed. We carried out the simulation with a 200-sample of the curve X which

is represented by the following graphes:

0 50 100 150

-3
-2

-1
0

1

The curves Xi=1,...,200(t), tj=1,...150 ∈ [0, 1]
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The scalar response variable is defined by Y = Ar1(X) + (1 − A)r2(X) where r1 (resp. r2) is the

nonlinear regression model r1(X) = 0.25 ×

(∫ 1

0

X ′(t)dt

)2

+ ε, with ε is U[0,0.5] (resp. r2(X) is the

null function). The selection of the bandwidth hK (resp. hH) is an important and basic problem in

all kernel smoothing techniques. In this simulation, for both methods, the optimal bandwidths were

chosen by the cross-validation method on the k-nearest neighbours. We choose the quadratic kernel:

K(x) =
3

2
(1 − x2)1I[0,1) K(1) > 0 and H(t) =

∫ t

−∞

K(u)du.

Another important point for ensuring a good behavior of the method, is to use a semi-metric that is

well adapted to the kind of data we have to deal with. Here, we used the semi-metric defined by the

L2-distance between the qth derivatives of the curves (for further discussion see Ferraty et al. (2005)).

This choice is motivated by the regularity of the curves X. In order to compare these two methods

we proceed by the following algorithm:

Step 1. Split the data randomly into two subsets:

• (Xj, Yj)j∈J : training sample,

• (Xi, Yi)i∈I : test sample.

Step 2. Compute the robust estimator θ̂(Xj) and the kernel estimator m̂(Xj), for all j ∈ J by using

the training sample.

Step 3. For each Xi in the test sample, set: i∗ = arg min
j∈J

d(Xi, Xj). Step 4. For all i ∈ I, take

Ŷ robust
i = θ̂(Xi∗) and Ŷ KN

i = m̂(Xi∗).

Step 5. Present the results by plotting the predicted values versus the true values and compute the

sum of squared residuals (SSR).

It is clear that, the number of null response variable has inverse effect in the choice of the smoothing

parameter hH in the estimation of the conditional cumulative distribution function, in particular in

y = 0. Consequently, the robust method gives better results than the kernel method. This is confirmed

by the scatterplots and the test error SSRrobust = 0.002 and SSRKN = 0.020.
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6 Appendix

Proof of Lemma 3.1 The proof of this Lemma runs along the lines of Lemma 3.1 in Ferraty et al.

(2005).

Let ∆̃i :=
Ki

IE [K1]
. From (H1) and (H4) we deduce

∣∣∣∆̃i

∣∣∣ < C/φx(hK) and IE

[∣∣∣∆̃i

∣∣∣
2
]
< C ′/φx(hK).

So, we apply the Bernstein exponential inequality to get for all η > 0

IP

(∣∣∣Ψ̂D(x) − IE
[
Ψ̂D(x)

]∣∣∣ > η

√
log n

nφx(hK)

)
≤ C ′n−Cη2

.

Proof of Lemma 3.3

The equidistribution of the couples (Xi, Yi) and (H4) imply

Ψ(t, x) − IE
[
Ψ̂N(t, x)

]
=

1

IE [K1]
IE
[(
K11IB(x,hK)(X1)

)
(Ψ(t, x) − IE [ψx(Y1 − t)|X = X1])

]
,(6)

9
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where 1I is indicator function. Conditioning w.r.t. X1, the Hölder hypothesis and under (H2), we prove

that (H2) allows us to write that

K11IB(x,hK)(X1)|Ψ(t,X1) − Ψ(t, x)| ≤ C1h
b
K ,

then

|Ψ(t, x) − IE
[
Ψ̂N(t, x)

]
| ≤ C1h

b
K .

Proof of Lemma 3.4

The proof of this result is similar to the proof of the Lemma 3.1. We put

Λi =
{Kiψx(Yi − t) − IE [K1ψx(Y1 − t)]}

IE [K1]
.

Because ψx is bounded, we get |Λi| ≤ C/φx(hK) and IE [Λ2
i ] ≤ C ′/φx(hK), for all i ≤ n. As in Lemma

3.1, Bernstein’s inequality is used to finish the proof.

Proof of Lemma 3.5

We prove this Lemma by similar arguments to those used in Theorem 1 of Collomb and Härdle (1986).

Indeed, for all ε > 0, the strict monotony of ψx implies

Ψ(θx − ε, x) < Ψ(θx, x) < Ψ(θx + ε, x).

The Lemmas 3.1, 3.4, 3.5 and Corollary (3.2) show that

Ψ̂(θx, x) − Ψ(θx, x) = O

(
hb

K +

√
log n

nφx(hK)

)
a.co.

for all fixed real t. So, for sufficiently large n

Ψ̂(θx − ε, x) ≤ 0 ≤ Ψ̂(θx + ε, x) a.co..

Since ψx and K are continuous functions then Ψ̂(t, x) is a continuous function of t, then there exists

a t0 = θ̂x ∈ [θx − ε, θx + ε] such that Ψ̂(θ̂x, x) = 0. Finally, the unicity of θ̂x is a direct consequence of

the strict monotony of ψx and the positivity of K.
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[8] Ezzahrioui, M., Ould-Säıd, E., 2007. Asymptotic normality of the kernel estimators of the condi-

tional quantile in the normed space. Far East J. Theoretical Statist. (In press).
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