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Abstract

This paper shows how spectral analysis can be used to study a hybrid process

involving a spatial point process and a lattice process. Asymptotic distributions of
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1 Introduction

In studying a spatial point process one might be interested in investigating whether the struc-

ture of the process is related to some quantitative variable that also exhibits spatial structure.

For example, one might be interested in studying the relationship between the location of

trees in a forest, a spatial point process, and a quantitative variable such as altitude or depth

of soil. Often the quantitative variable will have been measured at positions on a grid, or

lattice, either because a systematic sampling scheme has been used, or because the recording

device produces a digital image. Few papers have attempted to analyze datasets that involve

both a spatial point process and a lattice process. Those analyses that have been conducted

were restricted to the spatial domain (see Augustin et al., 1996; Dessard and Goulard, 1998).

In this paper, a frequency domain approach, based on two-dimensional cross-spectral analy-

sis, will be used. This approach is analogous to the analysis carried out by Mugglestone and

Renshaw (1996) to investigate properties of a bivariate spatial point process. Furthermore,

it is an extension of the cross-spectral analysis used for one-dimensional hybrid processes: a

one-dimensional hybrid process is a process with two components where one component is

a one-dimensional point process and the other is a time series (see Rigas, 1983; Brillinger,

1994). Using spectral analysis, one can determine the nature and scale of association, if any,

between the two processes. Speci�cally, one can establish whether a spatial lead-lag e¤ect

exists between the two processes and its direction.

In Section 2 we introduce the notion of a spatial point-lattice process and provide some

de�nitions of spectral statistics and assumptions related to this process. In Section 3 we

derive the asymptotic distributions of these spectral statistics. A test for association between
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the two components of such hybrid processes is also derived. We close with a discussion and

conclusions in Section 4.

2 De�nitions

In this section, we will de�ne the types of processes that we are studying and their theoretical

spectra.

2.1 Theoretical Processes and Spectra

A spatial point-lattice process is a hybrid process consisting of a spatial point process, X,

and a lattice process, Y , where Y is quantitative measurement made at grid points and both

processes are observed within a study region 
 � R2. In order to study a spatial point-lattice

process, we need to explore the relationship between its components.

Let the hybrid process be denoted by Z(a) = fNX(a); Yag; where a 2 
, NX(A) is the

number of events in a given region A � 
; and Ya is the quantitative measurement made at a.

Henceforth, NX(A) will be written asN(A) andN(
) asN . The spatial point-lattice process

satis�es the following assumptions. First, the hybrid process is strictly stationary, that is

the process Z(a+ c) has the same probability distribution as Z(a) for any a; c 2 
. Second,

the point process is orderly, that is, the probability of more than one event at a particular

location is negligible. Third, the hybrid process satis�es the strong mixing condition, that is,

values of the process that are well separated in space become independent, see Appendix A;

this is generally a reasonable assumption in practical problems. Finally, the lattice process

is mean corrected.
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In what follows, we de�ne parameters associated with the hybrid process in both the

spatial and frequency domains. By virtue of the stationarity assumption and the fact that

the lattice process is mean corrected, the cross-covariance function of a point-lattice process

is de�ned as

NY (c) = lim
jdaj!0

�
E[dN(a)Ya+c]

jdaj

�
for a; c 2 R2: (1)

In equation (1), da represents a small neighbourhood of a, jdaj is the area of this neighbour-

hood and dN(a) = N(a+ da)�N(a) is the number of events within this neighbourhood.

The cross-spectral density function (or cross-spectrum), fNY , for a stationary spatial

point-lattice process is de�ned as the Fourier transform of the cross-covariance function.

Thus, at a given frequency, ! 2 R2, fNY (!) = (2�)�2
R
NY (c) exp(�i!c>)dc: In general,

NY (c) 6= NY (�c); so fNY will usually be a complex number. By analogy with bivariate

time series analysis, fNY can be decomposed into its real and imaginary parts as follows, see

for example (Chat�eld, 2003, chapter 8)

fNY (!) = (2�)
�2
Z
NY (c) cos(!c

>)dc�i(2�)�2
Z
NY (c) sin(!c

>)dc � cNY (!)�iqNY (!):

(2)

The function cNY (!) is known as the co-spectrum and qNY (!) is known as the quadrature

spectrum. Alternatively, fNY can be represented in polar form; hence, from (2) we have

fNY (!) =
p
c2NY (!) + q

2
NY (!) exp fi tan�1(�qNY (!)=cNY (!))g � �NY (!) expfi�NY (!)g;

where �NY is known as the amplitude spectrum, and �NY is known as the phase spectrum.
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In addition to the above spectra, the squared coherency spectrum is de�ned as

�NY (!) �
c2NY (!) + q

2
NY (!)

fNN(!)fY Y (!)
=

�2NY (!)

fNN(!)fY Y (!)
; (3)

where fNN(!) is the Fourier transform of the complete auto-covariance function of the point

process (see Bartlett, 1964; Mugglestone and Renshaw, 1996) and fY Y (!) is the Fourier

transform of the auto-covariance function of the lattice process (see Priestley, 1996). Us-

ing the Cauchy-Schwartz inequality, it can be shown that the squared coherency spectrum

satis�es the inequality 0 � �NY (!) � 1.

Here, we brie�y explain what each of the above spectra measures. The co-spectrum, cNY ,

represents the covariance between the coe¢ cients of the in-phase components of the two

patterns. The quadrature spectrum, qNY , represents the covariance between the coe¢ cients

of the out-of-phase components. The amplitude spectrum measures the relative value of

the power at the frequency ! in the components N and Y . The phase spectrum represents

the mean value of the phase shift between the components N and Y at frequency !, in the

sense described by Priestley (1996), assuming that the phase and amplitude of the spectral

representations for each process are independent random variables. The squared coherency

spectrum measures the square of the linear correlation between the components of the point-

lattice process at frequency !. The closer the square root of this value to unity the stronger

the relationship between the two processes at frequency !.

In practice when studying a spatial point-lattice process the study region, 
, is re-

quired to be rectangular and to coincide with where the lattice process is observed. Let


 = [0; `1] � [0; `2] where `1 and `2 represent the length and breadth of the study region.
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The empirical version of the cross-spectrum is called the cross-periodogram statistic and

it is de�ned by FNY (!) = (2�)�2j
j�1FN(!)FY (!); for ! 2 R2; where j
j = `1 � `2,

FN(!) =
R


exp(�i!a>)dN(a); and FY (!) =

R


exp(�i!a>)Yada where F is the �nite

Fourier transform(see Rigas, 1983; Brillinger, 1994). Furthermore, we can decompose the

cross-periodogram in the same ways as the cross-spectrum.

In order to avoid bias near ! = 0, we use the mean-corrected periodograms, namely,

�FN(!) = FN(!) � E[FN(!)] = FN(!) � �N�(!); and �FY (!) = FY (!) � E[FY (!)] =

FY (!)� �Y�(!) = FY (!); where �(!) =
R


exp

�
�i!a>

	
da, �N = limjdaj!0

n
E(dNX(a))

jdaj

o
is the �rst-order intensity function of the point pattern as de�ned in Diggle (2003), and �Y

is the mean of the lattice process which is assumed to be zero.

3 Distributional Properties

In this section, we provide the asymptotic distributional properties of the above cross-

periodogram statistics; proofs are outlined in Appendix B. In what follows, Z denotes a

hybrid process de�ned as in Section 2 and satisfying the assumptions mentioned there.

Theorem 1 For any two non-zero frequencies !1 and !2 2 R2; such that !1 �!2 6= 0 and

as `1; `2 ! 1, �FZ(!j); where �F>Z (!j) =
h
�FN(!j); �FY (!j)

i
for j = 1; 2 are asymptotically

independent and distributed as NC
2 (0; (2�)

2j
jfZZ(!j)) ; where NC
2 denotes the bivariate

complex normal distribution (see Kotz, 1997),

fZZ(!j) =

2664fNN(!j) fNY (!j)

fY N(!j) fY Y (!j)

3775
6
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and fY N is the Fourier transform of the cross-covariance function Y N , which is de�ned in a

similar manner to that of NY . Furthermore, fY N satis�es the property fY N(!) = fNY (�!)

since the hybrid process is assumed to be stationary. In addition, fNN(!) and fY Y (!) are as

de�ned above.

Remark 1 If ! = 0 then �FZ(!) is asymptotically N2 (0; (2�)2j
jfZZ(0)) and �FZ(0) is

independent of �FZ(!) for non-zero !.

Theorem 2 Consider frequencies !j 2 R2 for j = 1; : : : ; n such that !j ! ! as `1; `2 !1

then �FZ(!j) are asymptotically independent variates distributed as NC
2 (0; (2�)

2j
jfZZ(!))

for ! 6= 0 and as N2 (0; (2�)2j
jfZZ(0)) for ! = 0:

Corollary 1 As a consequence of Theorem 2 and the de�nition of the (complex) Wishart

distribution introduced by Goodman (1963) , it can be shown that for the periodogram �FZZ �

(2�)�2j
j�1 �FZ �FZ
>
, and at a frequency !, we have asymptotically that �FZZ(!) � WC

2 (1; fZZ(!))

if ! 6= 0; andW2 (1; fZZ(0)) if ! = 0: Here, WC
2 denotes the complex Wishart distribution of

dimension two and one degree of freedom; W2 denotes the Wishart distribution of dimension

two and one degree of freedom.

Therefore, the periodogram ordinates are distributed as independent (complex) Wishart

variates with one degree of freedom and covariance matrix fZZ . Being a Wishart distribu-

tion with just one degree of freedom implies that �FZZ(!) cannot be considered a reasonable

estimate (see Brillinger, 1981). However, under the assumptions described in Section 2 the

spectral density function is a smooth function of frequency (see Brillinger, 1970). There-

fore, a reasonable estimate at a particular frequency might be constructed by averaging over
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frequencies that are close together in the periodogram. Thus, one can consider the uni-

formly smoothed periodogram, FZZ(!) � 1
m

Pm
k=1

�FZZ(!k);where !k for k = 1; : : : ;m are

frequencies close to !.

Corollary 2 Under the conditions of Theorem 2 and using the results of Corollary 1 and

the properties of the (complex) Wishart distribution, the following holds asymptotically:

FZZ(!) � m�1WC
2 (m; fZZ(!)) if ! 6= 0;and m�1W2 (m; fZZ(0)) if ! = 0:

Having established the asymptotic joint distribution of �FZZ(!), we proceed to give the as-

ymptotic properties of the cross-periodogram statistic �FNY (!) = (2�)�2j
j�1 �FN(!) �FY (!).

Theorem 3 It can be shown that asymptotically �FNY (!) has the following properties:

lim
`1;`2!1

E
n
�FNY (!)

o
= fNY (!) for ! 6= 0; and (4)

lim
`1;`2!1

Cov
n
�FNY (!1); �FNY (!2)

o
= � (!1 � !2) fNN(!1)fY Y (�!1)+� (!1 + !2) [fNY (!1)]2

(5)

for !1;!2 6= 0, where � is the Kronecker delta; that is � (�) is equal to one if � = 0 and it

is equal to zero otherwise.

Thus asymptotically the cross-periodogram is an unbiased estimator of the cross-spectral

density function. Using equations (4) and (5), we derive the asymptotic distributional prop-

erties of the covariance matrix of �FNN , �FY Y , �cNY , and �qNY , where �cNY =
�
�FNY + �FNY

�
=2

and �qNY =
�
�FNY � �FNY

�
=2i are the co- and quadrature periodograms, respectively. The

covariance matrix of �FNN , �FY Y , �cNY , and �qNY , respectively, is given by

8
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�zz =

266666666664

f 2NN jfNY j2 fNNcNY fNNqNY

f 2Y Y fY Y cNY fY Y qNY

(fNNfY Y + c
2
NY � q2NY )=2 cNY qNY

(fNNfY Y + q
2
NY � c2NY ) =2

377777777775
:

However, if F is used instead of �F then �zz should be divided by m. Only the upper

triangle of the covariance matrix is reported; the lower triangle is derived by symmetry. The

matrix �zz is similar to that reported in Priestley (1996, Chapter 9) for any two components

of a one-dimensional multivariate time series.

The asymptotic results for amplitude, phase and squared coherency spectra are derived by

expanding these functions around their means using Taylor series expansions, and retaining

the �rst two or three terms. Taylor expansions are needed since the amplitude, phase and

squared coherency spectra are non-linear functions of �cNY , �qNY , �FNN , and �FY Y . In fact,

using just the �rst two terms of the Taylor expansion for functions of several variables

gives Ef��NY g = �NY ; Ef��NY g = �NY ; Ef��NY g = �NY ; Var(��NY ) � �2NY
2m

n
1

�NY
+ 1
o
;

Var(��NY ) � 1
2m

n
1

�NY
� 1
o
; Cov(��NY ; ��NY ) � 0; and Var(��NY ) � 2

m
�NY (1� �NY )2: Based

on the above distributional properties, one can construct con�dence intervals for the di¤erent

auto- and cross-spectra. Note that under independence the expressions for the variance

estimates of the phase and squared coherency spectra are invalid (see Brillinger, 1981).

However, one can derive appropriate distributions in this case as reported in Priestley (1996)

and Brillinger (1981).

A test of whether the squared coherency is zero is now derived; it is an adaptation of

a test for the one-dimensional multivariate case discussed by Priestley (1996, Chapter 9).

Under the null hypothesis that the coherency is zero, (m�1)��NY
1���NY is distributed as F2;2(m�1),

9
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where Fs;t is the F-distribution with s and t degrees of freedom and, as before, m is the

number of ordinates used in smoothing the periodogram at a particular frequency.

This test can be used as a test of independence between the point and lattice processes

under the assumption that the hybrid process is a spatially random point-lattice process in

which the two components are independent. The independence of the two components im-

plies that the cross-covariance function is equal to zero for all lags, which in turn implies that

the cross-spectral density function is identically equal to zero for all frequencies. Thus, the

co-, quadrature, amplitude, and coherency spectra are all equal to zero. It might seem that

�NY (!) is indeterminate but it can be shown (see Jenkins and Donald, 1968, chapter 8) that

it is uniformly distributed over the range (��=2; �=2). Therefore, any deviations from zero

in any of the cross-spectra except for the phase spectrum indicate that the two components

are correlated.

4 Discussion and Conclusions

In this paper we have derived asymptotic distributions of the spectral density functions of the

hybrid process consisting of a spatial point process and a lattice process. These distributions

were analogous to results from studies of one-dimensional processes. For non-zero frequencies,

we found that the asymptotic distribution of the cross-spectral matrix followed a complex

Wishart distribution of dimension two with one degree of freedom. For zero frequencies, the

distribution followed a Wishart distribution of dimension two with one degree of freedom.

In addition, the cross-periodogram statistic was shown to be an unbiased estimator of the

cross-spectral statistic and cross-spectral estimates at di¤erent frequencies were shown to be

10
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asymptotically independent of each other. Furthermore, a test for zero coherency, based on

a statistic which followed an F-distribution, was introduced.

With the widespread use of geographical information systems, global positioning sys-

tems and digital imaging, recording spatial point-lattice pocesses is becoming increasingly

common across a wide range of disciplines, including ecology, engineering, epidemiology and

geography. The results presented in this paper provide a framework for a spectral approach

to the analysis of such data. This framework holds potential for assessing various forms of

spatial dependence between the components of the spatial point-lattice process, including

directional dependence. This contrasts with other forms of analysis that have been used for

such datasets, for example where dependence between the di¤erent components has been

assessed via a regression approach treating the lattice component as an explanatory variable

in the model used for occurrence of events (see Augustin et al., 1996). Using spectral analy-

sis allows exploring the relationship between the two processes without having to treat one

of the processes as an outcome. In addition, for processes of a periodic nature and where

a linear shift exists between the two processes, spectral analysis is known to be a powerful

tool to detect such patterns.

Appendix A: De�nitions

In this section, we provide the de�nitions of some functions that are not covered elsewhere

in the article and are needed for the proofs of the results that are presented in Section 3.

The kth-order cumulant function is de�ned as

CumfdZj1(u1+ t); � � �; dZjk�1(uk�1+ t); dZjk(t)g = j1���jk(u1; � � �;uk�1)du1� � �duk�1dt for

11
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j1; : : :; jk = (Y or N); k = 1; 2; : : :; and u1; : : :;uk�1; t 2 R2: Furthermore, dZ is de�ned as

dZj(u) = dN(u) if j = N and Yudu if j = Y (see Brillinger, 1970).

The hybrid process is assumed to possess moments of all orders and to satisfy

Z
� � �
Z k�1X

s=1

jusj jj1���jk(u1; : : : ;uk�1)jdu1 � � � duk�1 <1; where (A.1)

juj =
p
uu> =

p
u2 + v2 and u = (u; v). Equation (A.1) is a form of mixing condition.

The mixing condition implies that the process of increments fN(�); Y (�)g, where N(�) =R
�
dN(a), Y (�) =

R
�
Yada and � is a subregion of R2, has the property that values of the

process that are well separated in space become independent. This is generally a reasonable

assumption in practical problems.

The kth-order cumulant spectral density function is de�ned as

fj1���jk(!1; : : :;!k�1) = (2�)�2(k�1)
Z
� � �
Z
exp

 
�i

k�1X
s=1

!su
>

s

!
�

j1���jk(u1; : : :;uk�1)du1� � �duk�1

for !1; : : :;!k 2 R2; where
Pk

s=1!s = 0; and the other terms are de�ned as above.

Appendix B: Proofs

Here we outline proofs for the results presented in Section 3. Before proceeding, we present

a result that is needed for the proofs.

12
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Let A =CumfFj1(!1); � � � ; Fjk(!k)g, and L = max(`1; `2) then as `1; `2 !1 we have

A = (2�)2(k�1)�

 
kX
s=1

!s

!
fj1���jk(!1; � � � ;!k�1) +O(L): (A.2)

Proof. A =
R


� � �
R


exp

�
�i

kP
s=1

!sa
>
s

�
�CumfdZj1(a1); � � �; dZjk(ak)g =R `2

0
� � �
R `2
0
exp

�
�i

kP
s=1

!2sa2s

�
Bda21� � �da2k ; where

B =
R `1
�`1 ::

R `1�ms

�Ms
::
RM1

m1
exp

�
�i

k�1P
s=1

!1sus � iu
kP
s=1

!1s

�
j1::jk(u1; ::; uk�1) du::dus::duk�1;

us = a1s�a1k ; vs = a2s�a2k ; Ms = `1�max(0; us; � � � ; uk�1), andms = �min(0; us; � � � ; uk�1)

for s = 1; : : : ; k � 1; a1k = u and a2k = v. Therefore,

A =
R

k
� � �
R

2
D exp

�
�i

k�1P
s=1

!su
>
s

�
j1���jk(u1; � � �;uk�1)du1� � �duk�1; where

D =
R N1
n1

RM1

m1
exp

�
�i

kP
s=1

(!1su+ !2sv)

�
du dv with us = (us; vs); dus = dus dvs; Ns =

`2�max(0; vs; � � � ; vk�1); ns = �min(0; vs; � � � ; vk�1); 
s = [�Ms; `1�ms]�[�Ns; `2�ns]; for

s = 1; : : : ; k � 1. Using the de�nition of �(!), one can show that���D ���Pk
s=1!s

���� � 2 (`2 + `1)
Pk�1

s=1 jusj � 4L
Pk�1

s=1 jusj: Hence, as `1; `2 ! 1; equa-

tion (A.2) holds.

Using equation (A.2) and the fact that cumulants of order greater than two vanish for

normally distributed variables (see Kendall and Stuart, 1963, chapter 5), one can easily

proceed to prove Theroems 1 and 2.

Proof of equation (4) in Theorem 3

The proof of equation (4) in Theorem 3 is as follows. Consider

E
h
�FNY (!)

i
= (2�)�2 j
j�1 E

h
�FN(!) �FY (!)

i
= (2�)�2 j
j�1CumfFN(!); FY (�!)g ; then

13
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using equation (A.2)

E
h
�FNY (!)

i
= (2�)�2 j
j�1 [(2�)2�(! � !) fNY (!) +O(L)] as `1; `2 ! 1: However,

�(0) = `1`2 = j
j; and O(L)=j
j ! 0 as `1; `2 ! 1. Therefore, E
h
�FNY (!)

i
= fNY (!)

which proves equation (4).

Proof of equation (5) in Theorem 3

The proof of equation (5) in Theorem 3 is as follows. ConsiderF =Cov
n
�FNY (!1); �FNY (!2)

o
=

(2�)�4j
j�2� Cum
n
�FN(!1) �FY (�!1); �FN(�!2) �FY (!2)

o
. Using the properties of cumu-

lants, F can be decomposed as (2�)�4j
j�2f(2�)6j
jfNY NY (!1;�!1;�!2)+

(2�)4j�(!1�!2)j2fNN(!1)fY Y (�!1)+ (2�)4j�(!1+!2)j2fNY (!1)fY N(�!1) + O(L3)g:

Now O(j
j) = O(L2) so that as `1; `2 !1 we prove equation (5) for !1;!2 6= 0: Note that

j
j�2j�(a) j2 ! � (a) as `1; `2 !1; where � is the Kronecker delta.
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